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1 Introduction

1.1 General setup and conformality

The AdS/CFT correspondence [1–3] predicts dualities between certain string theories in

anti-de Sitter (AdS) space and conformal field theories (CFTs). Its most prominent ex-

ample relates type IIB string theory in AdS5 × S5 with N units of five-form flux to the

four-dimensional maximally (N = 4) supersymmetric Yang-Mills (SYM) theory with gauge

group SU(N). It is most accessible in the ’t Hooft (planar) limit [4], where N → ∞ and the

Yang-Mills coupling constant gYM → 0 such that the ’t Hooft coupling λ = g2YMN is kept

fixed: the string theory becomes free, and in the gauge theory non-planar vacuum diagrams
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are suppressed.1 Starting from this maximally (super)symmetric setup, further examples

can be found e.g. by discrete orbifold projections [6, 7] or by applying deformations which

depend on continuous parameters [8–11].

The prime example of such continuous deformations is the correspondence between

the N = 1 supersymmetric real β-deformed N = 4 SYM theory (β-deformation) and the

type II B string theory in the Lunin-Maldacena background [8]. In N = 1 superspace, the

gauge-theory action reads

S =
1

2g2YM

∫
d4x d2θ tr (WαWα) +

∫
d4x d4θ tr

(
e−gYMV Φ̄i e

gYMV Φi
)

+ igYM

∫
d4x d2θ tr

(
Φ1Φ2Φ3 e−i

β
2 − Φ1Φ3Φ2 ei

β
2
)
+ h.c. ,

(1.1)

which reduces to the one of N = 4 SYM theory if one sets the real parameter β to zero. The

above deformation is a special case of the more general exactly marginal Leigh-Strassler

deformations [12]. In [8], Lunin and Maldacena discussed the corresponding string theory

background, which can be constructed by applying a TsT transformation, i.e. a T-duality,

a shift (s) of an angular variable and another T-duality, to the S5-factor in AdS5×S5. This

breaks the isometry group SO(6) of the S5 to its U(1)Q1×U(1)Q2×U(1)R Cartan subgroup.

In [8], it was also found that the β-deformation can be formulated by replacing all products

in the undeformed superspace action by noncommutative ∗-products that introduce phase

factors depending on the U(1)Q1 ×U(1)Q2 Cartan charges of the respective fields.

All fields of the N = 4 SYM theory transform in the adjoint representation of the gauge

group. In the action, their representation matrices are contracted forming a single trace in

colour space. Moreover, in the interactions each of these matrix products can be rephrased

in terms of a commutator. Hence, if one considers U(N) as gauge group, the U(1) compo-

nents of all fields decouple, and the U(N) theory is essentially the same as the SU(N) theory.

The β-deformation, however, does distinguish between the gauge groups U(N) and

SU(N). While the U(1) component of the vector superfield V still decouples, this is no

longer the case for the matter superfields Φi,Φ̄i of flavours i = 1, 2, 3. Moreover, the U(N)

theory is not even conformally invariant. This can be seen e.g. in a component expansion

of the action (1.1), where quantum corrections induce the running of a quartic double-trace

coupling. While its tree-level value vanishes in the U(N) theory, it is at its non-vanishing

IR fix point value in the SU(N) theory [13]. This value is found by integrating out the

F-term auxiliary fields from the component expansion of (1.1), cf. [14]. Although coming

with a prefactor of 1
N
, these double-trace terms do contribute in the ’t Hooft limit. As

we have argued in detail in [14], they were, however, neglected in the proof of conformal

invariance in [15], which only considers planar single-trace couplings.

In a gauge theory without conformal symmetry, the (anomalous) scaling dimensions of

gauge invariant composite operators depend on the β-functions of the couplings and thus

1Non-planar non-vacuum diagrams may, however, become planar when connected to external states, and

thus may contribute in the ’t Hooft limit [5]. They give rise to so-called finite-size corrections, which are

the main object of this work.
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are renormalisation-scheme dependent starting from the second loop order.2 In a CFT,

however, the β-functions vanish and with them the renormalisation-scheme dependence.

The anomalous dimensions are then observables, and the AdS/CFT correspondence con-

jectures that they match the energies of respective string states in the gravitational theory.

1.2 The dilatation operator in N = 4 SYM theory

The scaling dimensions can be measured as eigenvalues of the generator of dilatations,

known as the dilatation operator. In the ’t Hooft limit, it admits a perturbative expansion

in the effective planar coupling g:

D = D0 + g2D2 +O(g3) , g =

√
λ

4π
, (1.2)

where only the classical piece D0 and the one-loop correction D2 are shown. These op-

erators, as well as higher-order corrections, can (in principle) be computed via Feynman

diagrams, see [18, 19] for reviews. Moreover, it is sufficient to consider the action of D

on the subset of gauge-invariant composite operators with a single colour-trace. On these

single-trace operators, which can be represented as cyclic spin chains, D2 acts as an inte-

grable Hamiltonian. This integrability appears to persist also beyond the first loop order.

The conjecture of all-loop integrability has led to enormous progress in checking and under-

standing the AdS/CFT correspondence, see the review collection [20] for a comprehensive

list of references.

In the basis of cyclic spin-chain states of length L, the dilatation operator D can be

written in terms of a (site-independent) density D as

D2K =
L∑

i=1

Di,i+1,...,i+K , Di,i+1....,i+K = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1

⊗D2K ⊗1⊗ · · · ⊗ 1︸ ︷︷ ︸
L−i−K

, (1.3)

where i + L is identified with i. Here, D2K denotes the contribution at order g2K and,

for the sake of simplicity, we have neglected length-changing contributions appearing at

loop orders K > 1. Note that the density D2K has an interaction range R = K + 1, i.e.

a maximum of R neighbouring sites interact with each other. In particular, the one-loop

density D2 contains at most nearest-neighbour interactions. For the N = 4 SYM theory,

D
N=4
2 was found by Beisert in [21].

Since R increases by one with each additional loop order, an obvious problem oc-

curs when R exceeds the length L of the state, which happens at loop-orders K ≥ L.

2In [14], we have shown that the non-supersymmetric three-parameter γi-deformation, which was pro-

posed as candidate gauge theory of a generalisation of the Lunin-Maldacena AdS/CFT setup in [10], is

not conformally invariant — not even in the ’t Hooft limit. Double-trace couplings are induced whose

β-functions have no fixed points as functions of λ, neither for gauge group U(N) nor SU(N). As already

remarked in [14], these couplings affect the planar spectrum of the theory, which is hence sensitive to the

breakdown of conformal invariance. In [16], we will give an explicit example of a planar anomalous dimen-

sion that depends on one of these couplings and that is hence renormalisation-scheme dependent. In the

later work [17], the running of these couplings was confirmed. However, the author of [17] nevertheless

claims that the γi-deformation is ‘conformally invariant in the planar limit’.
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This necessitates finite-size corrections, i.e. length-dependent corrections to the asymp-

totic (length-independent) density. In the field-theory picture of N = 4 SYM theory, such

corrections occur in the form of wrapping diagrams and were analysed in detail in [5]. They

originate from the fact that in the ’t Hooft limit diagrams with external legs may contribute

even if their N -power is naively subleading. The decision whether a diagram contributes

can a priori only be made for diagrams in which all colour lines are closed, i.e. external

lines have to be connected to external states (composite operators). In the notation of [5],

a connected diagram with external legs and without external states is called planar if it

contributes at leading order in the 1
N
-expansion when its external legs are planarly con-

tracted with a single-trace vertex. Besides these diagrams, in the ’t Hooft limit there may

be contributions from non-planar connected diagrams, which effectively are multi-trace in-

teractions. Such an interaction enhances its N -power if one of its colour-trace factors is

fully and planarly contracted with a colour-trace of the same length in an external state.

In the integrability-based description of N = 4 SYM theory, wrapping effects are

incorporated in terms of Lüscher corrections, Y-system and the thermodynamic Bethe

ansatz (TBA). They all correct the result from the asymptotic Bethe ansatz and match the

available field-theory data — see [19, 22–25] for reviews. More recently, these formalisms

were further developed to the so-called finite non-linear integral equations (FiNLIE) [26]

and the quantum spectral curve (QSC) [27].

1.3 The dilatation operator in the β-deformation

The β-deformation is closely connected to the N = 4 SYM theory, such that many of the

methods and also some of the results can be adopted. In particular, it is claimed to be as

integrable as its undeformed parent theory, see [28] for a review.

At the asymptotic level, the formulation of the β-deformation in terms of noncom-

mutative Moyal-like ∗-products allows the adaptation of a particular theorem derived for

spacetime noncommutative field theories in [29]: the contribution of a planar diagram in

the deformed theory is given by its undeformed counterpart times a phase factor that is

determined by the order and charges of the external fields alone. Beisert and Roiban used

this theorem in [30] to propose a planar one-loop dilatation-operator density in the de-

formed theory. In addition, they deformed the asymptotic Bethe ansatz by introducing

twisted boundary conditions.

Subsequently, also wrapping corrections were investigated. They can conveniently be

studied for so-called single-impurity operators, which are single-trace operators containing

L− 1 chiral scalar fields of one flavour and a single chiral scalar field of a different flavour.

For L ≥ 3, the respective field-theory results of [31] were reproduced in [32] for β = 1
2 and

in [33] and [34] for generic β.3 They are insensitive to the choice of U(N) or SU(N) as

gauge group.

For the L = 2 single-impurity operator, however, a sensitivity to that choice was

observed already some years earlier in [36]: for gauge group SU(N) its one-loop anomalous

dimension vanishes identically whereas for U(N) it is non-vanishing. In [11], it was noted

3See [34, 35] for higher-order results.
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that the latter result is reproduced by the one-loop dilatation operator as well as the

asymptotic Bethe ansatz, both proposed in [30]. But up to now the results of [30] could

not be modified to incorporate the conformally invariant SU(N) theory, which is the CFT

candidate for the AdS/CFT correspondence.4

The situation becomes worse at the level of wrapping corrections. According to field-

theory calculations, the two-loop anomalous dimension of the L = 2 single-impurity state

vanishes for gauge group SU(N) [37]. The corresponding integrability-based result of [34],

however, is logarithmically divergent,5 which cannot even be correct for gauge group U(N).

In this paper, we address the above problems from a field-theory perspective.

1.4 Organisation of our paper

This work is organised as follows.

In section 2, we give a short review of the β-deformation and Filk’s theorem in [29],

which was used to derive the one-loop dilatation-operator density in [30]. We analyse in

which cases this theorem can be adapted to the β-deformation and find that this adapt-

ability is generically limited by the occurrence of finite-size effects. This implies that the

proposal of [30] is a priori valid only asymptotically. For a certain class of operators, how-

ever, the theorem can be generalised to include these effects. We find that their n-point

correlation functions are given by the values of their undeformed counterparts at all loop

orders in the planar theory.

In section 3, we identify a new type of finite-size effect, which captures the differences

between the planar correlation functions of the U(N) and SU(N) β-deformation. In partic-

ular, this effect accounts for the aforementioned sensitivity of certain anomalous dimensions

to the choice of the gauge group. As it starts to affect single-trace operators one loop order

earlier than wrapping, we call it prewrapping. It is caused by the double-trace structure in

the SU(N) propagator and has no net effect in the undeformed theory. We classify which

types of operators may be affected by prewrapping.

In section 4, we determine the missing finite-size corrections to the asymptotic dilata-

tion operator of [30]. For gauge group SU(N) these are the aforementioned prewrapping

corrections at L = 2, whereas for gauge group U(N) they are the ordinary wrapping cor-

rections at L = 1. We thus obtain the complete planar one-loop dilatation operator of the

β-deformation.

In section 5, we identify all N = 1 superconformal primary states of the β-deformation

with classical scaling dimension ∆0 ≤ 4.5. We then apply the one-loop dilatation operator

of section 4 to these states and compute their anomalous dimensions for both gauge groups,

stressing in particular the differences between the two cases.

4See [11] for some comments concerning the differences between U(N) and SU(N) gauge group in the

deformed AdS/CFT correspondence.
5Such a divergence was encountered earlier in the expressions for the ground-state energy of the TBA [38].

In [39], it was found that the divergent ground-state energy vanishes in the undeformed theory when a

regulating twist is introduced in the AdS5 directions. This regularisation extends to the ground state of

the supersymmetric deformations [40].
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Our summary and outlook can be found in section 6. There, we also comment on the

implications our findings have on integrability. If the β-deformation is indeed as integrable

as N = 4 SYM theory, a consistent incorporation of prewrapping into the integrability-

based descriptions must exist. In particular, this should cure the divergence encountered

in [34].

Several appendices contain details of the calculations as well as a table of primary

states and their anomalous dimensions supplementing the analysis of section 5.

2 Filk’s theorem in the β-deformation

In this section, we review the ∗-product formulation of the β-deformation and a theorem

that was first derived for spacetime noncommutative field theories by Filk in [29]. We

analyse the subtleties which arise when it is adapted to the β-deformation and determine

the limits of its applicability. In the asymptotic regime, we review how it can be used to

derive the dilatation operator of [30]. Beyond that, we show that certain classes of n-point

correlation functions are at all loop orders in the planar theory given by the values of their

undeformed counterparts.

The β-deformation can be realised via a noncommutative Moyal-like ∗-product [8],

which for two fields A and B is defined as

A ∗B = AB e
i
2
(qA∧qB) . (2.1)

Here qA = (q1A, q
2
A, q

3
A) and qB = (q1B, q

2
B, q

3
B) are the charge vectors of the fields associated

with the Cartan subgroup of the SU(4)R symmetry group of the undeformed theory, see

table 1. Their antisymmetric product is defined as

qA ∧ qB = −β
3∑

a,b,c=1

ǫabcq
a
Aq

b
B , (2.2)

where ǫ is the three-dimensional antisymmetric tensor normalised to ǫ123 = 1. In fact,

the antisymmetric product (2.2) depends only on Q1 = q1 − q2 and Q2 = q2 − q3, in

terms of which it reads qA ∧ qB = −β(Q1
AQ

2
B − Q1

BQ
2
A). It is insensitive to the U(1)R

charge r = 2
3(q

1 + q2 + q3). Hence, the ∗-product (2.1) can be used also in the superfield

formulation, leading to the action (1.1). The basis (Q1, Q2, r) of the su(4) Cartan charges

was originally used in [8] and also appears in our representation-theoretical considerations

in section 5 and appendix B.

The action of the β-deformation is obtained from the one of N = 4 SYM theory by

replacing all products by ∗-products and thus all commutators by ∗-commutators:

[A ∗, B] = A ∗B −B ∗A . (2.3)

For gauge group SU(N), however, this has to be done in the superspace action (1.1), or

in the component expansion before the auxiliary fields are integrated out. In this case, a

double-trace coupling is generated which is at its fix-point value, cf. [14]. Although formally

suppressed by 1
N
, it is necessary for the conformal invariance also of the planar theory.
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B Aµ φ
1 φ2 φ3 ψ1

α ψ2
α ψ3

α ψ4
α F 1 F 2 F 3

q1B 0 1 0 0 +1
2 −1

2 −1
2 +1

2 0 −1 −1

q2B 0 0 1 0 −1
2 +1

2 −1
2 +1

2 −1 0 −1

q3B 0 0 0 1 −1
2 −1

2 +1
2 +1

2 −1 −1 0

Q1
B 0 1 −1 0 1 −1 0 0 1 −1 0

Q2
B 0 0 1 −1 0 1 −1 0 0 1 −1

rB 0 2
3

2
3

2
3 −1

3 −1
3 −1

3 1 −4
3 −4

3 −4
3

Table 1. Cartan charges of the fields, including the F-term auxiliary fields F i, in two different

bases. The respective anti-fields carry the opposite charges.

Introducing ∗-products in the component field action without auxiliary fields misses

this coupling at tree-level and induces its running at loop-level. In the conventions of [14],

the Euclidean component action6 reads

S =

∫
d4x

[
tr
(
− 1

4
FµνFµν − (Dµ φ̄j)Dµ φ

j + iψ̄α̇ADα̇
αψAα

+ gYM

( i
2
ǫijkφ

i{ψαj ∗, ψkα}+ φj{ψ̄α̇4 , ψ̄α̇j}+ h.c.
)

− g2YM

4
[φ̄j , φ

j ][φ̄k , φ
k] +

g2YM

2
[φ̄j ∗, φ̄k][φ

j ∗, φk]
)

− s

N

g2YM

2
tr
(
[φ̄j ∗, φ̄k]

)
tr
(
[φj ∗, φk]

)]
,

(2.4)

with spacetime indices µ, ν = 0, 1, 2, 3, spinor indices α = 1, 2, α̇ = 1̇, 2̇, flavour indices

i, j, k = 1, 2, 3 and A = 1, 2, 3, 4, as well as the gauge-group parameter

s =

{
0 for U(N) ,

1 for SU(N) .
(2.5)

We have kept only those ∗-products that do introduce net deformations. In particular,

all interactions in which the gauge field Aµ and the gluino ψ4 occur are undeformed since

these fields are uncharged under (Q1, Q2).

The ∗-product of the β-deformation (2.1) is similar to the Moyal ∗-product used to

formulate a specific type of spacetime noncommutative field theories.7 This similarity al-

lows to adapt a particular theorem for this class of noncommutative field theories derived

by Filk in [29]: the deformed version of a planar Feynman diagram is equal to its unde-

formed counterpart times a phase factor which is determined by the order and charges of

the external fields alone. A completely explicit formulation of the relation between the

deformed and undeformed diagrams of colour-ordered amplitudes is given in [43]. If the

6The double-trace term in the action was written explicitly in [41] but follows also directly from the

procedure mentioned much earlier in [36].
7See [42] for a review.
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fields entering such an amplitude are A1, A2, . . . , An in cyclic order, its phase factor is the

one of A1 ∗A2 ∗ · · · ∗An. This relation can be depicted as

A1 A2 Ai

Ai+1An−1An

planar

β
=

A1 A2 Ai

Ai+1An−1An

planar

N = 4
× Φ (A1 ∗A2 ∗ . . . ∗An) , (2.6)

where Φ denotes the phase factor of the ∗-product.
A direct application of relation (2.6) to the planar diagrams contributing to D2 led

to the following proposal for the one-loop dilatation-operator density of the deformed the-

ory [30]:

(Dβ
2 )
AkAl

AiAj
= Φ(Ak ∗Al ∗Aj ∗Ai)(DN=4

2 )AkAl

AiAj

= e
i
2
(qAk

∧qAl
−qAi

∧qAj
)
(DN=4

2 )AkAl

AiAj
,

(2.7)

where Ai, Aj denote the incoming and Ak, Al the outgoing fields. They are taken from

the alphabet

A = {Dk φi,Dk φ̄i,Dk ψAα ,D
k ψ̄Aα̇ ,D

k Fαβ ,Dk F̄α̇β̇} , (2.8)

where the field strength Fµν has been split into its self-dual and anti-self-dual part F
and F̄ , respectively, and all Minkowski indices are translated to spinor indices using the

relations in appendix C. The abbreviation Dk ψ̄2
α̇ stands for expressions with arbitrarily

many covariant derivatives acting on ψ̄2
α̇ and totally symmetrised in both kinds of spinor

indices.

Although the dilatation-operator density (2.7) seems to follow immediately from rela-

tion (2.6), one has to be very careful when adapting Filk’s theorem to the β-deformation.

The β-deformation is not a spacetime noncommutative field theory, and also its Moyal-like

∗-product is distinctly different from the one in [29]. In spacetime noncommutativity, the

phase as well as the ordering principle of fields entering an interaction depend on the space-

time coordinates or, after Fourier transformation, the momenta. In the ∗-product of the

β-deformation, the phase depends on the (Q1, Q2) charges of the fields, while the ordering

principle is colour arrangement. Colour and (Q1, Q2) charge are, however, independent of

each other. Traces, i.e. colour-neutral object, may be (Q1, Q2)-charged, as e.g. the trace

factors in the double-trace term in (2.4). In this case, the prescription of replacing all

products by ∗-products becomes generically ill-defined since it is in conflict with the cyclic

invariance of the trace.8 This can exemplarily be seen for tr[φiφj ] = tr[φjφi], whereas in

the ∗-deformed case tr[φi ∗ φj ] 6= tr[φj ∗ φi] for i 6= j. The fact that colour and (Q1, Q2)

8The ∗-deformation of the double-trace term in the component action (2.4) is, however, unambiguous

because it arises from the ∗-deformation of charge-neutral single-trace terms in the N = 1 superspace ac-

tion (1.1) or in its off-shell component expansion (before the auxiliary fields F i are integrated out). Accord-

ingly, working in superspace or off-shell component space, all vertices are of flavour-neutral single-trace type.

– 8 –
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charge are not connected also manifests itself in a problem concerning external states and

the notion of planarity. The commonly repeated statement that “only planar diagrams

contribute in the planar / ’t Hooft limit” is true only for diagrams in which all external

legs have been connected to external states (composite operators). Before the connection to

external states, some of the contributing diagrams are non-planar. These are the diagrams

giving rise to the finite-size corrections [5]. As external states are not explicitly covered

in [29], a priori all diagrams have to be considered without external states, leaving subdi-

agrams of elementary interactions. In particular, the resulting subdiagrams of finite-size

corrections are non-planar and hence are not captured by (2.6).

We can, however, extend the applicability of (2.6) beyond the subdiagrams of elemen-

tary interactions. In theories with spacetime noncommutativity, external states can imme-

diately be incorporated. They can be added to the action as local interactions at which mo-

mentum is conserved. Hence, as far as the deformation is concerned, they are on equal foot-

ing with the elementary vertices. In particular, momentum conservation implies that the

deformation via the Moyal ∗-product is well defined since the resulting phase factor is invari-

ant under a cyclic relabelling of the external momenta. In spacetime-noncommutative the-

ories, there is hence no need for treating any external state separately from the elementary

vertices when applying Filk’s theorem. The above considerations can be adapted in parts to

the β-deformation. The similarity between the β-deformation and spacetime noncommu-

tativity holds only if colour and (Q1, Q2) neutrality coincide, i.e. the fields within a single

colour trace must have vanishing (Q1, Q2) net charge. This concerns external states con-

sisting of one or several colour traces each of which is uncharged under the U(1)Q1×U(1)Q2

flavour symmetry. Relation (2.6) then applies to the diagrams including such states, where

on the left hand side the elementary vertices as well as the external states are ∗-deformed.

In the β-deformation, the extension of relation (2.6) to diagrams containing external

states with (Q1, Q2)-charge-neutral trace factors has severe consequences. Since it is not

necessary to remove such external states, diagrams which are planar only due to the pres-

ence of these states also obey (2.6), even if their subdiagrams of elementary interactions are

non-planar. In particular, any gauge-invariant correlation function of such external states

is independent of the deformation. This follows immediately from evaluating (2.6) with

no (n = 0) external legs. It implies that e.g. the anomalous scaling dimensions and the

structure constants for external states (composite operators) of this class are at all loops

independent of the deformation parameter β and are directly given by their N = 4 SYM

counterparts.

One example in the subclass of (Q1, Q2)-charge-neutral single-trace operators is the

Konishi operator
∑3

i=1 tr[φ
iφ̄i], whose anomalous dimension in the undeformed theory has

recently been determined up to eight loops in the framework of integrability [27].9 By the

above argument, this result is valid also in the β-deformation. Another example is the

9The anomalous dimension was obtained via one of the N = 4 descendants of the Konishi operator which

is not an N = 1 descendant. While in the β-deformation the anomalous dimension of this descendant is

altered, the N = 4 SYM theory result remains valid for the Konishi primary.
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family of chiral primary operators with length L = 3k and (q1, q2, q3) = (k, k, k):

Ok = tr[(φ1)k(φ2)k(φ3)k] + all permutations . (2.9)

In contrast to the Konishi operator, the operators Ok themselves are altered by the ∗-
deformation.10 In [44], the three-point functions 〈OkOk′Ok′′〉 of the deformed operators

were investigated at one-loop order in the planar gauge theory and at strong coupling in

the Lunin-Maldacena background. In these regimes, they were found to be independent of

β. From the above argument it is clear that these three-point functions as well as all their

(higher) n-point functions are independent of β at all loop orders.11

If one removes the external single-trace operators in a planar two-point diagram, one

either obtains a planar single-trace diagram as in (2.6) or a non-planar double-trace dia-

gram. The latter type of diagram generates the finite-size effects. The applicability of [29]

to external single-trace operators with vanishing (Q1, Q2) charge leads to the following

relation for double-trace interactions that contribute in the planar limit:12

A1 A2 Ai

Ai+1An−1An

β

β

δQ=0 =

A1 A2 Ai

Ai+1An−1An

N = 4

N = 4

δQ=0 × Φ (A1 ∗ . . . ∗Ai) Φ (Ai+1 ∗ . . . ∗An)
︸ ︷︷ ︸
Φ (A1 ∗ . . . ∗Ai ∗Ai+1 ∗ . . . ∗An)

,

(2.10)

where δQ = (δQ1, δQ2) denotes the charge flow between the separate traces. As in (2.6),

the grey-shaded regions represent arbitrary planar interactions.

Regardless of the above generalisations concerning (Q1, Q2)-neutral single-trace oper-

ators, finite-size corrections still set the limit of applicability of relation (2.6) for (Q1, Q2)-

charged ones. These corrections can, however, not contribute if the maximal interac-

tion range R of the connected subdiagrams at a given loop-order K is strictly smaller

than the length L of the single-trace operator. In particular, (2.6) can be applied to

the K-loop asymptotic dilatation-operator density in (1.3), where asymptotic now means

L > R = K + 1.13

10Cf. the alternative deformation prescription in [36], which differs only by an overall factor.
11See [11] for a generalisation of earlier arguments given in [45, 46] for rational β that the anomalous

dimensions of the operators (2.9) vanish as for their undeformed counterparts in N = 4 SYM theory.
12This relation was also obtained in [41] for the dominant contribution to certain multi-trace amplitudes

at large but finite N .
13Note that the K-loop asymptotic dilatation-operator density D2K incorporates interaction subdiagrams

of ranges R′ ≤ K+1. In the cases where R′ < K+1, it acts as identity on the remainingK+1−R′ spin-chain

sites, which corresponds to bare propagators in the two-point function. Relation (2.10) applied for i = 2,

together with the fact that Φ(A ∗ Ā) = 1, guarantees that the phase factor obtained from the interaction

subdiagram is exactly the one obtained from applying (2.6) to D2K . Disconnected interaction subdiagrams

are also captured by relation (2.10). They do, however, not contribute to the dilatation operator, since they

do not have overall UV divergences.
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In the special case of the one-loop dilatation operator, our previous discussion guar-

antees that (2.7) is correct asymptotically, i.e. for L ≥ 3, but it does not include finite-size

effects, which may — in principle — contribute at L ≤ 2. In section 4, we calculate the

corresponding finite-size corrections. For gauge group U(N), these are the conventional

wrapping corrections at L = 1. For gauge group SU(N), a new type of finite-size effect

occurs at L = 2, which we discuss in the next section.

3 A new type of finite-size effect

In this section, we describe a new type of finite-size effect which appears in particular in

the β-deformation with gauge group SU(N), while the undeformed N = 4 SYM theory is

insensitive to it. Moreover, we classify which operators are potentially affected.

As explained before, finite-size corrections arise in the ’t Hooft limit from certain

multi-trace colour structures, whose apparently suppressed N -powers are enhanced to the

leading order when attached to external states. In a theory with U(N) gauge group and

only single-trace vertices, such as the N = 4 SYM theory, these multi-trace structures

can only be generated by the wrapping effect, i.e. by interactions that wrap at least once

around an external state. This is only possible if the loop-order K of the interaction equals

or exceeds the length L of the composite single-trace operator, i.e. K ≥ L. In the following,

we will argue that for SU(N) gauge group an additional source for multi-trace structures

and hence finite-size corrections exists: the propagator.

We denote by (Ta)ij the generators of the gauge group with fundamental indices

i, j = 1, . . . , N and adjoint index a = s, . . . , N2 − 1. Recall that s = 0 for U(N) and s = 1

for SU(N), as defined in (2.5). The generators are normalised such that

tr(TaTb) = δab . (3.1)

They obey the following important identity:

N2−1∑

a=s

(Ta)ij(T
a)kl = δilδ

k
j −

s

N
δijδ

k
l , (3.2)

which occurs as the colour part of the propagator of adjoint fields. The second term is

only present in the SU(N) case, where it removes a contribution from the U(1) generator

contained in the first term. In double-line notation, (3.2) can be depicted as

δilδ
k
j −

s

N
δijδ

k
l =

i

j

l

k

− s

N

i

j

l

k

. (3.3)

Let us investigate in which cases the 1
N

prefactor of the second term in (3.3) is enhanced

in N such that it contributes at the same leading order as the first term. In a generic

diagram contributing to the n-point function of gauge-invariant composite operators, the

colour lines in (3.3) are closed by other propagators, vertices and operators. This allows

two distinct connections of the indices i, j, k, l in (3.3): either i is connected with l and k
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with j or i with j and k with l. In the first case, we obtain

i

j

l

k

︸ ︷︷ ︸
N2

− s

N

i

j

l

k

︸ ︷︷ ︸
N1

∝
(
1− s

N2

)
N2 . (3.4)

The second term is suppressed by 1
N2 since besides the 1

N
prefactor it has one index loop

less than the first term. In the second case, however, we have

i

j

l

k︸ ︷︷ ︸
N1

− s

N

i

j

l

k︸ ︷︷ ︸
N2

∝ (1− s)N . (3.5)

Here, the second term is of the same order in N as the first term since its prefactor 1
N

is

compensated by a factor N from an additional index loop compared to the first term.

These results can be easily interpreted: the second term in (3.3) contributes in leading

order precisely if only the U(1) component propagates in the first term. This can only

happen if by cutting a single propagator the diagram of the gauge-invariant n-point function

decomposes into two parts, i.e. if it is one-particle reducible. For gauge group SU(N), i.e.

for s = 1, such diagrams do not contribute, as the second (double-trace) contribution

in (3.3) cancels the first (single-trace) contribution. For the particular case of two-point

functions, the affected diagrams are of s-channel14 type and have the generic form

− s

N
∝ (1− s)N2L−1 , (3.6)

where the two external states of length L are depicted in light grey and the area in dark

grey stands for possible additional planar interactions. The interactions have to reduce

the L fields of each of the two operators into a single field. Since the reduction of two

fields into a single field comes with one factor of the effective planar coupling g,15 the

diagrams of type (3.6) are at least of order O(g2L−2). This is one loop order lower than

the leading wrapping order and hence we call this new finite-size effect prewrapping.16 The

14We trust that the reader will not confuse the Mandelstam variable s with the gauge group parameter

s previously defined in (2.5).
15This consideration holds for all v-valent vertices in the actions (1.1) and (2.4) since they are of order

O(gv−2).
16For the sake of simplicity, we are neglecting length-changing interactions in the main text. These are,

however, also affected and easy to incorporate. For a two-point function connecting an operator of length

L with one of length L′, the critical order simply becomes gL+L′
−2.
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consequence of prewrapping is the vanishing of all s-channel diagrams in the SU(N) case

(s = 1) in contrast to the U(N) case (s = 0), cf. (3.6).

Note that the quartic scalar interactions from the action (2.4) also fit into the above

analysis. In fact, the superspace action contains only cubic interactions between chiral

superfields. This is still the case in the component expansion including auxiliary fields.

The quartic scalar vertices only appear when the auxiliary fields are integrated out. In

particular, the elimination of the F i auxiliary fields generates the double-trace term in

the action (2.4) via (3.2). This term is just another description of the prewrapping effect

caused by the propagator of the F i auxiliary fields. It is thus perfectly acceptable and, for

a homogeneous description of prewrapping, also advisable to conduct the analysis in one

of the two former formulations.

Since the undeformed theory is insensitive to the difference between the gauge groups

U(N) and SU(N), prewrapping must not have a net effect there. This means the contribu-

tions to both colour structures in (3.6) must vanish separately. The occurring cancellation

among the contributing diagrams with different flavour structure can be most easily seen at

the example of L = 2 states at one loop. In this case, the cyclicity of the trace symmetrises

the operators with respect to their flavour degrees of freedom, while the commutator in-

teraction reducing these two fields to the s-channel propagator is antisymmetric.17 The

same argument goes through for longer states if we consider the last remaining pair of

fields in the aforementioned reduction to a single field. In the deformed theory, whose

∗-commutator interactions are not antisymmetric, this cancellation ceases to happen.

Based on the above consideration, we can classify for which operators prewrapping can

occur. In prewrapping diagrams, the whole composite operator is reduced to a single field,

which hence must carry the complete su(4) Cartan charge of that operator. In particular, a

field (or auxiliary field) with such charges must exist, cf. table 1. In addition, its (Q1, Q2)

charge has to be non-vanishing; fields with vanishing (Q1, Q2) charge have undeformed

interactions, which leads to an automatic cancellation as in N = 4 SYM theory.

Let us apply these criteria to the closed subsectors of the theory, which for the unde-

formed theory were classified in [21]. It becomes an easy combinatorial exercise to give all

operators that are potentially affected. For the compact closed subsectors, the results are

displayed in table 2. It shows that all respective candidates for prewrapping are obtained

by acting on the L = 2 single-impurity state tr[φ2φ3] with charge conjugation and/or a Z3

symmetry. The latter symmetry cyclically relabels the scalars φi and fermions ψi, as well

as their conjugates, leaving the action invariant.18 Recall that the sensitivity of this state

to the choice of the gauge group was already observed in [36], and we can now identify this

phenomenon as a manifestation of prewrapping.

The analogous analysis for the noncompact closed subsectors is equally straightforward

and we only want to stress one noteworthy feature. In closed subsectors that restrict the

flavour content, no combination of su(4) charged fields {φi, φ̄i, ψAα , ψ̄Aα̇ } exists whose total

su(4) charge vanishes.19 As a consequence, the aforementioned criteria can only be fulfilled

17For two fermions, the state is of course antisymmetric and the interaction is symmetric.
18This can most easily be seen in the superspace formulation (1.1).
19Note that our criteria are insensitive to the difference between the closed subsectors with unrestricted
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Subsector Fields Prewrapping candidates

SU(2) φ1, φ2 tr[φ1φ2]

SU(2) φ1, φ̄2 none

U(1|1) φ1, ψ4
1 none

U(1|1) φ1, ψ1
1 none

U(1|1) φ̄1, ψ2
1 none

U(1|1) φ̄1, ψ3
1 none

U(1|2) φ1, φ2, ψ4
1 tr[φ1φ2]

U(1|2) φ̄2, φ̄3, ψ1
1 tr[φ̄2φ̄3]

U(1|2) φ1, φ̄2, ψ1
1 none

U(1|2) φ1, φ̄3, ψ1
1 none

U(1|3) φ1, φ2, φ3, ψ4
1 tr[φ1φ2] + Z3

U(1|3) φ1, φ̄2, φ̄3, ψ1
1 tr[φ̄2φ̄3]

SU(2|3) φ1, φ2, φ3, ψ4
1, ψ

4
2 tr[φ1φ2] + Z3

SU(2|3) φ1, φ̄2, φ̄3, ψ1
1, ψ

1
2 tr[φ̄2φ̄3]

Table 2. Candidates for prewrapping in the compact closed subsectors. We have omitted subsec-

tors that are related to the above via the Z3 symmetry and/or charge conjugation.

by operators containing a finite number of these fields. They may, however, contain an arbi-

trary number of field strengths and covariant derivatives if those are admitted in the sector.

In the full theory, large families of operators exist that are candidates for prewrapping,

e.g.

tr
[
φ2φ3(φ1φ̄1)i(φ2φ̄2)j(φ3φ̄3)k(ψ1ψ̄1)l(ψ2ψ̄2)m(ψ3ψ̄3)n(ψ4ψ̄4)oFpF̄q

]
, (3.7)

where i, j, k, l,m, n, o, p, q ∈ N0 and for simplicity we have suppressed spinor indices and

covariant derivatives, which can additionally act on all of the fields.

4 The complete one-loop dilatation operator

In this section, we determine the missing finite-size corrections and obtain the complete

one-loop dilatation operator for the planar β-deformation — first for gauge group SU(N)

and then for gauge group U(N).

4.1 Gauge group SU(N)

The dilatation operator is most directly extracted from the UV divergences of correlation

functions involving either one or two composite operators. According to the previous

discussion, it is hence affected by prewrapping if the gauge group is SU(N). In particular,

this means that the asymptotic one-loop result (2.7) can be extended to the full one-loop

result in the β-deformation with SU(N) gauge group by removing all non-vanishing s-

channel contributions for states with length L = 2. In the undeformed N = 4 SYM theory,

this is not necessary since cancellations between different s-channel diagrams result in a

vanishing net contribution, as already discussed in the previous section.

flavour content, namely U(1, 1|4) and U(1, 2|4), and the full theory. The latter is treated below.
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In the following, we consider the operator O = tr[ψ1
αφ

2] as an example and evaluate

the result of the asymptotic dilatation operator (2.7) acting on it. We explicitly show

how the corresponding s-channel diagrams cancel in the undeformed theory, while in the

β-deformation a net contribution persists. This is the correct s-channel contribution in the

U(N) theory, but it has to be removed in the SU(N) theory. After the example, we show

how — with a simple prescription — this can efficiently be done for all one-loop states.

The operator O = tr[ψ1
αφ

2] maps to the cyclic spin-chain state |O〉, and we act on it

with the one-loop dilatation operator D2. On this state, D2 is the sum of two insertions

D2 = D12 +D21, where Dij denotes the dilatation-operator density D2 acting on the two

legs of |O〉 in the specific order ij, cf. (1.3). Hence,

D2|O〉 = D12|O〉+D21|O〉 (4.1)

is a linear combination of certain L = 2 states.

In the undeformed theory, (4.1) can be calculated using the so-called harmonic ac-

tion [21] for DN=4
2 , see appendix C for details.20 We focus on the matrix element 〈O|D2|O〉.

It is the sum of the following four contributions:

(DN=4
2 )ψ

1φ2

ψ1φ2
= +3 , (DN=4

2 )φ
2ψ1

ψ1φ2
= −1 , (DN=4

2 )φ
2ψ1

φ2ψ1 = +3 , (DN=4
2 )ψ

1φ2

φ2ψ1 = −1 ,

(4.2)

They can also be understood in terms of Feynman diagrams. The first two contributions

are given by

(DN=4
2 )ψ

1φ2

ψ1φ2
=

1

2

ψ1 φ2

ψ1

︸ ︷︷ ︸
+2

+
1

2

ψ1 φ2

φ2

︸ ︷︷ ︸
+1

+

ψ1 φ2

ψ1 φ2

︸ ︷︷ ︸
−1

+

ψ1 φ2

ψ1 φ2

︸ ︷︷ ︸
+1

,

(DN=4
2 )

φ2ψ1
1

ψ1φ2
=

ψ1 φ2

φ2 ψ1

︸ ︷︷ ︸
−1

,

(4.3)

where scalars are depicted by solid lines, fermions by dashed lines, gauge fields by wiggly

lines, the ‘blob’ represents one-loop self-energy insertions and the composite operators

are depicted by bold horizontal lines. Underneath the diagrams, we have displayed the

respective individual contributions to the harmonic action, which were calculated from the

black parts of the diagrams21 via the Feynman rules given in detail in [14]. The extension

20Note the factor 2 difference in our conventions in comparison to [21].
21Note that the black parts as well as the labelling directly correspond to the diagrams of operator

renormalisation, which is the most direct way to obtain the action of D2 as operator on the spin chain,

cf. [19]. The respective diagrams can be obtained from those of the two-point function, which are depicted

by the grey completion, by amputating the outgoing operators and propagators.
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of the bold horizontal lines beyond the points where the elementary field lines originate

indicates that we have only kept those terms that would also contribute when connected to

an arbitrarily long operator. These are the single-trace terms with the correct colour order.

The third and forth contribution in (4.2) are given by the reflections of the above diagrams

with respect to the vertical axis. The reflected diagrams give the same contributions as

the unreflected ones. The four contributions from the s-channel diagram do indeed cancel

each other such that DN=4
2 yields the correct result for the N = 4 SYM theory.

In the deformed theory, the corresponding cancellation between the different contribu-

tions from the deformed asymptotic dilatation operator density does not occur. The four

contributions in (4.2) acquire the phases 1, eiβ , 1 and e−iβ , respectively, as follows from

both, (2.7) and the explicit Feynman diagram calculation. The net contribution from the

s-channel diagrams is non-vanishing and given by

1− eiβ +1− e−iβ = 4 sin2 β2 . (4.4)

In the SU(N) theory, this contribution has to vanish because of prewrapping.

A priori, this discrepancy requires the computation and subtraction of all deformed

one-loop s-channel Feynman diagrams involving L = 2 operators. Fortunately, this is

not necessary. In the remainder of this subsection, we argue that a surprising short-cut

is available.22 It relies on the relatively small number and simple structure of Feynman

diagrams at one-loop level and is proven in three steps.

First, we show that for certain pairs of fields in the operators the automatic cancel-

lations between different s-channel contributions take place as in the undeformed theory.

Second, we identify pairs of fields which receive spurious s-channel contributions. These

contributions can be removed by setting the deformation parameter β to zero, which re-

stores the cancellations from the undeformed theory. Third, we show that this procedure

does not alter the contributions of any non-s-channel interactions. It can hence be applied

to the sum of all contributions, i.e. at the level of D2.

Recall that in the β-deformation only interactions between matter-type superfields

{Φi, Φ̄i} — or their respective components {φi, ψiα, F i, φ̄i, ψ̄iα̇, F̄ i} — are deformed. Inter-

actions involving at least one vector superfield V — or its gauge-type on-shell components

in Wess-Zumino gauge {Aµ, ψ4
α, ψ̄

4
α̇} — are undeformed. The contributions from s-channel

diagrams in which both vertices are undeformed cancel as in the undeformed theory. More-

over, s-channel diagrams involving one deformed and one undeformed vertex automatically

have a vanishing contribution also in the deformed theory, as the combination of symmetric

state (operator) and commutator-type vertex in either initial or final state suffices for a can-

cellation. Hence, a non-vanishing net contribution can only come from s-channel diagrams

in which both vertices are deformed, implying that all fields are of matter type. As an im-

mediate consequence, the dilatation operator obtained from (2.7) gives the correct result

if at least one of the external fields (i.e. fields in the initial or final state) is of gauge type.

We have depicted all s-channel diagrams with only matter-type fields in the first row

of table 3. They describe interactions of two incoming matter fields {φi, ψiα} or anti-matter

22Note that this short-cut works in the supersymmetric β-deformation but fails to work in the non-

supersymmetric γi-deformation.
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in components N = 1

s-channel

+ vertical &

horizontal

reflections

+ twists
ψi ψj

ψi ψj

φi ψj

φi ψj

φi φj

φi φj =

φi φj

φi φj

Φi Φj

Φi Φj

t-channel

+ vertical &

horizontal

reflections
ψi ψ̄j

ψ̄j ψi

φi ψ̄j

ψ̄j φi

φi φ̄j

φ̄j φi =

φi φ̄j

φ̄j φi

Φi Φ̄j

Φ̄j Φi

Table 3. Asymptotic range R = 2 diagrams with two deformed vertices. Scalars and chiral

superfields are depicted by solid lines, fermions by dashed lines, F auxiliary fields by dotted lines,

gauge fields by wiggly lines and the composite operators are depicted by bold horizontal lines.

Twist signifies the vertical reflection of only the upper half of a diagram. Scalars are treated on the

same footing as the matter fermions, as the quartic vertices can be rewritten as cubic vertices with

‘propagating’ auxiliary fields. Covariant derivatives are suppressed in the notation.

fields {φ̄i, ψ̄iα̇} which become two outgoing matter or anti-matter fields, respectively.23

We can remove their contributions to the dilatation operator by setting the deformation

parameter β to zero whenever these combinations of external fields occur. This restores

the cancellations of the undeformed theory.

We want to be able to apply this procedure to the dilatation-operator density D2

instead of only to individual diagrams. Hence, we have to justify that non-s-channel dia-

grams with the above configurations of four external matter-type fields either do not exist

or are not affected. The latter is the case if the diagrams are independent of β, i.e. unde-

formed. Therefore, we have to analyse only deformed diagrams with matter-type external

fields. They necessarily contain also internal fields of only matter type and are a priori of s-

channel, t-channel or self-energy type. We have depicted the respective t-channel diagrams

in the second row of table 3. They do not exist for those combinations of external fields for

which s-channel diagrams occur and thus are not altered by our procedure. It remains to

be shown that the contributions from the self-energy-type diagrams are not affected either.

As their subdiagrams of elementary interactions have range R = 1 and are connected to

an operator of length L = 2, we can apply (2.6) with n = 2, which immediately24 shows

that their contributions are independent of β.

As the vertices only depend on the flavours of the fields involved, the same analysis

is true for covariant derivatives acting on these fields. In particular, it holds for those

combinations forming the alphabet A given in (2.8). For the translation of the above

23Note that in the picture of the two-point function these diagrams are connecting two matter fields

{φi, ψi
α} of an L = 2 operator O with two anti-matter fields {φ̄i, ψ̄i

α̇} of a second L = 2 operator Ō′, or,

respectively, anti-matter fields in the former to matter fields in the latter.
24Recall that the ∗-product of a fields with its conjugate reduces to the ordinary product.
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considerations, we define the following two subsets of A:

Amatter = {Dk φ1,Dk φ2,Dk φ3,Dk ψ1
α,D

k ψ2
α,D

k ψ3
α} ,

Āmatter = {Dk φ̄1,Dk φ̄2,Dk φ̄3,Dk ψ̄1
α̇,D

k ψ̄2
α̇,D

k ψ̄3
α̇} .

(4.5)

According to the above discussion, the complete one-loop dilatation operator of the

planar β-deformation with gauge group SU(N) is given by the following density:

(Dβ
2 )
AkAl

AiAj
= e

i
2
(qAk

∧qAl
−qAi

∧qAj
)

β=0 if L=2 and
(Ai,Aj ,Ak,Al∈Amatter or

Ai,Aj ,Ak,Al∈Āmatter)

(DN=4
2 )AkAl

AiAj
, (4.6)

where the rule for the implementation of prewrapping introduces an explicit dependence

on the operator length L, as expected for finite-size effects.

4.2 Gauge group U(N)

For gauge group U(N), the asymptotic result (2.7) is valid for L ≥ 2. However, the L = 1

states, which correspond to the U(1) modes of the fields, acquire anomalous dimensions.

For the matter-type fields, the respective eigenvalues E of the one-loop dilatation operator,

which are the anomalous dimensions divided by g2, read

Etrφi = Etr φ̄i = Etrψi
α
= Etr ψ̄i

α̇
= 4 sin2 β2 . (4.7)

The result for the scalar fields can be directly obtained from the self-energy diagrams

given in the appendix of [14]. Supersymmetry demands that the respective result for the

fermions is the same, and we have confirmed this by an explicit calculation using the

Feynman rules of [14]. The U(1) components of the gluino and gauge field still decouple

in the β-deformation and hence the following anomalous dimensions vanish:

EtrFαβ
= EtrF

α̇β̇
= Etrψ4

α
= Etr ψ̄4

α̇
= 0 . (4.8)

5 The spectrum

In this section, we employ the one-loop dilatation operator to compute the anomalous

dimensions of all single-trace operators with classical scaling dimension ∆0 ≤ 4.5. The

results are structured according to primary states and for gauge group SU(N) are shown

in table 4, as well as table 6 in appendix A. An analogous table for N = 4 SYM theory can

be found in [21]. Table 5 enlists the primary states of the U(N) theory that do either not

exist in the SU(N) theory or that differ in their anomalous dimensions. In the following,

we introduce the notation and derive the results presented in the tables. We conclude with

a discussion for which states the one-loop spectra of the U(N) and SU(N) theory differ,

and derive an all-loop result for one such state.

We have determined the N = 1 multiplet content of the β-deformation in analogy

to the N = 4 SYM theory case [47, 48] by applying the Eratosthenes super-sieve algo-

rithm [47] to the refined partition function. The required N = 1 characters can e.g. be
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found in [49, 50]. A more detailed description of this procedure is presented in appendix B.

We have computed the anomalous dimensions by acting with the dilatation operator on each

basis of states with specified quantum numbers, subsequently diagonalising the resulting

(block-diagonal) mixing matrix; see appendix C for an explicit expression of the harmonic

action. Finally, we have assigned the anomalous dimensions to the multiplets.

In the following, we structure the above results according to the symmetry of the spec-

trum. The β-deformation breaks the SU(4)R R-symmetry group of N = 4 SYM theory to

U(1)Q1×U(1)Q2×U(1)r. The corresponding conserved charges span the Cartan subalgebra

of su(4)R, see section 2. Furthermore, the action is invariant under a Z3 symmetry that

cyclically rotates the three matter superfields into each other and leaves the vector super-

field invariant. This symmetry is supplemented by the exchange of two matter superfields

and the simultaneous replacement of β by 2π − β. As the one-loop spectrum is invariant

under this transformation of β, it is invariant under the resulting larger S3 symmetry. Fi-

nally, the one-loop spectrum is invariant under charge conjugation, which exchanges the

su(2) and su(2) spins j and ̄ and sends the su(4)R Cartan charges to their negatives.

In the tables 4, 5 and 6, we label primary states by the classical scaling dimension

∆0, the spins [j, ̄], the su(4)R Cartan charges25 (q1, q2, q3) and the length L, which is

only preserved at one-loop order.26 If several primary states of the N = 1 superconformal

group are related via the S3 symmetry, we only give the one with the highest q3 charge.

Moreover, if two primary states are related by charge conjugation, we only give the one

with the higher su(2) spin j and subordinately the highest q3 charge. The anomalous

dimensions divided by g2 are given as the solutions of polynomial equations of the form

En =
n−1∑

k=0

akE
k = an−1E

n−1 + · · ·+ a1E + a0 , (5.2)

which are abbreviated as {an−1, . . . , a1, a0}. In particular, {a0} means E = a0. Moreover,

we capture the dependence on the deformation parameter β in terms of sn = sin2 nβ2 .

For example, {12,−32s2} stands for the two solutions of the quadratic equation E2 =

12E − 32 sin2 β, namely E = 6± 2
√
9− 8 sin2 β.

Certain representations are only irreducible in the interacting theory, where they have

an anomalous dimension. In the free theory, where their highest weight states are at the

unitarity threshold, these representations are reducible and split into several irreducible

ones, see appendix B.1 for details. In tables 4, 5 and 6, we have marked the corresponding

highest-weight states of the free theory that have to be dropped in the interacting theory

with a ⋆. This happens e.g. for the Konishi multiplet, whose highest-weight state is con-

tained in table 4 as the third state in the second line with E = 12. In the interacting

25See table 1 for the translation between q1, q2, q3 and Q1, Q2, r.
26For a comparison with the spectrum of N = 4 SYM theory in [21], one should keep in mind that our

spins j, ̄ are half integers whereas the spins s1, s2 of [21] are integers, our E is twice the one of [21] and the

charges q1, q2, q3 are related to the su(4) Dynkin labels q1, p, q2 as

q1 =
1

2
(q1 − q2) , q2 = −

1

2
(q1 + q2) , q3 = −

1

2
(q1 + 2p+ q2) . (5.1)
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∆0 [j, ̄](q1,q2,q3) L E

2 [0, 0](−1,0,1) 2 {8s1}
2 [0, 0](0,0,0) 2 {0}, {0}, {12}
2 [0, 0](0,0,2) 2 {0}
2 [0, 0](0,1,1) 2 {0}
5
2 [12 , 0](− 1

2
, 1
2
, 1
2
) 2 {12,−32s1}

5
2 [12 , 0]( 12 ,

1
2
, 3
2
) 2 {0}

3 [0, 0](−1,0,2) 3 {8s1}
3 [0, 0](−1,1,1) 3 {12,−32s2}
3 [0, 0](0,0,1) 3 {12,−32s1}⋆, {20,−96, 128s1}
3 [0, 0](0,0,3) 3 {0}
3 [0, 0](0,1,2) 3 {8s1}⋆
3 [0, 0](1,1,1) 2 {0}
3 [0, 0](1,1,1) 3 {0}, {12}⋆
3 [12 ,

1
2 ](−1,0,1) 2 {4(3− s1)}

3 [12 ,
1
2 ](0,0,0) 2 {0}, {12}, {12}, {12}

3 [1, 0](0,0,1) 2 {12}
7
2 [12 , 0](− 3

2
,− 1

2
, 3
2
) 3 {4(3− 2s1)}

7
2 [12 , 0](− 3

2
, 1
2
, 1
2
) 3 {20,−96, 128s2)}

7
2 [12 , 0](− 1

2
,− 1

2
, 1
2
) 3 {8}, {8}, {12}, {12}, {12}⋆, {12,−32s1}

7
2 [12 , 0](− 1

2
, 1
2
, 3
2
) 3 {4(3− s1)}⋆, {20,−32(3 + s1), 32(8s1 + s2)}

7
2 [12 , 0]( 12 ,

1
2
, 1
2
) 3 {0}, {0}, {8}, {8}, {8}, {12}, {12}, {12}⋆, {12}⋆, {12}⋆

7
2 [12 , 0]( 12 ,

1
2
, 5
2
) 3 {0}

7
2 [12 , 0]( 12 ,

3
2
, 3
2
) 3 {12,−32s1}⋆

7
2 [1, 12 ](− 1

2
,− 1

2
, 3
2
) 2 {12}

7
2 [1, 12 ](− 1

2
, 1
2
, 1
2
) 2 {12}, {12}

7
2 [32 , 0]( 12 ,

1
2
, 1
2
) 2 {12}

Table 4. Anomalous dimensions of all primary states with classical scaling dimension ∆0 < 4 for

gauge group SU(N) in the notation introduced after (5.2). The dependence on the deformation

parameter is encoded in sn = sin2 nβ

2
. Highest-weight states of the free theory that join lower-lying

multiplets in the interacting theory are marked with a ⋆. Each state has to be supplemented by its

images under the S3 symmetry and charge conjugation.
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∆0 [j, ̄](q1,q2,q3) L EU(N) ESU(N)

1 [0, 0](0,0,1) 1 {4s1} −
3
2 [12 , 0]( 12 ,

1
2
, 1
2
) 1 {0} −

2 [0, 0](0,1,1) 2 {8s1} {0}

Table 5. Comparison of the anomalous dimensions of all primary states with classical scaling

dimension ∆0 ≤ 4.5 that differ for gauge groups U(N) and SU(N). The notation is introduced

after (5.2). Each state has to be supplemented by its images under the S3 symmetry and charge

conjugation.

theory, the second state in the 13th line of table 4 is a descendant of this state. Note

that representations with vanishing one-loop anomalous dimensions — as e.g. the first and

second in state in the second line of table 4 — may in general still move away from the

unitary threshold at higher loop orders. For the latter two states this is, however, not the

case. In the undeformed theory, they are descendants of the L = 2 protected state and thus

have vanishing all-loop anomalous dimensions. As they have vanishing U(1)Q1 × U(1)Q2

charge, the argument from section 2 can be applied and their anomalous dimensions stay

zero at all loop orders in the β-deformation. Analogous considerations hold for all tabled

multiplets at the unitary threshold with vanishing one-loop anomalous dimensions.

For ∆0 ≤ 4.5, and presumably also for higher ∆0, only one multiplet is affected by

prewrapping at one-loop level, namely tr[φ2φ3] (and its images under S3 and charge conju-

gation). Naively, one might expect a whole tower of affected multiplets, built from n ≥ 0

covariant derivatives distributed on tr[φ2φ3] in a similar fashion as the SL(2) sector is built

on tr[φ3φ3]. For the conformal primary states27 corresponding to n ≥ 1, however, contri-

butions from s-channel diagrams vanish due to cancellations in the spacetime part that are

independent of the deformation, see appendix D for details.

At two-loop order, the two-point function of the state tr[φ2φ3] was investigated in [37].

While the two-point function receives finite 1
N

corrections, its anomalous dimension re-

mains zero for gauge group SU(N).28 We now show that this state is even protected at

all orders in planar perturbation theory. In the N = 1 superspace formulation, the super-

field tr[Φ2Φ3] contains tr[φ2φ3] as its lowest component in the θ-expansion. Its anomalous

dimension can be extracted from the overall UV divergence of the correlation function

〈Φ2(x)Φ3(y) tr[Φ2Φ3](0)〉. According to the finiteness-conditions of [51], an N = 1 super-

space Feynman diagram of range R = 2 that contributes to this correlation function can

only have an overall UV divergence if at least one of its vertices is not part of a loop.

This condition is only fulfilled by the diagrams of s-channel type, shown at one-loop in

the upper right corner of table 3. At higher loops, arbitrary interactions supplement the

lower (black) half of this diagram. For gauge group SU(N), these diagrams vanish by the

prewrapping effect as discussed before. Moreover, the remaining R = 1 diagrams are self-

27Similar to the situation in N = 4 SYM theory, only the primary state with n = 0 is a highest-weight

state under the full symmetry group. For the n ≥ 1 states, the true highest-weight state is a fermionic state

with classical scaling dimension n+ 3
2
.

28Note that this is incorrectly summarised in [11].
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energy corrections of the elementary superfields, which are finite. The above correlation

function is therefore finite and the anomalous dimension vanishes.

6 Conclusion and outlook

In this paper, we have analysed finite-size corrections in the real β-deformed N = 4 SYM

theory in the ’t Hooft limit. We have constructed the complete one-loop dilatation operator

by incorporating these corrections into the proposal of [30]. The latter (asymptotic) result

was obtained by applying Filk’s theorem from spacetime noncommutative field theory to

the undeformed dilatation-operator density, i.e. to the combination of respective planar

single-trace Feynman diagrams.

We have analysed in detail the limits and implications of Filk’s theorem when applied

in the β-deformation. We have found that generic external states have to be removed from

a diagram before the theorem is applicable. If the diagram is associated with a finite-size

effect, it becomes non-planar after this truncation. Hence, finite-size corrections in general

invalidate the results relying on Filk’s theorem. External multi-trace states in which all

traces are neutral under the (Q1, Q2) global charge, however, need not be removed from the

planar N = 4 SYM diagrams, and Filk’s theorem can be applied to the entire diagrams

undergoing the deformation. This implies that all n-point correlation functions of the

resulting deformed states are identical to their counterparts in the undeformed N = 4

SYM theory at any loop order. In particular, the anomalous dimension of the Konishi

primary operator
∑3

i=1 tr[φ
iφ̄i] is undeformed.

From the findings summarised in the above paragraph, it follows that the one-loop

dilatation operator of [30] is valid only up to finite-size corrections. In the non-conformal

U(N) theory, it has to be supplemented by the anomalous dimensions of the L = 1 states,

which are affected by the well-known finite-size effect of wrapping. In the conformal SU(N)

theory, we have identified a new type of finite-size effect, which has to be taken into account

for certain L = 2 states. It is caused by the SU(N) propagators of the adjoint fields and

starts to affect states of length L at loop order K = L−1. Since this is one loop order lower

than the critical wrapping order K = L, we call it prewrapping. We have identified criteria

for states which may be affected by it. In all compact closed subsectors, prewrapping at

all loop orders affects only the state tr[φ2φ3] (and its five images under the Z3 symmetry

and charge conjugation). In the full theory, prewrapping candidates with generic lengths

L ≥ 3 exist for sufficiently high loop orders.

At one loop, we have found that the prewrapping effect can be incorporated into

the dilatation operator of the deformed theory without explicitly calculating Feynman

diagrams, simply by removing the deformation whenever the external states match certain

criteria. This procedure strongly relies on the small number and simple structure of one-

loop diagrams, and we doubt that it can be extended to higher loops.

We have employed our result to determine the one-loop spectrum of the theory with

classical scaling dimension ∆0 ≤ 4.5. At this loop order, only the superconformal multiplet

with highest-weight state tr[φ2φ3] (and its five images under the Z3 symmetry and charge

conjugation) are affected by prewrapping. The absence of prewrapping for other one-loop
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candidate multiplets can be traced back to cancellations among Feynman diagrams. Yet,

it would be desirable to understand if there is a deeper principle behind it.

While we have found and analysed prewrapping in the weakly coupled gauge theory,

it remains an open problem to understand this effect in the strongly coupled dual string

theory. As we have argued, the prewrapping-affected state tr[φ2φ3] is protected at any

order in perturbation theory. Hence, it should be a supergravity mode and the calculation

suggested in [11] should yield a vanishing correction to its mass at strong coupling. It would

be desirable to check this explicitly and to understand how the deformation increases the

energy of e.g. the state dual to tr[φ2φ3φ3], which is not protected by prewrapping. We hope

that this might help to understand the subtleties related to the choice of U(N) or SU(N) as

gauge group on the string theory side. This concerns in particular the role of the U(1) mode.

Last but not least, the prewrapping effect has important consequences for the

integrability-based descriptions of the β-deformation. The existence of prewrapping means

that finite-size effects start one loop order earlier than in the undeformed theory. The

asymptotic Bethe equations are reliable only up to this lower loop order and need to be

supplemented already before the finite-size wrapping effect is incorporated. A very inter-

esting possibility is that a correct inclusion of prewrapping, i.e. the removal of U(1) modes,

could cure the divergences at L = 2 encountered in the TBA and Y-system equations

mentioned in the introduction. In fact, our result allows for a patch-work solution to the

spectral problem in all compact closed subsectors: the anomalous dimension of the states

tr[φiφj ], tr[φ̄iφ̄j ] are zero at all loop orders and the anomalous dimensions of all remaining

ones can be computed with the current approach of integrability. It remains an impor-

tant challenge to reproduce these results from a homogeneous, purely integrability-based

approach. Conclusive tests of possible modifications to incorporate prewrapping into the

integrability-based description do, however, require to work in non-compact subsectors or

the complete theory, where L ≥ 3 prewrapping candidates exist. The outcome of such

tests will show whether the β-deformation with gauge group SU(N) is indeed as integrable

as its undeformed parent theory.29 Clearly, it is important to collect more, higher-loop

field-theory results to guide and test these modifications of integrability.
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A Table of anomalous dimensions

In this appendix, we provide the anomalous dimensions of all primary states with classical

scaling dimensions ∆0 = 4, 92 . The following table should be understood as continuation of

table 6 in section 5.

∆0 [j, ̄](q1,q2,q3) L E

4 [0, 0](−2,0,2) 4 {12,−32s2}

4 [0, 0](−1,−1,2) 4 {20,−96, 128s3}

4 [0, 0](−1,0,1) 4 {8}, {8}, {8}, {8}, {12,−32s1},

{56,−1232, 64(207 + 4s1 + s2),−128(540 + 59s1 + 18s2 + s3),

1024(135 + 68s1 + 25s2 + 4s3),−1024(190s1 + 88s2 + 26s3 + s4)}

4 [0, 0](−1,0,3) 4 {8s1}

4 [0, 0](−1,1,2) 4 {4(3− 2s1)}
⋆, {8(1 + s1),−16(2s1 + s2)}

4 [0, 0](0,0,0) 4 {0}, {0}, {0}, {8}, {8}, {8}, {8}, {8}, {8}, {12}, {12}, {12}, {12}, {12},

{12}, {12}, {12}, {12}, {20,−80}, {20,−80}, {26,−128}

4 [0, 0](0,0,2) 3 {12}

4 [0, 0](0,0,2) 4 {20,−96, 128s2}
⋆, {28,−240, 640,−512s2}

4 [0, 0](0,0,4) 4 {0}

4 [0, 0](0,1,1) 3 {20,−96, 128s1}

4 [0, 0](0,1,1) 4 {8}, {8}, {8}⋆, {8}⋆, {12}⋆, {12}⋆, {12,−32s1}
⋆,

{32,−320, 64(15 + 4s1),−1536s1}

4 [0, 0](0,1,3) 4 {8s1}
⋆

4 [0, 0](0,2,2) 4 {12,−32s2}
⋆

4 [0, 0](1,1,2) 3 {0}

4 [0, 0](1,1,2) 4 {20,−96, 128s1}
⋆

4 [ 1
2
, 1
2
](−1,0,2) 3 {4(5− s1),−8(12− 4s1 − s2)}

4 [ 1
2
, 1
2
](−1,1,1) 3 {8}, {8}, {12}, {12}, {12}⋆

4 [ 1
2
, 1
2
](0,0,1) 3 {8}, {8}, {12}, {12}⋆, {12}⋆, {20,−96, 128s1},

{35,−396, 12(120− s1)}, {35,−396, 12(120− s1)}

4 [1, 0](−1,−1,2) 3 {12}

4 [1, 0](−1,0,1) 3 {32,−16(21− s1), 16(72− 8s1 − s2)}

4 [1, 0](0,0,0) 3 {8}, {8}, {8}, {12}, {12}, {12}, {12}⋆, {18}

4 [1, 0](0,0,2) 3 {8}, {12}⋆

4 [1, 0](0,1,1) 3 {8}, {8}, {12}, {12}⋆, {12}⋆

4 [1, 0](1,1,2) 3 {12}⋆

4 [1, 1](−1,0,1) 2 { 4
3
(9 + 2s1)}

4 [1, 1](0,0,0) 2 {12}, {12}, {12), { 50
3
}

4 [ 3
2
, 1
2
](0,0,1) 2 {12}

9
2

[ 1
2
, 0](− 5

2
,− 1

2
, 3
2
) 4 {8}

9
2

[ 1
2
, 0](− 5

2
, 1
2
, 1
2
) 3 {12}

9
2

[ 1
2
, 0](− 5

2
, 1
2
, 1
2
) 4 {28, −240, 640, −512s3}

9
2

[ 1
2
, 0](− 3

2
,− 3

2
, 3
2
) 4 {8}, {8}, {12}⋆

Table 6 — continued on next page
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Continued from previous page

∆0 [j, ̄](q1,q2,q3) L E
9
2

[ 1
2
, 0](− 3

2
,− 1

2
, 1
2
) 3 {32, −28(12− s1), 8(144− 46s1 + s2)}

9
2

[ 1
2
, 0](− 3

2
,− 1

2
, 1
2
) 4 {8}, {32, −16(21− s1), 16(72− 8s1 − s2)}

⋆,

{106, −4985− 32s1, 4(34219 + 744s1 + 16s2),

− 16(151779 + 7540s1 + 320s2),

64(454285 + 43714s1 + 2759s2 + 2s3),

− 64(3715060 + 639132s1 + 53612s2 + 176s3 + s4),

1024(1280225 + 381886s1 + 40154s2 + 357s3 + 8s4),

− 1024(4553400 + 2387478s1 + 304021s2 + 5682s3 + 242s4),

4096(2358000 + 2353306s1 + 355064s2 + 11892s3 + 755s4 + 2s5),

− 4096(2160000 + 5310120s1 + 935079s2 + 50086s3 + 4234s4,

+ 50s5 + s6),

32768(653112s1 + 132666s2 + 10408s3 + 1105s4 + 32s5 + 2s6)}
9
2

[ 1
2
, 0](− 3

2
,− 1

2
, 5
2
) 4 {20− 8s1, −16(6− 4s1 − s2)}

9
2

[ 1
2
, 0](− 3

2
, 1
2
, 3
2
) 4 {80, −4(692 + 5s1 − 4s2), 8(6760 + 177s1 − 109s2 + s3),

− 16(40768 + 2630s1 − 1187s2 + 42s3),

32(155360 + 21264s1 − 6464s2 + 648s3 + 33s4),

− 64(365184 + 100981s1 − 17319s2 + 4983s3 + 581s4 + 8s5),

128(483840 + 281360s1 − 14562s2 + 20629s3 + 3800s4 + 131s5 − 4s6),

− 512(138240 + 212579s1 + 12194s2 + 22021s3 + 5472s4 + 344s5

− 12s6),

512(268176s1 + 42376s2 + 38000s3 + 11729s4 + 1156s5 − 20s6 − 4s7)}
9
2

[ 1
2
, 0](− 1

2
,− 1

2
,− 1

2
) 3 {0}, {8}, {8}, {8}, {12}, {12}, {12}, {15}, {15}

9
2

[ 1
2
, 0](− 1

2
,− 1

2
,− 1

2
) 4 {0}, {8}, {8}, {8}, {8}, {8}, {8}, {8}⋆, {8}⋆, {8}⋆, {12}, {12}, {12}⋆,

{12}⋆, {12}⋆, {12}⋆, {15}, {15}, {15}, {15}, {18}⋆,

{20, −80}, {20, −80}, {20, −80}
9
2

[ 1
2
, 0](− 1

2
,− 1

2
, 3
2
) 4 {8}, {8}, {12}, {20, −96, 128s2},

{35, −396, 12(120− s2)}, {35, −396, 12(120− s2)},

{40, −576, 3520, −64(120− s2)}, {40, −576, 3520, −64(120− s2)}
9
2

[ 1
2
, 0](− 1

2
, 1
2
, 1
2
) 4 {8}, {8}, {8}, {8}, {8}, {8}, {12}, {12}, {12}, {12}, {12}, {12},

{38, −456, 64(27− s1)}, {32, −320, 64(15 + 4s1), −1536s1},

{58, −16(80− s1), 13376− 640s1, −128(515− 48s1), 4096(30 + s1),

− 8192(12s1 + s2)},

{78, −2561, 45808, −256(1880− s1), 2965440− 9216s1,

− 15360(645− 7s1), 1024(13500− 396s1 + s2)},

{78, −2561, 45808, −256(1880− s1), 2965440− 9216s1,

− 15360(645− 7s1), 1024(13500− 396s1 + s2)}
9
2

[ 1
2
, 0](− 1

2
, 1
2
, 5
2
) 4 {4(5− s1), −8(12− 4s1 − s2)}

⋆,

{28, −48(5 + s1), 640(1 + s1), −64(31s1 + 2s2 + s3)}
9
2

[ 1
2
, 0](− 1

2
, 3
2
, 3
2
) 4 {8}, {8}, {8}⋆, {8}⋆, {12}⋆, {12}⋆,

{32, −320, 64(15 + 4s2), −1536s2}
9
2

[ 1
2
, 0]( 1

2
, 1
2
, 3
2
) 3 {8}, {12}

9
2

[ 1
2
, 0]( 1

2
, 1
2
, 3
2
) 4 {8}⋆, {8}⋆, {12}⋆, {20, −96, 128s1}

⋆, {35, −396, 12(120− s1)}
⋆,

{35, −396, 12(120− s1)}
⋆, {28, −240, 640, −512s1},

{40, −576, 3520, −64(120− s1)}, {40, −576, 3520, −64(120− s1)}
9
2

[ 1
2
, 0]( 1

2
, 1
2
, 7
2
) 4 {0}

Table 6 — continued on next page
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Continued from previous page

∆0 [j, ̄](q1,q2,q3) L E
9
2

[ 1
2
, 0]( 1

2
, 3
2
, 5
2
) 4 {20, −32(3 + s1), 32(8s1 + s2)}

⋆

9
2

[ 1
2
, 0]( 3

2
, 3
2
, 3
2
) 4 {0}, {8}⋆, {8}⋆, {8}⋆, {12}⋆, {12}⋆

9
2

[1, 1
2
](− 3

2
,− 1

2
, 3
2
) 3 {4(5 + 2s1), −4(24 + 25s1 − 2s2)}

9
2

[1, 1
2
](− 3

2
, 1
2
, 1
2
) 3 {35, −396, 12(120− s2)}, {35, −396, 12(120− s2)}

9
2

[1, 1
2
](− 1

2
,− 1

2
, 1
2
) 3 {8}, {8}, {12}, {12}, {12}⋆, { 86

3
, − 8

3
(75 + 2s1)},

{38, −465, 24(75 + 2s1)}, {38, −465, 24(75 + 2s1)},

{38, −456, 64(27− s1)}
9
2

[1, 1
2
](− 1

2
,− 1

2
, 5
2
) 3 {8}

9
2

[1, 1
2
](− 1

2
, 1
2
, 3
2
) 3 { 8s1

3
+ 12}⋆,

{66, −3(595 + 4s1), 4(6329 + 128s1 + 4s2),

− 12(16552 + 667s1 + 36s2), 48(17040 + 1131s1 + 78s2 + s3),

− 32(43200 + 4216s1 + 324s2 + 16s3 − s4)}
9
2

[1, 1
2
]( 1

2
, 1
2
, 1
2
) 3 {8}, {8}, {8}, {8}, {8}, {8}, {12}, {12}, {12}, {12}⋆, {12}⋆, {12}⋆, {15},

{15}, {15}, {15}, {15}, {15}, { 50
3
}⋆

9
2

[ 3
2
, 0](− 1

2
,− 1

2
, 3
2
) 3 {12}⋆

9
2

[ 3
2
, 0](− 1

2
, 1
2
, 1
2
) 3 {38, −456, 64(27− s1)}

9
2

[ 3
2
, 0]( 1

2
, 1
2
, 3
2
) 3 {8}, {12}

9
2

[ 3
2
, 0]( 3

2
, 3
2
, 3
2
) 3 {12}⋆

9
2

[ 3
2
, 1](− 1

2
, 1
2
, 1
2
) 2 { 86

3
, − 8

3
(75 + 2s1)}

Table 6: Anomalous dimensions of all primary states with classical scaling dimension ∆0 = 4, 9
2

for gauge group SU(N) in the notation introduced after (5.2). The dependence on the deformation

parameter is encoded in sn = sin2 nβ

2
. Highest-weight states of the free theory that join lower-lying

multiplets in the interacting theory are marked with a ⋆. Each state has to be supplemented by its

images under the S3 symmetry and charge conjugation.

B Representation content of the β-deformation

In this appendix, we describe how to determine the representation content of the β-

deformation. In subsection B.1, we review some facts about the unitary representations

of the N = 1 superconformal algebra and give the explicit formulae for their characters.

In subsection B.2, we show how to adapt them to the β-deformation. In subsection B.3,

we describe how to use the refined partition function and the characters to determine the

representation content via the so-called Eratosthenes super-sieve algorithm.

B.1 Representations and characters of su(2, 2|1)

In this subsection, we summarise some facts about the unitary representations of the N = 1

superconformal algebra, which were first classified in [52]. We stick to the notation of [49],

which uses the same as the work [48] for the undeformed N = 4 SYM theory. We only

give the final results necessary to understand our calculations and refer the reader to the

literature for their derivations as well as the underlying theory.
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The N = 1 superconformal algebra su(2, 2|1) is generated by the Lorentz transforma-

tionsMµν , the translations Pµ, the dilatation D, the special conformal transformations Kµ,

the supersymmetry transformations Qα, Q̄α̇, the special superconformal transformations

Sα, S̄α̇ and the U(1)R-symmetry generator R. In the spinor basis, the Lorentz generators

Mµν can be written in terms of the su(2) × su(2) generators J+, J−, J3 and J̄+, J̄−, J̄3.

Using the Pauli matrices σµ, the translations and special conformal transformations can

be rephrased as Pαα̇ = σµαα̇Pµ, Kαα̇ = σµαα̇Kµ.

A highest-weight (superconformal primary) state |∆, r, j, ̄〉hw of su(2, 2|1) is specified
by the requirements

(Kαα̇, Sα, S̄α̇, J+, J̄+)|∆, r, j, ̄〉hw = 0 ,

(D,R, J3, J̄3)|∆, r, j, ̄〉hw = (∆, r, j, ̄)|∆, r, j, ̄〉hw .
(B.1)

All other states in the multiplet can be obtained by acting on this state with the lowering

operators Pαα̇, Qα, Q̄α̇, J− and J̄−.

The character of a representation can be thought of as a (refined) partition function,

counting the number of states in the multiplet with a specified set of quantum numbers. The

highest-weight state |∆, r, j, ̄〉hw is represented by the monomial d2∆ ur x2j x̄2̄. The action

of the lowering operators increases or decreases the quantum numbers according to Pαα̇ ∼
d2 x±1 x̄∓1, Qα ∼ d u−1 x±1, Q̄α̇ ∼ d u x̄∓1, where α = 1, 2 correspond to x, x−1 and α̇ = 1̇, 2̇

to x̄−1, x̄. We denote the corresponding character by χt,t̄(∆,r,j,̄)(d, u, x, x̄). Here, t, t̄ are the

fractions of the respective supercharges Qα, Q̄α̇ that cannot be used to generate new states

within the multiplet. They are connected to possible constraints that will be specified later.

For a generic long representation, we have t = t̄ = 0 and the character is

χ0,0
(∆,r,j,̄)(d, u, x, x̄) = d2∆ ur χ2j+1(x)χ2̄+1(x̄)P(d, x, x̄)Q(d u−1, x)Q(d u, x̄) , (B.2)

where

P(d, x, x̄) =
∏

ǫ,η=±1

1

(1− d2 xǫ x̄η)
, Q(d, x) =

∏

ǫ=±1

(1 + d xǫ) , (B.3)

and

χn(x) =
xn − x−n

x− x−1
(B.4)

is the character of the usual n-dimensional representation of su(2). Note that P(d, x, x̄),

Q(d u−1, x) and Q(d u, x̄) account for the bosonic and fermionic — but otherwise uncon-

strained — action of Pαα̇, Qα and Q̄α̇, respectively, on the highest-weight state.

For unitary representations, two different kinds of constraints may occur for Qα and

Q̄α̇, respectively. They also lead to constraints on the representation labels ∆, r, j, ̄. The

first kind is called shortening conditions and reads

t̄ = 1 : ∆ = +
3

2
r , Q̄α̇|∆, r, j, 0〉hw = 0 ,

t = 1 : ∆ = −3

2
r , Qα|∆, r, 0, ̄〉hw = 0 ,

(B.5)

– 27 –



J
H
E
P
0
7
(
2
0
1
4
)
1
5
0

i.e. Q̄α̇ and Qα, respectively, act as zero. In the corresponding characters, the respective

factors of Q(d u, x̄) and Q(d u−1, x) are absent:

χ0,1

(+ 3
2
r,r,j,0)

(d, u, x, x̄) = d+3r ur χ2j+1(x)P(d, x, x̄)Q(d u−1, x) , r ≥ +
2

3
(j + 1) ,

χ1,0

(− 3
2
r,r,0,̄)

(d, u, x, x̄) = d−3r ur χ2̄+1(x̄)P(d, x, x̄)Q(d u, x̄) , r ≤ −2

3
(̄+ 1) .

(B.6)

The second kind is called semi-shortening conditions and reads

t̄ =
1

2
: ∆ = +

3

2
r + 2̄+ 2 ,

(
Q̄1̇ +

1

2̄
Q̄2̇J̄−

)
|∆, r, j, ̄〉hw = 0 for ̄ > 0 ,

Q̄1̇|∆, r, j, 0〉hw = 0 ,

t =
1

2
: ∆ = −3

2
r + 2j + 2 ,

(
Q2 −

1

2j
Q1J−

)
|∆, r, j, ̄〉hw = 0 for j > 0 ,

Q2|∆, r, 0, ̄〉hw = 0 ,

(B.7)

i.e. the action of Q̄1̇, or respectively Q2, yields a state that can also be obtained via the

other lowering operators. Accordingly, the monomials corresponding to these states must

only appear once in the character, and the additionally occurring monomials capturing the

action of Q̄1̇, or respectively Q2, have to be removed:

χ
0, 1

2

(+ 3
2
r+2̄+2,r,j,̄)

(d, u, x, x̄) = d+3r+4̄+4 ur χ2j+1(x)
(
χ2̄+1(x̄) + d uχ2̄+2(x̄)

)

P(d, x, x̄)Q(d u−1, x) , r ≥ 2

3
(j − ̄) ,

χ
1
2
,0

(− 3
2
r+2j+2,r,j,̄)

(d, u, x, x̄) = d−3r+4j+4 ur
(
χ2j+1(x) + d u−1 χ2j+2(x)

)
χ2̄+1(x̄)

P(d, x, x̄)Q(d u, x̄) , r ≤ 2

3
(j − ̄) .

(B.8)

So far, (semi-)shortening conditions have only been applied for either Qα or Q̄α̇. If both

t and t̄ are nonzero, the algebra relation {Qα , Q̄α̇} = 2Pαα̇ requires that the contributions

from the respective Pαα̇ are also removed. In particular, the contribution from P21̇ has to

be eliminated for t = t̄ = 1
2 . In this case, we have

χ
1
2
, 1
2

(j+̄+2, 2
3
(j−̄),j,̄)

(d, u, x, x̄) = u
2
3
(j−̄)

(
Dj,̄(d, x, x̄) + u−1Dj+ 1

2
,̄(d, x, x̄)

+ uDj,̄+ 1
2
(d, x, x̄) +Dj+ 1

2
,̄+ 1

2
(d, x, x̄)

)
,

(B.9)

where

Dj,̄(d, x, x̄) = d2(j+̄+2)
(
χ2j+1(x)χ2̄+1(x̄)− d2χ2j(x)χ2̄(x̄)

)
P(d, x, x̄) . (B.10)

The remaining cases are

χ
1
2
,1

(j+1,+ 2
3
(j+1),j,0)

(d, u, x, x̄) = u+
2
3
(j+1)

(
Ej(d, x, x̄) + u−1 Ej+ 1

2
(d, x, x̄)

)
,

χ
1, 1

2

(̄+1,− 2
3
(̄+1),0,̄)

(d, u, x, x̄) = u−
2
3
(̄+1)

(
Ē̄(d, x, x̄) + u Ē̄+ 1

2
(d, x, x̄)

)
,

(B.11)
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where

Ej(d, x, x̄) = d2j+2
(
χ2j+1(x)− d2χ2j(x)χ2(x̄) + d4χ2j−1(x)

)
P(d, x, x̄) ,

Ē̄(d, x, x̄) = d2̄+2
(
χ2̄+1(x̄)− d2χ2(x)χ2̄(x̄) + d4χ2̄−1(x̄)

)
P(d, x, x̄) .

(B.12)

Unitarity requires that ∆ ≥ max(2+2̄+ 3
2r, 2+2j− 3

2r), unless one of the shortening

conditions in (B.5) is fulfilled, in which case ∆ = ±3
2r. At this so-called unitary thresh-

old, otherwise irreducible representations become reducible, which is also reflected in the

characters. The resulting reductions of the characters that alter the value of t̄ are given by

χ0,0

(+ 3
2
r+2̄+2,r,j,̄)

(d, u, x, x̄) = χ
0, 1

2

(+ 3
2
r+2̄+2,r,j,̄)

(d, u, x, x̄)

+χ
0, 1

2

(+ 3
2
r+2̄+ 5

2
,r+1,j,̄− 1

2
)
(d, u, x, x̄) for ̄ > 0 ,

χ0,0

(+ 3
2
r+2,r,j,0)

(d, u, x, x̄) = χ
0, 1

2

(+ 3
2
r+2,r,j,0)

(d, u, x, x̄) + χ0,1

(+ 3
2
r+3,r+2,j,0)

(d, u, x, x̄) ,

χ
1
2
,0

(j+̄+2, 2
3
(j−̄),j,̄)

(d, u, x, x̄) = χ
1
2
, 1
2

(j+̄+2, 2
3
(j−̄),j,̄)

(d, u, x, x̄)

+χ
0, 1

2

(j+̄+ 5
2
, 2
3
(j−̄)+1,j,̄− 1

2
)
(d, u, x, x̄) for ̄ > 0 ,

χ
1
2
,0

(j+2, 2
3
j,j,0)

(d, u, x, x̄) = χ
1
2
, 1
2

(j+2, 2
3
j,j,0)

(d, u, x, x̄) + χ0,1

(j+3, 2
3
j+2,j,0)

(d, u, x, x̄) ,

(B.13)

and they can be translated directly to the respective reductions of the representations. The

analogous relations that alter t have been omitted and can be obtained by replacing

χt̃,
˜̄t

(∆̃(r,j,̄),r̃(r,j,̄),j̃(j,̄),˜̄(j,̄))
→ χ

˜̄t,t̃

(∆̃(−r,̄,j),−r̃(−r,̄,j),˜̄(̄,j),j̃(̄,j))
, (B.14)

where the quantities with tildes stand for the abstract functions of r, j, ̄ that are specified

in χ. If a multiplet acquires an anomalous dimension, it moves away from the unitary

threshold30 and the pairs of representations on the right hand sides of (B.13) join again.

B.2 Adaption to the β-deformation

The results reviewed above can be easily applied to the β-deformation. We identify Qα
with the N = 4 supercharge QA=4

α and the U(1)R-symmetry charge r with the combi-

nation of su(4) Cartan charges specified in table 1. Furthermore, the generators of the

superconformal algebra su(2, 2|1) are supplemented by the generators Q1 and Q2 of the

global U(1)Q1 × U(1)Q2 symmetry. In the characters, they are represented by the fugaci-

ties v and w. As all irreducible representations of abelian groups are one-dimensional, the

above character formulae simply have to be supplemented by vQ
1
wQ

2
.

B.3 The super-sieve algorithm

Using the above characters, the N = 1 representation content of the free β-deformation

can be determined directly from the refined partition function in analogy to the N = 4

SYM theory case [47], see also [48].31

30Recall that ∆ = ∆0 + γ, where ∆0 denotes the classical scaling dimension and γ = g2E + O(g3) the

anomalous one.
31Note that the free β-deformation is identical to the free N = 4 SYM theory.

– 29 –



J
H
E
P
0
7
(
2
0
1
4
)
1
5
0

The refined partition function of single-trace operators in the β-deformation can be

obtained via Polya theory, see e.g. [48]. It is given by32

Z(d, x, x̄, u, v, w) = −
∞∑

k=1

ϕ(k)

k
ln
[
1− z((−1)k+1dk, xk, x̄k, uk, vk, wk)

]

−s z(d, x, x̄, u, v, w) ,
(B.15)

where ϕ(k) is the Euler totient function giving the number of positive integers less than or

equal to k that are relative prime to k. The single-site partition function can be found in

analogy to [48], and it reads

z(d, x, x̄, u, v, w) = (u
2
3 v1 + u

2
3 v−1w1 + u

2
3w−1)E0(d, x, x̄)

+(u−
2
3 v−1 + u−

2
3 v1w−1 + u−

2
3w1)Ē0(d, x, x̄)

+(u−
1
3 v1 + u−

1
3 v−1w1 + u−

1
3w−1 + u1)E 1

2
(d, x, x̄)

+(u
1
3 v−1 + u

1
3 v1w−1 + u

1
3w1 + u−1)Ē 1

2
(d, x, x̄)

+E1(d, x, x̄) + Ē1(d, x, x̄) ,

(B.16)

where E and Ē were defined in (B.12). The first line in (B.16) accounts for the scalars,

the second one for the anti-scalars, the third one for the fermions, the fourth one for the

anti-fermions and the last one for the self-dual and anti-self-dual component of the field

strength, cf. table 1.

Using the refined partition function and the characters, the representation content

can be determined via the Eratosthenes super-sieve algorithm proposed in [47]. Starting

with the refined partition function (B.15), one identifies as a highest-weight state the state

corresponding to the monomial with the smallest exponent of d and subordinately largest

exponent of x, x̄. One then determines the character of the representation containing

this state as highest-weight state and subtracts this character from the refined partition

function. The result of this subtraction serves as input for the next iteration. In this way,

the refined partition function can be uniquely expressed as the sum of the characters of

the representations in the (free) theory.

For the N = 4 SYM theory, the N = 4 representation content was determined for

∆0 ≤ 4 in [47]. Hence, as an alternative to the method described above, one can use the

super-sieve algorithm to decompose the N = 4 characters of these representations into

N = 1 characters.33 The results of both methods agree.

32The sign factor in front of dk takes care of the fact that a state with integer or half-integer classical

scaling dimension obeys the Bose-Einstein or Fermi-Dirac statistic, respectively. Note that we organise

signs slightly different than the authors of [48].
33Note that the su(4) Cartan charges used in [48] have to be translated to the basis U(1)Q1 × U(1)Q2 ×

U(1)R, which leads to the following replacements in the character formulae of [47]:

u1 → u−
1

3 v1 , u2 → u−
1

3 v−1 w1 , u3 → u−
1

3 w−1 , u4 → u1 . (B.17)

– 30 –



J
H
E
P
0
7
(
2
0
1
4
)
1
5
0

C The harmonic action

In this appendix, we present a completely explicit expression of the harmonic action in a

form suitable for an implementation e.g. in Mathematica. Although apparently different,

it is nevertheless equivalent to the one given in [21].

The single-site states of the spin chain of N = 4 SYM theory are taken from the

alphabet given in (2.8). The occurring covariant derivatives have been translated from

Minkowski indices to spinor indices using the Pauli matrices (σµ)αα̇: Dαα̇ = Dµ(σ
µ)αα̇.

Using the antisymmetric products of Pauli matrices σµν and σ̄µν , the field strength is

translated to the spinor basis and split into its self-dual and anti-self-dual part as Fαβ =

(σµν)αβFµν and F̄α̇β̇ = (σ̄µν)α̇β̇Fµν , respectively.

In terms of the bosonic su(2) and su(2) oscillators a†α, α = 1, 2, and b†
α̇, α̇ = 1̇, 2̇, as

well as the fermionic su(4) oscillators c†A, A = 1, 2, 3, 4, the fields of the alphabet can be

written as

Dk F =̂ (a†)k+2(b†)k | 0 〉 ,
Dk ψA =̂ (a†)k+1(b†)k c†A | 0 〉 ,
Dk ϕAB =̂ (a†)k (b†)k c†Ac

†
B | 0 〉 ,

Dk ψ̄ABC =̂ (a†)k (b†)k+1c†Ac
†
Bc

†
C | 0 〉 ,

Dk F̄ =̂ (a†)k (b†)k+2c†1c
†
2c

†
3c

†
4 | 0 〉 ,

(C.1)

where φi ∝ ϕi4, φ̄i ∝ ǫABi4ϕ
AB, with antisymmetric ϕ, and ψ̄ABC = 1

3!ǫABCDψ̄
D.34 We

denote the numbers of a†1, a†2, b†

1̇
, b†

2̇
, c†1, c†2, c†3, c†4 oscillators at spin-chain site i by

a1(i), a
2
(i), b

1̇
(i), b

2̇
(i), c

1
(i), c

2
(i), c

3
(i), c

4
(i). These are connected to the spins j and ̄ as j = 1

2(a
1-a2)

and ̄ = 1
2(b

2̇-b1̇).

For two initial and final single-site states defined by canonically ordered oscillators

with the occupation numbers

A(1) = (a1(1), a
2
(1), b

1̇
(1), b

2̇
(1), c

1
(1), c

2
(1), c

3
(1), c

4
(1)) ,

A(2) = (a1(2), a
2
(2), b

1̇
(2), b

2̇
(2), c

1
(2), c

2
(2), c

3
(2), c

4
(2)) ,

(C.2)

and

A(3) = (a1(3), a
2
(3), b

1̇
(3), b

2̇
(3), c

1
(3), c

2
(3), c

3
(3), c

4
(3)) ,

A(4) = (a1(4), a
2
(4), b

1̇
(4), b

2̇
(4), c

1
(4), c

2
(4), c

3
(4), c

4
(4)) ,

(C.3)

respectively, such that A(1) + A(2) = A(3) + A(4), the concrete expression of the harmonic

34The precise constants of proportionality are of no importance here, as they only lead to a change of

basis. The corresponding similarity transformation leaves the spectrum of the dilatation operator invariant.
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action reads

(DN=4
2 )

A(3)A(4)

A(1)A(2)
=

2∏

α=1




min (aα
(1)
,aα

(3)
)∑

aα=max (aα
(3)

−aα
(2)
,0)

(
aα(1)
aα

)(
aα(2)

aα(3) − aα

)



2̇∏

α̇=1̇




min (bα̇
(1)
,bα̇
(3)

)∑

bα̇=max (bα̇
(3)

−bα̇
(2)
,0)

(
bα̇(1)
bα̇

)(
bα̇(2)

bα̇(3) − bα̇

)



4∏

a=1




min (ca
(1)
,ca

(3)
)∑

ca=max (ca
(3)

−ca
(2)
,0)

(
ca(1)
ca

)(
ca(2)

ca(3) − ca

)



c
[∑2

i=1

(∑2
β=1 a

β

(i) +
∑2̇

β̇=1̇
bβ̇(i) +

∑4
B=1 c

B
(i)

)
,

∑2
β=1(a

β

(1) − aβ) +
∑2̇

β̇=1̇
(bβ̇(1) − bβ̇) +

∑4
B=1(c

B
(1) − cB),

∑2
β=1(a

β

(3) − aβ) +
∑2̇

β̇=1̇
(bβ̇(3) − bβ̇) +

∑4
B=1(c

B
(3) − cB)

]

(−1)
(c1

(1)
−c1+c2

(1)
−c2+c3

(1)
−c3+c4

(1)
−c4)(c1

(3)
−c1+c2

(3)
−c2+c3

(3)
−c3+c4

(3)
−c4)

(−1)
(c2+c3+c4)(c1

(1)
+c1

(3)
)

(−1)
(c1

(2)
−c1

(3)
+c1+c3+c4)(c2

(1)
+c2

(3)
)

(−1)
(c1

(2)
−c1

(3)
+c1+c2

(2)
−c2

(3)
+c2+c4)(c3

(1)
+c3

(3)
)

(−1)
(c1

(2)
−c1

(3)
+c1+c2

(2)
−c2

(3)
+c2+c3

(2)
−c3

(3)
+c3)(c4

(1)
+c4

(3)
)
.

(C.4)

The coefficients c[n, n12, n21] are given in terms of the harmonic numbers h(k) =
∑k

i=1
1
i

and the Euler gamma function Γ as

c[n, n12, n21] =




2h(12n) if n12 = n21 = 0 ,

2(−1)1+n12n21
Γ( 1

2
(n12+n21))Γ(1+

1
2
(n−n12−n21))

Γ(1+ 1
2
n)

else.
(C.5)

D A cancellation mechanism

In this appendix, we argue that in the tower of conformal primary states built from n

covariant derivatives Dαα̇ distributed on tr[φ2φ3] only the lowest (n = 0) state is affected

by prewrapping as the contributions from s-channel diagrams to all elements with n ≥ 1

vanish due to cancellations in the spacetime part.

A conformal primary state is, by definition, annihilated by all raising operators. In

the oscillator picture of [21], these are

J+ = a†1a
2 , J̄+ = b†

2̇
b1̇ and Kαα̇ = aαbα̇ . (D.1)

It is easy to see that the operators

n∑

k=0

(−1)k

k!2(n− k)!2
tr[(D12̇)

kφ2(D12̇)
n−kφ3] (D.2)
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form indeed a tower of conformal35 primaries if we identify Dαα̇ = a†αb
†
α̇ and recall that

φ2, φ3 are built from only c†-oscillators, cf. appendix C.

In dimensional regularisation with D = 4 − 2ε, the relevant one-loop tensor integrals

are
p(α1α̇1

. . . pαnα̇n)

p2(2−
D
2
)

G(n)(1, 1) =

∫
dDl

(2π)D
l(α1α̇1

. . . lαnα̇n)

l2(p− l)2
, (D.3)

where

G(n)(1, 1) =
1

(4π)2ε

1

n+ 1
+O(ε0) , (D.4)

and the parenthesis denote total symmetrisation in both kinds of spinor indices [53]. Hence,

the divergent part of the integrals found from the s-channel Feynman diagrams involving

one individual operator from the sum (D.2) are given by

∫
dDl

(2π)D
(p12̇ − l12̇)

k(l12̇)
n−k

l2(p− l)2
∼ 1

(4π)2ε

k∑

m=0

(−1)m

n− k +m+ 1

(
k

m

)
=

1

(4π)2ε

k!(n− k)!

(n+ 1)!
.

(D.5)

The divergence of the one-loop s-channel diagrams involving the operators (D.2) is obtained

by replacing the trace factor in (D.2) with the result of (D.5). This yields zero unless n = 0.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200]

[INSPIRE].

[2] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

[3] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [INSPIRE].

[4] G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461

[INSPIRE].

[5] C. Sieg and A. Torrielli, Wrapping interactions and the genus expansion of the 2-point

function of composite operators, Nucl. Phys. B 723 (2005) 3 [hep-th/0505071] [INSPIRE].

[6] S. Kachru and E. Silverstein, 4D conformal theories and strings on orbifolds,

Phys. Rev. Lett. 80 (1998) 4855 [hep-th/9802183] [INSPIRE].

[7] A.E. Lawrence, N. Nekrasov and C. Vafa, On conformal field theories in four-dimensions,

Nucl. Phys. B 533 (1998) 199 [hep-th/9803015] [INSPIRE].

[8] O. Lunin and J.M. Maldacena, Deforming field theories with U(1)×U(1) global symmetry

and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086] [INSPIRE].

35Note that the corresponding superconformal primaries have classical scaling dimensions n+ 3
2
if n ≥ 1.

– 33 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802109
http://arxiv.org/abs/hep-th/9802150
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802150
http://dx.doi.org/10.1016/0550-3213(74)90154-0
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B72,461
http://dx.doi.org/10.1016/j.nuclphysb.2005.06.011
http://arxiv.org/abs/hep-th/0505071
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505071
http://dx.doi.org/10.1103/PhysRevLett.80.4855
http://arxiv.org/abs/hep-th/9802183
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802183
http://dx.doi.org/10.1016/S0550-3213(98)00495-7
http://arxiv.org/abs/hep-th/9803015
http://inspirehep.net/search?p=find+EPRINT+hep-th/9803015
http://dx.doi.org/10.1088/1126-6708/2005/05/033
http://arxiv.org/abs/hep-th/0502086
http://inspirehep.net/search?p=find+EPRINT+hep-th/0502086


J
H
E
P
0
7
(
2
0
1
4
)
1
5
0

[9] S.A. Frolov, R. Roiban and A.A. Tseytlin, Gauge-string duality for superconformal

deformations of N = 4 super Yang-Mills theory, JHEP 07 (2005) 045 [hep-th/0503192]

[INSPIRE].

[10] S. Frolov, Lax pair for strings in Lunin-Maldacena background, JHEP 05 (2005) 069

[hep-th/0503201] [INSPIRE].

[11] S.A. Frolov, R. Roiban and A.A. Tseytlin, Gauge-string duality for (non)supersymmetric

deformations of N = 4 super Yang-Mills theory, Nucl. Phys. B 731 (2005) 1

[hep-th/0507021] [INSPIRE].

[12] R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional

N = 1 supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 95 [hep-th/9503121]

[INSPIRE].

[13] T.J. Hollowood and S.P. Kumar, An N = 1 duality cascade from a deformation of N = 4

SUSY Yang-Mills theory, JHEP 12 (2004) 034 [hep-th/0407029] [INSPIRE].

[14] J. Fokken, C. Sieg and M. Wilhelm, Non-conformality of γi-deformed N = 4 SYM theory,

arXiv:1308.4420 [INSPIRE].

[15] S. Ananth, S. Kovacs and H. Shimada, Proof of all-order finiteness for planar β-deformed

Yang-Mills, JHEP 01 (2007) 046 [hep-th/0609149] [INSPIRE].

[16] J. Fokken, C. Sieg and M. Wilhelm, A piece of cake: the ground-state energies in γi-deformed

N = 4 SYM theory at leading wrapping order, to appear.

[17] Q. Jin, The emergence of supersymmetry in γi-deformed N = 4 super-Yang-Mills theory,

arXiv:1311.7391 [INSPIRE].

[18] J.A. Minahan, Review of AdS/CFT integrability, chapter I.1: spin chains in N = 4 super

Yang-Mills, Lett. Math. Phys. 99 (2012) 33 [arXiv:1012.3983] [INSPIRE].

[19] C. Sieg, Review of AdS/CFT integrability, chapter I.2: the spectrum from perturbative gauge

theory, Lett. Math. Phys. 99 (2012) 59 [arXiv:1012.3984] [INSPIRE].

[20] N. Beisert et al., Review of AdS/CFT integrability: an overview,

Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].

[21] N. Beisert, The complete one loop dilatation operator of N = 4 super Yang-Mills theory,

Nucl. Phys. B 676 (2004) 3 [hep-th/0307015] [INSPIRE].

[22] R.A. Janik, Review of AdS/CFT integrability, chapter III.5: Lüscher corrections,
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