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1 Introduction

Recently, Bañados, Silk and West (BSW) [1] have demonstrated that the collision of two

particles falling from rest at infinity into the Kerr black hole [2] can have an infinitely large

center-of-mass energy (ECM) close to the event horizon, if the black hole is maximally

spinning, and one of the particle have critical angular momentum. This mechanism of

particle acceleration by a black hole is called BSW mechanism, which is interesting from the

viewpoint of theoretical physics because new physics is possible in the vicinity of the black

holes at the Planck scale. It may enable us to explain the astrophysical phenomenon such

as the gamma ray burst and the active galactic nuclei. Hence, the BSW mechanism about

the collision of two particles near a rotating black hole has attracted much attention [3–9]

(see also [10], for a review). Subsequently, Lake [11] examined the ECM of the collision at

the inner horizon of the non-extremal Kerr black hole and found that the ECM is finite. The

BSW mechanism for the charged spinning black hole or the Kerr-Newman black hole [12]

was also addressed and shown that the of collision of two uncharged particles falling freely

from rest at infinity not only depends on the spin a but also on the charge Q of the black

hole. The BSW effect for the Kerr-Taub-NUT BH was investigated in [13], and around the

four dimensional Kaluza-Klein extremal black hole in [14], and it resulted infinitely large

ECM near the horizon of both rotating and non-rotating cases. Further, the mechanism was

generalized for charged particles moving in an electromagnetic field and for the braneworld

black holes [15]. Zaslavskii [16–18] elucidated the universal property of acceleration of

particles for the rotating black holes and try to give a general explanation. Furthermore,

Grib and Pavlov [19, 20] found that the ECM can be infinite near the non-extremal Kerr

black hole, if the multiple scattering of the colliding particles is included. The BSW

mechanism was further extended to the case of two different massive colliding particles

near the Kerr black hole [21] and also in the case of Kerr-Newman black hole [22]. It

turns out that the divergence of the ECM of colliding particles is a phenomenon not only

associated with black holes, but also with naked singularities [23–26].
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On the other hand a spacetime singularity or a naked singularity is the final fate

of continual gravitational collapse [27], and it is widely believed that a singularity must

be removed by quantum gravity effects. However, we are far away from well defined

quantum gravity, and hence much attention is devoted to the research on the properties

and implications of classical black holes with a regular or non-singular center. In particular,

an interesting proposal was made by Hayward [28] for the formation and evaporation of a

regular black hole based on the idea of Bardeen [29], who proposed the first regular black

hole. These black holes are solutions of modified Einstein’s equation, yielding alteration

to classical black holes, but near the center they behave like a de Sitter spacetime [28, 29].

Over the past few years there has been an increasing interest in the study of rotating

regular black holes [30, 31], which depend on the mass and spin of the black hole, and on

an additional deviation parameter that measure potential deviations from the Kerr metric,

and includes the Kerr metric as the special case if this deviation parameter vanishes.

Further, these regular black holes are very important as astrophysical black holes, like

Cygnus X-1, although suppose to be like the Kerr black hole [32, 33], but the actual nature

of astrophysical black hole still need to be tested [32, 33], and they may deviate from the

Kerr black hole. More recently, the BSW mechanism when applied to an extremal regular

black holes [34, 35], also lead to divergence of the ECM. The main purpose of this paper is to

study the collision of two particles with equal rest masses in the background of the rotating

Hayward’s regular black hole and to see what effect the deviation parameter g makes on the

ECM. It may be mentioned that the rotating Hayward’s regular black hole is a prototype

of a non-Kerr black hole with additional parameter g apart from M and a, which looks like

the Kerr black hole with different spin [30], may be a suitable candidate for an astrophysical

black hole. Further, if observation demands vanishing deviation parameter, the compact

object may be regarded as the Kerr black hole or a non-Kerr black hole otherwise. It turns

out that observation may permit both these cases. We also study the horizon structure

of the rotating Hayward’s regular black hole, explicitly show the effect of the deviation

parameter g. Further, our results go over to that of the Kerr black hole [1] when parameter

g vanish, and to the nonrotating Hayward’s regular black hole [35], when a = 0.

Further, there are several questions that motivate our analysis: how does the deviation

term g affect the BSW mechanism? What is the horizon structure in the presence of term

g? Whether such solutions lead to some important outcome? Do the calculation of the

ECM has departed from the Kerr black hole? As we will see, these regular solutions do

have several interesting features and consequences on the BSW mechanism. The paper

is structured as follows. In the next section, we review the rotating Hayward’s regular

black hole, and discuss in detail its horizon structure. The calculation of the ECM for two

colliding particles coming from rest at infinity in the background of the rotating Hayward’s

regular black hole is the subject of section 4. The required equation of motion, study

of effective potential and calculation of the range of angular momentum is the subject of

section 3. We conclude the paper in section 5. We have used units which fix the speed of

light and the gravitational constant via 8πG = c4 = 1.
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2 Rotating Hayward’s regular black hole

The aim of this paper is to demonstrate that the rotating Hayward’s regular black hole

can act as a particle accelerator. The metric of the rotating Hayward’s regular solution, in

the Boyer-Lindquist coordinates, which is equivalent to the Kerr metric [2], reads [30]

ds2 = −
(

1− 2mr

Σ

)
dt2 − 4amr sin2 θ

Σ
dtdφ+

Σ

∆
dr2

+ Σdθ2 +

(
r2 + a2 +

2a2mr sin2 θ

Σ

)
sin2 θdφ2, (2.1)

where

Σ = r2 + a2 cos2 θ , ∆ = r2 − 2mr + a2, (2.2)

with mass function is replaced by mα,β(r, θ) [30], given by

m→ mα,β(r, θ) = M
r3+αΣ−α/2

r3+αΣ−α/2 + g3rβΣ−β/2
, (2.3)

where, in general, mα,β(r, θ) is a function of r and θ and also characterized by the two

real numbers α and β. The constants α, β are two real numbers, g is a positive constant,

a = J/M is angular momentum per unit mass, and M is the mass of the black hole. Thus,

the rotating Hayward’s regular metric can be seen as a prototype of a large class of a non-

Kerr black hole metrics, in which the metric tensor, in Boyer-Lindquist coordinates, has

the same expression of the Kerr one with m replaced by a mass function mα,β(r, θ) with

g gives deviation from the standard Kerr solution [2] and one recovers the Kerr solution

in the limit g → 0. Further, in addition, if the rotational parameter a = 0, we get the

Schwarzchild solution. The metric (2.1) is regular everywhere, including at r = 0 for g 6= 0,

which can be checked by the behavior of Ricci scalar and the Kretschman scalar. In fact,

the curvature invariants are regular everywhere, including at r = 0, where they remarkably

zero [30].

The rotating Hayward’s spacetime is stationary and axisymmetric with Killing vectors
∂
∂t and ∂

∂φ . However, like the Kerr metric, the Hayward’s rotating metric (2.1) is also

singular at ∆ = 0. The metric (2.1) generically must have two horizons, viz., the Cauchy

horizon and the event horizon. The surface of no return is known as the event horizon.

The zeros of ∆ = 0 gives the horizons of the black hole, i.e., the roots of the following

equation

r2(r3+αΣ−α/2 + g3rβΣ−β/2)− 2Mr4+αΣ−α/2

+a2(r3+αΣ−α/2 + g3rβΣ−β/2) = 0 , (2.4)

which depends on a, g, and θ, and which is different from the Kerr black hole. In the

equatorial plane (θ = π/2), it turns out that mass function mα,β(r, θ) is independent of the

parameters α and β, and so is eq. (2.4), which is also the case when both α = β = 0. Thus,

the two cases θ = π/2, and α = β = 0 (for any θ), will lead to the same mass function.

Hence, the results are identical for these cases.
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Figure 1. Plots showing the behavior of ∆ vs r for α = 1, β = 2, θ = π/6 and different values

of a. Top: for g = 0.3 (left), and g = 0.4 (right). Bottom: for g = 0.6 (left), and g = 0.7 (right).

To see the non trivial effect of the parameters α and β on the horizon structure, we

must choose θ 6= π/2. The largest possible root of eq. (2.4) gives the location of the

event horizon. We have studied the horizon properties for nonzero values of a and g (cf.

figures 1–3 and tables 1, 2) by numerically solving eq. (2.4). We have demonstrated that

for a given value of g, there exist an extremal value of a = aE and r = rEH such that for

a < aE , eq. (2.4) admits two positive roots and no root at a > aE (see figures 1–3). It

turns out that for α = 1, β = 2, g = 0.3, we have aE = 0.980078951651 and rEH = 1.02901.

Similarly for α = β = 0, g = 0.3, one gets aE = 0.9745094360075 and rEH = 1.04466 (see

tables 1, 2). It can be seen from the tables 1 and 2 that when the value of a increases,

the radius of event horizon (r+
H) decreases and that of Cauchy horizon (r−H) increases. The

difference (δg) of radii of the horizons is listed in the tables 1 and 2. Interestingly, it turns

out that the δg decreases with increase in a and it vanish in the case of the extremal black

hole. On the other hand, when the value of g increases, the δg decreases. Indeed, the

parameter δg can be related to the area of ergoregion. Hence, the parameter g may play

significant role in the energy extraction process from the black holes. The figures 1 and 2

shows that there exists a set of values of the parameters for which the black hole (2.1)

has two horizons or we have a regular black hole with the Cauchy and the event horizons.

Further, one can find values of parameters for which these two horizons coincide which

correspond to an extremal black hole.
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Figure 2. Plots showing the behavior of ∆ vs r for α = β = 0 and different values of a. Top: for

g = 0.3 (left), and g = 0.4 (right). Bottom: for g = 0.6 (left), and g = 0.7 (right).
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Figure 3. Plots showing the behavior of ∆ vs r. (Left) For α = 1, β = 2, θ = π/6, a = aE =

0.980078951651 and different values of g. (Right) For α = β = 0, a = aE = 0.9745094360075 and

different values of g.

Next, we investigate the structure and the location of the ergosurface or the static limit

surface (rsls
H ), which requires coefficient of dt2 to be zero. Then it is clear from eq. (2.1)

that static limit surface satisfies

r2(r3+αΣ−α/2 + g3rβΣ−β/2)− 2Mr4+αΣ−α/2

+a2(r3+αΣ−α/2 + g3rβΣ−β/2) cos2 θ = 0 . (2.5)
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g = 0.3 g = 0.4

a r+
H r−H δ0.3 r+

H r−H δ0.4

0.58 1.80480 0.31720 1.48760 1.79094 0.40222 1.38872

0.68 1.72142 0.38435 1.33707 1.70460 0.47299 1.23161

0.78 1.61034 0.47826 1.13208 1.58784 0.57087 1.01697

0.88 1.45062 0.62166 0.82896 1.41262 0.72557 0.68705

aE 1.02901 1.02901 0.0 1.06144 1.06144 0.0

Table 1. The event horizon (r+
H) and the Cauchy horizon (r−H) of the black hole and their difference

δg = r+
H − r

−
H for α = 1, β = 2 for different values of spin a, with constant g.

g = 0.3 g = 0.4

a r+
H r−H δ0.3 r+

H r−H δ0.4

0.58 1.80442 0.36513 1.43929 1.78999 0.45591 1.33408

0.68 1.72073 0.43301 1.28772 1.70287 0.53124 1.17163

0.78 1.60900 0.52439 1.08461 1.58430 0.63159 0.95271

0.88 1.44727 0.66341 0.78386 1.40249 0.79004 0.61245

aE 1.04466 1.04466 0.0 1.08796 1.08796 0.0

Table 2. The event horizon (r+
H) and the Cauchy horizon (r−H) of the black hole and their difference

δg = r+
H − r

−
H for α = β = 0 for different values of spin a, with constant g.

The location of static limit surface is shown in the figure 4 for different values of a and g.

It is observed that for g = 0, eq. (2.4) and (2.5) are exactly same as the Kerr black hole [2].

The ergosphere is the region between the static limit surface and the event horizon. It

lies outside the black hole and it is possible to enter an ergosphere and leave again, a

object moves in the direction of spin of the black hole. Interestingly, the area of ergoregion

decreases with increases in a as well as with increase in g. Thus, the event horizon of

the rotating Hayward’s regular metric (2.1) is located at r = rEH , where ∆ = 0, and it is

rotating with angular velocity ΩH . Whereas the static limit surface is located at r = rsls
H ,

when gtt = 0. Further, one has an extremal black holes, when ∆ = 0 has a double root,

i.e., when the two horizons coincides. The ergoregion is given by rEH < r < rsls
H , where the

Killing vector ∂
∂t is spacelike. When ∆ = 0 has no root, i.e., no horizon exists, one gets no

black hole (cf. figures 2, 3 and 5).

3 Particles orbits

In this section, we would like to study the equations of motion of a particle with rest mass

m0 falling in the background of the rotating Hayward’s regular black hole. Henceforth, we

shall restrict our discussion to the case of equatorial plane (θ = π/2), which simplifies the

mass function (2.3) to

m =
M

1 + (g/r)3
. (3.1)
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Figure 4. Plots showing the behavior of gtt vs r for different values of a. Top: for α = 1, β = 2,

θ = π/6, g = 0.3 (left), and g = 0.4 (right). Bottom: for α = 0, β = 0, g = 0.3 (left), and g = 0.4

(right).
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For α = β = 0.

It is easy to see that the mass function (3.1) can be also obtained from (2.3) for α = β = 0.

Further, the equations E = −pt and L = pφ, lead to

E = −(gttṫ+ gtφφ̇) , (3.2)

L = gφφφ̇+ gtφṫ , (3.3)
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which trivially solves to

Σ
dt

dτ
= −a(aE − L) + (r2 + a2)

T

∆
, (3.4)

Σ
dφ

dτ
= −(aE − L) +

aT

∆
. (3.5)

The radial part of the equation of motion of a particle in the rotating Hayward’s spacetime

can be analysed by the Hamilton-Jacobi separation method. The Hamilton for the geodesic

motion is given by

H =
1

2
gµνPµPν , (3.6)

where Pµ is the momentum. If S = S(λ, xα) be the action which is a function of the

parameter λ and coordinate xα. Then, the corresponding Hamilton-Jacobi equation

∂S

∂τ
= −1

2
gµν

∂S

∂xµ
∂S

∂xν
, (3.7)

where τ is an affine parameter along the geodesics and S is Jacobi action which is given by

S =
1

2
m2

0τ − Et+ Lφ+ Sr(r) , (3.8)

where Sr is a function of r. The constants m0, E, and L correspond to rest mass, conserved

energy and angular momentum of the particle, respectively. They are related via m2
0 =

−pµpµ, E = −pt, and L = pφ. In addition to E and L, there is another conserved quantity,

namely Carter constant K, which is related to total angular momentum. Inserting eq. (3.8)

into the eq. (3.7) and separating the coefficients of r equal to the Carter constant K, we

get the following equation

Σ
dr

dτ
= ±

√
T 2 −∆

[
m2

0r
2 + (L− aE)2 +K

]
, (3.9)

where T = E(r2 +a2)−La. For a particle moving in the equatorial plane and to remain in

the equatorial plane, the Carter constant K = 0 [36]. Obviously, one recovers the equations

of motion of the Kerr black hole when g → 0 [1].

To determine the range of the angular momentum of the particles, we must calculate

the effective potential. The radial equation for the timelike particle moving along the

geodesic in the equatorial plane is described by

1

2
ṙ2 + Veff = 0 , (3.10)

with the effective potential

Veff = − [E(r2 + a2)− La]2 −∆[m2
0r

2 + (L− aE)2]

2r4
. (3.11)

The condition of circular orbit of the particles is given by

Veff = 0 , and
dVeff

dr
= 0 . (3.12)

– 8 –
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g aE rEH L2 (min) L1 (max)

0.2 0.9921503552200 1.01501 −4.82270 2.03055

0.3 0.9745094360075 1.04466 −4.80977 2.09438

0.4 0.9429970792861 1.08796 −4.78643 2.19822

0.5 0.8961057957904 1.13802 −4.75113 2.34136

0.6 0.8327653930500 1.18888 −4.70236 2.52988

Table 3. The range for the angular momentum L, and value of a = aE , r = rEH for different g of

the extremal rotating Hayward’s regular black hole.

g a r−H r+
H L4 (min) L3 (max)

0.2 0.96 0.77195 1.26151 −4.79983 2.37942

0.3 0.88 0.66341 1.44727 −4.74164 2.66755

0.4 0.78 0.63159 1.58430 −4.66671 2.90664

0.5 0.72 0.68597 1.62411 −4.61962 3.01039

0.6 0.68 0.77888 1.61674 −4.58625 3.05693

Table 4. The range for the angular momentum L, and values of a, r = r−H , r
+
H for different g of

the non-extremal rotating Hayward’s regular black hole.

Since geodesics are timelike, i.e., dt/dτ ≥ 0, then eq. (3.4) leads to

1

r2

[
− a(aE − L) + (r2 + a2)

T

∆

]
≥ 0 , (3.13)

the above condition, as r → rEH , reduces to

E − ΩHL ≥ 0 ,

ΩH =
a

2mrEH
=

a

(rEH)2 + a2
, (3.14)

where ΩH is the angular velocity of the black hole on the horizon. The limiting values of

the angular momentum of freely falling particles are calculated using eq. (3.12) for both

the extremal and the non-extremal rotating Hayward’s regular black hole, which are listed

in tables 3 and 4. The critical angular momentum of the particle is given by Lc ≡ E/ΩH ,

and from (3.14), L ≤ Lc. The values of critical angular momentum are given in the table 3

for different combinations of spin a and constant g. In figure 6, we plot ṙ vs r for the

different values of L, a and g. It is shown that if the angular momentum of the particle is

larger than the critical angular momentum, i.e., if L > Lc, then the geodesics never fall into

the black hole. On the other hand, if the angular momentum is smaller than the critical

angular momentum (L < Lc), then the geodesics always fall into the black hole and if both

are equal (L = Lc), then the geodesics fall into the black hole exactly at the event horizon.

We plot the effective potential in figure 7 choosing different values of angular momentum

L. If the angular momentum of the particles lie in the range, then the effective potential

is negative and particles are bounded. If the angular momentum of the particle lie outside

the range, then the effective potential is always positive.
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4 Center-of-mass energy in the rotating Hayward’s regular black hole

In the last section, we calculate the range for the angular momentum for which a particle

can reach the horizon, i.e., if the angular momentum lies in the range, the collision is

possible near the horizon of the rotating Hayward’s regular black hole. Next, we study the

ECM of two colliding particles moving in the equatorial plane of the rotating Hayward’s

regular black hole. Let us consider colliding particles have same rest mass m1 = m2 = m0,

and they are coming from rest at infinity with E1/m0 = E2/m0 = 1, approaching the

black hole with different angular momenta L1, L2 and collide at some radius r. We wish to

compute the collision energy of the particles in center-of-mass frame and explicitly bring

out the effect of the parameter g on the BSW mechanism. We observe that two particles

have the four-momentum

Pµi = miu
µ
i , (4.1)

where uµi = dxµi /dτ is the four-velocity of the particles i (i = 1, 2). The ECM of two

particles is given by

E2
CM = −Pµi Piµ . (4.2)
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Inserting, eq. (4.1) into eq. (4.2), with m1 = m2 = m0, we obtain

E2
CM

2m2
0

= 1− gµνuµ(1)u
ν
(2) . (4.3)

On substituting the values of gµν , uµ(1) and uµ(2), the expression for the ECM of two colliding

particles has the following simple form:

E2
CM

2m2
0

=
1

r(r2−2mr+a2)

[
2a2(m+r)− 2am(L1+L2)− L1L2(−2m+r) + 2(−m+r)r2

−
√

2m(a−L1)2 −L2
1r +2mr2

√
2m(a−L2)2 −L2

2r +2mr2
]
,

(4.4)

where m is given by eq. (3.1). Obviously, the above result confirms that the parameter

g indeed has influence on the ECM, and when the deviation parameter vanish g = 0, the

above equation reduces to same as obtained for the Kerr black hole [1]. We are interested

to investigate the properties of the ECM as r → rEH . We observe that at r → rEH the

denominator of eq. (4.4) is zero and so is the numerator. We apply l’Hospital’s rule twice,

then the value of the ECM, as r → rEH , becomes

E2
CM

2m2
0

(r → rEH) = 3.7942 + 0.0812(L1+L2)− 0.0819L1L2 +
G2

1(L2−Lc)
8(L1−Lc)3

+
G2

2(L1−Lc)
8(L2−Lc)3

− G1G2

4(L1−Lc)(L2−Lc)
− H1(L2−Lc)

4(L1−Lc)
− H2(L1−Lc)

4(L2−Lc)
,

(4.5)

where a = aE = 0.9745094360075, rEH = 1.04466, g = 0.3, M = 1, Gi = 4.1189−0.0883Li−
0.9554L2

i , Hi = 3.8008 + 0.3443Li − 0.1735L2
i (i = 1, 2), and Lc = E/ΩH = 2.09438.

Eq. (4.5), gives the limiting values of the ECM at the event horizon with critical angular

momentum Lc. Obviously, the ECM diverges when L1 = Lc or L2 = Lc and the ECM

is finite for the other generic values of L1 and L2. Hence, we can say that an extremal

rotating Hayward’s regular black hole can act as a particle accelerator to an infinitely high

energy and may provide an effective framework for the Planck scale physics. However, to

get infinite ECM the particles should approach the black hole with angular momentum in

the required range, which is reflected in table 3. Further, figure 8 depicts the variation of

the ECM vs r for different values of L1 and L2 with fixed values of a and g, it is clear that

the ECM blows up at the horizon when either L1 or L2 = Lc. It is clear that Lc is in the

range for which the particle can reach the horizon of the black hole.

Particle collision near non-extremal black hole. Next, we want to study the prop-

erties of the ECM as r tends to the event horizon r+
H in the case of the non-extremal rotating

Hayward’s regular black hole. At r → r+
H , both numerator and denominator of the eq. (4.4)

vanish. So, we apply l’Hospital’s rule to find the near horizon ECM for the non-extremal
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black hole. The ECM, as r → r+
H , is given as

E2
CM

2m2
0

(r → r+
H) =

1

0.6657(L3−L′c)(L4−L′c)
[
14.1523 +L4(1.2332L4−4.3409)

+L3(1.2332L3−1.1349L4−4.3409)
]
, (4.6)

where L′c = E/ΩH = 3.2602. From eq. (4.6), it seems that one can get infinite ECM if

either L3 or L4 = L′c. However, we have to guarantee that the particles with angular

momentum L′c reaches the horizon or in other words L′c should be in the range of angular

momentum with which the particles can reach the horizon and collision is possible. It can

be seen from table 4, the range of the angular momentum of the particles, for g = 0.3,

and a = 0.88, is L4 < L < L3. It turns out that the value of L′c does not lie in the range

and L′c > L3, which means that, in non-extremal rotating Hayward’s regular black hole,

the particles with angular momentum L = L′c could not fall into the black hole. Hence,

the ECM for non-extremal rotating Hayward’s regular black hole has a finite upper limit.

For non-extremal black hole, the behavior of the ECM vs r can be seen from figure 9 for

different values of the parameters a and g. We can also observe, from the figure 10, the

ECM is increases with g.

5 Conclusion

The celebrated singularity theorems predict the formation of singularities in classical gen-

eral relativity. However, it is widely believed that spacetime singularities do not exist in

nature, but that they represent a limitation or creation of the classical general theory of

relativity. As we do not yet have any well defined theory of quantum gravity, hence more

attention is given for phenomenological approaches to somehow solve these singularity

problem in classical general relativity and to study possible implications. So an important

line of research to understand the inside of a black hole is tantamount to investigate classi-

cal black holes and their consequences, with regular, i.e., nonsingular, properties. In view

of this, we have examined the features of horizons by the stationary, rotating Hayward’s
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regular black hole and explicitly bring out the effect of the deviation parameter g. It turns

out that for each g, for proper choice of parameters α, β, M , and θ, we can find criti-

cal value a = aE , which corresponds to an extremal black hole with degenerate horizons,

i.e., where two horizons coincides. However, when a < aE , we have a regular black hole

with Cauchy and event horizon. It turns out that the horizon structure of the rotating

Hayward’s regular black hole is complicated as compared to the Kerr black hole. Thus,

the extremal regular black hole depends on the value of g. Further, we have adapted the

original BSW mechanism suitable for the rotating Hayward’s regular black hole, which has

very complicated horizon structure as compared to the Kerr black hole. Then, we study

the collision of two particles of equal rest masses falling freely from rest at infinity into the

equatorial plane of an extremal rotating Hayward’s regular black hole to calculate the ECM,

for various values of g, which are infinite if one of the colliding particles has the critical

angular momentum in the required range. On the other hand, the ECM has always finite

upper limit for the non-extremal black hole. Thus, the BSW mechanism depends both on

the rotation parameter a as well as on the deviation parameter g. For the non-extremal

black hole, we have also seen the effect of g on the ECM demonstrate an increase in the
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value of the ECM with an increase in the value of g. We have performed our calculations

numerically as it is difficult to get the analytical solution and found that the results are

different from that of the Kerr case. In particular, our results, in the limit g → 0, reduced

exactly to vis-à-vis the Kerr black hole results.
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