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vortex loops defined by holonomy, we perform supersymmetric localization by calculating
the fluctuation modes, or alternatively by applying the index theory for transversally el-
liptic operators. We clarify how the latter method works in situations without fixed points
of relevant isometries. Abelian mirror symmetry transforms Wilson and vortex loops in a
specific way. In particular an ordinary Wilson loop transforms into a vortex loop for a flavor
symmetry. Our localization results confirm the predictions of abelian mirror symmetry.
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1 Introduction

In this paper we initiate the study of the exact expectation value of supersymmetric vortex
loop operators in A/ = 2 gauge theories in three dimensions.! In the case of N' = 6
supersymmetric Chern-Simons-matter theories [1] (known as ABJM theory) such operators
were defined in [2] and evaluated at strong coupling. In this paper we will define them
in more general theories. For abelian gauge groups, we perform the exact localization
calculation of their expectation value, reducing the infinite dimensional path integral to a
finite dimensional integral.

The basic definition of a vortex loop operator is that a gauge field has a singularity
along a curve in space. Stated differently, it is the result of quantizing the theory in a
background with a non-trivial singular connection. We start this paper by considering
in great detail theories on a round S* and later generalize to the case of the squashed
sphere S‘Z’ and to the index calculation on S? x S'. In all these examples it is possible to
introduce such singularities and with the appropriate choice of curve and boundary terms
they preserve half of the supersymmetries.

'Preliminary versions of these results were presented by T.O. at the “Autumn Symposium on String/M
Theory”, KIAS, Seoul September 17-21 2012, at Kyoto University and at Rikkyo University and by F.P.
at the “II Workshop on Geometric Correspondences of Gauge Theories,” SISSA-Trieste Italy, September
17-21 2012.



The allowed vortex loop operators depend intimately on the choice of gauge and global
symmetries, matter content and the action. Particularly, the non-trivial connection may
be dynamical and for gauge symmetry, or non-dynamical and for a global symmetry. In the
next section we classify the possible types of 1/2 BPS loop operators in N’ = 2 supersym-
metric theories on S3. Once we fix the path to be a large circle, a vortex loop operator is
specified by some singularities of the gauge field, parameterized by a real diagonal matrix
H (or for abelian theories a number 7) and by singularities in the matter fields, encoded
by a complex vector B (or number f3).2

When B is completely generic, it serves effectively as a Higgs vacuum near the locus
of the singularity. This can be made more precise by considering the gauge theory on
H? x S', where the singular classical solution becomes essentially a constant Higgs VEV
on hyperbolic space H? (with a holonomy along the S'). Localization reduces the partition
function of supersymmetric theories on S? to a finite dimensional integral over constant
matrices, parameterizing the Coulomb branch. Even though the Higgs mechanism breaks
the gauge symmetry only at the singularity, since the remaining fields are constant, they
are effected by this local breaking and are frozen at the origin of the Coulomb branch.
This can therefore be considered as localization on the Higgs branch, rather than the usual
Coulomb branch.

We shall not perform the localization calculation of the operators with singularities for
the matter fields in this paper and restrict ourselves to the case with B = 0.

Going back to the vortex loops without a singularity for the matter fields, these are
studied in the following sections and supersymmetric localization is used to evaluate their
expectation values. The calculation is similar to that in [3-8] and the final result is a very
simple modification of the resulting matrix model.

In order to perform the localization calculation one should choose a localizing action,
which for S? is the usual supersymmetric Yang-Mills action and the dimensional reduction
of the 4d chiral action to 3d. Both are known to be exact under some of the supercharges
which preserve the vortex loops, though it also requires keeping track of boundary terms
in the action near the singularity. Supersymmetric localization should allow therefore to
compute the exact vacuum expectation value of the vortex loop operators by modifying
the action with this exact term. With a diverging prefactor the calculation reduces to
evaluating the classical action and one-loop quantum corrections around it.

We proceed to study the one-loop determinant by doing the spectral analysis in the
background of the vortex loop operator. It breaks the supersymmetry of the vacuum, so
the supersymmetry multiplets are short (similar to those on the deformed S} [7]). It also
effectively imposes modified non-periodic boundary conditions on the fields. We therefore
classify non-periodic spherical harmonics on S3, which is mainly done in appendices D
and E and discussed in section 3. For small vorticity we expect that the spectrum does
not change much (except for possible new almost zero modes). Indeed the spectrum is
continuous with the vorticity parameter.

The result of the calculation is the usual finite dimensional matrix integral with an
imaginary shift of the Coulomb brach parameters. The same shift appears in the one-loop

2There is an obstruction to having a singularity for the matter fields in the cases of S3.



determinant and in the classical action. When the vortex is in a gauge connection, these
parameters are integrated over and by contour deformation the result is trivial (up to a
simple overall factor). When the vortex is defined for a background global symmetry the
result is non-trivial.

As the vorticity grows larger, some modes which were perfectly regular turn singular,
and worse, non-normalizable. We will assume that the expectation value of the vortex loop
is analytic in vorticity. We thus propose a prescription for which modes to include in the
spectrum and how to perform the integration over the Coulomb-branch parameters which
guarantees this behavior for the gauge vortex loops and gives a prediction for vortex loops
of global symmetries.

We also compute the partition function and the expectation value of loop operators
on the deformed sphere Sg’ as well as S' x S%. In both cases the effect of the vortex loop
operator is similar to that on the round S3: vorticity in the gauge connection has no effect
and vorticity for a flavor symmetry leads to shifts in physical parameters. To compute
the one-loop determinants on these geometries, we apply the Atiyah-Singer index theory
for transversally elliptic operators by generalizing the method used in [3]. In particular
we manage to apply the Atiyah-Singer index theory despite the absence of fixed points for
relevant isometries on these manifolds.?

We will also provide an intuitive explanation for how abelian mirror symmetry acts
on vortex and Wilson loop operators, using the BF coupling between dynamical and non-
dynamical gauge fields.

The vortex loop operators share some similarities to 't Hooft loop operators in four
dimensions, whose exact expectation value in N/ = 2 supersymmetric gauge theories was
recently calculated in [10, 11]. They are both disorder line operators. They are also related
to surface operators in 4d, see [12, 13] being co-dimension two defects.* Like the surface
operators, the vortex loop operators may involve a singularity for the matter fields as well
as a non-trivial holonomy. We hope this work would be useful for an exact calculation of
the expectation value of a BPS spherical surface operator in 4d.

Vortex loop operators with quantized vorticities are the same as Dirac strings, they
may start and end on monopole operators. The ones we consider, though, permeate all
of space (or a closed curve) instead of starting at a monopole. While in the presence
of a monopole a cycle wrapping the string can be deformed and contracted to zero in a
regular way on the other side of the monopole (so a Wilson loop around this cycle has to
have trivial VEV), in the absence of the monopole, when considering an infinite or closed
vortex loop operator, the holonomy does not have to be trivial and the vorticity may be
non-integer.

It is important to distinguish between the vortex loop operators and dynamical vor-
tices, like those of Nielsen-Olesen or Abrikosov, or those in supersymmetric theories studied
in [14]. These vortices are dynamical objects, solutions to the vacuum equations of motion,
while the vortex loop operators are external probes of the theory. If it were not for special

3The paper [9] also uses the fixed-point formula in such a situation, based on a similar logic.
“When a 3d theory lives on the boundary of a 4d spacetime, a bulk surface operator [12] ending on the
boundary along a loop induces a vortex loop in the 3d theory.



boundary terms, the action of the vortex loop operators would diverge. But there is a
relation, as a singular limit of the smooth solitonic vortices does reproduce the semiclas-
sical vortex loop operator. The relation between the two is analogous to that between an
't Hooft-Polyakov monopole and an 't Hooft loop.

As this manuscript was being finalized the paper of Kapustin, Willett and Yaakov [15]
appeared.® That paper shares the same topic as ours and has a great deal of overlap to
our discussion of vortex loop operators on the round S3.

Note added: in the replacement on the arXiv, we elaborated on the index theory
calculation of the one-loop determinants on Sg and S' xS?. We also made several corrections
in the computation of the vortex loop expectation values. For the analysis of gauge vortex
loops, we made use of the SL(2,7Z) action in the presence of loop operators considered
in [15].

2 Half-BPS loop operators

Loop operators are non-local gauge invariant operators that are supported on a closed
one-dimensional line. In three dimensional gauge theories there are two types of loop
operators: Wilson loops, that are order type operators, and vortex loops that are disorder
type operators. In the following, we provide a definition of the latter in a generic Euclidean
theory on S? with AV > 2 supersymmetry. Most of this is carried over to the cases of SZ’
and S? x S' discussed in sections 4 and 5. It is assumed that the field content of the theory
includes at least an N' = 2 vector multiplet, that is a gauge field A,, two spinors A and
A, and two auxiliary real scalars D and . This multiplet may be gauged or associated to
a global symmetry. The matter vortices require of course matter fields, the dimensional
reduction of a chiral multiplet in 4d with scalar ¢, spinor ¥ and auxiliary field F' and anti-
chiral multiplet with ¢, v and F. The parameterizations of the round S? are described in
appendix A and a few aspects of supersymmetry on S? are collected in appendix B.

2.1 Half-BPS Wilson loop

Before focusing on vortex loop operators let us recall the construction of the half~-BPS
Wilson loops in N/ = 2 supersymmetric theories in 3d [16]. We will then study all the
singular field configurations preserving the same supercharges.

The ansatz for a supersymmetric Wilson loop operator is given by

Wi = ﬁ Trp P [exp (7{ dr (iA,i" + U|:'c])>] (2.1)

where z#(7) parameterizes the curve on which the Wilson loop is defined, P denotes path-
ordering and R is a representation of the gauge group. Applying the supersymmetry
variations (B.5) to this operator it results [4]

1 1-
SWr o — 3 (3 = [E) A+ SA (" — [#]) (2.2)

5The mapping under Abelian mirror symmetry of loop operators was also obtained by Benjamin Assel,
Ricardo Couso Santamaria and Jaume Gomis. We thank them for discussions.



and this is zero if

e(pd” —|2)) =0,  (yui" —|z))e=0, (2.3)
or equivalently, using €€ = €c and ey"€ = —évy#e for fermionic SUSY parameters
(i + i) e =0, (i — fil)e = 0. (2.0

From these equations, it follows that a Wilson operator defined on a loop such that
" = Res" (2.5)
preserves the supersymmetry generated by € and € that satisfy
(y3—1e=0, (p3+1)e=0. (2.6)

We consider the Hopf fibration metric (A.5) with the left invariant vielbein (A.6), since
in this vielbein basis the Killing spinors ¢ and € are constant. Given the expression for
the inverse left invariant vielbein (A.7), the condition (2.5) implies that the Wilson loop is
extended along a curve parameterized in the Hopf metric (A.5) as

f = const, ¢ = const, =27, 0<7<21. (2.7)
Or in terms of the complex coordinate (u,v) in (A.1) as
w=uge, v=1ge', 0<7<2m, (2.8)

with arbitrary |ug|?+|vg|? = R?. We will concentrate on the case of the loop at ug = 0 which
is @ = 0 in the Hopf coordinates. The submanifold described by # = 0 is codimension-2,
since the metric (A.5) reduces to

2_R2

ds? = -
ST

(dip + dop)? (2.9)

and therefore, at # = 0 the loop is extended along 1 + ¢. In the torus fibration coordinates
(A.8), the loop is extended along s.

Considering the commutators of the supersymmetries generated by € and € that sat-
isfy (2.6), one obtains the expression (B.6) where

2
v =0, v? =0, W = EE’y?’e, (2.10)

that implies that the commutator of the supersymmetry includes a translation along the
1 angle that is a symmetry of the Wilson loop.

2.2 Half-BPS vortex loop operator: vector multiplet

Our purpose is not to study Wilson loops, which are electric order operators, but rather
vortex loop operators, which are magnetic disorder operators. That amounts to considering
the theory where certain fields have a singularity along a curve on S3, which we take to
be the same curve § = 0 as the aforementioned Wilson loops. We restrict to singularities



which preserve the supercharges with parameters e and € satisfying the conditions (2.6) as
above and use the localization scheme of [3, 4] to evaluate their expectation values.

We first examine which field configurations are invariant under the supercharge gen-
erated by (e, €), which will restrict the allowed form of the singularities. Imposing reality
of all the fields, then from the SUSY variation d.A = 0 in (B.5) we obtain

1 o
—ispuyF’“’—i—DPU:O, D—l—ﬁ =0, (2.11)
and from 6\ = 0
1
§€puquj + DpU = 0, D+ % =0. (212)

A field configuration that is invariant under the full set of supersymmetry preserved by
the half-BPS Wilson loop (2.6), satisfies .\ = dzA = 0. Combining (2.11) and (2.12) we
obtain

Fu=0, D=0, D=-=. (2.13)

These are the same as the solutions to the localizing equations considered in [4, 5] and
therefore we will be able to use the same localizing action.

In studying the S partition function the only classical solution of the supersymmet-
ric Yang-Mills and Chern-Simons actions satisfying these conditions and the equations of
motion are A, =0, 0 = 0 and D = 0. BPS configurations include also a constant matrix
o =o0pand D = —op/R. In studying the vortex loop operators we allow in addition singu-
larities for the gauge field at § = 0. It is easiest to write the solution in the torus fibration
coordinates (A.8) where the vortex is at ¥ = 0 and is extended along the ¢o circle. The
curves along ¢ at fixed 9 are linked to the vortex, and therefore may have a nontrivial
holonomy. We choose a gauge where

AQ) =H = A : (2.14)
0 v @ 1Ny,

The allowed choices of H depend on the details of the gauge theory including the matter
content. The requirement is that all observables are single valued when winding around
the vortex loop ¢1 — ¢1 + 27m. This includes the action, which should be well defined (up
to integer shifts by 27, as usual for Chern-Simons theory) and any gauge invariant local
operator. This is automatically satisfied if all the fields of the theory are single valued,
which happens if the eigenvalues n; of H are all integers.

Local observables are gauge invariant under any gauge transformation and therefore
will not be affected when rotating around the vortex loop. The partition function of
Chern-Simons is not invariant under large gauge transformations, which leads to the usual
quantization of the Chern-Simons level k. The presence of a vortex loop operator further
restricts k such that kH/2 is a weight vector of a unitary representation of the gauge
group [17]. For a fixed k this is a quantization condition on H.



In the Hopf coordinates (A.5), the vortex is associated to a constant gauge field ALO)
given by
1

1
AP —o, AP = —5 AP = SH (2.15)

Away from the singularity, this constant vector field configuration satisfies F},, = 0. Indeed,
in the presence of the vortex, the topology of the S? is modified to S' x disk and it is hence
possible to have non-trivial flat connections.

An important point to notice is that thus far the background of the vortex does not
seem to break any supersymmetry, as a flat connection is a solution to both the BPS
and anti-BPS equations. One has to examine the singularity at § — 0 to see that it
indeed breaks half the supercharges. This is done in appendix C, where we write down the
boundary terms for the Yang-Mills, Chern-Simons and Fayet-Iliopoulos actions and verify
that the vortex loop operator breaks half the supersymmetries.

Given the singular behavior (2.14) at # = 0, the most general solution to the BPS
equations (2.13) has this exact value for the gauge field as in the classical solution and in

addition we can turn on o = g and D = —9 where oy is covariantly constant, i.e.,

DWVay =0, (2.16)

and the covariant derivative DLO) is defined using the constant connection AELO) (2.15).

If we label by (0¢)’; one of the components of g in the i, j block, then (2.16) gives

Op(00)"; — %(m —1;)(00)'; =0, (2.17)

.

Oyp(00)"; + 5(7% —nj)(00)'; = 0.
For m; # m; (mod 1) the only regular periodic solution to these equations is (o)’ ; =0.
For generic n;,n; the only nontrivial solutions are therefore for < = j, and this component
(00)" ; can be an arbitrary constant.

If the vortex loop operator is defined for a gauged vector multiplet (rather than a back-
ground vector field), we should define the integration measure. Since for generic H the al-
lowed values of o( are automatically diagonal, there is no extra Vandermonde determinant.

If there are degeneracies, and the singularity preserves a non-trivial Levi group U(N7) x
-+ x U(Nypr), the resulting Vandermonde determinant involves only the eigenvalues within

the different blocks along the diagonal

M  Np

H H [(Uo)m,i - (UO)m,j]Q» (2.18)

m=1i<j=1

where we labeled (o), ; the it? element on the diagonal of the m*™ block of oy.

Note that the symmetry is enlarged (and the resulting Vandermonde) also for values
of n; differing by integers, as can be seen by the periodic non-trivial solutions of (2.17).
Furthermore, if some 7; form a representation of Z,, for some n < N, so n; = j/n (mod 1)
for j = 1,---n, then an .S, subgroup is preserved allowing for twisted solutions which are



periodic only up to S, transformations. Such solutions are important in ABJM theory [2]
and exist also for surface operators in N'=4 SYM in four dimensions in [18]. This mimics
the construction of “long strings” in M(atrix) theory [19, 20].

2.3 Half-BPS vortex loop operator: matter multiplet

We turn now to the matter sector, whose supersymmetry transformations are written in
appendix B.3. We shall find non-trivial profiles for the scalar field which are invariant
under the same supercharges as the Wilson loops and the vortex loop operators from the

vector multiplet.

2.3.1 Abelian theory

Let us start with an abelian theory. Assuming the supercharges satisfy the half-BPS
conditions in (2.6), the vanishing of the variation of ¢ and 1 in (B.13) give the equations

A
ies"Dyp +iocp — —¢p =0, (e1" +iex")Dyp =0, F=0,
ﬁ (2.19)
ies" D, —iog + qu =0, (e1" —iex")Dydp =0, F=0.

where e,* are the inverse vielbeins in (A.7). This expression applies for a massless field
charged under a single gauge group. For a field charged under two groups there would be
the appropriate modification to the connection D, and likewise o would be replaced by
the difference of ¢ of the two vector multiplets. As usual a mass term is like a o field for
a non-dynamical vector field.

In terms of the Hopf coordinates (A.5) the equations for ¢ are®

Dy = —%(A —iRo)p,  (sinfDg—iDy+icosdDy)é=0. (2.20)

We saw already that the supersymmetry conditions of the vector multiplet restrict o = oy
a constant. For real op # 0 the first equation does not have periodic solutions other than
¢ = 0. For op = 0 (or in the case with more than one gauge multiple or a mass term, the
vanishing of their sum) there are extra solutions of the form

+1

60,6, 9) = e 72"06(0,9). (2.21)
with ¢(0, ¢) satisfying
(sin@@e — 10y — g + 20089) »(0,0) =0, (2.22)

where 7 is the gauge vorticity (2.14) for an abelian theory, i.e., H = 1. With the ansatz
(0, ) = ™ p,,(0) we get the solution

Pn(0) = B—sin Stn 2 cos—aAn

o 5 5 (2.23)

SHopefully there will be no confusion between the field ¢ and coordinate ¢.



The values of (3, are determined by specifying the singularity of the field. This ansatz

allows for singularities and zeros at # = 0 and # = 7, but by taking linear combinations of

these functions one can get singularities at any point on the base parameterized by (6, ¢).
In terms of the torus coordinates (A.8) the solution is

ﬁn . _H_n . _M_}_n .
P(J, 1, p2) = RA (singe'¥r) 2 (cosge'¥?) 2 T e, (2.24)

Requiring periodicity in the ¢y direction enforces n — (A +1n)/2 to be an integer. Further-
more, if we want singularities only at 9 = 0, then this integer cannot be negative. The
simplest and least singular case is when it is zero, which gives

/B e_inSO1

Do) = —
o0, 21, ¢2) (Rsinﬂewl)A

(2.25)

The behavior of the scalar field near the singularity is determined by its dimension A (and
in addition the holonomy 7). For a scalar of canonical dimension A = 1/2 this is

ﬁ e_inﬁol
vV Rsin 9 et¥1

The field ¢ is complex, but the parameter 8 can, without loss of generality, be taken real.

¢(19, (pl,(pg) = (2.26)

Its phase is unphysical as it is modified by taking @1 — 1 + 27 and can be changed by a
gauge transformation with a constant gauge parameter.

One can also formulate the vortices in flat space (and on Hy x S!), as was done in [2].
The flat space vortex arises in the large R limit after replacing Rsin? — r, cos? — 1 and
Ryps — x3. After rescaling we get the solution

(1, p1,73) = By (re®) " (pemion ) (2.27)

In the special case of n = % we get from (2.25)

o(r, p1,23) = ﬁe“%; : (2.28)

(reier
This indeed matches with the vortex in ABJM theory [2] once we set A =1/2 and n =0
(in [2] there was a gauge vortex, but it was in the diagonal sum of the two gauge groups
which the matter fields are not charged under).
So far we discussed only the field ¢. The same analysis applies also for the field @,
once we require the invariance under the € variation.

2.3.2 Non-abelian theory

Turning to the general non-abelian theory, the matter fields are in some representation R
of the gauge group. We denote the generators of the algebra in the R representation as
(XE K[, where K*'s span the Cartan subset. The normalization of the generators is
such that Tr(Xf,Xé%) = Satpo and (XFB)T = XE |



The weights of R are denoted as p and the associated state is |p) such that for the
Cartan generators K|p) = p;|p). The scalar field of the chiral multiplet ¢ is expressed as

= ¢1p) (2.29)

and likewise the other members of the multiplet. For the anti-chiral scalar we take bra
states

6=2 ¢l (2.30)
P

where (p|p’) =6, . The fields of the vector multiplet, which are in the adjoint representa-
tion, appear in the chiral Lagrangian and the supersymmetry transformations accompanied
by the generators of the algebra in the representation R, so for example

o— oK+ ooXE, (2.31)

Then the first equation in (2.19) becomes
el D ; A_ ieal (N, P + i AL p: P 'i.pAp
ie3 u¢+w¢—R¢—zp: iea" (Ve +id,pig”) +io'pid” — 56" | Ip)

+ 3 (o +iot (X ) 1) <o,
nr (2.32)

For o = 0 and A, as in (2.14), the second line of this equation vanishes and we find dim(R)
copies of the scalar equations in (2.19). The solution is then as in (2.25)

3P e—ip(H)er

= E _ 2.
¢(797 ©1, @2) ; (R sind ei‘Pl)A |P> 5 ( 33)
which can also be written as
o0 o) = — g B=Y @) (2.34)

The simplest solutions to the BPS equations are when either ¢ = 0, which allows for
arbitrary 8”, or when ¢ = 0 which allows for arbitrary constant ¢ = og¢. More generally
one can turn on just some components of ¢ and then there will be a restriction on which g
may be nonzero. Viewed the other way, choosing non-generic 5° will leave some residual
symmetry and the components of ¢ in the directions of the generators of this preserved
symmetry will not be frozen to zero and will have to be integrated over after localization.
For example, if R is the fundamental representation of U(N) and 8¢ = 0 for i = 1,--- ,n,
then there will be a residual U(n) symmetry and after diagonalization, n elements of o¢ to
integrate over. If n of the 5%’s are equal to each-other but non zero, the symmetry will be
SU(n), and so on.

This analysis is nothing different from the usual breaking of gauge symmetry by the
Higgs mechanism, only that here the scalar fields get a non-trivial profile, instead of a con-
stant VEV. As mentioned in the introduction, this profile becomes constant upon conformal
transformation to Hy x S!.

,10,



2.4 Vortex and Wilson loop operators for flavor symmetries

Before plunging into the localization calculations we want to explore the relation between
Wilson loop operators and vortex loop operators in different A/ = 2 theories. A useful
generalization of the loop operators discussed above is to consider operators defined with
respect to global rather than gauge groups.

Given a global symmetry that commutes with SUSY (hence not an R-symmetry), it
is natural to couple its current j* to a background, non-dynamical abelian gauge field A,
through the coupling in the action”

/ At (2.35)

which can be supersymmetrized. This procedure is sometimes called “gauging”, but we
reserve the term for the case when the gauge field is dynamical. The vortex loop operator
for this global symmetry is defined by letting the non-dynamical gauge field have the
singularity (2.14)

A ~nder, (2.36)

where ¢; is the angular variable in the locally defined polar coordinates on the plane
orthogonal to and centered at the loop. Whether this definition gives a BPS vortex loop
depends on the space-time geometry since we need a globally defined supersymmetric profile
of A, with the singularity (2.36). In the case of S* discussed so far (and S} and S' x §?
studied later) this is indeed the case.

Consider a vortex loop for the topological symmetry U(1); generated by the current
JH = %e’“’p F,,, the Hodge dual of the field strength of a dynamical abelian gauge field. This
vortex loop is simply a rewriting of the usual Wilson loop. The singularity (2.36) means
that the non-dynamical field strength dA has a delta function, and the coupling (2.35),
which is precisely the BF coupling (B.18), becomes

/A/\F:/dA/\A:n?{A—I-/dA/\A, (2.37)

where A is the dynamical gauge field and the underline indicates the smooth part of the
field. Thus the singularity induces a Wilson loop (of charge 7). This argument can be
supersymmetrized. See section 3.

Though somewhat trivial, it is also natural to define Wilson loop operators associated
with a global symmetry as the insertion of the function

e$liA+) (2.38)

where for supersymmetry one needs an appropriate curve for integration and certain terms
in the ellipses. Since A is non-dynamical, this term factors out of the path integral and is
given by its background value.

In the case of the topological symmetry U(1);, the associated Wilson loop is in fact
a gauge vortex loop, defined by the singularity (2.14) in a dynamical gauge field A. This

"If the global symmetry is non-abelian, we can use its Cartan subalgebra to define the flavor vortex loop.

— 11 —



can be seen through a manipulation similar to (2.37):
/DA. et ANA—SIAL /DA. e A [ ANA=SIAL] (2.39)

On the left side A contains a singular part and A is the smooth fluctuation, while on the

right side A is regarded as a smooth gauge field by a change of the integration contour.®

This analysis applies to all vortex loop operators for dynamical gauge fields, and we
can therefore conclude that they have a trivial expectation value, apart for a possible
simple multiplicative factor. This will be verified in the rest of the paper by explicit
localization calculations.

To prevent the impression that the following is an exercise in futility, we should point
out that not all vortex loop operators are trivial. We saw above that vortex loop operators
for the topological symmetry are the same as Wilson loops, which are not trivial. That still
is not so exciting, as we can use the standard definition of the Wilson loop and do not require
to define it via the vortex loop. If there is a global symmetry under which some of the
chiral fields are charged (i.e., a flavor symmetry) then the flavor vortex loop for that group
will not be trivial nor trivially related to a Wilson loop operator.? Indeed as we explain in
section 6, under abelian mirror symmetry flavor and topological symmetry are exchanged,
so the flavor vortex loop operator gets mapped to the gauge Wilson loop operator.

This statement may seem surprising, since we are accustomed to continuous holonomies
and discrete electric charges. It is therefore important to analyze which values of charges
are allowed for the BPS loop operators. The answer seems to depend on the topology of
the space.

As discussed after (2.14), in the case of S? the holonomies can be continuous, which
is true also for the squashed sphere Sg’ discussed in section 4. The situation on S? x S!
discussed in section 5 is slightly different. In that case introducing a non-integer vortex at
the north pole of S? (wrapping the S') would automatically induce also a singularity at
the south pole. The total vorticity will cancel, unless we introduce a nontrivial transition
function at the equator, in which case the total vorticity is integral. The conclusion is
therefore that each vortex can have a continuous parameter, but the total vorticity has to
be an integer.

Normally Wilson loops are defined only for integer electric charges, which is due to the
fact that the gauge group (in the abelian case) is U(1) rather than R. But on S3, which
is simply connected there is no obstruction of using R, with continuous electric charges,
as the gauge group. The mirror of the flavor vortex would be such a Wilson loop. On
S? x S! there is a non-contractable cycle and large gauge transformations can wind around
it leading to a quantization condition. Again, we can locally break the abelian Wilson loop
into two which are not integer, say one at the north and one at the south poles of S?, but
the total charge is quantized, which matches the mirror picture of the vortex loops.

8This manipulation becomes more natural when loop operators are smeared as in [15].
9Likewise, it is not clear whether the matter vortex loop operators of section 2.3 are trivial or not.

— 12 —



3 Localization on S® and harmonic analysis

In this section we describe the localization of N' = 2 theories on the round S? in the
presence of a vortex operator defined in (2.14). We use the conventions of [21].

The gauge vortex loop operators are given by a choice of a real diagonal matrix H
(2.14) breaking the gauge symmetry near the singularity to a subgroup. In the most
general case, where all eigenvalues of H are distinct, the gauge symmetry is broken to the
Cartan subalgebra. For degenerate H there will be larger residual gauge symmetry.

In the proceeding we will study the partition function of generic supersymmetric the-
ories in the presence of a gauge vortex loop operator. The calculation is done using local-
ization techniques.

3.1 Classical factor

The localization calculation reduces the path integral on S? to a finite dimensional integral
over BPS configurations. This is achieved (see appendix D) by adding Q-exact terms to
the action, whose bulk part is proportional to the SYM and/or the Chiral actions. The
modified action determines the localization locus and the 1-loop determinant about it. This
locus turn out to be given by 0A = 0, which are just the BPS equations (2.13). We thus
have the classical vortex configuration and in addition should integrate off-shell over the
covariantly constant g matrix.

The original action does not necessarily vanish on the BPS configurations. We calculate
this contribution first.

In the gauge sector there may be a supersymmetric Chern-Simons term with level k.
The action on S? is

29 -
Sscs = ﬁ / d*ry/g Tr [EW (AuayA,, + ;A“A,,Ap> — M+ 2Da] : (3.1)

Including the boundary term (C.11), which is required for supersymmetry and gauge in-
variance, and evaluated on the BPS vortex configuration we find

” 9

iSSES 4ishPs = 1 [ aya e |22 + kR [ den Tl
" (3.2)

= —mikTr [(Roo +iH)* + H?] .
It is also possible to include the supersymmetric Yang-Mills action on S3
1 1 1 1 2
Ssym = —— [ dz/g Tr [FWFW + -D,oD"o + = (D + Z)

9vm 4 2 2 R (3.3)

X DA+ N A — X
—1-2)\7 u)‘+2)\[‘77)\] 4R)\)\ .

Both the bulk and boundary terms (C.5) of the SYM action vanish on the BPS vortex
configurations.
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Lastly, another possible supersymmetric term for an abelian vector multiplet is the
Fayet-Iliopoulos action

¢ 3 o
=—— D——). A
Sr1 2R vy ( R> (3:4)
Together with the boundary term (C.23) we find

SEPS 4+ SBYS = 2mi¢(Roo + in) . (3.5)

The matter fields are described by a chiral multiplet in a generic representation R of
the gauge group, possibly reducible. The supersymmetric action for a chiral multiplet with
fields with arbitrary dimension A is given by

- - (2A — 1) -
Echiral = D/AQZ)DNQS + ¢0-2¢ + Z(]%)gbaﬂs + R2

OA—1_ -
g VU T iAG — oy

2@ 256 +igDg + FF
(3.6)

— iy Dyt + ihoyp —

We perform the localization calculation here only for the vortex loops with vanishing ¢, so
this term in the action vanishes on these BPS configurations.

In addition to the vortex we may have a Wilson loop which links it and does not break
any further supersymmetry. From (2.1) we see that we will get a term

wek Trrg [exp (2m(Rog + iH))] . (3.7)

T dmR

Examining the classical pieces in the different actions as well as in the Wilson loop, we
see that the inclusion of the vortex loop amounts to the simple replacement Rog — Rog +
iH. The only exception is in the case of Chern-Simons, which has an extra —mik Tr(H?),
which is a simple constant multiplicative factor.

3.2 Fluctuation determinant

The localizing action on S? is written in appendix D and is the sum of the SYM action
and in the presence of matter fields also the chiral action, both multiplied by an arbitrary
constant ¢. For large ¢ the path integral reduces to the saddle points of the action and the
one-loop determinant about it.

In appendix D the resulting kinetic operators are written down and diagonalized. For
the vector multiplet they are

VO =V, +ia(AD), (3.8)

which is the usual covariant derivative in the presence of the background gauge field. The
background field can be removed by a singular gauge transformation (D.8), which makes
all the fluctuation fields ® non-periodic. Rather, they satisfy

(9, o1 + 27, p2) = 2 G, o1, o),

o . (3.9)
@ (1979017()02 + 27T) = (197 9017802) .
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Figure 1. Fluctuation modes of a chiral multiplet. The lattices represent states with principle
quantum numbers n = 0, 1,2 and the allowed values of m and m’. In the presence of the vortex loop
these multiplets are broken to smaller ones encapsulated by the ovals. Only the short representations
(with two modes) contribute to the determinant.

The spherical harmonics with non-standard periodicity conditions are studied in ap-
pendix E and give for the vector multiplet the product representation of the determinant
as (D.14)

oo
Zy5er(o0) = [T T (#* + a(Roo + iH)?) . (3.10)
a>0 n
For a(H) = 0 the product over n starts at n = 1, but for a(H) # 0 we expect there to be
extra fermionic (almost-)zero modes and the product starts at n = 0. In that case we find
after regularizing the infinite product (E.52)
25569 (00) = [[ % sinh?(ra(Roo + iH)). (3.11)
a>0
For a(H) = 0 this is multiplied by an extra factor of 1/a(Roqg + iH)?. This extra factor
exactly cancels the Vandermonde determinant, which as discussed at the end of section 2.2,

appears only in the case of degenerate H.
A similar analysis for the chiral multiplet in appendix D.2 leads to (D.28)

chira - n+1—A+ip(Rog+iH)\" o ,
ZlHoo%)(JO) = HH( p( 0 )> :HSb:1<Z—ZA—p(RUO+2H)),
n=1 p P

n—1+A—ip(Rog+iH)
(3.12)
where p are the weights of the representation of the matter fields and s;(z) is the double

sine function.

3.3 Spectral analysis

We have now found that the different ingredients making up the matrix model representa-
tion of the S? partition function of an A/ = 2 supersymmetric theory in 3d are modified.
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Figure 2. After introducing n = 1/2 the entire spectrum in figure 1 is shifted by m — m + n/2
and m’ — m’ + n/2. For the multiplets under the dashed line the principle quantum number is
shifted n — n — n and above the dashed line n — n 4 7, which effects the determinant.

Figure 3. For n = 1 the spectrum is shifted by a full integer. Here are the new states with principle
quantum numbers 0, 1 and 2. The states above the dashed line come from the original multiplet
with n — 7 and those below from n + 7. Compared to the spectrum in figure 1, with the same value
of m, there are the same number of ¢ modes, but an extra {¢*, '} short multiplet, and one {¢, T}
short multiplet gets enlarged by an extra ¢~ and I mode.

The contributions of the CS and FI actions evaluated on the BPS configurations are given
by (3.2), (3.5) respectively. The one-loop determinants for the vector and chiral multiplets
are in (3.11) and (3.12). Rather surprisingly, the change to all of them can be accounted
for by an imaginary shift o9 — ¢ +iH/R.!? This is also true for the expectation value of
a Wilson loop in the presence of the vortex (3.7).

Since o is integrated over, the deformation of the contour of integration will not
change the answer as long as no singularities are crossed. The conclusion, as predicted in

The one exception is the CS term which has an extra —mik Tr(H?) term in the action, which gives an
overall multiplicative factor to the partition function.
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section 2.4, is therefore that at least for abelian theories the vorticity H does not effect the
partition function.'!

There are some subtleties in this statement due to the fact that the double sine function
arising in the one-loop determinant does have poles at integer values of H. In this section
we discuss these subtleties and their origin and propose a prescription to resolve them.

After the imaginary shift of oy, the determinant for a chiral field is given by (D.28).

For n =1 this is
1
Sp=1(1 —iA — (Rog +1in)) = - sin(m(i — 1A — Roy)) sp=1(i — iA — Roy) . (3.13)

The situation for the vector multiplet is simpler, since the adjoint representation is self
conjugate. Under an integer imaginary shift sinh(7w(Rog+1in)) = (—1)" sinh(rRop) (3.11).
The other change is that the denominator 1/(mw(Rog+in)) which usually cancels the regular
Vandermonde factor is no longer there, due to the extra goldstino zero modes.

But the transformation of the chiral multiplet (3.13) is a nontrivial transformation,
meaning the spectrum of fluctuations really changes even for integer n. This is illustrated
in figures 1-3. Starting with a supermultiplet of the OSp(2|2,2) supersymmetry group
on S?, the vortex breaks the symmetry down to SU(1|1,1), and the original symmetry is
not restored at integer 7, leading to a different multiplet structure. The breaking of the
supersymmetry multiplet of fluctuation modes is analyzed in appendix E.4.

Exactly half of the states with principle quantum number n get deformed to states
with quantum number n — 7 and half to n + 7. For small > 0 there are (n+ 1)(n+2)/2
modes of the scalar field ¢ with n +n and n(n + 1)/2 with n —n. For n = 1 there are
(n+1)(n+2)/2+n(n+1)/2 = (n+ 1)? states with principle quantum number n, which is
the same as the number for n = 0. The number of fermi fields does change, with one extra
fermion of either chirality. To keep the SUSY structure consistent, there are also two extra
modes of the auxiliary field F'.

In terms of the multiplets of the smaller group, for n = 1 there is one extra long
multiplet and one less short multiplet with ¢ and ™ and one more short multiplet with
1T and F. The extra four modes are eigenstates of the Laplacian and Dirac operator with
the relevant eigenvalues, which were not there for 7 = 0, so these are modes which do not
belong to the OSp(2|2, 2) representation. They are in fact singular modes, which normally
are not included in the spectral analysis. They are part of larger nonunitary representations
of this group, which are not part of the unitary subrepresentation. The explicit analysis
of the spectral flow means that these states should be counted and they lead to the factor
in (3.13).

Of course if the theory has only self conjugate representations, or all representations
are paired up with their conjugates, then there are extra cancellations and for integer 7
one finds only at most a sign factor. This is the case for theories with A" = 4 SUSY. But
as stated, for A/ = 2 SUSY, the effect of spectral flow is very nontrivial.

1Tn pure topological Chern-Simons theory a vortex loop was defined in [17]. It was argued there that
it is equal to a Wilson loop observable. In an abelian Chern-Simons theory, both Wilson and vortex loops
are almost trivial, acting on the partition function as multiplication by a phase.
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The conclusion of the above discussion would seem to imply that the partition function
in the presence of the vortex loop, while constant for 0 < n < 1, jumps for integer 1. There
seem to be two possible prescriptions. The first is to use the values of the 1-loop determinant
that we have found, but keep the integration contour such that it does not cross the poles.
The second possibility is to not do the spectral flow as discussed above, but as the singular
modes show up in the spectrum, replace them with other modes which were singular before
and now become regular. In this way we restore the original spectrum for integer 7.

While the second possibility seems more appealing physically, an analysis of flavor vor-
tex loop operators, where o is not integrated over seems to prefer the first interpretation.
This allows for them to be dual to regular gauge Wilson loops under abelian mirror sym-

metry.

4 Localization on S} by index theory

In this section, we will compute by localization the expectation value of the gauge and
flavor vortex loops on a deformation of the three-sphere, commonly denoted as Sg’. As in
previous sections, we will consider an arbitrary N/ = 2 gauge theory with a chiral multiplet
in representation R of the gauge group. We will first explain how to use the equivariant
index theory to compute the one-loop determinant that appears in the partition function.
Then we will apply the technique to compute the expectation value of the vortex loop. We
provide many technical details in appendix F.

4.1 Partition function

This geometry S, also known as the ellipsoid, is defined by the metric
ds® = R* (f(9)?d9? + b*sin® ¥ dyi + b2 cos® ¥ dy3) | (4.1)

where

f(9) = (b2 sin 9 + b2 cos® 9) /2. (4.2)
To describe spinors, we will use the orthonormal frame given by!?
el = Rb! cos ¥ dps , e = —Rb sind de1 e = R f(9)d? . (4.3)
For localization we will use the supercharge @) = §. + 0z generated by the two spinors
1 [es(prte2t9) 1 [ _es(—p1—p2+0)
= [ =L . (4.0
V2 \ ealprte2—7) V2 \ e2(-w1—p2-9)

As shown in [7], these spinors satisfy a variant of the Killing spinor equations, ensuring

that the algebra generated by supersymmetry transformations of fields on S} closes. In
particular, the supercharge () squares to a sum of bosonic symmetries

1
2R

12Comparison with [7] is simple with this definition of el (9,01, ©2)here = (0, =X, ©)there. Also we

Q? =iLly, +ic — v A, + b+ HR, (4.5)

have the following change of conventions: (A, C,& X, ¥)nere = — (A, C, & N, ¥)there, (€, E)here = (—€, €)there,
Uﬁere = _Utuhere’ (F7 F)here = (_F7 _F)there-
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where £, is the Lie derivative'® along the vector field

i, 11 9, O
v=eeyee; =R <b 3¢1+baﬂp2> . (4.6)
We write R = Rog— AF, where R generates the canonical R-symmetry, and F is the gen-
erator of flavor symmetry U(1)p. In our convention the lowest component ¢ has eigenvalues
Ro=0and F = 1.

In section 3 and appendix D, the one-loop determinant in the presence of a vortex loop
on the round sphere S2:1 was computed by expanding the fields in spherical harmonics.
With the deformation b # 1 turned on, the analysis of harmonics is possible but more
complicated [7], especially when the vortex loop is inserted. We thus work in an alternative
approach based on the equivariant index theory [22]. First we will reproduce the known
one-loop determinant that appears in the partition function on Sg’.

The equivariant index theory was used in [3, 10, 23] to compute one-loop determinants
in other geometries. In this approach, one deforms the Lagrangian by ¢Q - V for some
fermionic functional V. We choose

V= Vvvec + ‘/chi ) (47)

where
Viee = (@A + (@NIX, V= (Qv)Tv + (Q1) 14 (4.8)
Let H and K be two copies of U(1) generated respectively by
—i(0py, +0p) —Ro  and  —i(0p, — 0y, ). (4.9)

The bosonic generator Q2 in (4.6) specifies the action of the complexification G¢ of the

group G, which we define as™

G = H x K x (maximal torus of gauge group) x U(1)r . (4.10)
One then computes the equivariant index

innglO = TrKerDm (g) - TrCokerDlo (g) (4.11)

of a differential operator Do that appears in V as a function of g € G. The precise definition
of Dy is given in appendix F . We also show there that the path integral localizes to the
configurations

A, =0, o = constant , D=-0/R, p=F=0. (4.12)
The one-loop determinant is obtained from the index by the rule

. ; . —_—C 2
lnng10|g:exp(CQ2) = Z Cjezw] — Zl—loop = H w; </ . (413)
J J

Y3Here the Lie derivative £, acts as (L, +iv"Ay) - A, = 0" Fyy, Low, = 0" Viow, + [V, |w, etc., and
in particular includes a Lorentz rotation. We also note that £, +iv" A, is a gauge covariant Lie derivative.
1Gee also (F.13).
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Here c; is a sign 1, iw; is the eigenvalue of cQ? for mode j, and Q? is evaluated at the
saddle point (4.12). The constant ¢ affects only the overall normalization, and will be set
to a convenient value.

In the set-ups of [3, 23], Djp was transversally elliptic and the index indy D1 received
contributions from the fixed points of the vector field in Q?. In our case of Sg, there is no
fixed point with respect to the single U(1) action generated by the vector field v. How can
we compute the equivariant index in such a situation? We first rewrite the gauge field v in
terms of the Hopf fibration coordinates ¢ = w2 — 1, 1 = w2 + 1 (See (A.5)):

v=R Y b+b 1o+ RO —-b1o,. (4.14)

The vector fields 20, and 204 respectively generate the action of H and K above. In
particular, H rotates the Hopf fibers, and thus acts on S} freely. With respect to the
H x K-action, D1 fails to be elliptic but it is transversally elliptic. When part of the group
action is free, the index of a transversally elliptic operator can be expressed in terms of the
index of a transversally elliptic operator on the quotient space (S? in our case) [22]. This is
reviewed in appendix F. By the fixed point formula then, the index receives contributions
from the fixed points of the other U(1) action generated by 04. In terms of the original
three-dimensional geometry, these fixed points correspond to the circle fibers at the north
and the south poles of the S? (§ = 29 equal to 0 and 7 respectively).

Let us set Q = b+ b~!, 6§ = Ro. We now compute the index indyD1o with g = eCQ2,
¢ = —iR. For the chiral multiplet, we can write inng‘l’}(}i = inng‘l%fC + indg—1 D%f(c as
we show in appendix F. The reduction of D%i(c to S? near the north pole # = 0 is a
twisted Dolbeault operator Ds. The local complex coordinate is given by z ~ fe .15 The
equivariant index for the untwisted Dolbeault operator is (1 — ¢~1)~!, where ¢ € U(1) is
the weight for the U(1) action z — tz. We identify ¢ with ei®=0"1 " Ag the contribution
to inng‘fgi(C from ¢ = 0 we obtain

inb_1iAQ 1 wé
> ez 1 — o—i—b0) > e (4.15)
w

— €
ne”L

where the sum is over the weights in the representation R. Similarly, the fixed point 6 = 7
on S?, where we identify z ~ (7 — 6)e® and ¢ with e*i(b*b_l), contributes

a1 1
Zemb EQZAQ ez(b = ZewU (4.16)

ne”L

As we explain in appendix F, the index theory instructs us to expand (4.15) as'6

72 inb leQZ ik(b—b—1) Z wé (4.17)

neL

5The one-form in (A.5) can be written as di) + cos 0d¢ = d(h &+ ¢) — (£1 — cos §)dp. Thus at the north
(south) pole # = 0 (7) the base is parameterized by (6, ¢) and the fiber by 1 + ¢ = 292 (b — ¢ = 2¢1).
8 There are two allowed choices as explained below (F.29).
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and (4.16) as

Zemb 1 leQZ ik(b—b" 1)2 wo (418)

neL

By using the shift invariance ) einb* eilkbjEl = ez ¢ and then splitting > .,

into >, 50+ > < in (4.17) and (4.18), we obtain the total contribution
o o
Z eznb 1 leQ Z ezkb Z v & e—iQ Z e—zkb 1zAQ Z —inb—1 Z w-o _ (419)
n=0 k=0

The rule (4.13) applied to inng%‘ = inng%‘iC + indgle%‘jC gives, up to an overall sign,

_ Q, - =~ . Q

ehi mb+nb~! + 3 +iw - J—i——(l—A) iQ .

lloop H H R = Hsb(j(l—A)—w'O’).
weR m,Nn>0 mb + nb~ ! + Q % weR

Q>

(4.20)
This is the well-known one-loop determinant for the chiral field [7]. If we had kept the
constant ¢ arbitrary, it would have canceled between the numerator and the denominator.
For a vector multiplet, the relevant differential operator is the differential in the de
Rham complex twisted by the adjoint bundle (with a degree shifted by one). Since the
de Rham and Dolbeault complexes are related by complexification (Q(% = QO0, Q}C =
Q0001 Q% = Qb1), the index of the untwisted de Rham complex Dgg : Q20 — Q! — 0?2
on C is given as
ind Dgr = (1 —t 1)indd = 1. (4.21)

Let « denote the roots of the gauge group. Then the north pole 8 = 0 contributes
=) e Z e*? (4.22)
nez
to ind D1g for the vector multiplet, and the south pole 8§ = 7 contributes
- Z inb~! Z g (4‘23)
nez

The resulting one-loop determinant is

Zo0p = Hsmh (mba - &) sinh(mb - 6) . (4.24)
a>0

The product is over the positive roots. This also agrees with the results in the literature [7].

4.2 Vortex loop expectation values

On SZ’ with b # 1, BPS loop operators can only be supported along the circle fibers at
0 = 0, m. Let us for now focus on the gauge vortex loop with vorticity H along the fiber at

6 = 29 = 0. This is characterized by the Q-invariant background configuration'”
F. = Wé(l —cos¥)€eu,v”, o = const.,
5 - H 5 ) (4.25)
= — —1 1— .
RF@) sy (1 —cos?)

'"The delta functions should be understood to be §(1 — cos(d — ) with small 99 > 0.
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We claim that it has the effect of shifting the contributions from both the poles as 6 —
6+ib 'H.

For the contribution from 6 = 7, the gauge parameter in (4.5) becomes o +i(Rb) "' H
simply because the gauge field is turned on. This induces the shift in &.

The effect on the contribution from 6 = 0 is more subtle. In section 3, we constructed
explicitly the eigenmodes of the kinetic operators on the round sphere. We saw that when
the vortex loop is inserted and the eigenvalue n of H is turned on, generically certain modes
that are singular must be allowed to fluctuate, contributing to the one-loop determinant.
The analysis there was global and specific to the round metric, but the local behaviors of the
allowed singular modes must be intrinsic to the vortex loop operator. Thus in the current
approach to the one-loop determinant based on the index theory, we should compute the
local contributions to the index by taking into account the local modes that are singular.
This means that we should sum the U(1) weights for 27 (k= 0,1,...) instead of 2* if we
work in the gauge where A, is zero.!® Then (4.15) receives an extra overall factor b=,
which is equivalent to shifting & — & + b~ H.

Thus the total effect of the vortex loop on the one-loop determinant is the shift 6 —
6 +ib~'H. This generalizes the results (3.11) and (D.28) for Sj_, to S3.

We also need to evaluate the Chern-Simons term in the presence of a vortex loop on
Sp. For b = 1, this was done in (3.2) using the boundary term (C.11). We specialize to
the abelian case and set H = 7. From (4.25) we find that Sscs = —7k(6 +ib~ )21 The
effect of the vortex loop on the Chern-Simons action is again the shift & — & + b~ 11.

Repeating the same arguments above for a vortex loop with vorticity n at ¥ = 7, we
find that the effect is the shift & — ¢ — ibn.

Let us assume that the gauge group is U(1) and consider the BF coupling (B.18)
that appears as e”°BF. Tt may be evaluated via the relation (B.19) between the BF and
Chern-Simons terms. If we use the full gauge multiplet configuration in (4.12), we find
that Sgr equals 27i(6 + ib~'n)¢. If this were included in the path integral, then all the
contributions inside the g-integral would receive a uniform shift, so that after integration
the vortex loop does not affect the partition function at all. From the point of view of
the SL(2,7Z) action [24] on superconformal theories, however, it is more natural to not
include terms proportional to 7 in the BF coupling, as follows from the discussion in [15].2°
See also (2.39). Thus Spr = 27mi6¢. Since all other contributions uniformly receive the
shifts (5.25), the only effect of the vortex loop is to multiply the partition function by
exp(—2nb~1n¢). For a gauge vortex loop that has a singularity in a non-abelian gauge
field, we cannot rule out the existence of non-perturbative corrections.

On the other hand, if the singularity is in a non-dynamical gauge field coupled to an

81f we work in the gauge where A,, = H, the relevant modes are z|z|" and the H-dependence comes
from the term in Q7 that involves A,, explicitly.

197f we add a constant boundary term oc Tr H? in section 3.1, the results here and there agree.

20Sce the discussion around (2.25) of [15]. They define loop operators as an action on the partition
function that depends on a background gauge field coupled to a chosen global symmetry. The gauge vortex
loop corresponds to SD,, in their notation. Since (D, Z)[A] = Z[A + A.] has A, not A + A., as the
argument, the S-action yields the BF coupling between a new background field and A, not A + A,,.
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(abelian or non-abelian) flavor symmetry, o is replaced by a real mass and is not integrated
over. Then the shift has a non-trivial effect.

Let us summarize the results of localization calculation for vortex loops placed at
¥ = 0/2 = 0 and 7/2. The partition function ng(Ca ...) of an abelian gauge theory is
a function of the FI parameter ¢, and the effect of a gauge vortex loop V,F*"#° is the
multiplication by an overall factor:

—2mb~1n¢ - —
<Vgauge>83 —_ € ZSZ? (C) at 9 0 ’
K

; ambn? ) B (4.26)
e Z3(C) at v =m/2.

If the theory has a flavor symmetry, the partition function ng, (m = Rm,...) depends on
the real mass parameters m = diag(myi,...). The expectation value of a flavor vortex loop
Vflavor is the partition function whose argument m is shifted in the imaginary direction:

Zgs (m+ib™'H) at 9 =0,
Vs =1 "

(4.27)
b Zgy (m—ibH)  at 9 =m/2.

Later we will consider mirror symmetry. For reference, we quote results for the gauge
and flavor Wilson loop expectation values [7]:
Zgs(C+ib~'n) at 9 =0,
<Wgaugc — o §(A:|:iads)>s3 _ Sy (C 77) (428)
K b Zgg(C—iby)  atd=m/2,

20 g () at 9 =0,
<W717:lavor>83 _ ) b (429)
b e*%b"mZgg (m) at¥=m/2,

5 Localization on S' x S? by the index theory

In this section, we compute the expectation value of a vortex loop operator on the geometry
St x §2, or equivalently the (generalized) superconformal index in the presence of a vortex
loop operator. For the purpose of explaining the computation, it is enough to consider the
ordinary index of a general N’ = 2 gauge theory, with a chiral multiplet of general R-charge
R = —A [8] in representation R of the gauge group. This simplifies the notation, and we
will indicate only at the end the results for the generalized index, which incorporates the
background magnetic flux on S? for flavor symmetries [25]. As in the previous section where
we studied the ellipsoid Sg, we compute the one-loop determinant using the equivariant
index. We begin by explaining how to compute the superconformal index without a vortex
loop in our approach.

5.1 Partition function

The geometry is defined by the metric

ds® = dr* + df* + sin® Odp? (5.1)
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with periodicity 7 ~ 7 4+ . The vielbein are

el=dr, e*=df, e =sinfdy. (5.2)

Let us consider the supercharge generated by the following two conformal Killing spinors2!

o5 (0—9) L(—04¢)
€= i677/2 52 p , €= ieT/2 621- ) : (5.3)
\/i 62(_ —(P) \/i 62( +§0)

Note, however, that these are not periodic in 7. To understand the origin of non-periodicity,
let us look at the definition of the index

Zs1ys2 = Tr(_1)Fe—51(H—R—j3)6—52(7'l+j3) ) (5.4)

Here H = —0, is the Hamiltonian, R is the R-symmetry generator, and j3 is a generator
of the isometry group SU(2) that acts as —id, on neutral scalars. The index Z should be
independent of 8; because H — R — j3 = i{d,0z}. Formally, the operators in the trace
require the fields to satisfy the quasi-periodic boundary conditions

(fields), 3 = P ("R=13)+5205 (fields), (5.5)

where 5 = (1 + fB2. By assigning the R-charges +1 to € and —1 to €, we see that € and €
precisely satisfy the boundary conditions (5.5). Note, however, that the group action on
the right hand side involves a rotation by an imaginary angle. The way to make sense of
this is to rewrite everything including the Lagrangian and the SUSY transformations in
terms of the redefined periodic fields

(fields) pew = 6—(7/5)(51(—R—j3)+62j3)(ﬁelds) (5.6)
that are periodic in 7 [26]. This is equivalent to replacing everywhere the time derivative
Oy = —H by??

07 + B (=R — ja)B1 + jafa) - (5.7)

In the new formulation, the spinors (€,€) := (Epew,fnew) that generate supersymmetry
become T-independent:

]_ _65(9—30) B 1 e%(—e'HP)
€= letco0 | T 5\ store) | (5-8)

In the localization approach [26] to the computation of the index (5.4), we deform the
action by t@ - V for some fermionic functional V. Our choice is again (4.7). In the limit
t — 400, the path integral localizes to configurations

AT:—%, A?OE :%(il—cosﬁ), 0':—%, where a = const., m = const.,
b=0, F=0.

(5.9)

2IThere are four independent conformal Killing spinors on R x S2. If €y is an arbitrary constant spinor,
1 i3 3
they are given by eT27eT2976¢3%77 ¢, .
22 Another way to understand the shift is that, after the redefinition that makes fields periodic, the shift

in the derivatives cancels the twist in the trace and the index becomes Tr(—1)% e,
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The flux m takes values in the Cartan subalgebra of the Lie group, and is further required
to satisfy
a(m),p(m) € Z (5.10)

for any root a and any weight p in representation R. The expressions Af; are valid in the
standard two patches UT = {0 # n} and U~ = {6 # 0} of S%.
The supercharge ) = . + 0z squares to

Q? =Ly, +i(ivt A, + o) + iR +iB (=R — j3)B1 + j3Ba) (5.11)

where
v = (ey'€)0y = 0- — i0, (5.12)
and ée = —cosf. In order to simplify the expression (5.11) further, we need to take into

account the saddle point configurations (5.9) and the representation of the SU(2) in the
monopole background. On a scalar field with electric charge +1 in the background of
monopole charge p(m), the angular momentum operator js acts as [27]:%

j3 = —i(0y + ip(A3)) + ”(Qm) cos = —id, + p(;”) . (5.13)
The expression (5.11) can be rewritten as
2 . a .BZ .
Q°=ily. + - +1—=(2j3+Ro — AF) (5.14)

g B

at the saddle point (5.9),24 which is a linear combination of the generators of G defined again
by (4.10), which acts on the coordinates (h,t) € H x K by (e>77/8 %) s (h-e2™7/8 t.¢#).

As in the case of SZ’ in the previous section, we would like to compute the equivariant
index for the relevant differential operator D1y that appears in the fermionic functional
V. Some details are given in appendix G. Note that if we choose ¢ = i3, the index is
independent of f; as required by the definition (5.4). The operator Djg is transversally
elliptic with respect to the vector field 0, that generates the free U(1) action on S! xS? (this
time in a trivial way as a translation along the circle), and thus reduces to a transversally
elliptic operator on S2.

Let p € R denote the weights in representation R of the gauge group. We show in
appendix G that the equivariant index for the chiral multiplet in representation R is

oo
ne€Z r=0 peR

with
itw(n, T, p) o (2r — p(m) + A)fs — 2min + ip(a)

- o (5.16)
iw(n,r,p) o< —(2r — p(m) +2 — A)B2 + 2min + ip(a) .

#3The other generators act as jy = € (9o +icot0(9, +ip(AL))) + @ew sinf and j_ = e "¥(—0p +
icot 0(0, + ip(Ai))) + @67“" sin 6.
24The right hand side is the precise expression of Q? for any field configuration. See appendix G.
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The one-loop determinant that follows from the rule (4.13) is

20 =TT ~(r = 52 +1 = A/2)B> + §p(a) + win

fioon = peRT=0neZ _$+A/2 )B2 — $p(a) + min
> sinh [—(r — e 4y AJ2)By + %p(a)] (5.17)
- perr—=0 sinh [—(T —2lm) A /)8, — %p(a)] .
This can be rewritten as follows:
. H (10_0[ eir(p%:,:i;::;i;p(a) T Lo - (2>>+1 A/2 ipla )) a8
peR \r=0 €72 atgele) T 1 — g2 T 2e—in(0)

where ¢ = e~ 2%, After regularizing the infinite product,?® the one-loop determinant is
given by

p(m)

i _elm) Ay i 1— ¢~z t1-8/2¢ip(a)

Zh e = 1] <q Fi(=4), 2p(m)p(a)H = ‘ (5.20)
pER 720 1— g2 TA2e—in(a)

For the vector multiplet, the north and the south poles of S? contribute identical
amounts to the equivariant index, and in appendix G we compute the equivariant index for
the vector multiplet. By applying the rule (4.13), the corresponding one-loop determinant is

i 1 12 75 1 1/2
2= 11 11 <2a(a) +5a(m)Ba + m’n> <2a(a) — 5a(m)By + m)

acadjnez

11 [2 sinh <;a(a) + ;a(m)52>] [2 sinh (;a(a) - ;a(m)ﬁg>] (5.21)

a>0

— H g lam)l/4 <1 _ efia(a)q\a(m)\p) ‘

acadj

2

Both (5.20)?% and (5.21) agree with the results in the literature.

#Following [26] (cf. [8]), we regularize the logarithm of the first factor as

r=0 |: (T @ ! /2> /62 %p(a)] a r=0 |: (T @ /2) /82 %P(a)]
p(m) ()
.—> 0 ! o +xiT+17A/2y71 x Tz tAZy 5.19
xl}l 1(ﬁ2% §P(a) ay) ( 1—z 1—=z ) (5.19)

=+ 20 (1 88 — i) ipla) iy (2

lim _m—l—i—O(l—a:)).
By dropping the m-independent terms, we renormalize this to +@((1 — A)B2 —ip(a)) by taking the BF
coupling as counter terms.

#6The corresponding formulas in [8] and [25] involve the absolute values |p(m)|. As explained in eq. (3.3)
of [28], one can rewrite such an expression and eliminate |p(m)| in favor of —p(m).
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5.2 Vortex loop expectation values

Let us now insert vortex loop operators with vorticities H+ and H~ at the north and
south poles of S?, respectively. In the presence of background magnetic flux, the two loop
operators are defined by the Q-invariant configurations

Fl = [H'6(1 = cos) + H (=1 — cos 0)] et + %EW, (5.22)
D =iH6(1 - cosh) —iH™6(—1 —cosf), o= —% . (5.23)
The gauge field is given as A, = —a/3, Ag =0,
m
A% = 5 (1= cost) + H*. (5.24)

In order for the gauge fields on the two patches to be glued by a well-defined transition
function, we need that m+H™ + H~ is a GNO charge that satisfies the Dirac quantization
conditions a(m + H" + H~),p(m+ H* + H™) € Z.

It is clearest to restrict to the case 1 = 2 = /2. In this case j3 does not enter the
field redefinition (5.6), after which

2 . m+HY+H™ i i, . GA 1
=—0.+iL —_— 1t = —(H"—H )— —p) —=Ro,
iQ +iLly, F 5 +5 a+2( ) 25 5 Ro
where the combination —iL, £ %JUFH_ is precisely js. The effect on follioop of the vortex
loop is the shifts
m—m+H"+H, a%a—%(logq)(H’L—H_). (5.25)

We now specialize to the U(1) gauge group and set H* = n*. We need the on-
shell value of a supersymmetric Chern-Simons action in the vortex loop background. It
enters as €55Cs in the path integral. To evaluate it, we introduce a connection A’ =
rAYVdr + AyVde + AXVdp extended to the disk D?* = {re?™/B|r < 1} times S? and
put [26, 29, 30]

k
Shogon — = < / dA" NdA" + / 2Do - vol) : (5.26)
A \ Jp2xs? S1x§?
After some calculations we find2”
a ) _ _
st =8 (=5 = 4% =) ) (et ). (5.27)

Let us consider the BF coupling (B.18) that appears as e~SBF . It may be evaluated
via the relation (B.19) between the BF and Chern-Simons terms. If we use the full gauge
multiplet configuration in (5.23) and (5.24), we find that Spr equals

<ia - 25) (m+nt+n7)+ <ia - g(rﬁ — n‘)) m. (5.28)

2TFor the flavor Chern-Simons action, we get SE&™ = kf3 (—% +iA—i(nt - Tf)) (m+nt+n7),
where bold fonts are used for quantities related to the flavor symmetry. Dependence on A arises because
after the field redefinition (5.6) Im A contains ZA as in the 4d case [31].
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If this were included in the path integral, since the gauge vortex loops shift the parameters
m € 7Z and a that are summed or integrated over, it would not affect the partition function
at all. From the point of view of the SL(2,Z) action [24] on superconformal theories,
however, it is more natural to not include terms proportional to n* in the BF coupling,
as follows from a discussion in [15]. See also (2.39). Thus we should drop n* from (5.28).
Since all other contributions uniformly receive the shifts (5.25), the only effect of the vortex
loop is the multiplication by an overall factor:

<Vngfuge(north)K?gfuge(south»yng = e+i("++n_)(“7%A)q+("+_”7)m/2Z§1 ws2(m, e'®).
(5.29)
Here a = _fgl A is the background holonomy along S!, and m = (27)~! fs2 F' is the
background flux through S?. For a non-Abelian gauge group, it is a possibility that there
are non-perturbative contributions.

Next we consider an A/ = 2 theory with a flavor symmetry. The generalized index is
again a function of @ = — [, A and m = (27)~! [, F, though this time A is coupled to
the flavor symmetry. From the discussion above, we see that for two flavor vortex loops at
the north and south poles, the correlator is given by the shifts in the partition function,
i.e., the generalized index:

(VAavor (north) VAT (south) g1 w2 = Zgiwge(m + HY + H- el H =H7)) - (5.30)

5.3 Wilson loop expectation values

We can also compute the expectation values of Wilson loops.?® Consider an N = 2 theory
with at least one U(1) gauge group. Such a theory possesses a global symmetry U(1);
generated by the conserved current J# = €79, A,. The generalized index of the theory
involves a sum over the gauge fluxes m, and depends on the flux m of the background
gauge field A,, for U(1) s, whose coupling is given by the BF term (B.18). The partition
function on S' x S? then takes the form

—ia\m da —ima
Zs 52 = Z(qce ) 7{6 f(m,a,q,...). (5.31)

2w
mEZ

Here ¢ parameterizes the contribution of the gauge flux to the R-charge [28], a is the
chemical potential for U(1);, and f is some function. We now insert a Wilson loop of
charge n™ at the north pole, and another of charge ™ at the south pole. For ; = [2, we
find that the value of the product of the Wilson loops in the saddle point configuration is

e~ it 0 a =t —n")m/2 (5.32)

which is to be inserted inside the sum and the integral. Thus the effect of the Wilson loops
is the shifts

m-om+nt+n, a%a—%(logq)(n*—n*). (5.33)

28We thank J. Gomis for discussions on this calculation.
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Theory A Theory B
Global symmetry U(l), Flavor symmetry

Vortex 1 f
OTbex 200D 20t Gauge Wilson loop Flavor vortex loop
global symmetry

Wil 1 f
tison loop tor Gauge vortex loop Flavor Wilson loop
global symmetry

Table 1. Abelian mirror symmetry action on global symmetries and loop operators.

Thus the correlation function of the two ordinary Wilson loops is given by the partition
function (generalized index) whose arguments are shifted:

(WEE (north) W (south))s1 g2 = Zgixg2(m + 10" + 17, eiqz ")) (5.34)

In an N' = 2 theory with flavor symmetry, the correlator of two flavor Wilson loops
with charges n™ and 7™, inserted at the north and south poles respectively, is given by

(W29 (morth) W2 (south) g1 gz = e~ /7 17 )(@=380) =07 =07Im/2 7 oo (m, e
(5.35)

6 Abelian mirror symmetry

We have employed the supersymmetric localization method to obtain exact quantitative
results for the expectation values and correlators of vortex loop operators. Let us now dis-
cuss more qualitative and conceptual points regarding loop operators in three dimensional
supersymmetric theories.

Any duality maps global symmetries of one theory to those of the other. In particular
abelian mirror symmetry [32-36] by definition maps a topological symmetry U(1); in one
theory to a flavor symmetry in the dual theory. It was explained in section 2.4 that the
vortex loop for U(1); is the gauge Wilson loop, and that the Wilson loop for U(1); is
the gauge vortex loop. Thus the transformations of loop operators under abelian mirror
symmetry follow from those of global symmetries. We can summarize the abelian mirror
symmetry action on loop operators in A’ = 2 theories.

Let us illustrate the mapping of global symmetries and loop operators in a well-known
N = 2 mirror pair [37]. As Theory A (SQED), we consider the U(1) gauge theory with
two chirals (®, ®) of charges (1, —1). This theory has a flavor symmetry U(1)ayja1 for which
the fields have charges (1,1), as well as a topological symmetry U(1);. As Theory B (XYZ
model), we consider a theory of three chiral superfields (X, Y, Z), interacting through the
superpotential W = XY Z. The superpotential is invariant under two symmetries U(1);
and U(1)y, whose charges are given by (2,—1,—1) and (0,1, —1) respectively. It is known
that U(1)axia is identified with U(1), and U(1); with U(1)2. We summarize the symmetries
and the loop operator spectra in table 2.
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SQED
o Loop operator
U(Dgauge | 1 —1

Flavor vortex
U(l)axial 1 1
Flavor Wilson

Gauge Wilson
U(1)y

Gauge vortex

XY7Z model

X Y Z Loop operator

Flavor vortex
Flavor Wilson
Flavor vortex

Flavor Wilson

Table 2. Mirror symmetry for the two-flavor SQED and the XYZ model.

Our localization results for loop operators provide a quantitative test of the mirror
symmetry predictions. On S! x S?, the correlation function (5.34) of two gauge Wilson
loops is identical to the correlation function (5.30) of two flavor vortex loops, confirming
the correspondence on the middle row in table 1. Similarly, the equality between (5.29)
and (5.35) verifies the mirror symmetry action on the bottom row of table 1. The same
checks can also be made using the results for Wilson and vortex loop operators on Sg’ .
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A Metric and vielbein on S$3

The three dimensional sphere S? with radius R can be represented by a pair of complex
coordinates (u,v) € C? by the equation

ui + vt = R?. (A.1)

The manifold is invariant under SO(4) = SU(2), x SU(2)r symmetry. The generators of
the two SU(2) factors are denoted as LY, LI, LL and LE, LE LI and they satisfy the
following commutation relations

[LE LE) = ie g LE

c

[L§7 Llly%] = isabcLR

c

LL Ll =o0. (A.2)

We define raising operators Lﬁ = LE +iLf, Lf = L + 4Ll and lowering operators
LY = Lb —Lf LB = LF — iL¥. The representation of the generators in the (u,v)
coordinates is given by

1
Lt =40,-908,, LY=—udsy+v0y, Lin(uauﬂav—aaa—@a@),(A.3)
and

1
Lf=u0; —v0,, LY=-ud,+v0, L§=§(uau—vav—aaﬂ+wﬁ).(A.4)

In the main text we use two different parameterization of the S3, the Hopf fibration and
the torus fibration.

A.1 Hopf fibration
The Hopf fibration of S? is given by the parameterization u = Rsin % eW=9)/2 and v =

Rcos g el WH0)/2 where 0 < < m, 0 < ¢ < 27 and 0 < ) < 47. The metric in the Hopf
fibration is given by

2
ds? = g, datdz” = RZ(dHZ + sin 02dp? + (dip + cos 0 do)?)
(A.5)

2
= RZ(dGQ + d¢? + dp® + 2cos O dp di)) .

This metric can be derived considering that S* = SU(2), as shown also in appendix A
of [21]. The left invariant vielbein basis is

el = g(coswde + sint sin 0 do) ,
e? = g(sinw df — cospsin 6 do) , (A.6)
ed = g(cosad¢+ di)),

and the inverse vielbein defined as e, = e?,g"*d,p is given by

cosyp SBY ot fsing

sin 0

et = 7 sin 1) —CSCI’E;Z’ cot 6 cos 1 . (A7)
0 0 1
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A.2 Torus fibration

The torus fibration is obtained parameterizing « and v as u = Rsinde’! and v =
Rcose’?2, where 0 < 9 < m/2 and 0 < ¢1,¢92 < 27. Torus fibration and Hopf fibra-
tion parameters are related by 0 = 29, ¢ = o — 1 and ¥ = @2 + 1. The metric is
given by

ds® = R?(dv? + sin® ¥ dp? + cos® ¥ dy3) (A.8)

and a natural frame is
el = RdY, e? = Rsind dy , e = Rcos dys . (A.9)

The vortex loop operator is located at ¥ = 0 and extended along o. For this field
configuration, the holonomy is constant when computed along a curve linked to the vortex
loop, therefore the monodromy along the ¢ circle will be independent from 4.

In the frame described above, the solution of the Killing spinor equation on S? is
given by

i

€ = ex"Mea(P1tea)1s e (A.10)

B SUSY on 3D Euclidean manifolds

B.1 Conventions

We follow the conventions as in [21]. The curved space gamma matrices 7, are defined as
Yu = Ya €%, Where v, are Pauli matrices and e?, is a vielbein. It follows

{’V;u')’u} = 2g/u/7 (B.l)

where g,,,, is the spacetime metric. Some useful relations for Pauli matrices are

1 , .
Yab = 510 W) = iEapere  with ez = el =1,
(B.2)
Y1Y27Y3 = t.

The spinors ¥ and 1 are independent and have the same index structure, i.e., ¥® and .
Spinor indices are omitted in the main text and contracted as

Pp = P Copt®,  Pytrh = P Cap(v")P 107 . (B.3)

We take C' = ((1) _01). Given that Cyp is antisymmetric and (Cy*),s is symmetric, consid-
ering Grassmann-odd spinors it follows

VY =upp, Y= -y, (YY) = =yt (B.4)
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B.2 Vector multiplet

The field content of Euclidean N' = 2 vector multiplet is given by the gauge field A,
two complex Dirac spinors A and A and two auxiliary real scalar fields D and o. The
supersymmetry variations are parameterized by two independent complex spinors € and €
and they are given by [5, 7, 21]

i _
0A, = §(G’Yu)‘ — AYu€),

1 _
do = 5(6)\ — Xe),
1, - 2t
o\ = —37 el — De+ iy eD, o + 507 D¢, (B.5)
- 1 o 2i _
o\ = —57’“’€Fuy + Dé — iny''éD,0 — gafy“Due,

0D = f%?y“Du)\ - %Duj\v“e + %[E)\,U] + %[5\6, o] — é(DME’y“)\ + M* D) .

D, is the covariant derivative with respect spacetime and gauge connection. For the Sg met-
ric, D,, is covariant also with respect to an R-symmetry gauge field® V = —% (1 — %) dpr—

% (1 — %) dps [7]. Denoting as d. and d¢ the supersymmetry generated by € and €, it results

[0¢, 0] = [0g, 0] = 0 and [5, 7, 21]
€ O€ =1 Oy +10,v" Ay — )
0, 6] Ay = 10”8, Ay, + i0,0" A, — DA
[0c, 0eJo = iw"0,0 +i[A, o] + po,
) 3
[6., 6]\ = w9\ + i@,wfym + A X+ SpA+ a, (B.6)
- o - 3 -
[0, 0 A = i\ + i@wm +i[A A+ oA - ak,
[6..0]D = iv"9,D +i[A, D] + 2pD + W,
where )
W = gU(E'y“’y”DMD,,e — ey'y"D,Dé). (B.7)

Therefore, for all the fields except the scalar D, the commutator is a sum of a translation
by v#, a rotation by ©#” a R-symmetry rotation by «, a gauge transformation by A and
a dilation by p. The explicit expression of the symmetry generators is

vt = eyte,
em = pliy 4 v’\wﬁ\w,
A =v'iA, + oée, (B.8)
p= %(E’y“Due + D, e''e),

a= %(Dﬁw“e — ey Dye) + 'V,

Tor a chiral scalar of R-charge —A, we have D, ¢ = (V,, +iA4, —iAV,)é.
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where wﬁ\w is the spin connection. The supersymmetry parameters satisfy the Killing

spinor equations

D,e=,¢, D,e=~,e.
The explicit expression for the spinors € and € for S3 is [4]
i - i
€= 556 €= gpt
For S} is [7] . .
. i - i
“TORFW)” "7 2RI)
where f(19) is defined in the main text and for St x S? [§]
- 1 O
€= —5e €= e

€

(B.9)

(B.10)

(B.11)

(B.12)

With these supersymmetry generators, it follows that for all the spaces that we consider,
it results W = 0, where W is defined in (B.7). This implies that the supersymmetry closes
off-shell on all the fields. It also results p = 0 for all the spaces, that implies that the

commutator [J, d¢] does not include a dilation.

B.3 Chiral multiplet

The field content of the chiral multiplet is given by two complex scalars ¢ and F' and spinors
1 and 1) with two complex components. These fields are in a generic representation of the

gauge group. The supersymmetry variations are given by [5, 7, 21]

0p = €,
06 = ey,

2N

5t = iy eD,ué + icod + TZ’y“Dueqﬁ teF,
NG

0 = iv"'eD, ¢ +ipoe + Tgb’y D€+ Fe,

§F = e(in" Dyt — o) — iAe) + %(m — 1) Dy,

§F = e(in" Dy — itho + ip)) + %(m — 1)D, ey

and the commutators give the following off-shell result [5, 7, 21]

[0, 0] = 190,60 + iAd + Ap — Aag,

[0c, 86 = iv10,6 — iGA + Apd + Aad,

e, 0 = 0P Dyt + @™ + i (A " ;) pb+ (1 - Aas,

BerbJ = 040, + 0,7 — i + <A + ;) o+ (A — 1)ad,

[0c, 0| F' = iv"' O, F + iAF + (A + 1)pF + (2 — A)aF,

[0e, 6] F = ivF O, F —iFA + (A + 1)pF + (A — 2)aF,
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that is for generic supersymmetry parameters, as for the vector multiplet, the commutator
[0¢, 02| is a sum of a translation, a rotation, a R-symmetry rotation, a gauge transformation
and a dilation. The commutator of two generic unbarred supersymmetries is different from
zero for the scalar F' [5, 7, 21]

2A
[0, 0] F = ey*€ (2D, Dy¢p + iF ) + ?qb(ey“’y”DuD,,e' — éy*4YD,Dye). (B.15)

However, considering the supersymmetry generators that we described in the previous
section, for all the spaces it results [d¢,do]F = 0. A similar results holds also for the
commutators of two barred supersymmetries on the field F. We can therefore conclude
that, for the spaces considered in the main text, also for the chiral multiplet two unbarred
supersymmetries and two barred supersymmetries commute. The commutator [, J¢] is a
sum of a translation, a rotation, a R-symmetry rotation and a gauge transformation.

B.4 Background gauge multiplet

In three-dimensional theories, one often considers a background non-dynamical gauge field
A, that couples to a global symmetry. In N = 2 theories, one introduces the SUSY
partners (o, D, ...), on which the path integral depends. The gauginos are set to zero, and
in order to preserve supersymmetry, we require that their variation vanish. Suppose that
on SZ’ we have vortex loop of charge n at ¢ = 0. Supersymmetry requires that

A=ndpy, D= _Rif , o = constant. (B.16)

On S! x §?, when we have a (anti-)vortex loop of charge n () at the north (south) pole,
the configuration preserving SUSY is given by

At = —%d? + %(:l:l —cosO)dp £ntdp, o= —% , a=constant, meZ (B.17)

on the two patches UT = {6 # n} and U~ = {6 # 0}.
The supersymmetric BF coupling between the background and dynamical gauge mul-
tiplets is given by the insertion of e SBF in the path integral where

__ _ (s
Spr = o /AA dA 9r /d x\/g(DO'-f—O'D). (B.18)
The invariance of the BF term under @ follows from that of the CS term because
SBF(A, AL ) = —1 [Sscs(A + A, .. ) - Sscs(A, .. ) - Sscs(A, .. ‘)]k:l . (B.lg)

On Sg’, the scalar ¢ = (/R is nothing but the FI parameter, and the second term
in (B.18) is the standard FI term Spy that enters the path integral as

—SF1 - _ i< 3 _ 9
2 . SFI 5 d’z /g (D Rf> . (B.20)

— 35 —



C Boundary terms on the round sphere S3

In the presence of the vortex loop operator one needs to keep track of delta function
contributions at the singularity, or alternatively of boundary terms arising from an ex-
cised tubular region of the loop operator. There are three main reasons why these terms

are important:
1. Without these terms the localizing actions are not Q-exact.

2. Without these terms the vortex loop operators would seem not to break any super-
symmetry at all, while the boundary terms ensure they preserve only one half.

3. The boundary terms may contribute to the value of the action evaluated at the saddle
points of the localizing action.

In this appendix we study the boundary terms for the different pieces of the N’ = 2 actions
in three dimensions, focusing for simplicity on the case of the round S3.

For the round sphere S?, the supersymmetry variations for the vector multiplet
spinors (B.5) simplify to

1
OX = =37 eFy + iveD,0 - <D + ;’2)6,
) (C.1)
3 . - g \_
0N = —57’“’€FW — iy"eD,o + <D + R)E’
and the variations for the spinors and the auxiliary scalars in the chiral multiplet (B.13)

are

A
0 = ivFeD,p + icop — EE(JS + er,

§¢ = iy"eD,b + idoe — }Azegb + Fe,

1 (C.2)
OF = €(iv'Dyp —iop — iXg) + ﬁ@A — ey,
§F = e(iv"Dyyp — iho + igA) + %(m — 1)erp.

C.1 Boundary terms for supersymmetric Yang-Mills action

When using the supersymmetric Yang-Mills action (3.3) as a localizing term it should be
written as a total superderivative [5]. Keeping track of total derivative terms it is possible
to show that for generic Killing spinors € and €

1_
00, Tr (2)\)\ - 2Da> =éeLgym + D, Tr <i€’y,,e "o —€éeoDFo — ey'HeoD,o

ey g LNt
+ ey 6<D+ R>0+ 2)\7 e(e)\)>.
(C.3)
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Considering a boundary at small ¥ = ¥y in the coordinate system (A.8), we obtain

/ d*x+/q 60 Tr (;)\A — 2Da>

= Ee g%MSSYM - Rr? / dp1dps cos ¥ sin ¥y Tr <i€'y,,e F"o — oD (C4)

—&"YeoD,o + z'Evﬁe(D + ;>O’ + ;5\7196(5)\)> :

With e and € satisfying (2.6), the previous expression simplifies to
1_
/ d3x+/g 60 Tr <2)\/\ - 2Dg>

. 9
= g%MSSYM + /dgoldcpg cosJg sin g Tr (10FW2 + ED7902 + @5\(% — z'fyg))\>
cos Oy 2 4
(C.5)
Being a supersymmetry variation automatically implies that the sum of the bulk and
boundary actions are invariant under supersymmetry. This can also be verified directly, as
the supersymmetry variations of the SYM Lagrangian (3.3) are total derivatives

1 |~ 1- =
0eSsym = —5— d*z\/g D, Tr |:—;)\’}/V€FMV - iAeDua - ;)«W%(D + ;)] . (C.6)
9ym

Putting a cutoff at small 9y gives the boundary term

2

1 7 - 7. -
0eSsym = —— | dp1dps Tr [2 cos Yo Ay2ely,, + 3 sin Yo Ay3eFy,,
Iym

1 _ _
+ 3 cos Yo sin Vg <R)\e Dyo + iRQ)\’yle(D + ;)) ] ,

likewise

1 1 R
5:Ssym = —— [ d*x\/g D, Tr [—E”VPEAF,,,) + gw”ADya]
9IM 4 2
1 1 1 1 (C8)
= —5— [ dp1dps [2E)\F¢,w2 —3 cos Yoey12A Dy, 0 — 3 sin 190E713)\D¢30} .
Ivym

By adding the boundary term in (C.5) and using the projection equations (2.6) it is possible
to check that d.(Ssym + SSBYM) = 0z(Ssym + SSBYM) = 0. Since this statement is true only
assuming the projection equations, this also confirms that the vortex loop operators break
half of the supersymmetry at the singularity.

Note also that the boundary action vanishes on the BPS solutions (2.14) with arbi-
trary og.

C.2 Boundary terms for Chern-Simons action

The supersymmetric CS action (3.1) is not a total superderivative, still it is possible to
add boundary terms such that its variation vanishes. The supersymmetry variation of this
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term is of course also a total derivative, which reads

. 1 B )
3:Sscg = % /dgfv\/ﬁ Tr [26’“‘”p8u(A,,)\7pe) - au(a)\'y“e)]

ik 1 0. s < n
= M/d%;\/g Tr |:—26 A A e+ aXy e] ,

(C.9)

where the integral on the second line is on the boundary and " is in the normal direction.
Let us use the metric (A.8) and frame (A.9) with a boundary at small ¥y, so we get
explicitly

ik
0eSscs = Zf/dgol dpo cos Vg sinddg X

B 1 _ B
x Tr [_20‘4@1)‘736 + ——— A, e+ Rodyie| . (C.10)

2 cos Yy
Let us consider the boundary term
B k .
SSCS == E d@l d(,DQ Tr [Aépl (A¢2 — QZRO')] . (Cll)
Given that near the singularity yze = € (2.6) it follows
5e(Sscs + S&g) = 0. (C.12)

Likewise for the € variation

ik 1
5:Sscs = fTw / da/g Tr [—zeﬂupau(AmpA) - (9“(67”)\0)}

& ) (C.13)
i
= / d*x\/g Tr | S A e\ + &Y' Mo | |
4 2
and given that near the singularity v3é = —¢, it results
0z(Sscs + SSBCS) =0. (C.14)

Let’s now consider gauge transformations. Given an element g of the gauge group, the
gauge vector A, transforms as

Ay — Al = gAgt —igdug! (C.15)

and the remaining fields in the vector multiplet transform in the adjoint representation,
for instance

o— 09 =gogt. (C.16)

The super Chern-Simons Lagrangian

27 -
Lycs = Tt [sw (AMZ?VAp + ;AMAVAP> — M+ 2Do] (C.17)
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transforms as
. _ 1 _ _ _
Lscs = LEqg = Lscs+ietPo, Tr [&,g 1gAp} —gs‘“’p Tr [g 1c(9ugg 19,99 18pg] . (C.18)

Using this result, it follows that the sum of the bulk and boundary actions transforms to

k _ .
(Sscs + Stg)? = (Sscs + S&s) — /d%dw Tr (0,9 g (iAy, + cosOyRo)| + T,

21
(C.19)
where T is given by
k y _ _ _
T—=__"_ d3:c\/§5“ PTr [g 1f)ugg 19,99 16,09}

127 9> (C 20)

N ) . .
-0 dprdps Tr [g 1ngg 189929] .

T Jo=v,

In the limit Y9 — 0, g(¢¥ = ¥y) is independent of i, and we recover the usual gauge
transformation of the Chern-Simons action.

C.3 Boundary terms for Fayet-Iliopoulos term

Under a generic supersymmetry variation the Fayet-Iliopoulos action (3.4) transforms as

5Spy = x\/gD,(MFe + ey N, (C.21)

47R

and placing a boundary at small 8 = 6y, it results
_ @ : 0. =0
0Sp1 = 1 dp1dps cos ¥g sindg(Ay e + ey7 ) . (C.22)
m
If we add the boundary term

¢
Sk = o /d901d<P2 cos Ay, (C.23)

and consider the supersymmetry generators that satisfy the condition (2.6) we find
5(Sp1+SE) =0. (C.24)

C.4 Boundary terms for chiral action

Like the SYM action, the chiral action (3.6) is a total superderivative [5] and can be used
as a localizing term. In the presence of a boundary or a singularity we need to consider
boundary terms.

For generic Killing spinors € and € the double variation is

oes. (10— 2ido-+ 2572 6o
= €€ Lepiral + Dy, <e'y’“’e éD, ¢ — ey'e pod + m;zmev“e bP + i eyt (e¢)> .

(C.25)
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Placing a boundary at small ¥ = ¥ in the coordinate system (A.8), we obtain

— - 2(A—1) -
/dgx\/§5656 <1/”/] - 27f¢0¢ + (R)(bd)) = €€ Schiral

— R3/dcp1d<p2 cos Y sin vy <€719Ve ¢D,d — ey’ po + 1(2]_%A) eepp + i ey’ (e@b)) .

(C.26)

With e and € satisfying (2.6), the previous expression simplifies to
- - 2(A—1) -
/dgx\/§6€5€ <¢¢ - 2Z¢0¢ + (.R)¢¢> - Schiral
(C.27)

- iR - )
— R/dgouigoz cos Uy <2¢D¢1¢ + -5 sin 9gh (11 + ZVQ)w) .

Clearly the variation of the sum of bulk and boundary actions will vanish for all the
supercharges parameterized by € and € satisfying (2.6). This can be verified by an explicit
calculation as done for the SYM action above.

D Kinetic operators on S3

In this appendix we study the kinetic operators arising from expanding the localizing
actions on S? and calculate their spectra.

D.1 Vector multiplet

In order to localize the vector multiplet we add to the Lagrangian a total superderivative
t Sioc = t8c0: [ (A — 4D0), which is proportional to the Yang-Mills action (3.3) [5, 21] and
the boundary term (C.5).
To compute the one-loop contribution we consider fluctuations around the BPS con-
figuration, i.e.
o’ oo D'

= - D=--"24+= A,=A0 4 £ == D.1
g UO+\/E’ R+\/E7 1 m +\/%7 A ﬁ: ( )

and expand the Yang-Mills action up to quadratic order in the fluctuations. Considering

the background gauge D(O)“AL =0, where D©) is defined using the connection A,(LO)

A; N

DY) = v, +i[AD, ], (D.2)

we obtain

1 "\ 2
tLsyn = 5 Tr | ~A*DO DI A, — (o9, A — o' DODP)o" + (D’ + ‘;)
(D.3)

_ _ 1 -
-\ / 0)y\/ -\ / / I\/
+7/)\’Y'U‘DI(L))\ +Z)\[O-O’)\]_2_R)\)\:|
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and this quadratic action is invariant under the supersymmetry variations
7 _
5AL = 5(6%)‘/ — Nye),

do' = %(E)\’ —Ne),

/
SN = =y eDV) A}, + inte(DV o’ +i[A),, o0]) — <D’ + ;) €, (D.4)
/
SN = —y"eDD) A}, — inte(DV o’ +i[A),, o0]) + (D’ - ;) é,
i i - i T~ 1 1 <
(SD, = 7§E’yquL0))\/ — §D£O)A,7u€ + §[E)\/, O'(]] + 5[)\,67 UO] - EE)\/ + EAlev

where € and € are the supersymmetry preserved by the vortex. Using the Cartan decom-
position of the gauge group, a generic fluctuation field ®' is written as

P =X, + PK; . (D.5)

In the following we ignore the contribution of the Cartan components ®, since their actions
do not depend on gg. The action tLgy\ is therefore written as

1 ! , 1\ ..
5 [ @i L g ane (~VOTHO taln)?) g + 500 (VD +ialon) - 5 )

2R
—avoﬂvo « D¢ g D% g

where we defined the operator

VO =V, +ia(AD) (D.7)

and used the fact that AELO) is in the Cartan of the gauge group. The supersymmetry trans-
formation for any ®* can be easily obtained projecting on the X, generator the expressions

in (D.4). It results that the effect of the vortex on the localizing action corresponds to

replacing V,, with V,SO). It is therefore convenient to redefine the generic field ®* as

O — efia(Aflo))x“ (i)a (DS)

so that V,(LO)CI)O‘ = e*m(AELO))I“ V#i)a. Since ®¢ should be a periodic function, it follows that

P satisfies

- . )y ~ . -
(I)a(’ﬁ, o1+ 271', 902) _ 627”&(’4‘21)(1)0‘(&, o1, ()02) _ eQmoc(H)(I,a(ﬂ’ o1, ()02)’

- ’ (D.9)
@&(197 P11, P2 + 27T) - (pa(ﬁ) @1, 902)7

or in terms of w and v (A.1)

(i)a(62m'u’ 1)) _ 627ria(H)(i)a(u’ U),

~ . ~ D.10
O (u, ™) = O*(u,v). ( )
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Considering the redefinition (D.8), the action (D.6) is written in terms of ®¢ fields as

1 A—a ja | Y—a . 1 e’
3 /d%\/gz [g’“’AM (=VuVH* + a(o9)?) A2 + A <Mv# +ia(og) — 2R> A

jod 7& - ’0"_&
o YVIV 0 D™ D%+ —
o no + ( + — I ( + R ) ]
and the supersymmetry transformations are given by

§AY = %(Eﬁyﬂj\o‘ — j\o‘*yﬂe),

1 - -
66% = S (EA* = X%),

O = ="V, AY + i e(V 6% — (o) AT) — <Da " C;%> -
G

N = eV, AL — PV, — iclo0) AZ) + (Da + R) é,

5D = —%WWX@ + %ey"vﬂjxo‘ — (;a(a )+ 4;) EXY 4 <—;o¢(00) 4;) \%.
(D.12)
The one-loop contribution of the vector multiplet that depends on og therefore is
given by
detq (iV"V,, +ia(og) — 55)

dety (—=V,VH + a(ao)2)1/2 ’

ZSomm(@0) = [ 1 (D.13)
(0%

where det, (O) is the determinant of the operator O, evaluated in a space of fields ®* that

satisfy the boundary condition (D.10).

In appendix E we have constructed a basis of harmonics satisfying these boundary
conditions. There are many such harmonics, most of which are non-normalizable and
should not be included in the spectrum. We discuss the states in detail in appendix E
and try to make an educated guess which modes should be included in the spectrum. The
result is

Zy5er(o0) =[] H n®+a(Rog +iH)?) . (D.14)

a>0 n
D.2 Chiral multiplet

We now focus on the matter sector of the theory.

Since Lehiral (3.6) is a total superderivative [5, 21], multiplying the matter action by
an arbitrary parameter ¢, the result of the path integral remain unchanged. Therefore, the
contribution of the matter sector is given by the quadratic fluctuation with respect to the
classical configuration that minimize (3.6), i.e., p =¢p = F = F = =) = 0.

As for the wvector multiplet, we consider fluctuation with respect to the
localizing configuration

F, =7y, 4= 71/) (D.15)
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and in the large ¢ limit,

A 2
tLeniral = DOF DHOG 4 o3¢ 4 i2( )cb 09’ + Al )¢¢> + F'F'
R? (D.16)
— iy
where we defined
DY) =V, +iAVK], (D.17)

where KiR are the elements of the Cartan subalgebra written in the R representa-
tion. Also the constant field oy is expressed in the R representation of the Cartan
subalgebra, i.e., 09 = of KF. The Lagrangian (D.16) is invariant under the following
supersymmetry transformations

0¢' =&,
3¢ = ey,

/ ; (0) 41 ; / A S i
oY’ =iyt eD,’ ¢ +icood’ — Eegf) + er’,

A (D.18)
oY =iy eD qb +zq§006—§e¢ + Fe,

1
SF = e(iv" DO — ioo)’) + —(2A — 1)er)/,

" 2R
_ 1
OF = e(z'y“D( Y — i og) + E(ZA — ey’

Expanding all the fields in the weights p of the representation R (see section 2.3.2) the
Lagrangian becomes

t'cchiral = Z

2
¢F (VLO)V”(O) + <P(UO) 1t 1) + ;) ¢° + FPFP

R
g (D.19)
. 2A — 1
. 0 .
L (—W“VL) Fioloo) - 25 ) o
where we defined
VO = v, +ip(AD). (D.20)
Like for the vector multiplet, we redefine the fields as
oF — o ir(A )T o, (D.21)
so that VELO)q)p = e_ip(AELO))“/’”VMCi)” and ®” satisfy
(¥, v) = 2P HP (y, v), D (u, e2™0) = P (u,v). (D.22)

The fields ®° can be thought as the complex conjugate of @ fields, although in the Eu-
clidean formulation of the theory ®” and ® are independent. It is however natural to
redefine ®” as B

&P — Az Gp (D.23)
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so that . . .
(> i, v) = e 2P §P (4, v), P (u, e*™v) = O (u, v). (D.24)

In terms of & and ®” fields, the Lagrangian reads

- A1 1\ - =
Fahival = ) [¢p <—VN“ + <p(oo) i ) + R2> @ + FPFP

p

(D.25)
= ‘ , 2A — 1Y -
+ P [ —i*V, +ip(og) — PP
2R
and it is invariant under the following supersymmetry transformations
3P = &y’
59F = ey,
~ . s, A
0P = iv"eV . ¢f + ieogd’ — Eegbp + eFP,
) B B A - ) (D.26)
SYP = iy'eV ,,¢f + idPogE — Eégzgp + FPe,
1
SFP = e(in'V 0P — iogP) + ﬁ@A —1)e)?,
1
SFP = eIV, - 21/1”00) + ﬁ@A - 1)ewp
The one-loop contribution of the chiral multiplet that depend on oy is given by
. det, ( vtV +ip(og) — 28— 1)
Ziteao0) =11 5 (D.27)

p dety (—Vuv“ + (ploo) + 471" + ﬁ) |

where det,(O) is computed on the space of fields that satisfy the boundary condi-
tions (D.22).

As in the case of the vector multiplet we have to consider spherical harmonics with
modified periodicity, discussed in appendix E. Our result is

chlral n+1_A+Zp(RUU+ZH) n_ S A .
lloop HH <n1+A2p(RO’0+2H) —HSb:l(l 1A p(R00+lH)),

p
(D.28)
where sp(x) is the double sine function. There are many subtleties in this expression which

are discussed in section 3.3.

E Spherical harmonics with non-standard periodicity

As explained in appendix D we are interested in computing the spectrum of operators using
a basis that does not satisfy the standard periodicity condition. In particular, we consider
eigenfunctions ®(0, ¢, 1) that satisfy

<I>(e2”u, v) = e2ﬂia(H)Q>(u,v) _ eQWi”(I)(u,’U). (E.1)
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Here a(H) = n is the value of H for one of the weights, appropriate for a field in the adjoint
representation. For other representations it is replaced by p(H ), which to avoid clutter we
will also denote by 7.

E.1 Scalar harmonics

Let us recall the construction of the usual scalar harmonics on S3. The scalar Lapla-
cian —V? can be expressed in terms of the SU(2), or SU(2)g angular momentum opera-

tors (A.3), (A.4) as
4 4
2 712
-V 732( ) R2

The spherical harmonics are classified by representations of SU(2);, x SU(2)x which obvi-

(L%)2, (E.2)

ously should have the same quadratic Casimir. The states S(n, m, m’) are labeled by three
integers n, m, m’, such that j = n/2 > |m|,|m/|. n is the principal quantum number and
m and m’ are eigenvalues of the operators L§ and L3R.

These spherical harmonics can be written in terms of homogenous polynomials of
degree n in the four coordinates u, @, v and ©. We can construct a highest weight state3°

S(n,n/2,n/2) < u", (E.3)

which is annihilated by L% and L¥. The full multiplet with (n + 1)? states can be con-
structed by acting with LY and L%

S(n,m,m') o (L*)™/2=m(LRyn/2=m"yn (E.4)

The lowest weight state is reached by acting n times with both LY and L and it has the
form

S(n,—n/2,—n/2) < a". (E.5)

We would like now to generalize this to functions which satisfy the periodicity condi-
tion (E.1). We require that the functions vanish at v = 0 and are regular at v = 0. m and
m’ are shifted by 1/2 and a natural highest weight state is

n—+mn n+mn
2 7 2

Sg(n+mn, ) oc u™ T, (E.6)

This function has the desired periodicity conditions, for 7 > —n it vanishes at u = 0 and
is regular at v = 0. Acting with the Laplacian on it gives

_V2SH<n+n,n+77 n+n>:(n+n)(n+n+2) ntn ntn

We can create other states solving the same equation by acting on this state with any
number of LY and L®. For non-integer 7 they form a non-unitary representation of SO(4)
which is infinite dimensional, so it is not clear how many of the states in this representation
we should include. We are not required to include the full representation, since the loop
operator breaks the SO(4) symmetry. Note that both LY and L include a 0, derivative,

39The normalization is not important for our purposes, so we will ignore it.
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so acting with a total of k lowering operators will give a term proportional to w™ *+7.

For k > n + 7 this mode is singular at w = 0. We rely on the analysis of supersymmetry
multiplets in appendix E.4 to determine which states should be included.

In addition to the states which are descendants of the highest weight state there are
more regular states that we can construct by starting with the modified lowest weight state

SL <n—77, —n—i—n’—n—l—n) occu"m. (E.8)

2 2

21

Note that it has the same periodicity e?™ under u — e*™u, but a different Casimir

—v2s; (”—777 —n—i—nj—n—i—n) _ (n—=n)(n—n+2) s (n—n,_n+77 —n+77>'

2 2 R2 2 2
(E.9)
Acting on this state up to k times with either LY or L will generate (k + 1)(k + 2)/2
states. If £ < n —n then these states are regular at u = 0.
The space of scalar harmonics with non-trivial periodicity is equipped with a scalar
product defined as for standard scalar harmonics

(S(n1,my,my), S(ng,ma,mh)) = /ng(nl,ml,m/l)S(ng,mg,mé) (E.10)

where df is the volume element on the S33! and S is the complex conjugate of S. It results

<SH(n17 my, mll) ’ SH(n27 ma2, m,2)> X 6n1,n25m1,m25m’1,m’2
<SL(?7,1, mi, mll) ) SL(”Qa ma, m/2)> X 5n1,n25m1,m25m’1,m’2 (Ell)

(Sr(n1,m1,my), Sp(n2, ma, mp)) =0
where all the functions have the same deformation parameter 7.

E.2 Vector harmonics

There are two sets of divergenceless vector harmonics on S? [38, 39]: V' (n, m,m’) that form

a representation (241, 1) of the symmetry group SU(2), x SU(2)g, and V~(n,m,m/)
that form a representation (251, %+1) 32 The two sets satisfy
— V,VEVE(,m,m') = (n+1)2 VE(n,m,m’), (E.12)

and are related to each other by the parity operator P as
PVt (n,m,m') = (=1)""'V~(n,m',m), (E.13)
where the action of the parity on the complex variables u, v is given by

Pu=—u, Py =—7. (E.14)

!For instance, in the torus fibration coordinates it is given by dQ = dz®,/g = R®sin 9 cos 9dddep1deps.
32We use bold characters for vectors in the four dimensional embedding space.
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Complex conjugation acts as
VE(n,m,m') = (=) HIVE(n, —m, —m). (E.15)

In each of the V™ (n,m,m’) and V™ (n,m,m’) multiplet there are n(n + 2) states. To
explicitly write the states it is convenient to consider the scalar product of the vector
harmonics with an auxiliary vector v’ = (u/,v’) defined in the embedding space C2.33 The

highest weight state V1 (n, ”TH, "T_l) is given (ignoring normalizations) by

1 n-1
VT (n, n—2+— , n 5 > oc (—u)" (v — w) (E.16)

and the other r' - V*(n,m,m’) in the multiplet are obtained applying the annihilation
operators LY +L'" and LT+ L% where L'" and L'® are generators acting on the auxiliary
variables «' and v'. V™ are gotten by acting with the parity operator P.

We would like to construct vector harmonics that satisfy the periodicity condi-
tion (E.1). As with the scalars, we take the (unnormalized) modified highest weight states

1 —1
r/V;__I<n+T],n+2+n,n 2+77> OcunflJrr](vul_uvl)’
E.17
/ — n—1+n n+1+n n—14n/~ 1 _y ( )
r-Vy(n+n, 5 \ 5 o< U Nou — uv').

We can act on these states with lowering operators to create other states all of which satisfy
~ V. VEVEm 4+ n,m,m) = (n+n+1)2VEn +n,m,m). (E.18)

Let us examine their behavior at u — 0. The lowest power of u in the descendants are

1 -1
r’-VE<n+77,n+2+n—l,n 2+n—r> ~ ' o (=8,) T

n—14n snt+l4n
2 ’ 2

(E.19)

. V;{ <n +n, ,’:> ~ 1—}[—&—1 UF(_au)Z—i—Fun—l—l—n 4.
We find that for 0 < n < 1 there are % modes of each of V%I which are regular as
u — 0. The same statement holds true when considering singularities of the field strength
rather than the gauge field.

In a similar fashion to before we can also start with the lowest weight states

—n—1 —n+1
r’-V}f(n—n, n +77, n +n>o<a”‘1‘"(w’—m‘)’),

2 2
+1+ 1+ (E-20)
-V (n-n, n 77, n ) a1 (vd — '),
2 2
and act on them with raising operators, giving eigenstate of the vector Laplacian
~V, V'VE —n,m,m') = (n—n+1)*VE(n —n,m,m’). (E.21)

33The scalar product for four dimensional vectors is defined as A- B = A1B1 + A2Bo + AsBs + AyBy =
AuBu + AﬁBa + AUBU + AEBT) - 2A1LBﬁ + 2AﬁBu + 2A1;BT) + ZAT:Bv~
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Their leading behavior at u — 0 is

—n—1 — 1
r - Vz (n -, n 5 Rl +1, n +2 skl + r) ~ @ ' (9) T (@)
_ 1 - —n—1 S e
r - VE <’I’L _, n —|—2 +n + l7 n 5 +n + 7;) ~ ’L_L/UH_I ﬁr(aﬁ)l—kr(a)n—l—n 4.
(E.22)
E.3 Spinor harmonics
We now study the spectrum of the Dirac operator
—iY = —ivy"V, (E.23)
where the covariant derivative for spinors in the left-invariant frame is given by
7

In terms of LY, the left-invariant angular momentum generators (A.3) and the spin operator
St = %7“ this is

1 3
— iy = = <4LL S+ 2) . (E.25)
Considering J = LY + S, we have

1 3
—iV=— (232 - (L2 -8%)+ 2. (E.26)
R 2
Given that S has spin s = 1/2, then for L with spin | = n/2, the spin of Jis j = (n£1)/2
and we label the eigenstate as x*(n, m,m’). It follows that for x*(n, m,m’) states n > 0,
and for x~(n,m,m’) states n > 1. The eigenvalues are +(j + 1)/R, or explicitly

—i¥xt(n,m,m') = %(n +3/2)x" (n,m,m’),
(E.27)

—i¥Yx (n,m,m’) = —%(n +1/2)x" (n,m,m’).

The multiplicity for j = (n+1)/2is (n+2)(n+1) and for j = (n — 1)/2 is n(n + 1).
The highest and lowest states are given in [38] (in slightly different notations)

,_n—i—l. n nn—i—l ny _ u” n n_n—i—l ny 0
J=m X" e) T o XA\ Ty ) T e
oon—1 _ n—1n punt _ n—1 n u"
_= N n, ——, — = n., — —_— =
7= XA\ un X\ Ty T
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As with the other harmonics, we can deform them for 1 # 0 as

. on+1 . n+1l+n n+n\ [ut?
+f —n—l+4+n —n+n\ _ 0
XL<7”L 7, 5 " =\ gn—n
. n—1 _ n—1+n n+n\ [ou" 111
J = 2 . XH n+77; 9 ’ 9 - un+n
_ —n+14+n —n+n\ un
XL <n =1, 5 B ) = (vu"—l—’i> (E.29)

More modes are obtained by applying the annihilators J_ = LY + S_ and L to highest
weight states or the creators Jy = Li + 54 and Lﬁ to the lowest weight states. All these
modes are eigenstate of the Dirac operator (E.26) with eigenvalues

. 1
—i¥x7(n +n,m,m') = —(£(n+n+1) +1/2) x5 (n +n,m,m’),

0 (E.30)

=iV (n = n,m,m) = 5 (En —n+1) +1/2) X (n = n,m,m').
As before, these states will become singular when acting with too many cre-
ation/annihilation operators. Some of these states have to be included to complete the

supersymmetry multiplets analyzed now.

E.4 Supersymmetry multiplets

In order to determine which fluctuation modes one should include in the calculation of
the determinant it is helpful to consider the multiplets they form under the supercharges
preserved by the vortex loop operator. This is analyzed here and the final expressions for
the determinants determined.

E.4.1 Chiral multiplet

The fluctuations of bosons and fermions can be expressed in terms of fields that satisfy non
trivial boundary conditions, as discussed in previous sections. These fields are related by
supersymmetry transformations (D.12), (D.26), that when written in terms of symmetry
generators D, = %Lﬁ (A.3) and v, = 2S5, are

5¢F = &),
- 4 - 2 - 2 - - A _
SpP = —Rqubﬂsge — ELingS_e — §L£¢Ps+e + <iao¢>p - R¢P> €+ Fre,
SFF = 4 e(LE - S)yP —iogep? + l(A — 2)er)”,
o f R (E.31)
o = e,
ad 4 fad _ 2 a4 _ 2 fad _ = A ad _ ~
SiP = —§L§¢Psge - EL@PS,E - Equsfﬁs;e + <z¢pao - R¢P> e+ FPe,

4 ~ ~ =~
P = L E(LE ) — ieban + (A~ 2)e”.

>
eS|

— 49 —



For the supersymmetry preserved by the loop operators (2.6), the parameter € has spin
+1/2 and € spin —1/2, therefore y;e¢ = y_€ = 0. They can be written as e = (} ) and
€= (2) and a few terms of (E.31) drops out.

Focusing on specific components p of the fluctuation fields with p(H) = 7, they can
be expanded in the harmonic bases as

Z ¢n+77mm'SH(n+777m7m Z (bn nmm’SL(n_n)mym/)a

n,m,m’ n,m,m/’
Z w”ﬂ?mm/XH(n—'—n’mm + Z ¢n+nmm’X;{(n+namam/)v
n,m,m’ n,m,m’
T Z d}” n,mm’XL( n,m,m Z wn nmm’XL( nvmam/)a
n,m,m’ n,m,m’
F= Z n+nmm’SH(n+777mam Z mm’SL( n,m,m’).
n,m,m’ n,m,m’

- - (E.32)
The expansions of ¢, 1) and F are similar and from orthogonality of the states and the

eigenvalues calculated in the previous sections (E.7), (E.30) one sees that the action (D.25)
iS34

(n+n)(n+n+2)+ (Rp(og) +i(A—1))2+1 - I
Schiral = Z ( R2 ¢n+n,fm,fm’¢n+n,m,m’
(n—n)(n—n+2) + (Rp(oo) +i(A —1))* +1
+ R2 ¢n n,—m, m’¢n n,m,m’
(E(n+n+1)+iRp(og) —A+1) 1,
+ Z < R n+n,—m, m’wn+nmm
n,m,m’,+
(E(n—n+1)+iRp(oo) —A+1) —py
+ R wn n,—m,— m’q’bn n,m,m/’
H mH L
+ Z n-i—n, ’Fn+nmm/+Fn n,— ’Fn nmm)‘
(E.33)

Note that ¢ is in the conjugate representation to ¢, so the allowed values of 7, which
are the eigenvalues of the weights p have the opposite signs. This matches with the fact
that the shift of n in the states arising from the highest and lowest weight states have the
opposite signs.

To see the supermultiplet structure we can plug the expansion (E.32) into (E.31). If
we project the variation 5<z~5p into eigenstates of the total angular momentum L2, L% and
Lg and find that

+

L+

6¢n nm,m’ " ¢nfn,m+1/2 m’ + wn nym+1/2m’ "
In the last expression we ignored numerical factors and assumed the states on the right
hand side exist.

34This result follows from the relation Sz r.(n +n,m,m’) = Sr. g (n + 1, —m, —m’) and similar relations
for the other type of harmonics, and the scalar products discussed in the previous sections.
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Likewise, when projecting 8t on eigenstates of L - S, J3L and Lf we find
H+ H
wn+n,m+1/2,m’ ~ ¢n+n,m m/ + F n+n,m-+1,m’ (E.35)
(and likewise for ¢“*). The variation of the modes of F' give back the same modes v
as above.
We therefore conclude that the states

H= FA

{¢n+n m,m’ ¢n+n m+1/2,m' > Tntnm+1/2m/ 0 T ntnmtlm/ } (E36)

are multiplets of the unbroken supersymmetry and likewise

L
{¢n n,m,m’ ¢n n,m+1/2,m’> ¢n nm+1/2,m’ "’ Fn n,m+1,m’}‘ (E37)

For each such multiplet there is another multiplet of the barred fields, which couple to them
in the action (E.33). The contribution of each multiplet in (E.36) to the determinant is

(n+n+2+iRp(cg) — A)(—n — 5+ iRp(cg) — A)
(n+n)(n+n+2)+ (Rplog) +i(A—1))2+1

= 1. (E.38)

So up to minus signs, which we will not try to keep track of, the determinant is trivial.
The only exception to this statement is when the full multiplet does not exist, rather
it gets shortened, in which case the determinant is nontrivial.

The largest value of m for which the state qﬁn +?7 oy €Xists is m = "TM In these
H
cases the multiplets get shortened, as the states wnﬁ%n +1e o @ and F b+ do not
exist. Likewise there is a state ¢£+n ni1_n, but no modes " and "~ with the relevant
_p,—ntlen

quantum numbers, only F¥. The shortened multiplets are therefore associated to m = ”TJ”’
and m = —"5 — 1 and are respectively given by
H H+

{¢n+77 n+n m’ I ¢n+n n+1+n m’} )
(E.39)

¢L+ FL
n—n,—%li",m’ ) n—n,— 7lg7l7m/ .

Of course a similar statement applies to ¢, ¥+ and F.
Each of the multiplets on the first line of (E.39) contributes to the determinant a
factor of

(n+n+2+iRp(og) — A) B 1 (F.A40)
(n+n)(n+n+2)+ (Rp(og) +i(A—=1))24+41 n+n—1iRp(og) + A’ '
and each multiplet on the second line
n—mn+2+iRp(og) — A. (E.41)

For n = 0 there are n+ 1 copies of each of these multiplets, which we expect to not change
when turning on 1 # 0. The only question is how many states get a shift n — n + n and
how many n — n — 1, which is answered by the supersymmetry analysis above and the
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assumption of minimal singularities. We finally find that the determinant for the full chiral
multiplet including the full representation R is

Chlral H H n+2—-A+ i,O(RO’O + ZH) ntl
110010 i n+ A —ip(Rog+iH)

_Hﬁ n+1—A4ip(Rog+iH)\" (F.42)
B palstet n—1+A—ip(Royg+iH)

=[] sv=1(i — i — p(Roo + iH))
P

where sp(z) is the double sine function.

E.4.2 Vector multiplet

We can repeat the same analysis for the vector multiplet. We expand the fluctuation
fields as®

I H+ H— L+ L— —
A,u - Z (An+77mm’ VH,u An—i—r] m,m/ VH,u An n,m,m’ VL,LL An n,m,m’ VL,u) )

n,m,m/’

r_ H+ H L+ L— —
A= Z (An—l—nmm’XH—i_)\n—&—nmm’XH—i_)\n nmm’XL+)\n nmm’XL)’
n,m,m/’
N/ H+ L+
A= Z ()\n+nmm’XH+)\n+nmm’XH+)\ nmm’XL+)\n nmm’XL)
n,m,m’
H L
o — Z (Jn_‘_n’m’m/ SH + 00 _pmm SL) ,
n,m,m’
/ H L
.D - Z (Dn_’_n’m m/! SH + Dn_"] m.m/ SL) 3
n,m,m/’
H
CcC = Z (Cn_i_n’m’m/ SH + Cn_77 man’ SL) 5
n,m,m

(E.43)
and we included the ghost field ¢, which thus far has been ignored, but should be included
in a full analysis of the theory.

Expanding the supersymmetry transformations (D.12) as
A% = ie, Y (€5, A" — X*Sye),

1 - -
g = §(€)\°‘ — \%),

3 4 1 4 ~ a Ao o a
SN = Eg“bcea”SbeLé:Aff — ES“GLGLU + 2a(09) S eel A} — (D + R> €,
= 4 ~ 4 ~ ~ o E.44
SN = Ee“bcea”SbELcLA,‘} + —S“EL(Q&O‘ — 2a(00)S%e, A% + <D°‘ + ;) é, (E.41)
oD% = —F4Ll .S + 3)/\0‘ e(4LF - S + )AO‘ ! a(og) + ! e\,
2R 2 2R 2 4R

* (‘éo‘((’“) 4;2) A,

35For brevity we omit the indices of the harmonic functions which match the modes they multiply.
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one finds that the modes that belong to the same multiplets have quantum numbers

H+ H— H H
{An+1+n7m7m/ ’ Anfl“r,r]:m:m/ ’ 0n+n:m:m/ ’ Dn+77,m7m/ ’ C”‘H?:m:m/ ’ (E 45)
AT+ i N+ - '
n+n,m+1/2;m’* “n4nm+1/2,m' 0 Tntnm—1/2,m’ * Tnt+nm—1/2,m’

and likewise for those arising from the lowest weight states. Though we did not include
the ghosts in the explicit SUSY transformations, it is clear that they should appear in the
off-shell multiplets as above. Note that for the vectors the principle quantum number n is
shifted by =+1.

As with the chiral multiplet, a full multiplet contributes nothing to the determinant
of the associated kinetic operators, and the only multiplets which contribute are short-

ened ones.36
The shortest multiplets for the H modes are obtained with m = "T” + 1 and for the
L modes with m = —"5" — 1. They are of the form

H+ S\H—i-
nepl4n, 14+ 250 m 7 e, 2 gy [

ALT AL 3 F.4
{ n+17777717n7;n7m/ ’ ”*77,*7#%7"7”1/ ( 6)

The action (D.11) couples a mode arising from the highest weight state and a mode from
the lowest weight state with opposite weights +a, hence with opposite signs of n. Thus a
pair of short multiplets as above is coupled by (cf., (E.18), (E.30))

(0 + 2+ () + Ralo) ATS e VS o
— (n+2+ia(Rog —iH)) S\fjn,LéJr",m’)\iinﬁ%H,m’ . (B.47)
The contribution of such pair of multiplets to the determinant is therefore
1
" n+2—io(Rog+iH)’ (E-48)
Other longer, but still short multiplets are
{AnH:1+77,"T‘L7’,m” Uf+n,"TM7m” Df—&-m%“’,m’ ) crﬁ-ﬂ,%“’,m’ ’
)\f:n,%m’,m” _f:nvn%l“’,m” j\f-i-_n,"%mm’} (E.49)
{Aiil—n,—%,m’ ’ Uﬁ-m—%ﬁm’ ’ 7]:—77,—"75"77%’ ’ Cﬁ—n,—%,m’ ’ |
N i M i Xijm_wﬁm,} .
These together give (ignoring overall signs)
(n —ia(Roo +iH)). (E.50)

36Note that the ghost ¢ cancels the contribution of the scalar o.
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As before we assume that the number of short multiplets is the same as for n = 0, which
gives n + 1. Multiplying (E.48) and (E.50) each with multiplicity n + 1 gives

1
vector HH n —ix RO’()—I—ZH) ot
ZiCioop (7 - n+2 —ia(Rog +iH)
—HH( ) s
fetrfonten n+2)2+ a(Rog +iH)? ’

_H< RUO+2H2H n® + a(Rog + iH) ))

a>0 n=1

The first term on the last line arises from the numerator of the n = 0 case in the line above,
all the rest comes from the numerator of the n = 1 case and the difference arising from
shifting the index n + 2 — n in the denominator.

It should be pointed out that for 7 = 0 the product in the numerator starts at n = 1,

not n = 0. The relevant multiplet is (E.49) with n = 0, where the state )\gl_ 1,
k) 27

exist, without which the determinant of this multiplet is one. For 0 < 1 < 1 this mode is

does not

singular, but we think it should still be included to complete the multiplet, and because
other modes that are equally singular are also included. Physically this mode should be
thought of as an almost goldstino mode due to the broken supersymmetry induced by the
vortex, which exists only in the vortex background.

Regularizing the infinite product in (E.51) we obtain

osinh?(ra(Rog + iH))

ZY5er(o0) = [ [ e(Roo + iH)

oo (ra(Rog + iH))?
a>0 . (E.52)
= H —gsinhZ(ﬂa(Rao +iH)).
a>0 T
For a(H) = 0 the product should start at n = 1 and the denominator is instead

72 — wla(og)?.

F Index theory calculations for S}

In this appendix, we provide some details on the localization computation by the index
theory for Sg. To avoid cluttering equations we will suppress the mass parameters that
are associated with flavor symmetries. They can be easily restored by the replacement
0 — 0 + mass.

F.1 Vanishing theorem

Let us show that in the limit ¢ — 400, the path integral weighted by e *@"V with V given

in (4.7) and (4.8) localizes to the configurations (4.12). We will also show that in the
presence of a vortex loop, the fields acquire, on top of the smooth configurations (4.12),
the appropriate singular parts that characterize the operator. Given our choice of V', this
will be done by solving the equations @ - fermion = 0.
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For a vector multiplet, noting that our SUSY parameters (4.4) satisfy e = C~1&*, let
us compute37

1 1 *
0=C QN = C! ( = 51" + DE— if'eDyo + Ue)

R
) ) ! (F.1)
= —§'YWGFW + Dfe —inteD,o + R—fae.
and compare it with
1 v o 1 P
0:5/\:—57 €Fj, — De + iy 6DuJ—R—fae. (F.2)
We find that
1 1
— —v"eF,, —i(ImD)e=0, (ReD)e—iv'eD,0+ —0e=0. F.3
2 I 2 Rf

In the absence of a vortex loop, we take D to be real (hermitian), and hence obtain F),, = 0
from the first equation. If we have vortex loops at ¥ = 0 or 7/2,3% then Im D develops
delta function singularities there so that the first equation in (F.3) is satisfied.
Contracting the second equation with €', we deduce from the real part that Re D +
Rifa = 0. Then we have 0 = |[y*eD,0||*> = ||D,o||?, thus D,o = 0.
For a chiral multiplet we compute

A

CTHQY)" = ineDyud — ioge — prde — Fe. (F.4)
Comparing this with
A
0= Q¢ =iv'eD,¢ + icop — R—fe¢ + éF, (F.5)
we find that o = F = 0, and we are left with
0=1i1y"eD ¢ — Aeqb. (F.6)
H Rf

Let us substitute the explicit expression for € given in (4.4), and take linear combinations of
the two components in (F.6). From one combination we get %D¢2¢ + ﬁD%(ﬁ — Rqub =0,
or, by taking gauge and R-symmetry backgrounds into account, obtain

[ib0py +ib 1 Dp, — (A +bHy + b 'Hy)]p = 0. (F.7)

A non-zero solution to this is the matter vortex configuration discussed in section 2.3. It
is singular for generic values of A and does not contribute to the path integral unless we
choose to insert the corresponding disorder operators. We will not include the contributions
from the configuration in this paper.

3"The symbol * acts as complex conjugation on Grassmann-even and -odd numbers, and as hermitian
conjugation on fields: ¢* = ¢, ¢* = ¢, 0" = o, D* = DT,

%1n the following, we will set A, = 0 without a vortex loop, and Ay = 0, A,, = Hi, A,, = Ha with
vortex loops, where Hy and H are the vorticities of the operators at ¥ = 0 and ¥ = 7/2.
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F.2 Gauge fixing

In order to perform the one-loop calculation, we need to fix the gauge for the field configu-
rations around the chosen saddle point. As usual, we introduce ghosts (¢, ¢) and a bosonic
auxiliary field B and require that by the BRST charge Qg acts as®’

Qp-c=- gled,
QB B :Ov
on (c, ¢ B), and as*’
Qg - (field) = —G(c) - (field) , (F.9)

on the original fields. It is also standard to define the functional

Vn = / d3xv/h Tr <c(G(21) + §3)> (F.10)
with a choice of gauge fixing term G.#' Let us indicate by (0) objects defined at the saddle
point, and by tilde the difference of the dynamical field from its background value. For
example A = A — Hydp, — Hadpsy ,6 = 0 —0(© 42 The standard choice of G(/Nl) is D?O)fl“,
but we will make a slightly different choice below. In the familiar background field gauge,
we would gauge-fix by adding a gauge-fixing Lagrangian Q- Vg1, For localization, we need
to modify Qg - Vi so that it is compatible with the supercharge . We do this by defining
the @ transformations of (c, ¢, B) as

Q c=géc+iv'd,, Q-ec=0,

(F.11)
Q-B=iw"DVc+ic, q.

One can check that on all fields including (¢, ¢, B), Q = @Q+Qp acts as the bosonic symmetry
. 1
Q* =iLl, +iocVee — v A + Spb+ bHR, (F.12)

which is the same as (4.5) except that the fields take values at the saddle point. With gauge-
fixing, the localization procedure involves adding to the action the term tQ -V instead of
tQ -V, Wheref/:V—i—Vgh. A

As explained in section 4.1, @’ represents the action on the fields of the group G,
which is the product of H, K, the maximal torus of the gauge group, and the flavor U(1).
For ¢ = —iR, the corresponding group elements are parameterized as*>

g=(ht,e fleG — (e_%(b'kbil),e_%(b_bil),e&,e%A(b+b71)) e Ge. (F.13)

39 Also note that [c, ¢] = cacg[T*, T7] if ¢ = caT.

“OHere G(c) - is the gauge transformation with parameter ¢. For example QpA, = D,c, QA = —i{c, \}.

41 As in the standard R¢ gauge, ¢ is an arbitrary parameter that does not affect the result of path integral.

4211 the text the saddle point value ¢ is simply denoted as &, and is only distinguished by the context.

“3This is obtained by identifying (g - ®)(z) = g- ®(¢~" - ) with ecQZ<I>(:v)7 where @ is an arbitrary field.
The action of H x K on coordinates is defined as (h, t) - (?¥/2,e'%/2) = (he'™/2, te'/?).

— 56 —



F.3 Cohomological organization of fields

From now on we will set R to one. As in [3], we want to organize fields in the cohomological
form. We begin with a vector multiplet on SZ’. Let us define®

Ay = +eyh, A=Ed+el. (F.14)

On the space of fields, we define bosonic and fermionic coordinates (Xo, X1) as*

Xo = (X§° X§") = (A 6,6), X1 = (X7°5X{Y) = (A, e, &0, €0) . (F.15)

The field o is a dynamical equivariant parameter. The remaining fields are interpreted as
the differentials QXQ and QXl. In the following, we pick a saddle point and expand the
action up to the quadratic order. We can write the quadratic part V® of V in the form

X R X, Doy D
VO = (0x, X, )| 20 ), D=0, F.16
(Q 0 1> 0X, Dyo D11 (E-16)

Then we have Q : V(Q) = XposKbos Xbos + Xterm Kterm X ferm, Where

—Q? 22 1 1
Khpos = ( @ 1) D+D” (Q 1) and  Kggm = —D ( Q’Z) +< —Q2> DT (F.17)

can be viewed as infinite dimensional real matrices that are symmetric and anti-symmetric,
respectively. The invariance of V under ? implies that D commutes with Q2. Then

1 32
( _QQ) Kpos = Kterm (Q 1) .

The one-loop determinant is thus given, up to a sign, by

~ 1/2

_ det Kferm 1/2 o detCORETDlo Q2

Zidoop = | ——— =\ 5. A2 (F.18)
det Kbos detKerDm Q

and is related to the equivariant index (4.11) by the rule (4.13).
The fermionic functional V = Vvec + Vi is given by?6

A

Vvec = (Q)‘)T)‘ + (QS‘)TS‘ + Vgh

— _F, 0"\ — %v“epr””A — iD,o A" — DA — (o/ f)vPA, + a(G(A) + gB

(F.19)

“Throughout this section, the symbol A denotes a component of the gaugino, and should not be confused
with a gauge parameter in section B.2.
“For the spinors (4.4) and vector (4.6), we have é& = 1, v,éy" = €, v,ey" = —¢, vV v, = 1.

46Tt is useful to define €% := (E) and " = ("M i
for m,n = 0,...,3. We then have A, = EL(fX) and A = sg(fi). We also use the identities éy*\ =

%A“ — %e”w,v”Ap + %’UHA, e\ = %A“ + %e“l,pv”A” — %’UHA, N = %v“AN + %A, and e\ = —%v“AH + %A.

)so, which satisfy e, e” = 267 and e™el, = 21444
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and

Veni = (Qv) 1y + (Q) T

= —iD,p(ev"p) | — iD,pv' e —ig(o + m)ep — ?gbﬂ/} — Fey (F.20)
+ i(ey"1)) | Dy + iepv” Dy + i(o + m)per) + ?d)ed_) + Fey.

The symbol L indicates the projection orthogonal to v*. We have éy*1) = (ey)vH+(ey*1)) .

F.4 Differential operator Djg

Given a differential operator D on space X, its symbol o(D;x,p) is a function of z € X
and p = p,dxt € T;X, defined by replacing 0, by ip, everywhere in D, and collecting
the terms that have the highest order in p. The operator D is called elliptic if its symbol
is invertible for any x € X and p # 0. When a compact Lie group G acts on X, there
is a weaker notion of ellipticity. We say that D is transversally elliptic if its symbol is
invertible, at each x € X, for all non-zero cotangent vectors p # 0 that are orthogonal to
the G directions [22].#7 When D is transversally elliptic with respect to the G-action, the
equivariant index is well-defined as a distribution on G. In this section we will compute
the differential operator Dy that appears in the fermionic functional V2, and show that
it is transversally elliptic with respect to group G defined in (4.10).

Let us now study the differential operator Djg more closely. We begin with the vector
multiplet. It is convenient to split the fluctuation flu =A, - A,(P) into the components
parallel and orthogonal to the vector field v,,: flu = ay +v,b, v"a, = 0. The bosonic and
fermionic coordinates (Xo, X7) on the space of fields are defined in (F.15). A technical
complication is that the ghost ¢ appears with a derivative in

Ay = —2iQA, +2iD,c. (F.21)

Although %33 in terms of the original fields involves only terms with a single derivative,

several terms end up with two derivatives when we express Av(ezc) in terms of Xy, etc. Indeed,

showing only the integrand, we find up to total derivatives*®

X7°DYy* X% = =2i[Dy(a, + vub) (v DF — v D¥)e

— 1e""?[Dy(ay, + v,b)|v,A + ¢G(a + vb)

= (2icc A G(x,0)"v G(x,0)"
(ice 4) :

—ie"P(Dyvy)v, ie'Pv,D,

(DHv” — D¥v")D,v,, (DF — DYu#)D,

b ) . (F.22)

The operator is effectively a square matrix because a, has two independent components.

Since the symbol is defined using the terms with most derivatives, superficially D5 is

4TWe say that p is orthogonal to the G directions if p, V* = 0 for any V9, whose flow is an action of G.
“8The square bracket [ | indicates that the derivatives act only on the functions inside. If not in a square
bracket, derivatives are understood to act on all the factors on the right.
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neither elliptic nor transversally elliptic. We can, however, make a field redefinition so that

v is block diagonal, with one block being second order and the rest first order.*?
Let us introduce
Rf

Dy ==

€uvpv” DP (F.23)
and take the gauge fixing term to be"
G(A) = GrA, = (D" + (D"D, — v’ D,)v")A,, . (F.24)

After some calculation, we find that the differential operator Dyg for the vector multiplet
can be block diagonalized:

vec jyvec yvec
Xl DlO 0

2D[“U”]Dl,vu — D,v"GH,, 0 b
- (21’0 ¢ — 2’ Dyc A) 0 D ( > .
0 ienvey,p, | \% T Dub
(F.25)

Thus at the quadratic order in fluctuations, b = v“[lu and ¢ decouple from the other
combinations of fields in (F.25). The corresponding differential operator appears on the
upper left corner of the matrix. Its symbol has determinant p? — (p-v)2, which vanishes for
p parallel to v, but is non-zero for any non-zero p satisfying p-v = 0. Since the vector field v
given in (4.14) is a linear combination of the vector fields generating H and K, the operator
for (b, c) is transversally elliptic, and the equivariant index is well-defined as a distribution
on (G. The equivariant index is however trivial because the differential operator maps the
space of scalars to itself, and its kernel and cokernel are identical.

The differential operator in the lower right block of the matrix in (F.25) is first order,
and its symbol has determinant i(p? — (v-p)?). Thus the operator is again not elliptic, but
is transversally elliptic.

For the chiral multiplet, we obtain from (F.20)

Xhpshi xehi — j(ent4)) | Do + c.c.

_ F.26
i(€))(ev"e) Dy + c.c. ( )

where complex conjugation * acts formally as 10* = —C1). The vector field that appears
in (F.26) can be decomposed as eyte = € (#17%2) (wh4jut), where w* and ut are both real.”!
It can be checked that (u, v, w) form an orthonormal basis of the tangent space. The symbol
o of the differential operator iey*eD,, then satisfies |o|? = (w-p)? + (u-p)* = p*> — (v-p)?,
so the operator is not elliptic but is transversally elliptic. At the north and the south
poles (¥ = 0 and 7/2) of the base S?, the operator acts as the Dolbeault operator in the
directions orthogonal to v.

4¥The same issue arises in for localization in four dimensions. The authors of [3] and [40], working with
momenta rather than derivatives, showed that highest order terms can be block diagonalized. Here we are
pedantic and demonstrate that the whole differential operator can be block diagonalized.

0See [40] for a similar choice of the gauge fixing term G in the four-dimensional case.

*Explicitly, w = (Rf) 0y, u = (Rb) ' cot 90,, — R™'btan 90,,,.
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F.5 Computation of ind Dqg

Let T;X|, be the space of cotangent vectors at p € X conormal to the G-orbit. Let
TEX be the collection of T5X|, for all p € X, and let 7 : T5X — X be the projection.
The symbol of a G-equivariant (pseudo)differential operator that maps a section of Ey to
a section of F; then defines a map n*FEy — n*FE;. The operator and its symbol are by
definition transversally elliptic if the map is invertible on T.X away from the zero section.
Such a symbol defines a class in K¢ (75 X), and the index depends only on this class [22].

We wish to compute the index of Djg. The index is determined by the homotopy class
of the symbol of Djg. The key tool, when a factor H in G = H x K acts freely on X, is
the following theorem (Corollary 3.3 of [22]).

Let us label the irreducible representations of H by R, and let E%, be the dual of the
vector bundle Ex over X/H induced from R.>? For a symbol oq : 7*Ey — n*E; on X/H
transversally elliptic with respect to K, the pull-back p*oy is a transversally elliptic symbol
with respect to H x K, where p : X — X/H is the projection. The index of p*oy is given by

ind( k) (p*00) = Y _indr(o0 ® ER) - xr(h), (h,k) € Hx K, (F.27)
R

where R labels irreducible representations of H, E7}, is the dual of the vector bundle Egr
induced from R, and xg is the character of R.

Let us apply this theorem to X = S‘Z’. Since we only need to know the K theory class
of the symbol and H acts freely, let us set py, to zero. Then p? — (p - v)? cannot vanish
unless p = 0. Thus the symbol of Djg reduces to an elliptic symbol og on X/H = S?, and
we have o(D1g) = p*og. For the vector multiplet, we obtain the de Rham complex on S?
with a degree shifted by one. The equivariant index of DY, obtained from (F.27) and the
Atiyah-Bott formula, is

indg(DY6) = =D (" + 17" Xaaj (€")R", (F.28)
nez

where h € H = U(1), t € K = U(1), and xagqj is the character in the adjoint represen-
tation of the gauge group. The identification (F.13) leads to (4.22) and (4.23). For the
chiral multiplet ind, D$i! = inngi’BiC +ind,— D‘l%f(c, where D%lf(c reduces to the Dolbeault
complex on S?, whose index is

t" t" :
a n

> (1 — = 7 _t2> Yr(eMR"f (F.29)
nez

with xp the character of the matter representation R of the gauge group. Substitu-
tion (F.13) gives (4.15) and (4.16). Since the reduced symbol is elliptic, its index, the
bracket in (F.29), is a polynomial. Thus there is no ambiguity in the index as long as we
expand (4.15) and (4.16), we need to expand both in ¢ or t~!, so that the sum for fixed n
is a finite polynomial.

52The induced bundle Eg is the quotient of X x R by the H-action.
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G Index theory calculations for S' x S2

In this appendix we repeat the steps in appendix F for S! x S2.

First let us determine the saddle point configurations that contribute in the localization
calculation. For the vector multiplet, we again compare QX = 0 with a complex conjugate
of (QA\)* = 0. Defining B, = 3¢,”F,,, we obtain QA = & + & and C~H(QN)* =
&1 — &y, where

& = —ivre(ReB;) + (ImBj)'yje —i(ImD)e + i’ijDjU — 10y;€,

. G.1
& = (ImB;)y e — iv'e(ReB;) — (Re D)e + iy eD o . (G-1)

Here we used the properties C~le* = y;€,07 & = ~ze, Dye = —%’m%e, and D e =
%WM%E. Thus & 2 must vanish separately. Let us set ImD = ImB,, = 0 here; turning on
the imaginary parts corresponds to inserting vortex loops. Contract & = 0 with ef. The
real part of the equation implies that Re D = 0. Let us also consider contracting & = 0
with e/ C. Since ey*e = (1,0, —i) with u = 7,0, ¢, the real part implies that B, = 0, and
the imaginary part implies that D,o = 0. It then follows that By = 0. Next contract
& =0 with é7'C. We find that D,o =0, and that

B +0=0. (G.2)

We also obtain Dyo = 0. Thus we have B, + ¢ = 0, where B, is the smooth part of B.,.
Diagonalizing o, we find that B; = 3, 0 = —%, where m is a quantized GNO charge. For
the chiral multiplet, the same reasoning applied to Qi = 0 and (Qv)* = 0 leads to

iy eD o+ FeE=0, i Z 'yjeDj(;S +iope — iApye = 0. (G.3)
Jj=bp
The first equation contracted with €/ C' implies that D,¢ = F = 0. Using the explicit
expression (5.8), the remaining equations can be solved:

: AN A it
6=7 <63Fw tan 2) (e sind) eT2l™v, (G.4)

where the upper and lower signs are respectively for the two patches U on S?, and
is a constant. Again the configuration represents matter vortex loops, and we do not
include the contributions from such a configuration in this paper. Thus the path integral
localizes to the field configurations (5.9) in the absence of a vortex loop, and to the same
configurations on top of singular backgrounds in the presence of vortex loops.

The BRST transformations and the localization action are the same as in the Sg
case. In particular, the expressions (F.8)—(F.11) are valid. The square of Q? is given
precisely by the right hand side of (5.14). Thus for ¢ = if3, the group element g = @ is
parameterized as®

g= (h,t,em,f) cG@ — (62m,€262,6w,6’82A) € GC, (G.5)

where G¢ denotes the complexified universal covering of G. (So 2™ is non-trivial.)

%The parameterization can be found as in footnote 43. The group action on coordinates is given by
(h,t) . (627rir/,87eicp) _ (h62wi7/ﬁ7t6i¢>).
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—V+€

Let us introduce g := (fg), €1 = < e ) and g; = (%2) with 7 = 2,3, which

satisfy ejnan = 26y and emgjn = 21444 for m,n =0,...,3. We then define
A
A, = [ 777

Xo= (X3 XM = (4),6:6,0), X1 = (X7 X)) = (A, c,e;ev0,e:¢0)  (G.6)

and take

as superspace coordinates. Gauge-fixing can be achieved with the localization action V=
Vvec + ‘A/chi given as
Viee = (QA)TA+ (QA) X + Vi (G.7)
and
Vani =(Q¥)Tv + (QU)'
= —i(0;¢ — ipAD)e + e, D;dev; ) — io ey + iAGE) + Fevyzap (G.8)
—i(e)(0r + Z'Aiqb) + sTijDiqﬁevjl/_) —ipoevsh — iApe) + Feyza) .

Note that a vortex loop introduces a non-hermitian part to A;.

The functional Vye, contains only first order differential operators acting on (A A ¢ @),
When we express Viee in terms of (ng’f, QX(‘]’f}f) to read off Dyg, we find second order
differentials because D,(LO) c appear in Qflj and Q&. Thus the symbol determined by the
highest order terms is, strictly speaking, degenerate everywhere. Instead of separating the
first and the second order parts by block-diagonalizing D¢ as in the Sg case, for S' x §?
we take an alternative approach, which we believe is more general. Namely, in order to
compute the one-loop determinant around the saddle point (5.9), we consider the Gaussian
functional integration of e~1QVa with

Vo= (1—- )V +uV’ + 72 (G.9)

vec

Setting to zero the deformation parameter u gives back the original gauge-fixed action. If
the bosonic part of Q - V" is positive definite in directions transverse to the space of saddle
point configurations, the path integral is independent of u, and can be evaluated at u = 1.
As V', we take

V= Q- XE) X 4 (@7 X1 QXT 4 Vi (G.10)

This looks almost the same as Vi) , but Dj,, defined by replacing V® in (F.16) with V7,
has only first order differentials. Showing only the terms relevant for Df,, we have

V' = Qo)+ (QA) A1+ ... + ([0, 5] —iD}y Aj) + ... (G.11)

Recall that the embedding of S? in R? implies that 7*S? and a trivial real line bundle add
up to a trivial rank three bundle. Thus the combination (&, flj), j =0, p, can be expanded
in three real scalars, and a convenient orthonormal basis is provided by supersymmetry:

(6, A;) = (€e,ievje)S + (ievre, evjv-€)T + c.c. (G.12)
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where the first term is real and the third is the conjugate of the second. The first section
in the basis appears for @ - ¢ in (F.11). Since only the term iv™ A, is imaginary,

(Q-¢)f ~2(eec + v’ Ay) (G.13)
up to Q-exact and higher order terms. Let us set w’/ = e7/v,€.>* We claim that D', takes
the form

1 0 0 S
X7 D) Xyee = (2c i — 4Ay ic— 4A1) cwiDj+. T|. (G14)
* e wDj+ ... T

The ellipses do not involve differentials while *’s do. The first row in the matrix easily
follows from orthonormality, while the rest needs some work. By rearranging the rows we
can block-diagonalize D), to decouple S and c. The symbol of the remaining part of D/, is
proportional to |w/p;|? = p3 + cot? Gpg,. The symbol is invertible for non-zero momentum
(Pu)pu=r0,, transverse to d; and 0, and is transversally elliptic with respect to H x K.
For the purpose of counting zero-modes and determining the index as a distribution, we
complexify the complex and treat 7' and T as independent complex scalars. For simplicity
we suppress 7-dependence. The index is unchanged if we modify the operator, without

changing the leading symbol, to®>

ijj + se ¥ sind 0
. . ) G.15
( 0 w’! D + ise'¥ sin 9) ( )

In the limit s — +o00 we get the zero-modes of (G.15) localized near the north pole § =0

_ 20
2

(T,T) ~ (e"sin" §,0)e 255" 3 | r=0,1,2,...,
and those localized near the south pole § =
(T,T) ~ (0,e" sin” 9)6_25COS2 3 , r=0,1,2,....
The zero-modes of the dual operator also get localized. We have
(e sin” §,0)e 255 =0,1,2,... (G.16)
localized at # = 0, and
2

(0,e®sin” )e 2555 | p=0,1,2,... (G.17)

localized at @ = 7. To the index, €% in each zero mode contributes ¢t ", where t € K. We
also take into account the ¢ dependence of the basis sections in (G.12) as well as the flux

S Explicitly, w? = ie ™, w¥ = e cot 0.
®5This was explained using K-theory in [3], and the argument with explicit zero-mode solutions is due
to [41]. Both considered the four-dimensional N' = 2 theory. See also [42] and [22].
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contribution to j3 in (5.13). We apply the reduction formula (F.27) to obtain

ind D\IISC _ Z i Z Ixg (t—a(m)/Z(t'r—l-l _ tr) + ta(m)/2(t—r—1 o t—'r)) 6icx(a)

n€Z r=0 acadj (G18)

=3 S (fa(m>/2 n ta<m>/2> eiaa) |

neZ acadj

Since evyre in (G.12) vanishes at the poles, the resulting local contributions coincide with
those of the complexified de Rham complex with suitable twisting.
The chiral multiplet is simpler. We obtain from (G.8)5
XPUDSGXE™ =it Djg($ryze) + iw’ Djp(evs )
m-. S m o (G.19)
+ig 0 €)(Yyie) +ig- (erre) (€7:9)

The operator D%i is thus the “realification” of w’ Dj + ..., where the ellipses contain no

differentials. The symbol has determinant proportional to pg + pi cot?f, and is H x K-
transversally elliptic. By deforming the operator to

w! D +ise” P sinf + ... (G.20)
and taking s — +00, we find zero-modes localized near § = 0

—ire . _9ssin2 @
¢~ e TP sin” fe 25 2 r=20,1,2,...,

and the zero-modes of the dual operator, localized near 6 = 7, approximately given by

o r 95052 0
eyth ~ e sin" P2 p=0,1,2,... .

Taking into account the R-charges and the gauge group action, the index is inng%i =

inngi‘]gf(c +ind,1 D‘{B?C, where g = (h,t, ¢!, f) and
oo
ind, Difie = S0 7w (e gl givle) (G.21)
n€Z r=0 peR
Substitution (G.5) gives (5.15).
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