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1 Introduction

Very broadly, dualities in quantum field theory often involve an interchange between classi-

cal and quantum data. Perhaps the simplest and best-known example occurs for the theory

of a free periodic1 scalar field φ ∼ φ+ 2π on a Riemann surface Σ, with sigma model action

I(φ) =
R2

4π

∫

Σ
dφ∧⋆dφ =

R2

4π

∫

Σ
d2x

√
h ∂µφ∂

µφ , µ = 1, 2 . (1.1)

Here R is a parameter which determines the radius of the circle for maps φ : Σ → S1, and

⋆ is the Hodge star associated to a given metric h on Σ.

When φ is quantized on the circle, meaning that we take Σ = R× S1, one finds that

the Hilbert space is graded by a pair of integers (p, w),

HS1 =
⊕

(p,w)∈Z⊕Z

H p,w
S1 . (1.2)

The integers p and w are naturally interpreted as charges for a combined U(1)ℓ × U(1)r
action on HS1 , under which each summand in (1.2) transforms with the specified weights.

The integer p is associated to the global U(1)ℓ symmetry under which the value of φ shifts

by a constant,

U(1)ℓ : φ 7−→ φ + c , c ∈ R/2πZ . (1.3)

This transformation clearly preserves the classical action in (1.1). Concretely, p labels the

states in HS1 which arise from the quantization of the constant mode φ0 ∈ S1 of the scalar

field. These states correspond to a Fourier basis for L2(S1;C) as below,

Ψp(φ0) = e i p φ0 , p ∈ Z , (1.4)

and p is the momentum conjugate to φ0.

1“Periodic” is perhaps better stated as “circle-valued”.
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The other charge w describes the winding-number of φ as a map from the circle to

itself. Hence w labels the connected components of the configuration space

X =
⊔

w∈Z

Xw , X = Map(S1, S1) , (1.5)

where

Xw =
{
φ : S1 → S1

∣∣φ(x+ 2π) = φ(x) + 2πw
}
. (1.6)

Each component of the classical configuration space must be quantized separately, and

those states which arise from Xw span the subspace of the Hilbert space at the grade w.

Though the Hilbert space on S1 is bigraded by (p, w) ∈ Z⊕Z, the individual gradings

have very different physical origins. The momentum p appears only after quantization, so

the grading by p is inherently quantum. Conversely, the grading by winding-number w can

be understood in terms of the topology of the configuration space X , so the grading by w

is classical.

In a similar vein, the conserved currents on Σ associated to the U(1)ℓ ×U(1)r global

symmetry are respectively

jℓ = dφ , jr = ⋆dφ . (1.7)

The topological current jr, whose charge is the winding-number w, trivially satisfies the

conservation equation d†jr = 0 (with d† = −⋆d⋆) for arbitrary configurations of the field

φ on Σ. By contrast, d†jℓ = 0 only when φ satisfies the classical equation of motion

△φ = d†dφ = 0. Thus conservation of jℓ is a feature of the dynamics — or lack thereof —

in the abelian sigma model.

Because Σ has dimension two, the conserved currents jℓ and jr are exchanged under the

action by Poincaré-Hodge duality on the space of one-forms Ω1
Σ. As familiar, the classical

action by Poincaré duality extends to an action by T-duality [5–7, 12, 19] on the quantum

field φ, under which the respective quantum and classical gradings by momentum and

winding are exchanged, and the parameter R in (1.1) is inverted to 1/R. See for instance

Lecture 8 in [21] for further discussion of abelian duality on Σ.

The present paper is a continuation of [2], in which we examine global issues surround-

ing abelian duality in dimension three, on a Riemannian three-manifold M . In this case,

duality now relates the periodic scalar field φ :M → S1 to a U(1) gauge field A on M .

Both quantum field theories are free, so both can be quantized on the product M = R× Σ

to produce respective Hilbert spaces HΣ and H ∨
Σ . Duality is an equivalence of quantum

field theories, so we expect an isomorphism2

HΣ ≃ H ∨
Σ . (1.8)

Exploring how the identification in (1.8) works when Σ is a compact Riemann surface of

genus g will be our main goal in this paper.

2Our notation for the Maxwell Hilbert space H ∨

Σ is not intended to suggest that it is naturally dual as

a vector space to the scalar Hilbert space HΣ.
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Just as T-duality acts in a non-trivial way on HS1 by exchanging momentum and

winding in (1.2), we will see that the dual identification HΣ ≃ H ∨
Σ relies upon an analogous

exchange of classical and quantum data for the scalar field and the gauge field on Σ.

However, the Hilbert spaces HΣ and H ∨
Σ are now more interesting due to their dependence

on the geometry of the Riemann surface Σ, and unraveling the isomorphism in (1.8) turns

out to be a richer story than for quantization on S1.

In genus zero, when Σ = CP
1 and the Hilbert space has a physical interpretation via

radial quantization on R
3, nothing that we say will be new. As usual in the world of

Riemann surfaces, though, genus zero is a rather degenerate case, and several important

features only emerge at genus g ≥ 1. From the perspective of the scalar field, these features

are related to topological winding-modes on Σ, and from the perspective of the gauge field,

they are related to the existence of a moduli space of non-trivial flat connections on Σ.

Given the current rudimentary understanding of duality, especially in dimension three,

the existence of any tractable example is important. Both this work and [2] are motivated

by questions about non-abelian duality for a certain topological version of the N = 8 su-

persymmetric Yang-Mills theory in three dimensions, considered to a certain extent in §3.3
of [22]. From the latter perspective, the abelian analysis here provides a useful toy model

in which everything can be understood directly and in detail.

The plan of the paper. In section 2, we construct the respective Hilbert spaces HΣ

and H ∨
Σ associated to the periodic scalar field and the abelian gauge field on M = R× Σ.

Because the quantum field theories are free, the quantization holds no mystery and can

be carried out quite rigorously, if one wishes. Both Hilbert spaces depend on the detailed

choice of the Riemannian metric on Σ. In either case, though, we identify a particularly

simple, infinite-dimensional subspace of ‘quasi-topological’ states which depend only upon

the overall volume and complex structure of Σ. These quasi-topological states are ex-

changed under duality, analogous to the exchange of momentum and winding states for

quantization on S1.

In section 3, we proceed to the consider the algebra satisfied by a natural set of op-

erators (Wilson loops, vortex loops, and monopole operators in the language of Maxwell

theory) which act on the Hilbert spaces constructed in section 2. For a free quantum field

theory, there is only one possible operator algebra that can arise — namely, the Heisen-

berg algebra, in a suitable geometric realization. When Σ = CP
1 there is not much to say,

but in higher genus, the operator algebra has a non-trivial holomorphic dependence on Σ

that seems not to have been previously noted. This algebra is a refinement of the cele-

brated Wilson-’t Hooft algebra [15]. See [9, 10] for a somewhat related appearance of the

Heisenberg algebra in four-dimensional Maxwell theory, and [3, 4, 8, 16, 18] for some recent

discussions of monopoles and vortices in the setting of N = 2 supersymmetric gauge theory.

Along the way, we also consider in section 3.1 the dual identification of operators acting

on HΣ ≃ H ∨
Σ . For the convenience of the reader, a complementary review of the path

integral perspective on the order-disorder correspondence for our operators can be found

in section 5.2 of [2].

– 3 –
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2 Abelian duality on a Riemann surface

In this section, we quantize both the periodic scalar field and the abelian gauge field on a

compact surface Σ of genus g, with Riemannian metric h. We then compare the results.

Some geometric preliminaries. Though the quantum field theories under considera-

tion are free, they definitely depend upon the choice of the metric h on Σ. The most basic

invariant of h is the total volume

ℓ2 =

∫

Σ
volΣ , volΣ = ⋆1 ∈ Ω2

Σ , (2.1)

where ℓ is the length associated to the chosen metric.

As in [2], the Hamiltonians for both the scalar field and the gauge field on Σ will

depend upon a parameter e2, identified with the electric coupling in the Maxwell theory on

M = R× Σ. All our constructions will respect the classical scaling under which the metric

h transforms by

h 7−→ Λ2 h , Λ ∈ R+ , (2.2)

along with

ℓ 7−→ Λ ℓ , (2.3)

and

e2 7−→ Λ−1 e2 . (2.4)

Hence ℓ and e2 are redundant parameters, since either can be scaled to unity with an

appropriate choice of Λ in (2.2). Nonetheless, we leave the dependence on both ℓ and e2

explicit, so that the naive dimensional analysis holds.

At least when the genus of Σ is positive, a more refined invariant of the metric h is the

induced complex structure on Σ. Concretely, specifying a complex structure on Σ amounts

to specifying a Hodge decomposition for complex one-forms

Ω1
Σ ⊗ C ≃ Ω1,0

Σ ⊕ Ω0,1
Σ , (2.5)

where Ω1,0
Σ and Ω0,1

Σ refer to complex one-forms of given holomorphic/anti-holomorphic

type. With this decomposition, one can define a Dolbeault operator ∂ by projection onto

Ω0,1
Σ , from which one obtains a notion of holomorphy on Σ.

The Hodge star associated to the metric h satisfies ⋆2 = −1 when acting on Ω1
Σ. The

eigenspaces of the Hodge star then provide the decomposition in (2.5), where by convention

⋆ = −i on Ω1,0
Σ , ⋆ = +i on Ω0,1

Σ . (2.6)

In this manner, the metric h determines a complex structure on Σ.

Finally, we will make great use of the de Rham Laplacians △0 and △1 acting on

differential forms of degrees zero and one on Σ. As usual, both Laplacians are defined

in terms of the L2-adjoint d† via △0,1 = d†d+ dd†. With this convention, the Laplacian

is a positive operator. Because Σ is smooth and compact, the spectra of △0 and △1 are

discrete, and the kernels of each Laplacian are identified with the cohomology groups

H0(Σ;R) = R , H1(Σ;R) = R
2g . (2.7)

– 4 –
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2.1 The quantum sigma model

As in section 2 of [2], we consider a periodic scalar field φ on M = R× Σ,

φ :M −→ S1 ≃ R/2πZ , (2.8)

where we interpret φ as an angular quantity, subject to the identification

φ ∼ φ + 2π . (2.9)

Unlike in [2], though, for the purpose of quantization we work in Lorentz signature (−++)

on R× Σ, with the product metric

ds2M = −dt2 + hzz dz⊗dz . (2.10)

Here t is interpreted as the “time” along R, and (z, z) are local holomorphic/anti-

holomorphic coordinates on Σ. Philosophically, quantization is more naturally carried

out in Lorentz as opposed to Euclidean signature, since only in the former case does one

expect to obtain a physically-sensible, unitary quantum field theory.

In Lorentz signature on M = R× Σ, the free sigma model action is given by

I0(φ) =
e2

4π

∫

R×Σ
dt

[
(∂tφ)

2 volΣ − dφ∧⋆dφ
]
. (2.11)

Throughout, we follow the convention that the de Rham operator d and the Hodge star

⋆ ≡ ⋆Σ refer to quantities on Σ, as opposed to M . As in (2.1), volΣ is the Riemannian vol-

ume form on Σ induced by the metric h. Finally, e2 is a dimensionful parameter which will

eventually be identified under duality with the electric coupling in Maxwell theory on M .

Under the scaling by Λ in (2.2) and (2.4), the volume form on Σ transforms by

volΣ −→ Λ2 volΣ , (2.12)

and dφ∧⋆dφ is invariant, a fact familiar in the context of two-dimensional conformal field

theory. Hence I0(φ) will be invariant under (2.2) and (2.4) provided that the time t is also

scaled by

t 7−→ Λ t . (2.13)

This scaling of the time coordinate is moreover necessary for a homogeneous scaling of the

three-dimensional metric (2.10) on M .

As we observed in [2], the free sigma model action in (2.11) can be extended by

topological terms

I1(φ) =
e2

2π

∫

R×Σ
dtα∧dφ +

θ

2πℓ2

∫

R×Σ
dt ∂tφ · volΣ . (2.14)

Here α is a harmonic one-form on Σ,

α ∈ H1(Σ) , (2.15)

– 5 –
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and θ is a real constant,

θ ∈ R . (2.16)

Together, α and θ specify the components of the complex harmonic two-form γ that appears

on the compact three-manifoldM in [2]. The prefactor of 1/2π in (2.14) is just a convention,

and the factors of e2 and 1/ℓ2 in the respective terms are dictated by invariance under the

scaling in (2.2), (2.4), and (2.13). Note also that the two-form volΣ/ℓ
2 which enters the

second term in (2.14) is properly normalized to serve as an integral generator for H2(Σ;Z).

We take the total sigma model action to be the sum

Itot(φ) = I0(φ) + I1(φ) , (2.17)

or more explicitly,

Itot(φ) =
e2

4π

∫

R×Σ
dt

[
(∂tφ)

2 volΣ + 2
θ

e2ℓ2
∂tφ volΣ − dφ∧⋆dφ + 2α∧dφ

]
. (2.18)

Because α is closed by assumption, dα = 0, the topological terms in (2.18) do not alter the

classical equation of motion

∂2t φ + △0φ = 0 , (2.19)

a version of the usual wave equation on R× Σ. As a small check on our signs, note that

△0 ≥ 0 is positive while ∂2t ≤ 0 is negative, so the equation of motion for φ does admit

non-trivial, time-dependent solutions. Clearly, α in (2.18) serves to distinguish the various

topological winding-sectors associated to the circle-valued map φ.

Like α, the constant θ multiplies a term in the action (2.14) which is a total derivative.

Hence θ has no effect on the classical physics. However, θ does change the definition of the

canonical momentum Πφ conjugate to φ,

Πφ =
e2

2π

(
∂tφ +

θ

e2ℓ2

)
, (2.20)

in terms of which we write the classical Hamiltonian

H =

∫

Σ

[
π

e2

(
Πφ − θ

2πℓ2

)2

volΣ +
e2

4π
dφ∧⋆dφ − e2

2π
α∧dφ

]
. (2.21)

As will be clear, the quantum sigma model does depend upon θ non-trivially, and

θ ∈ R/2πZ becomes an angular parameter closely analogous to the theta-angle of Yang-

Mills theory in two and four dimensions.

In addition to the Hamiltonian H, another important quantity is the conserved mo-

mentum P associated to the global U(1) symmetry under which the value of φ shifts by

a constant, exactly as in (1.3). Constant shifts in φ manifestly preserve the sigma model

action, with conserved current j = e2 dφ/2π and charge

P =
e2

2π

∫

Σ
∂tφ · volΣ . (2.22)

Because of the U(1) symmetry, the Hilbert space for φ will automatically carry an integral

grading by the eigenvalue of P when we quantize.

– 6 –
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Classical mode expansion. In principle, the Hilbert space for the periodic scalar field

on the surface Σ is straightforward to describe, though the detailed spectrum of the Hamil-

tonian depends very much on the geometry of Σ.

Very briefly, just as for quantization on S1, the quantization on Σ involves a countable

number of topological sectors, corresponding to homotopy classes of the map φ : Σ → S1.

These homotopy classes are labelled by a winding-number ω which is valued in the coho-

mology lattice

L = H1(Σ;Z) ≃ Z
2g , (2.23)

as discussed for instance in section 2.1 of [2]. Abusing notation slightly, I write the coho-

mology class associated to the circle-valued map φ as

ω =

[
dφ

2π

]
∈ H1(Σ;Z) . (2.24)

Globally, the configuration space X = Map(Σ, S1) is a union of components

X =
⊔

ω∈L

Xω , (2.25)

where

Xω =

{
φ : Σ → S1

∣∣∣∣∣

[
dφ

2π

]
= ω

}
. (2.26)

As standard in quantum field theory, each component Xω ⊂ X must be quantized sepa-

rately, leading to a topological grading by the cohomology lattice L on the full Hilbert

space HΣ. This grading by ω ∈ L is the obvious counterpart for quantization on Σ to the

grading (1.2) by winding-number w ∈ Z for quantization on S1.

Concretely, as the first step towards constructing the sigma model Hilbert space, we

solve the classical equation of motion for φ in (2.19). For the moment, we assume φ to

have trivial winding, so that the time-dependent field φ : R× Σ → S1 can be equivalently

considered as a map φ : R → X0 to the identity component of X .

The general solution of (2.19) then takes the form

φ(t, z, z) =
φ0
e2ℓ

+
2πt

ℓ
p0 +

√
π
∑

λ>0

e2

λ
ψλ(z, z)

[
aλ e

−i λ t + aλ
† e i λ t

]
. (2.27)

Generalizing the standard solution to the wave equation on R
1,2, this expression for φ is

written in terms of an orthonormal basis {ψλ} of eigenmodes for the scalar Laplacian △0

on Σ,

△0ψλ = λ2 ψλ , ψλ ∈ Ω0
Σ , (2.28)

with the convention that λ > 0 is a positive real number. For simplicity, we assume that all

non-vanishing eigenvalues of the scalar Laplacian are distinct, so that each eigenfunction

ψλ(z, z) is uniquely labelled by λ. Of course, the precise spectrum for the scalar Laplacian

depends sensitively on the geometry of the surface Σ, but we will not require any detailed

information about the spectrum here, other than that it is discrete.

– 7 –
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To ensure invariance of the eigenmode expansion for φ under the scaling in (2.2)

and (2.4), we employ the invariant (and coupling-dependent) normalization condition

||ψλ||2 = e4
∫

Σ
ψ2
λ volΣ = 1 . (2.29)

A similar coupling-dependent normalization condition is used in (2.46) of [2], for the same

reason. Accordingly, the constant function with unit norm on Σ is

ψ0 =
1

e2ℓ
. (2.30)

This constant function appears implicitly in (2.27) as the coefficient of the zero-mode

φ0. Because φ is an angular quantity with period 2π, the zero-mode φ0 must have its

own periodicity

φ0 ∼ φ0 + 2πe2ℓ . (2.31)

Hence φ0 effectively decompactifies in the large-volume limit ℓ→ ∞ with e2 fixed.

Otherwise, p0, aλ, and aλ
† for λ > 0 in (2.27) are constants which specify the classical

solution for φ. The constant p0 ∈ R is real and determines the classical momentum via

P =
e2

2π

∫

Σ
∂tφ · volΣ = e2ℓ p0 , (2.32)

whereas (aλ, aλ
†) are a conjugate pair of complex numbers associated to the oscillating

modes of φ. The various factors of e2 and ℓ sprinkled about (2.27) are necessary for

invariance under the scaling in (2.2) and (2.4). In this regard, I observe that the eigenvalues

of the Laplacian △0 themselves scale with Λ as

λ 7−→ Λ−1 λ . (2.33)

When φ : R× Σ → S1 has non-trivial winding, the classical mode expansion in (2.27)

must be generalized only slightly. Exactly as in section 2.2 in [2], we consider a harmonic

representative for the cohomology class ω ∈ H1(Σ;Z). Mildly abusing notation, I re-use

ω to refer to this representative in the space H1(Σ) of harmonic one-forms on Σ. Associ-

ated to the harmonic one-form ω with integral periods on Σ is a fiducial harmonic map

Φω : Σ → S1 satisfying
dΦω

2π
= ω , ω ∈ H1(Σ) . (2.34)

Since d†ω = 0, we see that △0Φω = d†dΦω = 0 automatically. By Hodge theory, the map

Φω is determined by ω up to a constant. To fix that constant, we select a basepoint σ0 ∈ Σ,

which will re-occur later in section 2.2, and we impose

Φω(σ0) = 0 mod 2π . (2.35)

Together, the conditions in (2.34) and (2.35) uniquely determine the fiducial map Φω with

given winding.

– 8 –
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Because the winding-number is additive, the general solution to the equation of motion

in (2.19) with winding-number ω ∈ L can now be written as the sum of the topologically-

trivial solution in (2.27) with the fiducial harmonic map Φω(z, z),

φ(t, z, z) = Φω(z, z) +
φ0
e2ℓ

+
2πt

ℓ
p0 +

√
π
∑

λ>0

e2

λ
ψλ(z, z)

[
aλ e

−i λ t + aλ
† e i λ t

]
. (2.36)

In these terms, the coefficients φ0, p0, and (aλ, aλ
†) for all λ > 0 parametrize the classical

phase space for maps φ : R → Xω.

Sigma model Hilbert space. To quantize, we promote both the scalar field φ and the

momentum Πφ in (2.20) to operators which obey the canonical commutation relations

[
φ(z), Πφ(w)

]
= i δΣ(z, w) , z, w ∈ Σ . (2.37)

Here δΣ is a delta-function with support on the diagonal ∆ ⊂ Σ× Σ. We will take either

of two perspectives on (2.37).

From the first perspective, the commutator in (2.37) can be realized through the func-

tional identification

Πφ(w) = −i δ

δφ(w)
, (2.38)

or equivalently via (2.20),

e2

2π
∂tφ(w) = −i D

Dφ(w)
. (2.39)

Here D/Dφ(w) is interpreted as a covariant functional derivative incorporating the shift

by θ in the canonical momentum,

D

Dφ(w)
=

δ

δφ(w)
− i

θ

2πℓ2
. (2.40)

Because θ is just a constant,

[
D

Dφ(z)
,

D

Dφ(w)

]
= 0 , z 6= w . (2.41)

As we will see quite explicitly, D/Dφ thus describes a flat connection with non-trivial

holonomy over the configuration space X of maps from Σ to S1.

For the alternative perspective on the commutator in (2.37), we rewrite the delta-

function δΣ in terms of the orthonormal eigenbasis {ψλ} for the scalar Laplacian,

δΣ(z, w) =
1

ℓ2
+

∑

λ>0

e4 ψλ(z)ψλ(w) , z, w ∈ Σ . (2.42)

The first term on the right in (2.42) arises from the constant mode ψ0, and the factor of e4

in the sum over the higher eigenmodes is a result of the normalization condition in (2.29).

– 9 –
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After substituting the mode expansions in (2.36) and (2.42) into the canonical com-

mutation relation, we find that (φ0, p0) and (aλ, aλ
†) for λ > 0 satisfy the free-field Heisen-

berg algebra
[φ0, p0] = i ,

[
aλ, aλ′

†
]
=

λ

e2
δλλ′ ,

(2.43)

with all other commutators vanishing identically. As usual, in the second line of (2.43) we

introduce the Kronecker delta, defined by δλλ′ = 1 if λ = λ′ and δλλ′ = 0 otherwise.

These commutation relations hold in each winding-sector, independent of the class

ω ∈ H1(Σ;Z), so the quantization will also be independent of ω. As the counterpart to the

topological decomposition of X = Map(Σ, S1) in (2.25), the total Hilbert space HΣ for the

periodic scalar field on Σ decomposes into the direct sum

HΣ =
⊕

ω∈L

H ω
Σ , L = H1(Σ;Z) , (2.44)

where each subspace H ω
Σ is itself a tensor product (independent of ω)

H ω
Σ = H0 ⊗

⊗

λ>0

Hλ . (2.45)

Of the two factors in the tensor product, Hλ is the less interesting. Up to an irrelevant

choice of normalization, aλ and aλ
† in (2.43) satisfy the usual commutator algebra for a

harmonic oscillator with frequency λ. Hence Hλ is the Fock space for that oscillator.

More interesting for us is the universal factor H0. This factor arises from the quan-

tization of the zero-modes (φ0, p0) of the scalar field and thus does not depend upon the

spectral geometry of the surface Σ. Together φ0 and p0 simply describe the position and

momentum of a free particle moving on a circle with radius e2ℓ. The corresponding phase

space is the cotangent bundle T ∗S1 with the canonical symplectic structure, and at least

when θ = 0 in (2.14), the quantization is entirely standard. Directly,

H0 ≃ L2(S1;C) , [ θ = 0 ] (2.46)

spanned by the Fourier wavefunctions

Ψm(φ0) = exp

(
i
m

e2ℓ
φ0

)
, m ∈ Z . (2.47)

As usual, the classical momentum p0 becomes identified with the operator −i ∂/∂φ0. Via

the identification P = e2ℓ p0 in (2.32), each Fourier wavefunction in (2.47) is an eigenstate

of the total momentum operator

P = −i e2ℓ ∂

∂φ0
. (2.48)

When the topological parameter θ is non-zero, the quantization of φ0 and p0 is modified.

After we project (2.39) and (2.40) to the space of zero-modes, p0 becomes identified with

the θ-dependent operator

p0 = −i D

Dφ0
,

D

Dφ0
=

∂

∂φ0
− i

θ

2πe2ℓ
. (2.49)
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Evidently, D/Dφ0 in (2.49) is the covariant derivative for a unitary flat connection on a

complex line-bundle L over the circle, with holonomy

HolS1(D/Dφ0) = exp(i θ) . (2.50)

As the natural generalization of (2.46), the zero-mode Hilbert space H0 is the space of

square-integrable sections of L,
H0 = L2(S1;L) , (2.51)

on which P now acts covariantly by

P = −i e2ℓ D

Dφ0
. (2.52)

For the Fourier wavefunction Ψm(φ0) in (2.47), all this is just to say that

P ·Ψm(φ0) =

(
m − θ

2π

)
·Ψm(φ0), m ∈ Z , (2.53)

as follows directly from (2.49). Hence the topological parameter θ induces a uniform shift

on the eigenvalues of P away from integral values. Manifestly, the spectrum of P depends

only on the value of θ modulo 2π.

Because the zero-mode Hilbert space H0 is graded by P, the full sigma model Hilbert

space HΣ is bigraded by the lattice Z⊕ L,

HΣ ≃
⊕

(m,ω)∈Z⊕L

H m,ω
Σ , (2.54)

in parallel to the bigrading by Z⊕ Z for HS1 in (1.2). As a convenient shorthand, I let

|m;ω〉 denote the Fourier wavefunction Ψm(φ0), considered in the topological sector with

winding-number ω and satisfying the vacuum condition

aλ|m;ω〉 = 0 , λ > 0 . (2.55)

All other Fock states in HΣ are obtained by acting with the oscillator raising-operators aλ
†

on each Fock vacuum |m;ω〉, so the summands in HΣ above are more explicitly

H m,ω
Σ = C · |m;ω〉 ⊗

⊗

λ>0

Hλ . (2.56)

Philosophically, the grading by the eigenvalue m in (2.54) is a quantum grading (since

we must quantize φ0 to define it!), whereas the grading by the winding-number ω is classical,

just as we saw in section 1 for quantization on S1. But needless to say, because Z 6= L ≃ Z
2g,

duality on Σ cannot exchange the two gradings, as occurs for duality on S1. Rather, the

role of duality will be to exchange the quantum versus classical interpretations of each.

Finally, let us consider the action of the sigma model Hamiltonian H on the Hilbert

space. After the identification in (2.39), the classical Hamiltonian becomes the operator

H =

∫

Σ

[
− π

e2
D2

Dφ2
volΣ +

e2

4π
dφ∧⋆dφ − e2

2π
α∧dφ

]
. (2.57)
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Upon substituting for the momentum P in (2.52),

H =

∫

Σ

[
π

e2

(
P2

ℓ4
+ · · ·

)
volΣ +

e2

4π
dφ∧⋆dφ − e2

2π
α∧dφ

]
, (2.58)

where the ellipses indicate terms in D2/Dφ2 which involve the non-zero eigenmodes of φ

and thus the Fock operators (aλ, aλ
†).

The spectrum of H depends upon the corresponding spectrum of eigenvalues {λ2} for

the scalar Laplacian △0, which in turn depends upon the geometry of Σ. To simplify the

situation, we consider the action of H only on the Fock vacua |m;ω〉 in (2.55). From (2.53)

and (2.58),

H |m;ω〉 = e2

[
π

(e2ℓ)2

(
m− θ

2π

)2

+ π (ω, ω) − 〈α, ω〉+ E0

e2ℓ

]
|m;ω〉 . (2.59)

Here (ω, ω) is the L2-norm of the harmonic one-form appearing in (2.34),

(ω, ω) =

∫

Σ
ω∧⋆ω , ω ∈ H1(Σ) , (2.60)

and 〈α, ω〉 denotes the intersection pairing

〈α, ω〉 =

∫

Σ
α∧ω , α ∈ H1(Σ) . (2.61)

As will be important later, note that (ω, ω) in (2.60) is a conformal invariant, for which

only the complex structure on Σ matters, and of course 〈α, ω〉 is purely topological.

The energy in (2.59) also includes a constant term E0, independent of e2, m, and ω,

which arises from the sum over the zero-point energies 1
2λ of each oscillating eigenmode

of φ. The factor of 1/ℓ which multiplies E0 is fixed by the scaling in (2.33), and we

have pulled out an overall factor of e2 from H so that the quantity in brackets is scale-

invariant (or dimensionless). Physically, E0/ℓ is a Casimir energy on the compact surface

Σ, and some method of regularization must be chosen to make sense of the divergent sum

E0 ∼
∑

λ>0
1
2λ which naively defines E0, eg. by normal-ordering or use of the zeta-function.

For comparison under duality, the particular method used to define E0 will not matter, so

we simply assume that E0 has been determined in some way from the non-zero eigenvalues

of the scalar Laplacian △0 on Σ.

Finally, let us consider the dependence of the spectrum of H on the effective coupling

1/e2ℓ. Though the abelian sigma model is a free quantum field theory, there remains a

definite sense in which the spectrum simplifies in the weakly-coupled regime 1/e2ℓ≪ 1.

As apparent from (2.59), in this limit the quantum states with least energy in any given

topological sector are precisely the Fock vacua |m;ω〉, for arbitrary values of the Fourier

momentum m ∈ Z.

Conversely, when 1/e2ℓ is of order-one, we do not find a clean separation in energy

between the Fock vacua |m;ω〉 and oscillator states such as aλ
†|0;ω〉 for suitable λ. Hence

in the latter case, the low-lying energy spectrum of the quantum sigma model depends

much more delicately on the geometry of Σ.
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2.2 The quantum Maxwell theory

We now consider the quantization of Maxwell theory on M = R× Σ, with the same

Lorentzian product metric already appearing in (2.10).

Classically, the Maxwell gauge field A is a connection on a fixed principal U(1)-bundle

P over M ,
U(1) → P

↓
M

. (2.62)

When M = R× Σ, the restriction of P determines an associated complex line-bundle L

over Σ, with Chern class

c1(L) =

[
FA

2π

]
∈ H2(Σ;Z) . (2.63)

Here FA = dA is the curvature, and we specify the Chern class of L by a single integer

m = deg(L) ∈ Z . (2.64)

The coincidence in notation between m in (2.47) and (2.64) is no accident.

The integerm suffices to fix the topological type of both P and L. However, for purpose

of quantization, we will need to endow the line-bundle L with a holomorphic structure as

well. Because Σ carries a complex structure associated to its Riemannian metric h as

in (2.6), L can be given a holomorphic structure uniformly for all degrees as soon as we

pick a basepoint σ0 ∈ Σ. We set

L = OΣ(mσ0) , σ0 ∈ Σ . (2.65)

By definition, holomorphic sections of L can be identified with meromorphic functions on

Σ which have a pole of maximum degree m at the point σ0 ∈ Σ.

Note that the choice of basepoint is only relevant when Σ has genus g ≥ 1, since the

holomorphic structure on any line-bundle of degreem over CP1 is unique. The same remark

also applies to our previous choice of basepoint for the sigma model: in genus zero, the

only fiducial harmonic map Φω is constant, so the condition in (2.35) does not actually

depend upon the choice of σ0.

Specialized to M = R× Σ, the free Maxwell action becomes

I0(A) =
1

4πe2

∫

R×Σ
dt

[
EA∧⋆EA − FA∧⋆FA

]
, EA = ι∂/∂tFA ∈ Ω1

Σ . (2.66)

Here we stick to the assumption that ⋆ ≡ ⋆Σ is the Hodge operator on Σ, so we have

separated the curvature into the electric component EA, which transforms like a one-form

on Σ, along with the magnetic component FA ≡ FA|Σ, which transforms like a two-form

on Σ. Explicitly in local coordinates,

EA = FA,tz dz + FA,tz dz . (2.67)

Invariance under the scaling in (2.2), (2.4), and (2.13) fixes the dependence of the Maxwell

action on the electric coupling e2, and the overall factor of 1/4π in (2.66) appears by

convention.
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As in section 2.1, topological terms can also be added to the Maxwell action, of the

form

I1(A) =
1

2π

∫

R×Σ
dtβ∧EA +

θ

2πe2ℓ2

∫

R×Σ
dt FA . (2.68)

Like α in (2.15), β is a real harmonic one-form,

β ∈ H1(Σ) , (2.69)

and θ ∈ R is a real parameter that will correspond under duality to the angle already ap-

pearing in (2.59). With some malice aforethought, the coefficient 1/e2ℓ2 in (2.68) has been

chosen to achieve this identification, along with invariance under the scaling in (2.2), (2.4),

and (2.13).

We then consider the total gauge theory action

Itot(A) = I0(A) + I1(A) , (2.70)

or more explicitly,

Itot(A) =
1

4πe2

∫

R×Σ
dt

[
EA∧⋆EA − FA∧⋆FA − 2e2EA∧β + 2

θ

ℓ2
FA

]
. (2.71)

Previously for the periodic scalar field, the angular parameter θ served to modify the

definition (2.20) of the canonical momentum Πφ. This role is now taken by the harmonic

one-form β, which appears in the canonical momentum

ΠA =
1

2πe2
⋆EA − 1

2π
β . (2.72)

In terms of ΠA, the classical Hamiltonian is3

H∨ =

∫

Σ

[
πe2

(
ΠA +

β

2π

)
∧⋆

(
ΠA +

β

2π

)
+

1

4πe2
FA∧⋆FA − θ

2πe2ℓ2
FA

]
. (2.73)

The degreem of the line-bundle L is measured by the net magnetic flux through the surface,
∫

Σ

FA

2π
= m, (2.74)

so θ in (2.73) now serves to distinguish the topological sectors labelled by m.

Because we have yet to fix a gauge, the classical Maxwell HamiltonianH∨ is degenerate

along gauge orbits. As a remedy, we work throughout in Coulomb gauge,

At = 0 , (2.75)

where At is the time-component of the gauge field on M = R× Σ. In Coulomb gauge, the

equation of motion for At holds identically as the Gauss law constraint

d†EA = 0 . (2.76)

3The superscript on H
∨ in (2.73) serves to differentiate the Maxwell Hamiltonian notationally from the

Hamiltonian H for the periodic scalar field in section 2.1.
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(Because dβ = 0, the topological terms do not modify the Gauss law on Σ.) On R
1,2,

Coulomb gauge does not respect Lorentz invariance, which is the main disadvantage of

Coulomb gauge. For quantization on M = R× Σ, though, Lorentz invariance is neither

here nor there, and the gauge condition in (2.75) is perfectly natural.

To fix the remaining time-independent gauge transformations on Σ, we impose the

further harmonic condition

d†A = 0 . (2.77)

Harmonic gauge on Σ is particularly convenient from the geometric perspective. In this

gauge, the Gauss constraint in (2.76) is automatically obeyed, and A satisfies the classical

wave equation

∂2tA + △1A = 0 , A ∈ Ω1
Σ , (2.78)

where △1 = d†d+ dd† is the de Rham Laplacian for one-forms on Σ. We considered pre-

cisely the same equation of motion in (2.19) for the periodic scalar field φ, so quantization

of A in harmonic gauge will share many features with quantization of φ, and duality will

be manifest.

Finally, if A is any time-independent connection on Σ, the equation of motion in (2.78)

implies that the curvature is also harmonic,

d†FA = 0 , FA ∈ Ω2
Σ . (2.79)

Thus the classical vacua of Maxwell theory on Σ correspond to harmonic connections on

the line-bundle L.

When Σ has genus g ≥ 1, Maxwell theory on M = R× Σ is invariant under a contin-

uous U(1)2g global symmetry, which does not occur at genus zero. To describe the action

of the symmetry on the gauge field, we first select an integral harmonic basis {e1, . . . , e2g}
for the cohomology lattice

L ≃ Ze1 ⊕ · · · ⊕ Ze2g , L = H1(Σ;Z) . (2.80)

The group U(1)2g then acts on the gauge field by shifts

U(1)2g : A 7−→ A +

2g∑

j=1

cj ej , cj ∈ R/2πZ . (2.81)

Such shifts for any constant cj trivially preserve both the Maxwell action in (2.71) and the

gauge conditions in (2.75) and (2.77). Note also that shifts by elements in the lattice 2πL

are induced by homotopically non-trivial, “large” gauge transformations

Au = A + i u−1 du , u : Σ → U(1) , (2.82)

so these lattice elements act as the identity modulo gauge-equivalence. As a result, the

parameters cj in (2.81) are circle-valued, and the global symmetry group is compact.

The group U(1)2g acts to shift the holonomies of the gauge field, so we can think of

this global symmetry group more intrinsically as the Jacobian torus of Σ,

JΣ = H1(Σ;R)/2πL ≃ U(1)2g, L = H1(Σ;Z) . (2.83)
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The Jacobian JΣ, in its role as the moduli space of flat U(1)-connections on Σ, will be

essential in analyzing abelian duality at higher genus.

The U(1)2g global symmetry of Maxwell theory on Σ is the counterpart to the more

obvious U(1) symmetry of the periodic scalar field in (1.3). Just as for the conserved

momentum P in (2.22), the global symmetry of Maxwell theory leads to a set of 2g con-

served charges

Wj =
1

2πe2

∫

Σ
ej∧⋆EA , j = 1 , . . . , 2g ,

=

∫

Σ
ej∧

(
ΠA +

β

2π

)
.

(2.84)

Conservation of Wj follows from the harmonic condition dej = d†ej = 0, as well as the

classical equation of motion in (2.78).

Because of the U(1)2g global symmetry, upon quantization the Maxwell Hilbert space

will automatically carry an integral grading by the eigenvalues of Wj. Moreover, since ⋆EA

is directly related (2.72) to the canonical momentum ΠA for the gauge field, the grading

by Wj will again be interpreted physically as a quantum grading by total momentum.

Classical mode expansion. This background material out of the way, we now quantize

the Maxwell gauge field on the Riemann surface Σ. As for the periodic scalar field, our

main interest lies in a universal set of low-lying energy levels which are not sensitive to the

detailed spectral geometry of Σ.

The quantization of A on Σ involves a countable number of topological sectors, labelled

by the degree m of the line-bundle L. By analogy to the decomposition (2.25) of the

configuration space for the scalar field, we write the configuration space for the Maxwell

gauge field as a union of components

A =
⊔

m∈Z

Am , (2.85)

where Am is the affine space of unitary connections on the complex line-bundle L of degree

m over Σ,

Am =

{
A ∈ A

∣∣∣∣∣

∫

Σ
FA = 2πm

}
. (2.86)

Each connected component Am ⊂ A of the configuration space must be quantized sepa-

rately, so the Maxwell Hilbert space H ∨
Σ automatically carries an integral grading by the

degree m ∈ Z.

Having broken our quantization problem into countably-many pieces, we solve the

classical equation of motion (2.78) for A in harmonic gauge. As a special case, we begin by

considering only time-independent classical solutions, corresponding to connections with

harmonic curvature on Σ.

When L has degree m = 0 and hence is topologically trivial, a harmonic connection

on L is simply a flat connection, of the form

A =

2g∑

j=1

ϕ0
j
ej , ϕj

0 ∈ R/2πZ , (2.87)
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for the fixed harmonic basis {e1, · · · , e2g} of H1(Σ;Z). The expansion coefficients ϕ0
j

for j = 1, . . . , 2g are thus angular coordinates on the Jacobian JΣ, which has already

appeared in (2.83). Equivalently,
(
ϕ0

1, . . . , ϕ0
2g
)
characterize the holonomies of A around

a generating set of closed one-cycles on Σ.

Because Σ carries a complex structure, each harmonic one-form ej in (2.87) can be

decomposed according to its holomorphic/anti-holomorphic type via (2.6), in which case

JΣ itself inherits a complex structure. Intrinsically as a complex torus,

JΣ = H1
∂
(Σ,OΣ)/2πL , L = H1(Σ;Z) ,

≃ Pic0(Σ) ,
(2.88)

where Pic0(Σ) denotes the group of isomorphism classes of holomorphic line-bundles of

degree zero on Σ, with group multiplication given by the tensor product of line-bundles.

If L has degree m 6= 0, then a harmonic connection on L cannot be flat. Instead, the

curvature F̂m of any harmonic connection on L is proportional to the Riemannian volume

form on Σ,

F̂m =
2πm

ℓ2
volΣ , (2.89)

where the proportionality constant in (2.89) is determined by the topological condition

in (2.86). The formula in (2.89) is insufficient to fix a fiducial U(1)-connection Âm with the

given curvature, since Âm may have non-trivial holonomies not detected by F̂m. To fix Âm

uniquely, we use our auxiliary choice of basepoint σ0 ∈ Σ and the resulting holomorphic

identification L = OΣ(mσ0). Precisely the same choice appeared in the quantization (2.35)

of the periodic scalar field, for precisely the same reason.

Abstractly, the basepoint σ0 ∈ Σ provides an isomorphism between distinct compo-

nents of the Picard group of all holomorphic line-bundles on Σ,

Pic(Σ) =
⊔

m∈Z

Picm(Σ) , (2.90)

via the tensor product

⊗OΣ(σ0) : Picm(Σ)
≃−→ Picm+1(Σ) ,

L 7−→ L⊗OΣ(σ0) .
(2.91)

Here Picm(Σ) denotes the component of the Picard group consisting of degree m holomor-

phic line-bundles on Σ. Under the isomorphism in (2.91), all components of the Picard

group are identified with the distinguished component Pic0(Σ) ≃ JΣ. Because we already

have a fiducial connection in Pic0(Σ), namely Â0 = 0 in (2.87), we just take Âm to be the

image of Â0 under the isomorphism. Equivalently from the differential perspective, Âm

is the unique harmonic, unitary connection compatible with the holomorphic structure on

OΣ(mσ0). See for instance Ch. 4 of [11] for more about the existence and uniqueness of Âm.

Our choice for the fiducial harmonic connection Âm is natural in the following sense.

Trivially, OΣ(mσ0) = OΣ(σ0)
⊗m. Thus Âm for general m is related to the basic connection

Â1 on OΣ(σ0) by

Âm = mÂ1 , m ∈ Z . (2.92)
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This identity is clearly compatible with the formula for the harmonic curvature F̂m

in (2.89). For the remainder of the paper, I simplify the notation by setting Â ≡ Â1.

According to the preceding discussion, in each degree m ∈ Z, the arbitrary time-

independent solution to the classical equation of motion for A in (2.78) is given up to

gauge-equivalence by a point on the Jacobian JΣ ≃ U(1)2g. To describe the more general,

time-dependent solution in harmonic gauge, we perform an expansion of A in eigenmodes

of the de Rham Laplacian △1,

A(t, z, z) = mÂ +

2g∑

j=1

ϕ0
j
ej + 2πe2 t

2g∑

j,k=1

p0,j
(
Q−1

)
jk
ek

+
√
π
∑

λ>0

e2

λ
χλ(z, z)

[
aλ e

−i λ t + aλ
† e i λ t

]
.

(2.93)

The eigenmode expansion of A in (2.93) requires several comments.

First, p0,j ∈ R for j = 1, . . . , 2g are the classical momenta conjugate to the angular

coordinates ϕ0
j on the Jacobian. The coefficient of e2 which multiplies p0,j is fixed by

scaling, due to the explicit t-dependence. Also, Q is the positive-definite, symmetric matrix

of L2 inner-products4

Qjk = (ej , ek) =

∫

Σ
ej∧⋆ek , j, k = 1, . . . , 2g . (2.94)

The inverse matrix Q−1 satisfies
(
Q−1

)
ij Qjk = δik. Since EA = ∂tA in Coulomb gauge, the

expansion of A ensures that p0,j is equal to the conserved charge Wj in (2.84),

Wj = p0,j , j = 1 , . . . , 2g . (2.95)

Proceeding to the second line of (2.93), (aλ, aλ
†) are a conjugate pair of complex param-

eters associated to the oscillating modes of A, and the coefficient
√
π e2/λ has been chosen

to simplify the commutator algebra upon quantization. We also introduce an orthonormal

basis of one-forms χλ ∈ Ω1
Σ which satisfy the joint conditions

d†χλ = 0 , χλ ∈ Ω1
Σ , (2.96)

as well as

△1χλ = λ2 χλ , λ ∈ R , (2.97)

where by convention λ > 0 is positive. The first condition instantiates the harmonic gauge

in (2.77), and the second condition states that χλ is an eigenform for the de Rham Laplacian

△1 acting on one-forms on Σ.

The eigenforms χλ have a simple relation to the eigenfunctions ψλ ∈ Ω0
Σ which appear

in the corresponding mode expansion for the scalar field φ. For if ψλ is an eigenfunction

of the scalar Laplacian,

△0ψλ = λ2 ψλ , λ > 0 , (2.98)

4The same notation for Q and Q
−1 is used in [2], but in reference to similar quantities defined on a

closed three-manifold M .
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then we obtain a corresponding eigenform χλ for △1 by setting

χλ =
e2

λ
⋆dψλ . (2.99)

Since d† = −⋆d⋆ and ⋆2 = −1 on Ω1
Σ, trivially d

†χλ = 0. Also,

△1χλ = d†dχλ = −⋆d⋆d
(
e2

λ
⋆dψλ

)
=

e2

λ
⋆d (△0ψλ) = λ2 χλ . (2.100)

The relative coefficient e2/λ in (2.99) just ensures that χλ has unit norm,

||χλ||2 =

∫

Σ
χλ∧⋆χλ =

e4

λ2

∫

Σ
ψλ∧⋆△0ψλ = 1 , (2.101)

assuming that ψλ is normalized according to (2.29).

Conversely, given any eigenform χλ satisfying (2.96) and (2.97) with λ > 0, we obtain

a normalized eigenfunction ψλ via

ψλ = − 1

e2λ
⋆dχλ . (2.102)

Following the same steps in (2.100), one can verify directly that ψλ in (2.102) is a normalized

eigenfunction of the scalar Laplacian△0. The minus sign in (2.102) is a nicety which ensures

that the map from ψλ to χλ and back is the identity.

Together, the relations in (2.99) and (2.102) constitute a Hodge isomorphism between

the non-zero spectrum of △0 acting on Ω0
Σ and the non-zero spectrum of △1 acting on

the intersection Ω1
Σ ∩Ker(d†). Consequently, the oscillator frequencies λ > 0 which appear

in the harmonic expansion (2.93) of the gauge field A are precisely the same frequencies

which appear in the harmonic expansion (2.27) of the periodic scalar field φ. This equality

is essential for abelian duality to hold on Σ.

Canonical commutation relations. Naively, to quantize the Maxwell theory, we pro-

mote both A and the canonical momentum ΠA to operator-valued one-forms which satisfy

the canonical equal-time commutation relation
[
A(z), ΠA(w)

]
= i volΣ · δΣ(z, w) , z, w ∈ Σ . (2.103)

In making sense of (2.103) geometrically, the Riemannian volume form on the right is to

be interpreted as a section of the tensor product volΣ ∈ Ω1
Σ ⊗ Ω1

Σ, and δΣ(z, w) remains

the delta-function with support along the diagonal ∆ ⊂ Σ× Σ.

In actuality, the situation is more complicated, because the naive commutator

in (2.103) is not compatible with the Coulomb gauge conditions

d†A = d†EA = 0 , A,EA ∈ Ω1
Σ , (2.104)

the latter of which implies

dΠA = d

(
1

2πe2
⋆EA − 1

2π
β

)
= 0 . (2.105)
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I let dz and dw denote the respective de Rham operators acting individually on the left

and right factors in the product Ω1
Σ⊗Ω1

Σ. Then the left-hand side of (2.103) is annihilated

by dz
† and dw according to the gauge conditions in (2.104) and (2.105), but the right-hand

side is not.

This situation is a familiar feature of Coulomb gauge, as is the remedy. Let G(z, w)

be the Green’s function for the scalar Laplacian △0 on Σ, such that

△0G(z, w) = δΣ(z, w) − 1

ℓ2
. (2.106)

Because Σ is compact, we are careful to subtract the contribution from the constant mode

in (2.106), so that both sides of the equation for G(z, w) integrate to zero over Σ. Equiva-

lently, G(z, w) can be expanded in terms of the orthonormal eigenbasis {ψλ} for Ω0
Σ,

G(z, w) = e4
∑

λ>0

ψλ(z)ψλ(w)

λ2
. (2.107)

For the ambitious reader who enjoys keeping track of factors of e2, recall that e2 appears

in the normalization condition (2.29) for ψλ and thus enters the expansion for G(z, w).

The scalar Green’s function G(z, w) can be used to correct the naive commutation

relation in (2.103) so that the right-hand side is actually compatible with the Coulomb

gauge constraints d†A = dΠA = 0. To wit, the corrected commutator will be
[
A(z), ΠA(w)

]
= i volΣ · δΣ(z, w) − i (dz⊗⋆dw)G(z, w) . (2.108)

Here (dz⊗⋆dw)G(z, w) is the section of Ω1
Σ ⊗ Ω1

Σ obtained from the action of the individual

de Rham operators on G(z, w). In terms of the spectral decomposition in (2.107),

(dz ⊗ ⋆dw)G(z, w) = e4
∑

λ>0

dψλ(z)⊗ ⋆dψλ(w)

λ2
∈ Ω1

Σ ⊗ Ω1
Σ . (2.109)

Most crucially, the right-hand side of the corrected commutator (2.108) does lie in the

kernels of both dz
† and dw. This statement can be verified either by direct computation from

the defining equation for G(z, w) in (2.106) or, as will be more relevant here, by applying

the spectral decomposition for (dz⊗⋆dw)G(z, w) in (2.109). I take the latter approach.

In close analogy to (2.42), the term involving the delta-function in (2.108) can be

presented as the sum

volΣ · δΣ(z, w) =

2g∑

j,k=1

(Q−1)jk ej(z)⊗ ⋆ek(w) +
∑

λ>0

[
χλ(z)⊗ ⋆χλ(w) − ⋆χλ(z)⊗ χλ(w)

]
.

(2.110)

Very briefly, the three terms on the right in (2.110) reflect the three terms in the

Hodge decomposition

Ω1
Σ ≃ H1(Σ)⊕ Im

(
d†|Ω2

Σ

)
⊕ Im

(
d|Ω0

Σ

)
. (2.111)
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The first term in (2.110), involving the harmonic forms ej for j = 1, . . . , 2g, describes the

action of volΣ · δΣ(z, w) by wedge-product and convolution on H1(Σ). Otherwise, the two

sets of eigenforms {χλ} and {⋆χλ} for λ > 0 span the respective images of d† and d, as

discussed previously in relation to (2.99). The latter two terms on the right in (2.110) then

account for the action of volΣ · δΣ(z, w) on Im(d†|Ω2
Σ
) and Im(d|Ω0

Σ
). The relative minus

sign in (2.110) can be checked directly by working in a local frame on Σ or understood as

a consequence of anti-symmetry under the exchange of the factors in Ω1
Σ ⊗ Ω1

Σ.

Because ej is harmonic and d†χλ = 0, the first two terms on the right of (2.110) are

annihilated by dz
† and dw. On the other hand, for the third term in (2.110) the relation

between χλ and ψλ in (2.99) implies

∑

λ>0

⋆χλ(z)⊗ χλ(w) = −e4
∑

λ>0

dψλ(z)⊗ ⋆dψλ(w)

λ2
. (2.112)

The minus sign appears since ⋆2 = −1 on Ω1
Σ. Thence from (2.109) and (2.110), the right-

hand side of the corrected commutation relation is given by

volΣ · δΣ(z, w)− (dz⊗⋆dw)G(z, w) =
2g∑

j,k=1

(
Q−1

)jk
ej(z)⊗ ⋆ek(w) +

∑

λ>0

χλ(z)⊗ ⋆χλ(w) .

(2.113)

The expression in (2.113) is manifestly annihilated by dz
† and dw, so is compatible with

Coulomb gauge.

Maxwell Hilbert space. With the corrected commutation relation in (2.108), the quan-

tization of Maxwell theory on Σ is now straightforward. From the (slightly formal) func-

tional perspective, the momentum ΠA becomes identified with the operator

ΠA(w) = −i
[
volΣ · δ

δA(w)
+

∫

Σ
d2u (du⊗⋆dw)G(u,w) volΣ · δ

δA(u)

]
. (2.114)

Here the smeared term involving the Green’s function G(u,w) is the necessary price of

working in Coulomb gauge. I do not wish to belabor the interpretation of the non-local,

smeared term, as we will be primarily interested in situations for which it does not matter.

However, let me say a word about the basic geometric meaning of (2.114), which may be

somewhat opaque.

Because ΠA ∈ Ω1
Σ transforms as a one-form, the right-hand side of (2.114) must also

transform as a one-form on Σ. Dually to A, the derivative δ/δA ∈ TΣ transforms as a vector

field on Σ. The notation volΣ · δ/δA indicates that this vector field is to be contracted with

the volume form to produce a one-form on Σ, as expressed in local coordinates

volΣ · δ

δA
=

2∑

µ,ν=1

(volΣ)µν dx
µ δ

δAν
∈ Ω1

Σ . (2.115)

For the smeared term in (2.114), we take the wedge-product of (du⊗⋆dw)G(u,w) as a

section of Ω1
Σ⊗Ω1

Σ with the one-form volΣ · δ/δA to obtain a section of Ω2
Σ ⊗ Ω1

Σ. The first

factor is integrated over Σ to produce yet another one-form.
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The classical relation ΠA = ⋆EA/2πe
2 − β/2π implies that the electric field EA acts

as the covariant operator
1

2πe2
⋆EA(w) = −i D

DA(w)
, (2.116)

where

D

DA(w)
= volΣ · δ

δA(w)
+
iβ

2π
+

∫

Σ
d2u (du⊗⋆dw)G(u,w) volΣ · δ

δA(u)
. (2.117)

This expression for D/DA(w) should be compared to the corresponding expression for

D/Dφ(w) appearing in (2.40).

Smearing or no, since A itself does not appear on the right-hand side of (2.117), the

functional derivative D/DA(w) describes a flat connection on the subspace of the affine

space A where d†A = 0, [
D

DA(z)
,

D

DA(w)

]
= 0 . (2.118)

In precise analogy to the angle θ appearing in D/Dφ(w), the harmonic one-form β in

D/DA(w) will describe the holonomy of a flat connection over the Jacobian JΣ, after we

reduce to zero-modes.

As a more down-to-earth alternative to the functional calculus, quantization of A can

be carried out in terms of the eigenmode expansion in (2.93), coupled with the spectral iden-

tity in (2.113). To realize the commutator in (2.108), the pairs
(
ϕ0

j , p0,j
)
for j = 1, . . . , 2g

and
(
aλ, aλ

†
)
for all λ > 0 are promoted to operators which obey the Heisenberg algebra

[
ϕ0

j , p0,k
]
= i δk

j , j, k = 1, . . . , 2g ,
[
aλ, aλ′

†
]
=

λ

e2
δλλ′ ,

(2.119)

with all other commutators vanishing. This algebra is akin to that for the periodic scalar

field φ in (2.43), but rather than quantizing a single periodic zero-mode, we quantize a set

of 2g zero-modes which describe the motion of a free particle on the Jacobian JΣ of Σ.

The free-field algebra holds in each topological sector labelled by m = deg(L), so the

Maxwell Hilbert space H ∨
Σ is the direct sum

H ∨
Σ =

⊕

m∈Z

(
H ∨

Σ

)
m , (2.120)

where each summand is itself the tensor product

(
H ∨

Σ

)
m = H∨

0 ⊗
⊗

λ>0

Hλ . (2.121)

Exactly as in (2.45), Hλ is the oscillator Fock space acted upon by the pair (aλ, aλ
†). We

have already noted that an identical spectrum of non-zero frequencies λ > 0 occurs for both

the periodic scalar field and the U(1) gauge field on Σ. Thus the same tensor product of

Fock spaces Hλ appears in both the scalar Hilbert space HΣ and the Maxwell Hilbert space

H ∨
Σ . At least for the excited oscillator states in the two Hilbert spaces, abelian duality is

a trivial equivalence.
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The remaining factor H∨
0 arises from the quantization of the zero-modes for the gauge

field. Classically, (ϕ0
j , p0,j) for j = 1, . . . , 2g are coordinates on the cotangent bundle T ∗JΣ

with its canonical symplectic structure, so the standard quantization yields

H∨
0 ≃ L2(JΣ;C) . [β = 0 ] (2.122)

Because JΣ ≃ U(1)2g is just a torus, the Hilbert space H∨
0 is naturally spanned by the

collection of Fourier wavefunctions

Ψω(ϕ0) = exp


i

2g∑

j=1

ϕ0
j

∫

Σ
ej∧ω


 , ω ∈ L, (2.123)

each labelled by an element ω in the cohomology lattice L = H1(Σ;Z). Again, the coin-

cidence of notation with the winding-number in section 2.1 is no accident. Here though,

integrality of ω is not due to topology per se, but rather to the requirement that the

wavefunction in (2.123) be invariant under shifts ϕ0
j 7→ ϕ0

j + 2π for all j = 1, . . . , 2g.

Physically, ω determines the conserved momentum carried by the state Ψω(ϕ0), where

we apply the identification

Wj = p0,j = −i ∂

∂ϕ0
j
. [β = 0 ] (2.124)

Directly, the Fourier wavefunction in (2.123) is a momentum eigenstate,

Wj ·Ψω = 〈ej , ω〉 ·Ψω . (2.125)

As in (2.61), 〈 · , · 〉 is shorthand for the intersection pairing of one-forms on Σ.

When the topological parameter β ∈ H1(Σ) is non-zero, the interpretation of the zero-

mode momentum p0,j is modified via (2.116) and (2.117) to

p0,j = −i D

Dϕ0
j
,

D

Dϕ0
j
=

∂

∂ϕ0
j
+ i

〈ej ,β〉
2π

. (2.126)

In precise analogy to the expression for D/Dφ0 in (2.49), D/Dϕ0 is the covariant derivative

associated to a unitary flat connection on a complex line-bundle L over the Jacobian JΣ,

and the harmonic one-form β determines the holonomies of this connection around each

one-cycle on the Jacobian. Because JΣ is the quotient H1(Σ;R)/2πL, each generating

one-cycle Cj ∈ H1(JΣ;Z) can be identified with a corresponding lattice generator ej ∈ L,

for which

HolCj
(D/Dϕ0) = exp[−i 〈ej ,β〉] . (2.127)

When β 6= 0, the Hilbert space H∨
0 generalizes to the space of square-integrable sections

of the complex line-bundle L,
H∨
0 ≃ L2

(
JΣ;L

)
. (2.128)

As a result of the covariant identification in (2.126), Wj ≡ p0,j then acts on the Fourier

basis for H∨
0 with the new eigenvalues

Wj ·Ψω =

〈
ej , ω +

β

2π

〉
·Ψω , ω ∈ L . (2.129)
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Again in comparison to (2.53), the role of the harmonic one-form β is to shift the integral

grading by the cohomology lattice L on the Maxwell Hilbert space H ∨
Σ .

Because the zero-mode Hilbert space H∨
0 is graded by the eigenvalues of Wj for

j = 1, . . . , 2g, the full Maxwell Hilbert space H ∨
Σ is bigraded by the lattice L⊕ Z,

H ∨
Σ ≃

⊕

(ω,m)∈L⊕Z

(
H ∨

Σ

)
ω,m . (2.130)

Following the notation in section 2.1, I let |ω;m〉 denote the Fourier wavefunction Ψω(ϕ0),

considered in the topological sector with magnetic flux m = deg(L), and satisfying the

vacuum condition

aλ|ω;m〉 = 0 , λ > 0 . (2.131)

All other Fock states in HΣ are obtained by acting with the oscillator raising-operators aλ
†

on the Fock vacuum |ω;m〉, so more explicitly

(
H ∨

Σ

)
ω,m = C · |ω;m〉 ⊗

⊗

λ>0

Hλ . (2.132)

Clearly (H ∨
Σ )ω,m is isomorphic to the scalar field summand H m,ω

Σ in (2.56).

Finally, let us consider the action of the Maxwell Hamiltonian H∨ on states in the

Hilbert space H ∨
Σ . Under the identification (2.116) of the electric field ⋆EA with the

covariant operator D/DA, the Hamiltonian becomes

H∨ =

∫

Σ

[
−πe2 D

DA
∧⋆ D

DA
+

1

4πe2
FA∧⋆FA − θ

2πe2ℓ2
FA

]
. (2.133)

In terms of the conserved momenta Wj in (2.84),

H∨ =

∫

Σ

[
πe2

(
Q−1

)
jk WjWk + · · · + 1

4πe2
FA∧⋆FA − θ

2πe2ℓ2
FA

]
, (2.134)

where the omitted terms involve the action of D/DA on the excited oscillator states in the

Hilbert space.

The complete spectrum of the Maxwell Hamiltonian depends upon the set of eigenval-

ues {λ2} for the scalar Laplacian on Σ, exactly as for the periodic scalar field. Following

the strategy in section 2.1, we ask instead the more limited question of how H∨ acts on

the Fock vacua |ω;m〉 associated to the harmonic modes of the gauge field. Evidently

from (2.89) and (2.129),

H∨|ω;m〉 = e2
[
π

(
ω +

β

2π
, ω +

β

2π

)
+

πm2

(e2ℓ)2
− θm

(e2ℓ)2
+

E0

e2ℓ

]
|ω;m〉 , (2.135)

where E0/ℓ is again a Casimir energy on Σ. Because the zero-point energies 1
2λ of the

oscillating modes are the same for both the periodic scalar field and the gauge field, the

constant E0 in (2.135) will agree with the corresponding constant in (2.59) so long as we

use the same regularization method to define both (as we assume).
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For Maxwell theory on Σ, the spectrum of H∨ simplifies in the regime e2ℓ≪ 1 of weak

electric coupling. Only then do the Fock vacua |ω;m〉 for arbitrary Fourier momentum

ω ∈ L have parametrically smaller energy than the typical oscillator state such as aλ
†|0;m〉.

Not surprisingly, this case is opposite to the strong-coupling regime 1/e2ℓ≪ 1 in which the

states of least-energy arise by quantizing the single zero-mode of the periodic scalar field φ.

2.3 Topological Hilbert space

Let us summarize our results so far.

We have obtained an explicit identification between the Hilbert spaces for the U(1)

gauge field A and the periodic scalar field φ on the surface Σ,

HΣ
∨ ≃ HΣ ,

=
⊕

(m,ω)∈Z⊕L

[
C · |m;ω〉 ⊗

⊗

λ>0

Hλ

]
.

(2.136)

The isomorphism for the oscillator Fock spaces Hλ for λ > 0 follows from classical

Hodge theory after we pass to Coulomb gauge for A, so it is relatively uninteresting. The

non-trivial content in (2.136) is the identification between the Fock vacua |m;ω〉, which
arise from the quantization of the harmonic modes of A and φ in each topological sector.

For the periodic scalar field, m ∈ Z is a quantum label which arises from Fourier modes

on S1, and the lattice vector ω ∈ L is a classical label which measures the winding-number

of the map φ : Σ → S1. Conversely for the gauge field, the integer m is the classical

label, corresponding to the degree of the line-bundle L, and the lattice vector ω is the

quantum label, arising from Fourier modes on the Jacobian JΣ. Under the isomorphism

in (2.136), the classical and quantum labels are swapped, characteristic of abelian duality

in any dimension.

A dual role is also played by the topological parameters (θ,α) and (θ,β) which enter

the respective Hamiltonians in (2.21) and (2.73). For the periodic scalar field, the angle

θ is a quantum parameter which determines the holonomy of a flat, unitary connection

on a complex line bundle over S1 as in (2.50), and the harmonic one-form α is a classi-

cal parameter which weights each winding-sector. For the gauge field, θ is the classical

parameter which weights the magnetic flux on Σ, and β is now the quantum parameter

which determines the holonomy of a flat connection on a complex line-bundle over JΣ as

in (2.127).

Nonetheless, under the dual correspondence

α = ⋆β , α,β ∈ H1(Σ) , (2.137)

the Hamiltonians H in (2.59) and H∨ in (2.135) act identically on the states |m;ω〉 up to

a constant shift δ,

H|m;ω〉 =
(
H∨ + δ

)
|m;ω〉 , δ =

e2

4π

[
θ2

(e2ℓ)2
− (β,β)

]
. (2.138)
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Let us introduce the quantum partition functions for the scalar and Maxwell theories,

ZΣ(R) = TrHΣ
e−RH , ZΣ

∨(R) = TrHΣ
e−RH∨

, (2.139)

both of which depend upon a real parameter R ∈ R which can be interpreted as the length

of the circle in M = S1 × Σ.

The constant shift in (2.138) then implies the relation

ZΣ
∨(R) = ZΣ(R) · exp

[
e2R

4π

(
θ2

(e2ℓ)2
− (α,α)

)]
. (2.140)

The same duality relation appears under a different guise in [2], where it arises from the non-

trivial modular transformation of a theta-function ΘM (γ) associated to any Riemannian

three-manifold M . See section 4.1 of [2] for a complete discussion of the theta-function

and section 5.1 of the same work for a path integral derivation of the relation in (2.140).

Compare especially to equation (5.1) in [2].

Finally, as we have already mentioned, the spectrum of H dramatically simplifies in

either the small-volume limit e2ℓ≪ 1 or the large-volume limit e2ℓ≫ 1. In both cases,

the quantum states of minimal energy within each topological sector are the Fock vacua

|m;ω〉, for all pairs (m,ω) in the lattice Z⊕ L. Hence we can sensibly restrict attention to

the subspace of the full Hilbert space spanned by these states,

H top
Σ =

⊕

(m,ω)∈Z⊕L

C · |m;ω〉 ⊂ HΣ . (2.141)

Essential for the following, the description of H top
Σ does not require detailed knowledge

of the Riemannian metric on Σ. Instead, the action of operators such as H on H top
Σ will

only depend upon the complex structure and the overall volume of Σ. In that sense, H top
Σ

is a subspace of ‘quasi-topological’ states. Unlike the typical situation in topological quan-

tum field theory, though, H top
Σ has infinite dimension. As a result, the action of various

operators on H top
Σ can be quite interesting, a topic to which we turn next. Elsewhere, I will

discuss some important related notions in the context of N = 2 supersymmetric quantum

field theory in three dimensions.

3 Operator algebra at higher genus

Given the explicit construction of the Hilbert space on Σ, we now discuss the action of

several natural classes of operators on that Hilbert space.

As mentioned at the end of section 2.3, we simplify life by considering only the action

on the quasi-topological subspace H top
Σ spanned by the Fock vacua |m;ω〉,

H top
Σ =

⊕

(m,ω)∈Z⊕L

C · |m;ω〉 . (3.1)

The restriction to H top
Σ is natural in either the regime e2ℓ≪ 1 or e2ℓ≫ 1, for which the

Fock vacua describe states of minimal energy within each topological sector. Because the
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abelian theories in question are non-interacting, we do not need to worry about the effects

of high-energy states, which would otherwise be integrated-out in passing from the big

Hilbert space HΣ to the subspace HΣ
top.

Following section 5.2 in [2], we analyze three classes of operators on Σ. We first have

the local vertex operator Vk(σ) which is inserted at a point σ ∈ Σ,

Vk(σ) = eikφ(σ) , k ∈ Z . (3.2)

Periodicity of the scalar field φ ∼ φ+ 2π dictates that k be an integer so that Vk(σ) is

single-valued.

Next we have the Wilson loop operator Wn(C) associated to an oriented, smoothly

embedded curve C ⊂ Σ,

Wn(C) = exp

[
i n

∮

C
A

]
, n ∈ Z . (3.3)

For generic choices of C, the charge n of the Wilson loop operator must be an integer to

ensure gauge-invariance with respect to the compact gauge group U(1).

Perhaps less appreciated, when C is a homologically-trivial curve which bounds a two-

cycle D ⊂ Σ, the Wilson loop operator can be defined for an arbitrary real charge via

Wν(C) = exp

[
i ν

∫

D
FA

]
, ν ∈ R . (3.4)

This expression for Wν(C) is manifestly gauge-invariant for all values of ν, and it reduces

to (3.3) by Stokes’ theorem for C = ∂D. Unlike the situation for Wν(C) in three dimen-

sions [2], where the role ofD is played by a Seifert surface with some homological ambiguity,

here there is no ambiguity about D. Because D is a two-cycle on Σ, the choice of D is

fixed entirely by the orientations of the pair (Σ, C).

Without delay, let me emphasize that Wν(C) will act non-trivially on H top
Σ even when

C is trivial in homology. Likewise, Wn(C) will depend upon the geometry of C ⊂ Σ, not

just the homology class [C] ∈ H1(Σ).

By contrast, we do have a purely homological loop operator Lα(C), given by

Lα(C) = exp

[
i α

2π

∮

C
dφ

]
, α ∈ R/2πZ . (3.5)

Clearly Lα(C) detects the classical winding-number of the map φ : Σ → S1, for which only

the homology class [C] ∈ H1(Σ) is relevant. Since the one-form dφ/2π always has integral

periods, Lα(C) also depends only upon the value of α modulo 2π.

The operators in (3.2), (3.3), and (3.5) are presented in order-form, as classical func-

tionals of the scalar field φ or the gauge field A. As well-known and reviewed for instance

in section 5.2 of [2], each of these operators admits a dual disorder description, in which

the operator creates a classical singularity at the point σ or along the curve C, respectively.

Very briefly, the vertex operator Vk(σ) creates a local monopole singularity of magnetic

charge k in the gauge field A, and the loop operator Lα(C) creates a codimension-two
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singularity inM = R× Σ around which A has monodromy α. Note that this interpretation

is consistent with the angular nature of α. For the periodic scalar field, the Wilson loop

operator Wn(C) dually creates an additive monodromy φ 7→ φ+ 2πn around any small

path encircling C inside M . Note that integrality of n is required for the monodromy to

make sense for general C.

Such classical geometric descriptions of the disorder operators suffice for the path

integral analysis of duality in [2]. Our goal in section 3.1 is to provide an alternative,

quantum description of these operators — in both order and disorder form— by their action

on the Hilbert space HΣ
top. Using these results, we then exhibit directly in section 3.2 the

combined algebra of vertex and loop operators on Σ.

3.1 Monopoles and loops on a Riemann surface

To discuss the action of Vk(σ), Wn(C), and Lα(C) on the Hilbert space, we assume that

each operator acts at time t = 0 onM = R× Σ. These operators do not generally preserve

the topological subspace H top
Σ inside the full Hilbert space HΣ. To obtain an action on

H top
Σ alone, we compose with the projection from HΣ onto H top

Σ , which occurs naturally in

either the geometric limits e2ℓ≪ 1 or e2ℓ≫ 1. This projection onto H top
Σ will be implicit

throughout. At the classical level, projection onto H top
Σ amounts to the Hodge projection

onto harmonic configurations for φ and A.

Monopole operators. We begin with the action of the vertex operator Vk(σ) in (3.2).

Directly via the eigenmode expansion (2.36) for the periodic scalar field,

Vk(σ)|m;ω〉 = exp

[
i kΦω(σ) + i

k

e2ℓ
φ0 + · · ·

]
|m;ω〉 , (m,ω) ∈ Z⊕ L . (3.6)

Here Φω : Σ → S1 is the fiducial harmonic map (2.34) with winding-number ω, and the

ellipses indicate terms involving the Fock operators aλ and aλ
†, whose action becomes

irrelevant after the projection to H top
Σ .

According to the description of the Fourier wavefunction in (2.47), the Fock ground-

state |m;ω〉 can itself be written as

|m;ω〉 ≡ Ψm(φ0)|ω〉 = exp
(
i
m

e2ℓ
φ0

)
|ω〉 . (3.7)

Evidently from (3.6), Vk(σ) shifts the Fourier mode number m to m+ k,

Vk(σ)|m;ω〉 = exp
[
i kΦω(σ)

]
|m+ k;ω〉 , (3.8)

up to an additional phase which depends upon the value of Φω at the point σ. When

Σ = CP
1 has genus zero, the harmonic map Φω in (3.8) is constant and equal to zero

modulo 2π by the defining condition in (2.35). Hence in this case, the action of Vk(σ) on

the quasi-topological subspace H top
Σ does not actually depend upon the position of the

vertex operator on Σ.

In higher genus, the situation is more interesting.
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To evaluate the phase in (3.8), we use the defining conditions for the fiducial

map, namely

dΦω = 2πω , Φω(σ0) = 0 mod 2π , (3.9)

where ω ∈ H1(Σ;Z) is harmonic and σ0 ∈ Σ is the basepoint used for quantization. By

Stokes’ theorem, the phase factor in (3.8) can be recast in the form

exp
[
i kΦω(σ)

]
= exp

[
i k

(
Φω(σ) − Φω(σ0)

)]
,

= exp

[
2πi k

∫

Γ
ω

]
,

(3.10)

where Γ is any oriented path on Σ which connects the basepoint σ0 to the point σ where

the vertex operator is inserted,

∂Γ = σ − σ0 . (3.11)

The homotopy class of Γ is not unique, as clear when σ = σ0 and Γ is an arbitrary closed

curve based at σ0. However, as usual in the business, integrality of both k and ω ensures

that the phase in (3.10) is independent of the choice of the integration contour Γ. For the

remainder, we suppress the appearance of Γ and simply write the vertex operator phase as

Vk(σ)|m;ω〉 = exp

[
2πi k

∫ σ

σ0

ω

]
|m+ k;ω〉 . (3.12)

Thus, even when we restrict to the low-energy subspace H top
Σ ⊂ HΣ, the action of the

vertex operator Vk(σ) is still sensitive to the location at which the operator is inserted.

How does (3.12) arise when we describe the quantum theory on Σ dually in terms of

the Maxwell gauge field A? To answer this question, we recall that the Fock vacua |m;ω〉
in H top

Σ correspond to wavefunctions for A on the disjoint union of tori

Pic(Σ) =
⊔

m∈Z

Picm(Σ) , Picm(Σ) ≃ JΣ , (3.13)

each isomorphic to the Jacobian of Σ. A natural guess is that the effective action of the

vertex operator Vk(σ) is induced from the tensor product (or Hecke modification) with the

degree-k holomorphic line-bundle OΣ(k σ),

⊗OΣ(k σ) : Picm(Σ)
≃−→ Picm+k(Σ) ,

L 7−→ L⊗OΣ(k σ) ,
(3.14)

as already appears in (2.91). In the gauge theory approach to geometric Langlands, this

statement has been explained in §9.1 of [17], though we must make a few minor modifica-

tions to treat the non-topological (but free) theory here.

According to its definition as a monopole operator, reviewed in section 5.2 of [2], the

vertex operator Vk(σ) acts topologically to increase the degree of the U(1)-bundle over Σ

by k units, in accord with the shift m 7→ m+ k in both (3.12) and (3.14). However, for a

complete characterization of the phase in (3.12), we must also consider how the action of
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Vk(σ) on the state |m;ω〉 depends upon the point σ ∈ Σ and the Fourier mode ω ∈ L for

the gauge field wavefunction on JΣ.

To investigate the latter dependence, let us consider the composite operator

Ok(σ, σ0) = Vk(σ) ◦ V−k(σ0) , σ 6= σ0 , (3.15)

where σ is distinct from the basepoint σ0. Because Vk(σ) and V−k(σ0) carry opposite

monopole charges, Ok(σ, σ0) does not alter the topology of the line-bundle over Σ. Nonethe-

less, Ok(σ, σ0) may still act non-trivially on the state |m;ω〉, at least in genus g ≥ 1.

Since we work with zero-modes, let A be an arbitrary harmonic connection on a line-

bundle of degree m over Σ, of the form

A = mÂ +

2g∑

j=1

ϕ0
j
ej , ϕ0

j ∈ R/2πZ . (3.16)

Here we have truncated the more general eigenform expansion for A in (2.93), and we

recall that Â is the fiducial harmonic connection associated to the holomorphic line-bundle

OΣ(σ0). As a harmonic connection, A determines a point in the Picard component Picm(Σ)

of degree m, and we may interpret the Fock groundstate

|m;ω〉 ≡ Ψω(A)|m〉 (3.17)

in terms of the wavefunction

Ψω(A) = exp

[
i

∫

Σ

(
A−mÂ

)
∧ω

]
, (3.18)

exactly as in (2.123). After we subtract mÂ in the argument of the exponential, Ψω(A)

does not actually depend upon the degree m.

On this wavefunction, the composite operator Ok(σ, σ0) acts via a modification of A

induced from (3.14),

Ok(σ, σ0) ·Ψω(A) = Ψω(Ã) , (3.19)

where

Ã = A + 2πk δΓ , δΓ ∈ Ω1
Σ . (3.20)

In this expression, δΓ is a one-form on Σ with delta-function support which represents the

Poincaré dual of an oriented path Γ running from σ0 to σ. Equivalently, for any smooth

one-form η, the wedge product with δΓ satisfies
∫

Σ
δΓ∧η =

∫

Γ
η , η ∈ Ω1

Σ . (3.21)

Because the path Γ is open, the one-form δΓ is not closed but rather obeys

dδΓ = δσ − δσ0
, δσ, δσ0

∈ Ω2
Σ , (3.22)

where δσ and δσ0
are two-forms on Σ with delta-function support at the points σ, σ0 ∈ Σ.

As a consequence of (3.22), the curvature of the modified connection Ã in (3.20) is singular
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at the locations where the vertex operators are inserted. Physically, these curvature singu-

larities signal the creation of a monopole/anti-monopole pair of magnetic charge k on Σ.

Strictly speaking, the singular connection Ã in (3.20) is not harmonic, and so to in-

terpret the dual action of Ok(σ, σ0) on the zero-mode wavefunction, we should project the

singular connection Ã onto the harmonic subspace of Ω1
Σ. Thankfully, this projection is

accomplished automatically for us when we evaluate

Ψω(Ã) = exp

[
i

∫

Σ

(
A + 2πk δΓ − mÂ

)
∧ω

]
,

= exp

(
2πik

∫

Σ
δΓ∧ω

)
·Ψω(A) ,

= exp

(
2πi k

∫

Γ
ω

)
·Ψω(A) ,

(3.23)

since the one-form ω is harmonic by assumption. In passing from the second to the third

line of (3.23), we use the defining property of δΓ in (3.21).

According to (3.19) and (3.23),

Ok(σ, σ0)|m;ω〉 =
[
Vk(σ) ◦ V−k(σ0)

]
|m;ω〉 = exp

(
2πi k

∫ σ

σ0

ω

)
|m;ω〉 , (3.24)

and again integrality of both k and ω ensures that the phase factor depends only upon the

endpoints of the path Γ, where the monopoles are inserted. Clearly from its definition (3.14)

via the tensor product, the monopole operator of charge k is the same as the k-th power

of the unit monopole operator,

Vk(σ) = V1(σ)
k , (3.25)

so we can rewrite the identity in (3.24) as

Vk(σ)|m;ω〉 = exp

(
2πi k

∫ σ

σ0

ω

)
Vk(σ0)|m;ω〉. (3.26)

Hence we have determined the action of the monopole operator Vk(σ) for arbitrary points

σ ∈ Σ in terms of the action of the monopole operator Vk(σ0) inserted at the basepoint σ0.

We are left to discuss the action of the based monopole Vk(σ0) on |m;ω〉. The first

claim is that Vk(σ0) does not alter the quantum label ω,

〈m+ k;ω′|Vk(σ0)|m;ω〉 = 0 , ω 6= ω′ . (3.27)

This statement follows by symmetry, since ω is interpreted as the charge under the group

U(1)2g which acts by translations on the Jacobian JΣ. For the harmonic connection A

in (3.16), these translations are just shifts in the angular coordinates ϕ0
j . Because the

Hecke modification in (3.14) commutes with the action of U(1)2g, the monopole operator

is uncharged under U(1)2g and hence preserves ω.

Otherwise, from the gauge theory perspective we have left some ambiguity in the

normalization of the basis state |m;ω〉 for fixed ω as the degree m ranges over Z. We fix

this ambiguity up to an overall constant by declaring

|m;ω〉 ≡
[
V1(σ0)

]m|0;ω〉 , (3.28)
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so that

Vk(σ0)|m;ω〉 = |m+ k;ω〉 . (3.29)

Together, (3.26) and (3.29) imply the formula in (3.12), which we deduced from the more

direct description of Vk(σ) as a vertex operator for the periodic scalar field φ.

Vortex loops. Just as we consider the action by the local vertex operator Vk(σ), we

can also consider the action on H top
Σ by the respective loop operators Lα(C) and Wn(C),

where C is a closed curve in Σ. If C is not a spacelike curve in Σ but a timelike curve

in M of the form C = R× {σ} for some point σ ∈ Σ, then Lα(C) and Wn(C) do not

act on the Hilbert space H top
Σ but lead rather to the construction of new Hilbert spaces

associated to the punctured surface Σo = Σ− {σ}. The analysis of such line operators is

similar philosophically to the analysis of fibrewise Wilson loop operators in [1], so I omit

the timelike case here.

Like the vertex operator Vk(σ), the loop operator Lα(C) admits an elementary descrip-

tion in terms of the periodic scalar field φ,

Lα(C) = exp

(
i α

2π

∮

C
dφ

)
, α ∈ R/2πZ . (3.30)

On each state |m;ω〉 in H top
Σ , the operator Lα(C) simply measures the winding-number

ω ∈ H1(Σ;Z),

Lα(C)|m;ω〉 = exp

(
i α

2π

∮

C
dφ

)
|m;ω〉 ,

= exp

(
i α

∮

C
ω

)
|m;ω〉 ,

(3.31)

where we recall that [dφ] = 2πω for the state |m;ω〉. In particular, Lα(C) respects the

global U(1) symmetry by shifts φ 7→ φ+ c for constant c and hence preserves the mode

number m of the state |m;ω〉. We also note that the phase in (3.31) depends only on the

homology class of C in H1(Σ), and the integrality of ω ensures that the phase depends

only on the value of the parameter α modulo 2π.

Again, our main goal is to understand how the formula in (3.31) arises dually in terms

of the U(1) gauge field A. As reviewed in section 5.2 of [2], the loop operator Lα(C) acts

on A as a disorder operator which creates a curvature singularity along C of the form

FA = −α δC , α ∈ R/2πZ , (3.32)

where δC is a two-form with delta-function support that represents the Poincaré dual of

C ⊂M . Equivalently, near C the gauge field behaves as

A = − α

2π
dϑ + · · · , (3.33)

where ϑ is an angular coordinate on the plane transverse to C, located at the origin.

Globally, A has non-trivial monodromy about any small curve linking C in M , and Lα(C)

is the reduction to three dimensions of the basic Gukov-Witten [14] surface operator in

four dimensions.
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Unlike the monopole singularity, the singularity in (3.32) does not change the degree

m of the line-bundle L over Σ. As will be useful later, let me give an elementary argument

for this statement.

We consider an arbitrary configuration for the gauge field A on M = R× Σ with the

prescribed singularity in (3.32) at time t = 0, and smooth otherwise. We will measure the

change in the degree m as the time t runs from −∞ to +∞ on M . By way of notation,

Σ± ⊂M will denote the copies of Σ at the times t = ±∞. Then the change ∆m in the

degree from t = −∞ to t = +∞ is computed by

∆m =

∫

Σ+

FA −
∫

Σ−

FA =

∫

M
dFA ,

= −α
∫

M
dδC = 0 .

(3.34)

In the first line of (3.34) we apply Stokes’ theorem, and in the second line we apply the

Bianchi identity dFA = 0 on the locus where A is smooth. Finally, because C is a closed

curve on Σ, the Poincaré dual current δC is also closed, dδC = 0. (The same computation

would show that ∆m 6= 0 for the monopole operator, which acts as a localized source for

dFA.) So as observed following (3.31), Lα(C) must preserve the magnetic label m on the

states |m;ω〉 in H top
Σ .

On the other hand, Lα(C) does change the holonomies of A on Σ, from which the phase

factor in (3.31) will be induced. To setup the computation, we consider the gauge theory

on M = R× Σ, and we suppose that the line operator Lα(C) is inserted on Σ0 ≡ {0} × Σ

in M . We fix an initial flat connection A− on Σ−. The operator Lα(C) acts as a sudden

perturbation to create the singularity in (3.32) at t = 0, after which we project A back onto

the subspace of harmonic (ie. flat) connections. We then let A+ be the final connection on

Σ+ which is obtained by subsequent time-evolution.5 We wish to compare the holonomies

of A+ to those of A−. See figure 1 for a sketch of M as a cylinder over the uniformization

of Σ, where for concreteness we have drawn Σ as a Riemann surface of genus two.

For any closed, oriented curve γ on Σ, we evaluate

∆γA =

∮

γ
A+ −

∮

γ
A− mod 2π ,

=

∮

γ
A+ +

∮

−γ
A− mod 2π ,

(3.35)

where in the second line we reverse the orientation of γ when integrating A−. As apparent

from figure 1, we can use Stokes’ theorem to evaluate the difference in (3.35) as an integral

over the cylindrical surface S = R× γ ⊂M ,

∆γA =

∫

∂S
A =

∫

S
FA mod 2π , (3.36)

where S is oriented as the rectangle in the figure with boundary

∂S = {+∞}× γ − {−∞} × γ . (3.37)

5Because the abelian gauge theory is free, the usual disorder path integral over arbitrary bulk configu-

rations for A can be replaced by classical time-evolution.
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0

t

C

S

γ

−γ

Figure 1. M as a cylinder over the uniformization of Σ.

In passing from (3.36) to (3.37), we note that the vertical edges of S in figure 1 are identified

after a reversal of orientation, so they make no contribution to the boundary integral over

∂S in (3.36).

We are left to evaluate the integral of the curvature FA over S in (3.36). By assumption,

FA vanishes everywhere on S except for the explicit curvature singularity (3.32) created at

t = 0 along C. Consequently,

∆γA = −α
∫

S
δC = α

∮

γ
[C]∨ mod 2π , (3.38)

where [C]∨ ∈ H1(Σ;Z) is a harmonic representative for the dual of the homology class of

C. The flip of sign in the second equality arises from due care with orientations.

Because the curve γ is arbitrary, Lα(C) must act classically by the shift

A+ = A− + α [C]∨ mod 2πL . (3.39)

We recall from (3.18) that the wavefunction Ψω evaluated on a harmonic connection A of

degree m is given by

Ψω(A) = exp

[
i

∫

Σ

(
A − mÂ

)
∧ω

]
, (3.40)
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Under the shift (3.39) induced by Lα(C), we see that Ψω transforms by

Lα(C)[Ψω(A)] = Ψω

(
A + α [C]∨

)
,

= exp

[
i α

∫

Σ
[C]∨∧ω

]
·Ψω

(
A
)
,

= exp

[
i α

∮

C
ω

]
·Ψω

(
A
)
.

(3.41)

exactly as in (3.31).

I briefly mention two other ways to understand the formula in (3.41) from gauge theory.

So far we have introduced two disorder operators for the gauge field A, namely, the

monopole operator Vk(σ) and the loop operator Lα(C). These two operators are not

unrelated. Let us again consider a monopole/anti-monopole pair Vk(σ) ◦ V−k(σ0) on Σ. If

σ = σ0, this composite operator is the identity, but for σ 6= σ0, the operator acts on states

in H top
Σ with the non-trivial phase

Ok(σ, σ0)|m;ω〉 =
[
Vk(σ) ◦ V−k(σ0)

]
|m;ω〉 = exp

(
2πi k

∫ σ

σ0

ω

)
|m;ω〉 . (3.42)

Using Ok(σ, σ0), we can try to make a new operator á la Verlinde [20] from the mon-

odromy action by Ok(σ, σ0) on H top
Σ as the point σ is moved adiabatically around a closed

curve C ⊂ Σ based at σ0. When k is integral, the induced phase in (3.42) is trivial, and the

Verlinde operator acts as the identity. However, when k 6= 0 mod Z is allowed to be frac-

tional, the Verlinde operator constructed from Ok(σ, σ0) is non-trivial and acts by precisely

the phase in (3.41), provided we set

α = 2πk ∈ R/2πZ . (3.43)

So the line operator Lα(C) can be interpreted as the Verlinde operator associated to trans-

port of a monopole/anti-monopole pair with non-integral magnetic charge. See [14] for a

somewhat different explanation of the same effect in four-dimensional gauge theory. This

relation can also be understood directly from the order-type expressions for Vk(σ) ◦ V−k(σ0)

and Lα(C) in terms of the periodic scalar field φ.

Alternatively, the action by the line operator Lα(C) can be understood using the

Lagrangian formalism, the focus of [2]. For simplicity in the following discussion, we

assume that the topological parameters θ and β from section 2.2 are both set to zero. In the

Lagrangian formalism, the inner-product of states 〈m;ω′|Lα(C)|m;ω〉 for some ω, ω′ ∈ L is

computed by the path integral

〈
m;ω′|Lα(C)|m;ω

〉
=

1

Vol(G)

∫

Picm(Σ)×Am×Picm(Σ)
DA+DADA− Ψω′(A+) exp

[
i

4πe2

∫

M
FA∧⋆FA

]
Ψω(A−) ,

(3.44)

with modified curvature

FA = FA + α δC . (3.45)
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Here A± denote the boundary values for the gauge field at t = ±∞, and the path integral

ranges over the affine space Am of connections on the U(1)-bundle with degree m on

M = R× Σ. We also integrate over the boundary values of A with weights given by the

wavefunctions Ψω and Ψω′ as in (3.18). Finally, the term proportional to δC in (3.45)

enforces the condition that FA have the singular behavior in (3.32). For a more thorough

discussion of the latter remark, see section 5.2 in [2].

The modified action in (3.44) can be expanded in terms of FA as
∫

M
FA∧⋆FA =

∫

M
FA∧⋆FA + 2α

∫

M
δC∧⋆FA + c0 . (3.46)

Here c0 is a formally divergent constant arising from the norm-square of δC , which we shall

ignore. By comparison of (3.46) to the standard Maxwell action, Lα(C) can be identified

semi-classically with the operator

Lα(C) = exp

[
i α

2πe2

∫

M
δC∧⋆FA

]
= exp

[
i α

2πe2

∮

C
⋆ΣEA

]
, (3.47)

where I note in the second equality that only the electric component of FA contributes to

the integral over the spacelike curve C ⊂ Σ, and ⋆Σ indicates the two-dimensional Hodge

operator on Σ. Upon quantization as in (2.116),6

1

2πe2
⋆ΣEA(w) = −i volΣ · δ

δA(w)
, (3.48)

so the loop operator becomes

Lα(C) = exp

[
α

∮

C
volΣ · δ

δA

]
. (3.49)

Manifestly, Lα(C) acts upon any wavefunction Ψω(A) by the shift A 7→ A+ α [C]∨ appear-

ing in the first line of (3.41).

Although we began with a disorder characterization of the loop operator in gauge

theory, the classical description for Lα(C) in (3.47) amounts to an order expression for the

same operator. A quantum operator may admit distinct classical descriptions, so there is no

contradiction here. See for instance section 4.1 of [1] for an analogous disorder presentation

of the usual Wilson loop operator in Chern-Simons gauge theory.

Wilson loops. We are left to consider the action on H top
Σ of the Wilson loop operator

Wn(C). In terms of the gauge field, the Wilson loop operator acts simply by multiplication

in the topological sector labelled by the degree m,

Wn(C) ·Ψω(A) = exp

(
i n

∮

C
A

)
· exp

[
i

∫

Σ

(
A−mÂ

)
∧ω

]
,

= exp

(
i n

∫

Σ
[C]∨∧A

)
· exp

[
i

∫

Σ

(
A−mÂ

)
∧ω

]
,

= exp

(
imn

∮

C
Â

)
·Ψω−n [C]∨(A) ,

(3.50)

6The Coulomb-gauge smearing term in (2.116) can be ignored when we restrict to the topological sub-

space H top

Σ .
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where again [C]∨ ∈ H1(Σ;Z) is the Poincaré dual of the curve C ⊂ Σ. In passing to the

second line of (3.50), we recall that A is a harmonic connection with expansion (3.16) for

wavefunctions in H top
Σ . As a result,

Wn(C)
∣∣m;ω

〉
= exp

(
imn

∮

C
Â

)∣∣m;ω − n [C]∨
〉
. (3.51)

Clearly, integrality of n is necessary whenever the homology class [C] 6= 0 is non-trivial,

else the Wilson loop operator does not act in a well-defined way on H top
Σ .

The phase factor in (3.51) depends upon the fiducial harmonic connection Â on the

degree-one line-bundle L = OΣ(σ0) over Σ. Because Â is not flat, this phase is not invariant

under deformations of the curve C. For instance, even when C = ∂D is trivial in homology,

the Wilson loop operator still acts non-trivially on the state |m;ω〉,

Wν(C)
∣∣m;ω

〉
= exp

(
im ν

∫

D
F̂A

)∣∣m;ω
〉
,

= exp

[
2πimν

(
volΣ(D)

ℓ2

)]∣∣m;ω
〉
, C = ∂D .

(3.52)

In passing to the second line, we use the formula for F̂m in (2.89), and we let volΣ(D) be

the volume of D in the given metric on Σ. If ν is integral, the phase in (3.52) does not

depend on whether D or D′ = Σ−D is chosen to bound C. Otherwise, for arbitrary real

values ν ∈ R, the orientation of C uniquely fixes the bounding two-cycle D with compatible

orientation, so that the action of Wν(C) is well-defined.
7

As usual, we now wish to understand the results in (3.51) and (3.52) dually in terms

of the periodic scalar field φ. Like the previous disorder description for the loop operator

Lα(C), the Wilson loop operator Wn(C) will act on φ by creating a singularity along C

such that φ winds by 2πn when traversing any small circle which links C ⊂M = R× Σ.

The effective shift of ω ∈ H1(Σ;Z) in (3.51) can be understood dually in close corre-

spondence to the shift (3.39) induced by the vortex loop operator Lα(C) on the gauge field

A. Classically, ω is interpreted as the winding-number of φ, with ω = [dφ/2π]. So long

as φ is a smooth map to the circle, then d[dφ] = 0. However, in the background of the

Wilson loop operator Wn(C), we replace the smooth map φ by a section φ̃ of a non-trivial

S1-bundle over the complement Mo =M − C, such that

d[dφ̃] = d(dφ+B) = FB = 2πn δC . (3.53)

For a path integral justification of the statement above, I refer the interested reader to the

end of section 5.2 in [2].

By exactly the same computation as in (3.35), (3.36), and (3.38), we evaluate the

change due to the insertion of Wn(C) in the winding-number of φ around an arbitrary

7As observed in section 5.2 of [2], the analogous definition of Wν(C) for null-homologous curves C in a

three-manifold M generally does depend upon an extra discrete choice of a relative class in H2(M,C) for

the bounding Seifert surface.
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closed curve γ ⊂ Σ as

∆γω =

∮

γ

dφ+
2π

−
∮

γ

dφ−
2π

,

=

∫

S
d

[
dφ̃

2π

]
, S = R× γ ,

= n

∫

S
δC = −n

∮

γ
[C]∨ .

(3.54)

reproducing the shift in (3.51).

The non-topological, m-dependent phase in (3.51) is slightly more subtle. For simplic-

ity, we will reproduce this phase only in the special case that C = ∂D is homologically-

trivial, as assumed in (3.52). Then

Wν(C) = exp

[
i ν

∫

D
FA

]
, C = ∂D . (3.55)

As the ur-statement of abelian duality, discussed in the Introduction to [2], we have the

correspondence

FA = e2 ⋆dφ . (3.56)

Hence the classical description of the Wilson loop operator in terms of φ must be

Wν(C) = exp

[
i ν e2

∫

D
volΣ · ∂tφ

]
. (3.57)

Upon quantization, we apply the functional identification in (2.40) with θ = 0 to rewrite

Wν(C) as the operator

Wν(C) = exp

[
2πν

∫

D
volΣ · δ

δφ

]
. (3.58)

Hence Wν(C) acts upon any wavefunction Ψm(φ) by the shift φ 7→ φ+ 2πν volΣ(D)/ℓ2.

According to our previous results in (2.36) and (2.47), the Fourier wavefunction Ψm(φ)

which describes the Fock state |m;ω〉 is given explicitly by

Ψm(φ) = exp

[
i
m

ℓ2

∫

Σ
volΣ · (φ− Φω)

]
. (3.59)

Immediately, the action by the operator in (3.58) on this wavefunction produces the geo-

metric phase in the second line of (3.52).

To summarize, the Wilson loop Wn(C) and the vortex loop Lα(C) play dual roles.

When expressed in terms of the gauge field, Wn(C) acts classically by multiplication on

any state |m;ω〉. But when expressed in terms of the scalar field, Wn(C) acts quantum-

mechanically as the differential (or shift) operator in (3.58). Conversely, the vortex

loop Lα(C) acts classically by multiplication when written in terms of φ, but quantum-

mechanically as the differential (or shift) operator in (3.49) when written in terms of A.
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3.2 Wilson-’t Hooft commutation relations

Finally, let us examine the commutation relations between the operators Vk(σ), Lα(C),

and Wn(C), all acting on the topological Hilbert space H top
Σ . The idea of examining these

commutators goes back to ’t Hooft, and we will find a holomorphic refinement of the classic

results in [15].

Collecting our previous formulas in (3.12), (3.31), and (3.51) we explicitly present the

action of the operators on the Fock vacua |m;ω〉 as

Vk(σ)|m;ω〉 = exp

(
2πi k

∫ σ

σ0

ω

)
|m+ k;ω〉 ,

Lα(C)|m;ω〉 = exp

(
i α

∮

C
ω

)
|m;ω〉 ,

Wn(C)
∣∣m;ω

〉
= exp

(
imn

∮

C
Â

)∣∣m;ω − n [C]∨
〉
.

(3.60)

Clearly for all pairs σ, σ′ ∈ Σ and C,C ′ ⊂ Σ,
[
Vk(σ), Vk′(σ

′)
]
=

[
Lα(C), Lα′(C ′)

]
=

[
Wn(C), Wn′(C ′)

]
= 0 . (3.61)

Also, [
Vk(σ), Lα(C)

]
= 0 , (3.62)

as follows directly from the elementary, order-type description of both the vertex and the

homological loop operators in terms of the periodic scalar field φ.

On the other hand, the loop operators Lα(C) and Wn(C) do not commute. Instead,

the composition satisfies

Lα(C) ◦Wn(C
′) = exp

[
−i α n

(
C · C ′

)]
Wn(C

′) ◦ Lα(C) , (3.63)

where

C · C ′ =

∮

C

[
C ′

]
∨ ∈ Z . (3.64)

Equivalently, C · C ′ is the topological intersection number of the curves C,C ′ ⊂ Σ. Because

n and C · C ′ are integers, the phase in (3.63) only depends upon the value of α modulo

2π, consistent with its angular nature. When C ′ is trivial in homology, the charge n of the

Wilson loop can be replaced by an arbitrary real parameter ν. In this special case, the

phase in (3.63) remains well-defined, since C · C ′ = 0.

Of course, the commutator in (3.63) appears in direct analogy to the celebrated com-

mutation relation for Wilson and ’t Hooft operators in four-dimensional abelian gauge

theory, for which the corresponding phase is proportional to the linking number of the

curves C and C ′ in R
3. See §10.2 of [21] for a review of this story in four dimensions.

Though more or less obvious, the non-trivial commutation relation in (3.63) has an

interesting consequence, because it implies that the monopole operator Vk(σ) and the

Wilson loop operator Wn(C) similarly fail to commute. As one can check directly,

Vk(σ) ◦Wn(C) = exp

(
−2πi k n

∫ σ

σ0

[C]∨
)
exp

(
−i k n

∮

C
Â

)
Wn(C) ◦ Vk(σ) . (3.65)
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To make sense of (3.65), we must work with a definite, harmonic representative for the

cohomology class [C]∨ which is Poincaré dual to [C]. Otherwise, absent a definite repre-

sentative, the value of the line integral from σ0 to σ in (3.65) would be ambiguous.

One potentially unsettling feature of the commutation relation in (3.65) is that the

phase on the right-hand side appears to depend upon the auxiliary choices of the basepoint

σ0 ∈ Σ and the harmonic connection Â. These choices enter the definition of the states

|m;ω〉, but they do not enter the intrinsic definitions of the operators Vk(σ) and Wn(C)

themselves and hence should not enter the commutator.8

Actually, the situation is slightly better than it first appears, since the fiducial con-

nection Â is itself determined by the choice of σ0. We recall that Â is defined as the

unique harmonic connection compatible with the holomorphic structure on OΣ(σ0). As we

now demonstrate, the explicit dependence on σ0 in the first phase factor of (3.65) exactly

cancels against the implicit dependence of Â ≡ Âσ0
on σ0 in the second phase factor.

We begin by introducing another harmonic connection Âσ, associated to the degree-one

holomorphic line-bundle OΣ(σ). As harmonic connections, both Âσ and Âσ0
have the same

curvature, proportional to the Riemannian volume form on Σ, so the difference Âσ − Âσ0

is a closed one-form. For the first phase factor in (3.65), the classical Abel-Jacobi theory

now provides the very beautiful reciprocity relation

exp

(
−2πi k n

∫ σ

σ0

[C]∨
)

= exp

[
−i k n

∮

C

(
Âσ − Âσ0

)]
. (3.66)

See chapter 2.2 of [13] for a textbook reference on such reciprocity laws.

Substituting (3.66) into (3.65), we obtain a completely intrinsic reformulation of the

commutation relation between the monopole operator and the Wilson loop,

Vk(σ) ◦Wn(C) = exp

(
−i k n

∮

C
Âσ

)
Wn(C) ◦ Vk(σ) , (3.67)

with no dependence on the arbitrary choice of the basepoint σ0. We emphasize that the

commutation relation in (3.67) does depend on the particular curve C ⊂ Σ, not merely the

homology class [C], because Âσ is not flat. Moreover, the commutator depends holomor-

phically on the point at which the monopole operator is inserted, through the dependence

of Âσ on σ.

The commutation relation in (3.67) can be understood directly in terms of either the

gauge field A or the periodic scalar field φ. Via the Hecke modification in (3.14), the

monopole operator Vk(σ) induces the shift

A 7−→ A + k Âσ . (3.68)

On the other hand, the Wilson loop operator Wn(C) acts multiplicatively as in (3.50),

from which (3.67) follows. Alternatively in terms of φ, the vertex operator Vk(σ) acts

multiplicatively, and the Wilson loop operator Wν(C) for homologically-trivial C = ∂D

acts as the shift operator in (3.58), from which (3.67) again follows.

8I thank Marcus Benna for emphasizing this question to me.
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To gain a final bit of additional insight into the meaning of the Wilson-’t Hooft com-

mutation relation, let us consider the commutation relation of Wn(C
′) with the composite

operator Ok(σ, σ0) ≡ Vk(σ) ◦ V−k(σ0) which has vanishing monopole charge. As an imme-

diate consequence of (3.65),

Ok(σ, σ0) ◦Wn(C
′) = exp

(
−2πi k n

∫ σ

σ0

[
C ′

]
∨

)
Wn(C

′) ◦ Ok(σ, σ0) . (3.69)

But we have already identified Lα(C) as the Verlinde operator derived from Ok(σ, σ0),

describing the creation and subsequent transport of a monopole/anti-monopole pair with

fractional magnetic charge α = 2πk. As σ is transported adiabatically around a curve C

based at σ0, the commutation relation in (3.69) reproduces the topological commutation

relation of loop operators in (3.63).
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