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1 Introduction and summary of main results

Supergravity theories play a prominent role in revealing many features of string theory,

addressing physics beyond the Standard Model and understanding ultraviolet properties of

perturbative quantum gravity. Explaining the structure of supergravity models and their

relation with effective theories of strings is therefore a task of primary importance, which is

unfortunately quite far from completion. We are closer to achieving this goal for maximal

supergravities, because maximal supergravities have a unique multiplet, very constrained

couplings, and gauge interactions are the only known way to generate masses and a scalar

potential.

A very interesting aspect of the gauging procedure is the existence of an infinite number

of consistent models with different couplings for given gauge groups [1]. This recent dis-

covery makes even more compelling a thorough review of the structure of maximal gauged

supergravities, especially in view of their stringy origin and of the interpretation of their

anti–de Sitter vacua in terms of the gauge/gravity duality. For instance, it is well-known

that the original SO(8) gauged maximal supergravity [2, 3] can be regarded as the consis-

tent truncation of eleven-dimensional supergravity compactified on a seven-sphere [4] (see

also [5–7] for recent developments of the original analysis), which in turn is dual to the

ABJM theory (for Chern–Simons level k = 1) [8] in the large N limit. However, we now

– 1 –



J
H
E
P
0
7
(
2
0
1
4
)
1
3
3

know that there is a continuous deformation parameter (often denoted as ω), which changes

the couplings of this model, preserving the maximally supersymmetric AdS vacuum [1]. If,

on the one hand, it is difficult to imagine an infinite number of string backgrounds with

SO(8) symmetry, on the other hand, it is even more challenging to understand the meaning

of such deformations in the ABJM theory.

Since [1], many different analyses of the properties of the ‘ω-deformed’ SO(8) gauged

supergravities have been carried out through the study of several further truncations, study-

ing in particular maximally symmetric vacua, domain walls and black hole solutions [9–15].

At the same time, analogous ω-deformations for non-compact SO(p, q) gaugings have been

identified and used to show that it is possible to embed slow-roll scenarios in gauged max-

imal supergravity [16], and to study the moduli space of Minkowski models of maximal

supergravity with spontaneously broken supersymmetry [17, 18]. The fact that similar

deformations exist for several gaugings and that the ω parameter often survives the trun-

cation to models with lower supersymmetry suggests that such deformations of gauged

supergravity can be a quite general phenomenon, and not limited to the maximal theory.

Physically, ω corresponds to the possibility of deforming the couplings of a gauged

supergravity action by changing the symplectic embedding of the vector fields of the theory

that give rise to the gauge connection, in a way that preserves compatibility with the

structure of the gauge group. This deformation of the symplectic embedding affects the

couplings with other fields, as well as the supersymmetry variations and the scalar potential.

Given the diversity of physical interpretations and effects that these deformations can

have, it is important to understand how they can be rigorously defined and classified. This

type of analysis would also play a crucial role in any attempt to classify all the allowed

gaugings of a supergravity theory. Moreover, a consistent definition of such deformations

should make it possible to clearly identify the correct range of inequivalence of the defor-

mation parameter(s), which is an important point on which there has been some confusion

in the literature.

In this paper we focus on maximal supergravity in D = 4 and we describe how to

characterize these deformations in full generality. We will define the appropriate space of

‘symplectic deformations’ in terms of the allowed (local and non-local) field redefinitions

and dualities of the maximal theory, using the embedding tensor formalism [19, 20] in order

to perform a general analysis that can be applied to any gauging.

Let us give a brief preview of our general results. For ungauged maximal supergravity,

the set of Lagrangians that cannot be mapped to each other by local field redefinitions is

identified with the double quotient space [21]

GL(28,R) \ Sp(56,R) / E7(7). (1.1)

Local field redefinitions of the 28 vector fields of the theory correspond to the GL(28,R)

quotient. The (continuous version of the) U-duality group of maximal supergravity in D =

4 is E7(7), which also corresponds to the isometry group of the scalar manifold E7(7)/SU(8).

In fact, what appears in the right quotient of (1.1) must be regarded as local redefinitions

of the scalar fields by these isometries, as opposed to E7(7) dualities which must also act on

vector fields. The different Lagrangians correspond to distinct ‘symplectic frames’ and are
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invariant under different ‘electric’ subgroups of the E7(7) duality group acting locally on

the physical fields. The resulting equations of motion and Bianchi identities are equivalent

for any Lagrangian defined by (1.1).

When we turn on a gauging, the quotient (1.1) still parameterizes a set of consistent

Lagrangians, provided that we let Sp(56,R) also act on the ‘gauging parameters’, defined

in terms of the embedding tensor formalism as a set of generators (XM )N
P ∈ e7(7). The

resulting theories are again equivalent at the level of the equations of motion. There is

instead a set of symplectic transformations that can act on the couplings of the theory as

in the ungauged case, not acting on XM , and still give a fully consistent gauged supergrav-

ity. We dub these transformations ‘symplectic deformations’, and we will prove that they

provide the correct generalization of the ω-deformation of the SO(8) theory. The space of

symplectic deformations is the normalizer of the gauge group NSp(56,R)(Ggauge), quotiented

by a proper set of transformations that can be reabsorbed in field redefinitions. If we define

our gauged theory in an electric frame, or alternatively if we integrate out and gauge fix

the extra vector and tensor fields that may appear in a generic choice of symplectic frame,

effectively switching back to an electric frame [27], then we have a consistent notion of

local redefinitions of the physical vector fields, and we can quotient by them together with

redefinitions of the scalars. The space of inequivalent deformations turns out to be

S ≡ SGL(28,R)(X) \ NSp(56,R)(Ggauge) / NZ2⋉E7(7)
(Ggauge), (1.2)

where NG(Ggauge) is the normalizer of Ggauge in G, while SGL(28,R)(X) is the group of

GL(28,R) transformations that stabilize XMN
P up to overall rescalings. With this defi-

nition we do not discriminate between theories that differ only in the value of the gauge

coupling constant. However, if we insist on regarding them as distinct models, we can sim-

ply take the left denominator in (1.2) to be the stabilizer of XMN
P in GL(28,R). The Z2

factor in the right quotient denotes the outer automorphism of E7(7), whose action is strictly

related to a parity transformation [22, 23], and is quite subtle in this context. The precise

definitions will be given in the next sections. In some cases, including Ggauge = SO(8) in

the standard SL(8,R) frame, we find that the classification of symplectic deformations can

be carried out using group theoretical methods exclusively. In this way, we will re-analyze

the SO(8) case in detail as an instructive exercise, also providing a complementary proof

that the range of ω is [0, π/8] [1, 6].

We stress that the definition of S depends on the choice of electric frame, because the

set of local field redefinitions depends on this choice. However, some of the transformations

in S do not affect the symplectic embedding of the gauge connection and as a consequence

they do not affect the equations of motion. For example, we find that (1.2) consistently

encodes the fact that the standard electric action of SO(8) gauged maximal supergravity

admits the introduction of a field-independent, gauge invariant shift in the θ-angle of the

(gauged) field strengths. Even if such terms can be physically relevant at the quantum

level, we can choose to define a ‘reduced’ S-space that is completely independent from the

choice of symplectic frame and classifies all and only the deformations that do affect the
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equations of motion. This space is

Sred ≡ SSp(56,R)(X) \ NSp(56,R)(Ggauge) / NZ2⋉E7(7)
(Ggauge). (1.3)

This definition treats as equivalent also those Lagrangians that are mapped to each other

by changes of symplectic frame that do not affect the gauge connection nor any coupling

induced by the gauging (namely, they stabilize X). If we go back to the ungauged theory

setting X = 0, S matches (1.1) while Sred becomes trivial.

We will combine these tools with a convenient adaptation of the embedding tensor

formalism, which allows us to reduce the problem of identifying all consistent gauge con-

nections for a given gauge group to a set of linear equations. These techniques will then

make it easy to identify several new examples of symplectic deformations. We will analyze

all gauge groups contained in SL(8,R) and SU∗(8), as well as the Cremmer–Scherk–Schwarz

(CSS) gaugings. For the latter no ‘ω-deformation’ turns out to be possible, while new ex-

amples of deformations, with interesting physical effects, are found for the gaugings of

ISO(p, 7 − p) and of real forms of SO(4,C)2 ⋉ T 16. We will also identify the resulting

ranges for the deformation parameters.

2 Consistency constraints on gauge connection

The gauging process promotes up to 28 of the vector fields AM
µ , transforming in the 56

representation of the E7(7) duality group, to connection fields for the gauge group Ggauge.

Consistency of the procedure requires that the corresponding generators XM satisfy the

constraints [20]

[XM , XN ] = −XMN
P XP , XMN

M = X(MNP ) = 0, (2.1)

where (XM )N
P = XMN

P are the gauge generators in the 56 representation and XMNP =

XMN
QΩPQ. The embedding tensor formalism relates the gauge generators to the elements

of the e7(7) algebra by introducing the Θ tensor: XM = ΘM
αtα. One can therefore trans-

late the consistency conditions (2.1) in terms of constraints on Θ. However, once we fix

a choice of gauge algebra we can also introduce Ggauge adjoint indices r, s, . . ., so that the

gauge generators are tr, and write

XM = ϑM
rtr, r, s, . . . = 1, . . . , dim(Ggauge) ≤ 28. (2.2)

The constraints now read:

[tr, ts] = frs
ttt, f[rs

vft]v
u = 0, (2.3)

ϑM
sfrs

t = −trM
NϑN

t, ϑM
rtrN

M = ϑr
(M trNP ) = 0. (2.4)

Given a Lie subalgebra {tr} ⊂ e7(7) of dimension dimGgauge ≤ 28, any solution of (2.4)

provides a consistent gauging. The above constraints are exhaustive and guarantee the

consistency of the gauging. In particular, after we solve these constraints, locality is guar-

anteed to hold, i.e.

ϑM
rϑN

sΩMN = 0. (2.5)

– 4 –



J
H
E
P
0
7
(
2
0
1
4
)
1
3
3

Given a consistent gauging defined by some X0
MN

P , we can always choose an initial

symplectic frame such that X0 is electric, and by a choice of basis of the gauge generators

we can then set without loss of generality

X0
MN

P = δM
rtr N

P , r = 1, . . . , dimGgauge. (2.6)

When dimGgauge < 28 it is useful to introduce indices a, b, . . . running among the (electric)

vector fields Aa
µ that do not take part in the gauge connection defined by (2.6). Then tr

take the general form [20]:

trM
N =















−frs
t hrs

a Crst Crsa

0 0 Crtb 0

0 0 frt
s 0

0 0 −hrt
b 0















, (2.7)

where frs
t are the structure constants of the gauge algebra and C(rst) = Cr[st] = C(rs)a =

h(rs)
a = 0. The constraints in (2.4) now become

ϑr
ufsu

t − fsr
uϑu

t + hsr
aϑa

t + Csruϑ
ut + Csraϑ

at = 0, (2.8)

ϑa
ufsu

t = ϑrufsu
t = ϑaufsu

t = 0, (2.9)

ϑr
ufsu

r + ϑa
uhus

a + ϑruCusr + ϑauCusa = 0, (2.10)

ϑruCuar = ϑsuhus
a = ϑsufus

r = 0, (2.11)

ϑ(r
uCust) = 2ϑ(r

uCus)a + ϑa
uCurs = ϑa

uCurb = ϑtuCurs = ϑauCurs = 0. (2.12)

This form of the generators guarantees that ϑM
r = δM

r is a solution of the constraints.

3 Symplectic deformations

Even when we fix the choice of a gauge group, and hence of tr, there is still the possibility

that (2.4) admit more than one solution, leading to gauged supergravities that are poten-

tially inequivalent even if they share the same set of gauge symmetry generators, because

they differ in the choice of the (electric and magnetic) vector fields that form the gauge

connection. Our aim is to characterize group-theoretically the space of these inequivalent

theories, showing the relation between the set of consistent choices of gauge connections

(for fixed tr) and symplectic transformations.

3.1 Symplectic maps between gauge connections

First, we will prove that finding all non-vanishing solutions of (2.4) for a fixed choice of

Ggauge is equivalent to identifying NSp(56,R)(Ggauge), up to its subgroup of transformations

that leave X0 invariant. We are going to show that whenever we find solutions ϑM
r to (2.4)

for the same set of generators tr (other than δM
r), this fact can be reinterpreted as the

existence of a non-trivial normalizer of the gauge group in Sp(56,R). Then, the new gauge
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connections ϑM
r define new gauge couplings XMN

P ≡ ϑM
r tr N

P , and for each ϑM
r there

exists some element N ∈ NSp(56,R)(Ggauge) such that

XMN
P = NM

QNN
R X0

QR
S (N−1)S

P , N ∈ NSp(56,R)(Ggauge). (3.1)

To prove this claim, we start by showing that any element of NSp(56,R)(Ggauge) defines

a consistent connection. This is true because the general action of these transformations

on tr reads:

NM
N tr N

P (N−1)P
Q=gr

stsM
Q, N ∈NSp(56,R)(Ggauge), g∈GL(dimGgauge,R). (3.2)

We can then define a GL(28,R) transformation

HM
N ≡















g

q

g−T

q−T















(3.3)

for some invertible matrix q that does not play any role in the following. Now, the action

of N on the original gauge couplings reads:

NM
QNN

R X0
QR

S (N−1)S
P = NM

QHQ
RX0

RN
P , (3.4)

and since we never dropped symplectic covariance, we conclude that the new gauge con-

nection

ϑM
r ≡ NM

NHN
P δP

r (3.5)

satisfies all consistency conditions (2.4). Of course, we can set H = 1 for elements of the

centralizer.

Now we must prove that for any solution ϑ of (2.4) there is some NM
N that yields

ϑ through (3.2)–(3.5). First of all, let us define a symplectic matrix BM
N that maps the

original gauge connection δM
r to some other solution ϑM

r of (2.4):

BM
NδM

r = ϑM
r. (3.6)

Assuming for definiteness that dimGgauge = 28, we can parameterize the most general

symplectic B as follows:1

BM
N =

(

ϑM
r, −(Ωϑ̄T )M r + (ϑx)M r

)

, x[rs] = 0, (3.7)

where ϑ̄ is the (unique) pseudoinverse of ϑ satisfying

ϑ̄r
M ϑM

s = δr
s, ϑM

rϑ̄r
N ≡ πM

N , πM
N = πN

M , πM
NπN

P = πM
P . (3.8)

1The matrices ϑ̄+ (Ωϑx)T , for generic x, parameterize all possible pseudoinverses of ϑ.
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The projector πM
N projects orthogonally onto the vector fields of the gauge connection

defined by ϑ. Equivalently, we can factorize B according to2

BM
N =

(

ϑM
s, −(Ωϑ̄T )M, s

)

·

(

δrs xrs

δsr

)

. (3.9)

This construction generalizes to dimGgauge < 28, where there is even more freedom to

define a symplectic BM
N satisfying (3.6).

The ‘closure’ constraint on ϑ translates into the following property for BM
N :

(B−1X0
MB)N

P X0
P = X0

MN
P X0

P , (3.10)

We can see that B ‘almost’ centralizes the gauge generators, i.e. it is only guaranteed that

they are centralized by B when further contracted with the (old) embedding tensor. When

there is one choice of BM
N satisfying (3.6) that actually centralizes Ggauge, then clearly the

connection to NSp(56,R)(Ggauge) is proven for this specific case. All that is left to complete

our proof is to show that when no choice of BM
N centralizes Ggauge, we can nevertheless

find an alternative transformation NM
N that normalizes tr and yields ϑM

r through (3.2)–

(3.5), hence proving that the identification of all solutions of (2.4) is equivalent to finding

all the elements of NSp(56,R)(Ggauge) that do not stabilize X0.

First of all, notice that the decomposition XMN
P = ϑM

rtr N
P is actually redundant, as

the only object that really counts in defining a gauging is XMN
P , or equivalently XMNP ≡

XMN
QΩPQ. The action of BM

N on X0
MNP maps it to another consistent XMNP , by

virtue of the consistency conditions satisfied by ϑM
r, which in turn implicitly defines BM

N

through (3.6). In particular, the symmetry properties of X0
MNP

X0
M [NP ] = 0, X0

(MNP ) = 0 (3.11)

are preserved by the action of the linear map BMNP
QRS ≡ BM

QδN
RδP

S , defined as acting

on generic three-tensors TMNP . However, it is clear that the action of B on tensors orthog-

onal to X0
MNP will in general not preserve their symmetry properties. Since we are only

interested in how B acts on X0
MNP , we can always construct a different matrix NMNP

QRS

by modifying the other entries of B, so that N has the same action on X0
MNP , but also

acts on all other tensors preserving their symmetry properties. Therefore NMNP
QRS can

be factorized and we have

NMNP
QRSX0

QRS = XMNP = BM
QX0

QNP , NMNP
QRS = NM

QNN
RNP

S . (3.12)

Compatibility with the symplectic structure ΩMN then guarantees that we can chooseNM
N

to be symplectic, and sinceX0 andX differ by the choice of gauge connection, but share the

same set of generators, we conclude that NM
N ∈ NSp(56,R)(Ggauge) and that we could have

decomposed BM
N = NM

P HP
N from the beginning for at least one symplectic solution

of (3.6), with HM
N defined in (3.2), (3.3). This concludes our proof that any non-vanishing

solution of (2.4) is associated with an element of NSp(56,R)(Ggauge) or, more precisely, that

their classification (up to overall rescalings) is equivalent to calculating the quotient

SSp(56,R)(X
0) \ NSp(56,R)(Ggauge). (3.13)

2In this notation symplectic transformations act on field strengths from the right: FM
µν → FN

µνBN
M .
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3.2 Transformation properties of the Lagrangian

In order to asses to what extent the choice of different gauge connections classified by (3.13)

can affect the physics, it is necessary to understand how the couplings of the Lagrangian

change with different choices of ϑM
r. Since any such choice of gauge connection is associated

with an element of NSp(56,R)(Ggauge), we can always perform a change of symplectic frame

in order to map the gauge connection back to its standard electric form, at the price of

modifying several other couplings. Switching to an electric frame associated to each solution

of (2.4) can be also reinterpreted as gauge fixing and integrating out the extra vector fields

and the two-forms that are included for magnetic gaugings [27], so that the Lagrangian is

left with physical fields only and we can define a consistent notion of local redefinitions

of these physical fields. This will prove necessary in order to properly identify symplectic

deformations that are physically equivalent. In fact, the quotient in (3.13) corresponds to

a set of redefinitions that can mix electric and magnetic fields. Hence they may modify

couplings in a way that is irrelevant at the classical level, but that can become physically

meaningful when considering quantum corrections. Therefore, we will use two definitions

of equivalence for symplectic deformations: equivalence of the Lagrangians by local field

redefinitions exclusively, which will require us to modify the left quotient of (3.13), or

equivalence at the level of the equations of motion and Bianchi identities only, giving rise

to an S-space and a reduced S-space, respectively.

Recall that two ungauged Lagrangians of maximal D = 4 supergravity are related by

Sp(56,R) transformations SM
N acting on the E7(7)/SU(8) coset

3 representatives as [20, 25–

27]

L(φ)M
N → SM

PL(φ)P
N . (3.14)

If we write the kinetic terms for the vector fields as

e−1Lvector = −
i

4

(

N (φ)ΛΣF
+Λ
µν F+Σµν −N (φ)ΛΣF

−Λ
µν F−Σµν

)

, (3.15)

the gauge-kinetic function NΛΣ transforms as a consequence of (3.14) according to:

N → (UN +W )(V + ZN )−1, SM
N =

(

UΛ
Σ WΛΣ

ZΛΣ V Λ
Σ

)

. (3.16)

Similar transformation properties hold for moment couplings of field strengths with fermion

bilinears.

In the gauged models, the change of symplectic frame also acts on the embedding

tensor according to

XMN
P → SM

Q SN
RXQR

SS−1
S
P . (3.17)

This ensures that the T -tensor, defined as

T (φ)MN
P = L−1(φ)M

ML−1(φ)N
N XMN

PL(φ)P
P , (3.18)

3It is worth mentioning that the scalar manifold of maximal D = 4 supergravity actually is

E7(7)/(SU(8)/Z2) [24]. The extra factor Z2 is due to the fact that spinors, as a consequence of their

interaction with gauge fields through bilinear fermionic terms, transform according to the double cover of

the stabilizer of the scalar manifold itself.
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and hence the fermion supersymmetry shifts as well as the scalar potential, are independent

of the choice of symplectic frame. This in turn guarantees that the combination of equations

of motion and Bianchi identities is invariant under symplectic transformations.

Now, we have shown that, starting for simplicity with electric gauge generators tr as

in (2.7), any consistent gauge connection ϑM
r can be mapped to the standard electric

one, δM
r, by an element N of NSp(56,R)(Ggauge). As a consequence, in the original electric

frame, which we call frame 1, we have two (potentially) inequivalent gaugings giving rise

to different T -tensors:

X0
MN

P ≡ δM
r tr N

P ⇒ T 0(φ)MN
P (frame 1 ), (3.19)

Xϑ
MN

P ≡ ϑM
r tr N

P ⇒ T ϑ(φ)MN
P (frame 1 ). (3.20)

The change of symplectic frame associated with N−1 maps Xϑ to the electric embedding

tensor X0 by definition, but as we just discussed the T -tensor is invariant under symplectic

transformations and hence in the N−1-frame the gauging defined by (3.20) becomes

X0
MN

P ≡ δM
r tr N

P ⇒ T ϑ(φ)MN
P (frame N−1). (3.21)

As a result the equations of motion and Bianchi identities obtained by (3.20) are equivalent

to those obtained from (3.21). We stress again that the gauge generators tr are the same

— and hence, in particular, electric — in both frames. We identify the N−1-frame as a

symplectic frame in which the connection ϑM
r is brought back to its standard electric form.

An alternative way of seeing the above discussion, which will prove useful in showing

explicitly how to identify the set of truly inequivalent theories, is to start from the electric

gauging X0 in frame 1, as in (3.19), and notice that if we apply the N−1 transformation

only to the coset representatives, namely

L(φ)M
N → N−1

M
PL(φ)P

N , X0
MN

P unchanged, (3.22)

then the T -tensor transforms as (cfr. (3.1))

T 0
MN

P ≡ L−1
M

ML−1
N

N X0
MN

P LP
P

N−1

→ L−1
M

ML−1
N

N NM
QNN

R X0
QR

S N−1
S

P LP
P

= T ϑ
MN

P . (3.23)

As a result (3.22) maps the theory defined by X0 in frame 1 to the theory defined by X0

in frame N−1, namely it maps (3.19) to (3.21). The gauge kinetic function and moment

couplings transform accordingly with the N−1 symplectic transformation. Clearly the

equations of motion and Bianchi identities are not necessarily invariant under (3.22), as is

reflected by the fact that the T -tensor changes. We then interpret (3.22) as a symplectic

deformation, namely a map between two (potentially) inequivalent gauged models. The

requirement N ∈ NSp(56,R)(Ggauge) ensures that tr are a good choice of gauge generators

also after the symplectic deformation, i.e. they belong to the e7(7) algebra of both the old

and the new symplectic frame.
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3.3 The quotient space S

Now that we have a good general definition of what symplectic deformations are and how

they act on fields and couplings in the Lagrangian, we must classify those that yield in-

equivalent theories. Depending on the context, what we regard as inequivalent can change.

For instance, for our purposes it is more natural to regard as equivalent those theories

that differ from each other only in the value of the gauge coupling constant, even if it is

of course a physically relevant quantity. It is of course straightforward to include it back.

More importantly, as discussed in the previous section we can decide to distinguish between

theories that have the same set of equations of motion and Bianchi identities but differ at

the quantum level, or regard them as equivalent if we are only interested in the classical

regime. We will begin with the first option, and therefore assume that we have fixed an

initial choice of electric frame, so that we can quotient NSp(56,R)(Ggauge) by the action of

local redefinitions of the physical fields only.

There can also be residual ‘U-duality’ symmetries in the gauged models. However, just

like E7(7) dualities (i.e. acting on both scalars and vectors) do not show up in (1.1), but

only E7(7) redefinitions of the scalar fields appear, also here residual E7(7) dualities do not

play any role in restricting the space of symplectic deformations.

Let us take two transformations N, N ′ ∈ NSp(56,R)(Ggauge), related by:

N = EN ′G, E ∈ NE7(7)
(Ggauge), G ∈ SGL(28,R)(X

0). (3.24)

Here we have chosen G to reflect a local redefinition of the vector fields, whose effect on

X0 is at most an overall rescaling. We will now show that this is the right set of E7(7)

transformations and local field redefinitions yielding equivalent theories, up to the action

of parity to be discussed momentarily. Substituting in (3.23) we get:

T 0
MN

P N−1

→ (L−1EN ′G)M
M (L−1EN ′G)N

N X0
MN

P (G−1N ′−1E−1L)P
P , (3.25)

and at the same time the vector kinetic terms and moment couplings transform with N−1.

The E7(7) transformation EM
N can be reabsorbed in the scalar fields, together with a

compensating SU(8) transformation acting on fermions, and therefore it does not affect

the physics. Since we have required that the action of G on X0 is trivial up to an overall

rescaling, so that

GM
QGN

R X0
QR

S G−1
S

P ∝ X0
MN

P , (3.26)

we can reabsorb the rescaling in the gauge coupling constant, and similarly GM
N can be

reabsorbed in a local field redefinition of the electric vectors AΛ
µ in the covariant derivatives

and in the non-minimal couplings:

Aµ
Λ → Aµ

ΣGΣ
Λ. (3.27)

We conclude that N and N ′ in (3.24) define the same gauged theory up to local field

redefinitions and rescalings of the gauge coupling constant.

When we can choose an electric frame such that tr does not contain gaugings of

the Peccei–Quinn symmetries (corresponding to the Cr blocks in (2.7)), then Ggauge ⊂
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GL(28,R). We may then expect to be able to to reabsorb all elements of NGL(28,R)(Ggauge)

in local field redefinitions, but this is not necessarily true in general. Focussing for sim-

plicity on the gauge structure constants, there is the possibility that some elements of the

centralizer in GL(28,R) commute with frs
t, namely their upper-left block gr

s satisfies

gs
ufru

vg−1
v

t = frs
t, (3.28)

but still gr
s is not proportional to the identity matrix and gr

ufus
t /∝ frs

t. Since the T -

tensor does not contain any contraction with vector fields, (3.27) cannot be used to remove

GM
N from (3.25), and its effect would be to give a different T -tensor than the one defined

by N ′. A similar argument is valid for the hrs
a components of tr in (2.7). This means that

if semisimple gaugings of maximal supergravity exist, the separate rescalings of the gauge

coupling constants for each simple factor would be classified as inequivalent symplectic

deformations, unless they can be reabsorbed in E7(7). No such gaugings are known, but we

may take as an example the SU(2) × SU(2) N = 4 gauged supergravity of [28], where we

expect the separate rescaling of the couplings of the two SU(2) factors to be an example of a

symplectic deformation in N = 4 gauged supergravity (another example being the de Roo–

Wagemans angles [29]). Moreover, for non-semisimple gaugings of maximal supergravity

there could also exist GL(28,R) transformations that centralize Ggauge but act on the gauge

connection non-diagonally.

Barring a discussion on the Z2 outer automorphism of E7(7) that we postpone to

section 3.5, we arrive at the result anticipated in the introduction, that symplectic defor-

mations are classified by the space

S ≡ SGL(28,R)(X
0) \ NSp(56,R)(Ggauge) / NZ2⋉E7(7)

(Ggauge), (3.29)

where the quotients correspond to local field redefinitions.4 Notice that SGL(28,R)(X
0), and

hence S, carry a dependence on the initial choice of electric frame, to the extent that such

choice affects the explicit form of X0
MN

P (for instance it can affect the Chern–Simons-like

couplings Cr in the gauge generators). Therefore we must specify the explicit form of X0

that we use to compute S, or equivalently the specific choice of electric frame in which we

construct the gauged theory whose symplectic deformations we want to compute.

3.4 Non-local field redefinitions and the θ angles

Some symplectic deformations captured by S do not show up in the gauge connection,

namely their inverses leave X0 invariant, as a consequence of the fact that in the left

quotient we only consider GL(28,R) transformations instead of symplectic ones as in (3.13).

This happens even when Ggauge has maximal dimension, moreover this fact is strictly

related to the dependence of S on the choice of electric frame that we pointed out at

the end of the previous section. As anticipated we can choose to quotient away these

4S may not yet include all Lagrangians that admit X0 as gauging charges. In fact, there is also the

possibility that two isomorphic algebras g1, g2 ⊂ e7(7), both admitting consistent gauging, are conjugate in

Sp(56,R) but not in E7(7). In such a situation, g2 would be mapped to g1, and hence possibly its embedding

tensor to X0, by a symplectic transformation that does not sit in the normalizer of either algebra.
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transformations, reabsorbing them into non-local redefinitions of the vectors, and this

can be a good idea especially when treating small gauge groups, where many symplectic

transformations in S are electric-magnetic dualities of the vector fields that do not enter

the gauge connection. We therefore define the reduced S-space

Sred ≡ SSp(56,R)(X
0) \ NSp(56,R)(Ggauge) / NZ2⋉E7(7)

(Ggauge), (3.30)

where we also quotient by non-local redefinitions of the vector fields, as long as they stabilize

X0 (up to a rescaling of the gauge coupling constant). Sred is completely independent from

the choice of symplectic frame, electric or not. If we construct Sred in a frame which is not

electric, the left quotient in (3.30) can be reinterpreted as local redefinitions of the larger

set of vector fields and two forms that appear for magnetic gaugings.

The definition given in (3.30) is the most direct generalization of the ‘ω-deformation’

of the SO(8) theory, meaning that it contains all and only the deformations of a given

gauging that do affect in a non-trivial way the T -tensor, and hence the equations of motion

and supersymmetry variations.

However, some elements of S/Sred have a simple and interesting physical interpre-

tation, and they are precisely those that arise even when dim(Ggauge) = 28. They are

associated to the possibility of shifting the θ-term of the action by a field-independent,

gauge invariant quantity. Consider unipotent symplectic matrices Wx of the form

WxM
N =

(

δΛ
Σ xΛΣ

δΛΣ

)

, x[ΛΣ] = 0. (3.31)

These transformations modify the gauge kinetic function N (φ)ΛΣ by a constant shift of its

real part, hence shifting the θ-angles by a term proportional to xΛΣF
Λ ∧ FΣ. A general

choice of WxM
N does not stabilize X0 because if xΛΣ is not gauge invariant, then it also

induces a shift in the gauging of Peccei–Quinn symmetries X0
ΛΣΓ → X0

ΛΣΓ − 2X0
Λ(Σ

∆xΓ)∆,

which is necessary to compensate for the gauge variation of the shifted θ-angle (In fact,

they were called “Peccei-Quinn symplectic transformation” in [30], where their relation

with U-duality and the symplectic group has been investigated). However, if we choose

xΛΣ to be a gauge invariant matrix, then Wx has trivial action on X0. We conclude that

for any Ggauge, unless it is generated by nilpotent matrices exclusively, there is at least

one symplectic deformation in S, associated to the Cartan–Killing form induced by e7(7),

namely xΛΣ ∝ ΘΛ
αΘΣ

βηαβ in some electric frame.

It is not surprising that such constant θ-angles can be added to the gauged supergrav-

ity action, because they clearly do not affect the equations of motion and supersymmetry

variations, and they are encoded as symplectic transformations, consistently with the gen-

eral analysis of [20, 27]. However, what should be stressed is that these θ-terms cannot

be reabsorbed in an E7(7) transformation. Therefore, they parameterize inequivalent (elec-

tric) gauged actions in their own right, and we can expect that quantum corrections to

the classical actions may in fact depend on the values of these additional θ-angles. As we

will see in section 4 a constant, gauge invariant shift in the θ-angle is even possible in the

SO(8) gauged maximal supergravities and it is consistently encoded in S.
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3.5 Parity

There is one more identification between symplectic deformations that we must discuss,

which is closely related to a parity transformation and whose correct definition for a general

gauging is quite subtle. If a choice PM
N of the Z2 outer automorphism of E7(7) normalizes

Ggauge, then by defining its action on N−1
M

N appropriately we can further quotient by it.

In fact, PM
N is realized as an anti-symplectic transformation and it is an invariance of

the ungauged Lagrangians when combined with a parity transformation [22, 23]. More

precisely, we can regard it as encoding the intrinsic parities of the (physical and auxiliary)

fields of the theory, and it is therefore crucial to define a parity symmetry. Up to a local

SU(8) transformation but taking into account a possible E7(7) shift of the scalar fields, its

action on the coset representatives reads:

PM
NL(φ)N

P =
(

L(Pφ′)M
P
)∗
. (3.32)

where by Pφ we denote the action of parity on the 70 spin 0 fields. The complex conjugate

arises because underlined indices are in a SU(8) block-diagonal basis, to make contact with

the transformation properties of the fermions. In the ungauged case, the inverse of PM
N

acts on the vector fields together with the explicit action of parity on the Lorentz indices.

The combination of the actions on coset representatives and vector fields leaves the kinetic

terms invariant, and this fact generalizes to the whole ungauged theory.

The gauged case is more subtle: we must require that PM
N normalizes Ggauge, but

even in this case its action on X0 can be non-trivial. If we define

X
(P )
MN

P ≡ P−1
M

QP−1
N

R X0
QR

S PS
P , (3.33)

then X(P ) 6= X0 in general. Since the field strengths now contain X0, their transformation

property under parity would not be consistent if we acted with P−1
M

N on the vector fields

and X(P ) 6= X0. However, X(P ) still defines a consistent gauging of Ggauge, therefore there

must exist a symplectic matrix QM
N whose action on X0 is equivalent to that of P−1

M
N :

X
(P )
MN

P = QM
QQN

R X0
QR

S Q−1
S

P , QM
N ∈ NSp(56,R)(Ggauge). (3.34)

Hence, the anti-symplectic transformation

P̂−1
M

N ≡ Q−1
M

P P−1
P
N (3.35)

can act consistently on the vectors and their field strengths. Notice that this analysis

also implies that a parity symmetry is present in the gauged theory only if QM
N can be

reabsorbed in other field redefinitions.

We can now repeat the analysis of equations (3.24) and (3.25), but taking the relation

N = P−1N ′P̂−1 as a starting point, and conclude that the parity identification is

N ≃ PNP̂ , (3.36)

which is also consistent with the fact that N is symplectic. Notice that the squares of P

and P̂ are trivial up to field redefinitions, more precisely

P 2 ∈ NE7(7)
(Ggauge), (3.37)
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P̂ 2 ∈ SSp(56,R)(X
0). (3.38)

This is already sufficient for Sred. If we only quotient by the set of local redefinitions of the

physical fields in an electric frame, in order to obtain an appropriate parity identification we

must require that P̂ acts on physical and dual vectors separately. Notice that, as opposed

to E7(7) redefinitions of the scalar fields, the action of P on N is always combined with

P̂ on the other side. We prefer anyway to include the parity identification in the right

quotients of (3.29), (3.30) by a slight abuse of notation (recall that in our notation it is

N−1 that belongs to S).

The parity identification is guaranteed to exist, for instance, for gauge groups contained

in SL(8,R), SU∗(8) and/or SU(4, 4), with P = σ3 ⊗ 128 in these symplectic frames.

4 The S space of SO(8)

Let us now consider the explicit example of the SO(8) gauged maximal supergravity, taken

in its standard electric frame with SL(8,R) as electric group. We will extend the result of [1]

on the existence of a family of deformations of this theory, using pure group-theoretical ar-

guments. Indeed, in this frame SO(8) ⊂ GL(28,R), and making use of Schur’s lemma (3.29)

reduces to

S = NGL(28,R)(SO(8)) \ NSp(56,R)(SO(8)) / NZ2⋉E7(7)
(SO(8)), (4.1)

and no reference to the embedding tensor is in principle necessary. To simplify the exposi-

tion we always write SO(8) when we refer to the gauge group, although what is embedded

in E7(7) is actually the centerless group PSO(8) = SO(8)/Z2. The following analysis will

show that S encodes not only the ω-angle of [1], but also the possibility to further deform

the (electric) SO(8) gauged supergravity action by a constant, gauge invariant θ-term, as

we discussed in section 3.4. This section also gives an explicit example of how the S and

Sred quotients work and yield the correct parameter space of inequivalent SO(8) gaugings.

The SO(8) subgroup of E7(7) that is gauged can be identified, up to E7(7) conjugation,

from the chain of maximal and symmetric embeddings:

E7(7) ⊃ SL(8,R) ⊃ SO(8) (4.2)

56 → 28+ 28′ → 28+ 28. (4.3)

In order to identify the S space of symplectic deformations, we must first of all compute

NSp(56,R)(SO(8)). We can start by computing the connected part of the centralizer without

the need to resort to any explicit representation, as we now show. Later we will use an

explicit representation as a cross–check, and to quickly identify any discrete factors. First

of all, the Sp(56,R) adjoint then decomposes as5 [33]

Sp(56,R) ⊃ E7(7) (4.4)

5Due to a Theorem by Dynkin [31] and to one of its exceptions (cfr. e.g. table VII of [32]), the embedding

of E7(7) in Sp(56,R) is maximal and non-symmetric, and in physics it is known as a remarkable example of

the so-called Gaillard–Zumino embedding [26].
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56 → 56, (4.5)

1596 → 133+ 1463. (4.6)

The adjoint representation of E7(7) does not contain any SO(8) singlet, as its adjoint

decomposes as 133 → 28 + 35v + 35s + 35c (in our conventions, the adjoint of SU(8)

decomposes as 63 → 28 + 35v). Under the chain of embeddings (4.2), the 1463 irrep. of

E7(7) decomposes in the following triality-invariant way:

1463 → 1I + 70+ 336+ 336′ + 720 (4.7)

→ 1I + 1II + 1III + 2 · (35v + 35s + 35c) + 2 · 300+ 350, (4.8)

because it holds that

SL(8,R) ⊃ SO(8) (4.9)

70 → 35v + 35c, (4.10)

336 → 1+ 35s + 300, (4.11)

720 → 35v + 35c + 300+ 350. (4.12)

We observe that (4.11) implies that one of the singlets, say 1I for definiteness, is in fact a

singlet under the whole SL(8,R). Moreover, it should be stressed that three SO(8) singlets

in the decomposition of the generators of Sp(56,R) actually exist. Thus, a priori and before

taking into account any equivalences, a three-parameter family of SO(8) gaugings of D = 4

maximal supergravity exists.

Repeating the above analysis including GL(28,R) in the chain of embeddings, namely

considering Sp(56,R) ⊃ GL(28,R) ⊃ SL(8,R) ⊃ SO(8), shows that 1I is actually the

SL(28,R) singlet and therefore it generates a GL(1,R). Now, the coset Sp(56,R)/E7(7)

has signature (c, nc) = (721, 742) (where “c ” and “nc” stand for compact and non-

compact, throughout). In particular, the 721 compact generators all belong to the sub-coset

U(28)/SU(8), where U(28) and SU(8) respectively are the maximal compact subgroups of

Sp(56,R) and of E7(7). These 721 generators sit in the 720 + 1 of SU(8), which thus, by

virtue of (4.12), branches as

SU(8) ⊃ SO(8) (4.13)

U(28)/SU(8) : 720+ 1 → 35s + 35c + 300+ 350+ 1. (4.14)

Thus, among the two remaining SO(8)-singlets 1II and 1III , only one suitable linear com-

bination is compact. At this point one can easily realize that the 3-dimensional group

manifold parameterized by the three singlets, with signature (c, nc) = (1, 2), is nothing but

SL(2,R). In fact, we can recognize SL(2,R) × SO(8) ⊂ Sp(56,R) as descending from the
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chain of two maximal (non-symmetric) embeddings6

Sp(56,R) ⊃ SL(2,R)× SO(28,R), (4.15)

SO(28,R) ⊃ SO(8), (4.16)

where the fundamental of SO(28,R) becomes the adjoint of SO(8).

We must now take into account further discrete factors in the centralizers, if any exist.

Computing the discrete factors of the centralizers and normalizers in a representation-

independent fashion requires a quite more sophisticated analysis, hence we prefer to switch

to the explicit embedding of SO(8) in the 56 representation of Sp(56,R), which is given by

so(8) ∋ tr =

(

Λr

Λr

)

(4.17)

where Λr are the SO(8) generators in the adjoint representation. Schur’s lemma then

implies that any symplectic matrix centralizing SO(8) must be decomposable as the tensor

product of a 2 × 2 matrix with 128. This provides a cross-check that the connected part

of centralizer of SO(8) in Sp(56,R) is indeed SL(2,R) and proves that there are in fact no

further discrete factors.

Since the quotient of the normalizer by the centralizer is contained in the automorphism

group of SO(8), and the latter is clearly contained in GL(28,R), we conclude that

NGL(28,R)(SO(8)) ≃ GL(1,R)× S3, (4.18)

NSp(56,R)(SO(8)) ≃ SL(2,R)× S3, (4.19)

where we understand that we are quotienting by SO(8) itself. The discrete S3 is the

triality outer automorphism group of SO(8). The above result holds because we can find

real matrices representing all the elements of S3: this is accomplished embedding S3 in

GL(28,R) ⊂ Sp(56,R) in terms of the matrices

Sab = 12 ⊗ Γab, a, b = v, c, s, (4.20)

where Γab realize, in the adjoint representation of SO(8)/Z2, the S3 element exchanging the

a and b labels. Their explicit form can e.g. be given in terms of chiral, real Γ(2) matrices

constructed from a Cliff(8) algebra.

We can parametrize the SL(2,R) in NSp(56,R) as follows:

Gλ ≡

(

λ

λ−1

)

⊗ 128, λ ∈ R \ {0}, (4.21)

6The embedding (4.15) is a consequence of a Theorem by Dynkin for non-simple maximal S-

subalgebras [31]; it is treated e.g. in section 10 of [32] (see case II a therein). Suitable non-compact, real

forms of such embedding pertain to the Gaillard-Zumino embedding [26] in N = 2 supergravity coupled to

27 vector multiplets (SL(2,R) × SO(2, 26) ⊂ Sp(56,R)) and to N = 4 supergravity coupled to 22 matter

multiplets (SL(2,R)×SO(6, 22) ⊂ Sp(56,R)). On the other hand, the embedding (4.16) is a consequence of

the same Theorem, but for simple maximal S-subalgebras (cfr. e.g. section 9 of [32]), in the case in which

the adjoint vector space 28 of SO(8) and its Cartan-Killing symmetric invariant form are considered.
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Wθ ≡

(

1 −g2θ/2π

1

)

⊗ 128, θ ∈ R, (4.22)

Uω ≡

(

cosω − sinω

sinω cosω

)

⊗ 128, ω ∈ [0, 2π]. (4.23)

Finally, we must compute NE7(7)
(SO(8)). Direct computation using the explicit expres-

sion of the quartic E7(7) invariant dMNPQ [24] shows that only the Z4 subgroup generated

by Uπ/2 of SL(2,R) is contained in E7(7). Then, we can compute the normalizer by using

the fact that the quotient of the normalizer by the centralizer is isomorphic to a subgroup

of the automorphism group of SO(8). We are only interested in the outer automorphisms,

but now we notice that the only triality transformation that is allowed is the one exchang-

ing the two spinor representations, because E7(7) decomposes as 28+35v+35s+35c under

SO(8), but the 35v are the compact generators of SU(8)/SO(8) and therefore their label

must stay fixed.7 Now, the square of an element of the normalizer is necessarily an element

of the centralizer, and it is straightforward to see that the only such transformation that

belongs to E7(7) is T ≡ U±π/4Ssc. The explicit expression for T was given in equations

(4.16-17) of [34], in terms of real chiral Γ(2) matrices mapping 8s indices to 8c indices and

vice-versa, and satisfying appropriate self-duality requirements. We conclude that

NZ2⋉E7(7)
≃ D8, (4.24)

where we have already included the outer automorphism of E7(7). The dihedral group of

order 16 is embedded in the fundamental representation of E7(7) (in the standard SL(8,R)

frame) in terms of its generators:

P = σ3 ⊗ 128, T = Uπ/4Ssc. (4.25)

P is antisymplectic, namely PΩP = −Ω, but it preserves dMNPQ.

At this point we obtain the parameter space of symplectic deformations of SO(8):

S = GL(1,R)× S3 \ SL(2,R)× S3 / D8, (4.26)

where the reflection element of D8 acts as the parity identification discussed in section 3.5.

Let us now make contact with the embedding tensor formalism. The consistency

constraints on the embedding tensor require that it is a singlet under SO(8). In fact, the

912 E7(7) representation in which ΘM
α sits contains two SO(8)-singlets in its manifestly

triality-invariant decomposition:

912 → 36+ 36′ + 420+ 420′ (4.27)

→ 1θ + 1ξ + 2 · (35v + 35s + 35c + 350), (4.28)

7The transformations Sab ∈ GL(28,R) can instead exchange any two of the labels v, s, c, because they

do not map E7(7) into itself, but rather they act separately on U(28) and Sp(56,R)/U(28), both of which

have triality-invariant decompositions.
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due to the decompositions

SL(8,R) ⊃ SO(8), (4.29)

36′ → 1θ + 35s, (4.30)

36 → 1ξ + 35s, (4.31)

420′ → 35v + 35c + 350, (4.32)

420 → 35v + 35c + 350. (4.33)

The subscripts “θ ” and “ξ ” denote the relation to the symmetric tensors θAB and ξAB

that (when positive-definite) define the SO(8) generators inside SL(8,R), and that we will

always assume to be in the standard form θAB ∝ ξAB ∝ δAB. The original SO(8) gauged

maximal supergravity corresponds to θAB ∝ δAB, ξ = 0 and it is electrically gauged in the

SL(8,R) frame. What we call X0 corresponds to this particular embedding tensor. The

so-called ‘ω-deformed’ SO(8) gaugings are then defined by turning on ξ 6= 0 and they are no

longer electric in the SL(8,R) frame. This is clearly achieved in the above parametrization

by acting on X0 with the matrix Uω, which consistently matches equation (20) of [1].

Following our analysis in section 3, we prefer to regard the symplectic deformations as

leaving X0 unchanged, but acting on the coset representatives, thus yielding the deformed

theories in their respective electric frames.

We now discuss how each transformation affects the theory and how the quotients

work in practice. A convenient parametrization of SL(2,R) × S3 ⊂ Sp(56,R) is given by

(recall that it is actually N−1 that belongs to S)

SL(2,R)× S3 ∋ N = Uω Wθ Gλ Sab , (4.34)

where Sab commutes with all the other transformations. We will include the action of

parity below. Consistently with the general discussion, Gλ and Sab leave X0 invariant up

to a rescaling of the gauge coupling constant g → λg, and their effect on the kinetic terms

can be reabsorbed in a local redefinition of the vector fields. The case of Ssc is particular,

because we may also choose to combine it with a shift in ω by ±π/4 and reabsorb it in the

scalar fields as a T transformation. In any case, these transformations do not give rise to

inequivalent theories except for the above rescaling of the gauge coupling constant.

As already stressed, the transformation Uω corresponds to the ‘ω-deformation’ of the

SO(8) gauged maximal supergravity [1]. Since we can always reabsorb the Ssc part of the

T transformation in GL(28,R) by a local redefinition of the vector fields (as noted also

in [6]), the effect of T is to quotient Uω by shifts of π/4 in ω. Of course T also induces an

SU(8) transformation of the fermions.

The unipotent transformation Wθ has no effect on X0, and therefore it does not influ-

ence the T -tensor. However, its effect on the vector kinetic terms is non-trivial: recalling

that according to (3.22) the coset representatives transform with N−1, we have

N (φ)ΛΣ
W−1

θ→ N (φ)ΛΣ + g2
θ

2π
δΛΣ. (4.35)

where NΛΣ already includes the effect of Uω and corresponds to the electric gauge kinetic

function of the ‘ω deformed’ SO(8) theories. This transformation clearly represents a
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constant, SO(8) invariant shift in the θ-angle of the gauge theory, hence it has no effect

on the (classical) equations of motion and supersymmetry variations. In fact, it is clear

that we can always add a term ∝ δΛΣF
Λ∧FΣ to the gauged SO(8) electric action, and the

analysis above proves that there is no E7(7) transformation or local field redefinition that

can remove it. Taking ω = 0 for example, Wθ can be interpreted as a change of symplectic

frame in which the electric group is still SL(8,R), but now embedded in a block triangular

form (the off-diagonal block only appearing for SL(8,R)/SO(8)). However, it is simpler

to just consider the whole electric Lagrangian in the standard, block-diagonal SL(8,R)

frame, with the addition of the above shift in θ-angle (the couplings of vectors to fermion

bilinears are not affected). The analysis is basically the same when Uω is nontrivial, and

we conclude that all ‘ω-deformed’ SO(8) theories also admit a shift in the θ-term. Such a

shift would provide, for instance, a non-vanishing θ-angle to the action evaluated around

the maximally symmetric AdS4 vacuum of these models.

Finally, the identification N ≃ PNP̂ has no effect on Gλ and Sab, but clearly sends

(ω, θ) → (−ω, −θ). In the SL(8,R) frame we can take P̂ = P = σ3⊗128, which reflects the

fact that the original SO(8) theory admits a parity symmetry. Moreover, when we take ω =

π/8 and θ = 0, the outer automorphism of E7(7) in the electric frame is U−π/8(σ3⊗128)Uπ/8,

but P̂ does not change. Hence, PP̂ = U−π/4 which can be reabsorbed in field redefinitions

of vector and scalar fields. This means that we can define a parity symmetry for the ω =

π/8, θ = 0 theory, which curiously exchanges also the two spinor representations of SO(8).

If we keep θ = 0 we reproduce the known parameter space for the ω-deformation

of the SO(8) theory, namely S1/D8, with identifications ω ≃ ±ω + kπ/4, k ∈ Z and

fundamental domain ω ∈ [0, π/8]. This last result is more rigorously obtained using the

reduced space (3.30), whereWθ is removed from the beginning. It is actually worth stressing

that this result is independent on the choice of symplectic frame, as we have

Sred = S1/D8, fundamental domain: ω ∈ [0, π/8]. (4.36)

If we include θ, the S-space of symplectic deformations of SO(8) gauged maximal super-

gravity, in its standard electric frame, is a quotient of an hyperboloid: (dS2/Z8)/Z2, where

we separated the action of P . If we also impose periodicity in θ, the resulting space has

the topology of a two-sphere.

A brief comment is necessary as regards how S changes if we consider unconventional

electric frames where SO(8) is embedded in Sp(56,R) in a block-triangular form, inducing

also a gauging of Peccei-Quinn transformations. In this situation some local redefinitions

of the gauged vectors may not be available, and this can be the case in particular for

the triality transformation that, combined with T acting on the scalars, allows to identify

ω ≃ ω+π/4. The range of ω is therefore larger in these electric frames if we only allow for

identifications associated with local field redefinitions, while Sred is always the same and

given by (4.36).
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5 Gauge groups in SL(8,R), SU∗(8) and flat gaugings

The previous analysis has the advantage of being group theoretical and almost completely

independent from the embedding tensor formalism. In principle, it could be repeated for

any other consistent gauging of maximal D = 4 supergravity. However, such a task would

be time demanding, and several complications would arise for non-semisimple gauge groups.

Since the class of symplectic deformations that yield differences at the level of the

classical equations of motion is given by deformations of the gauge connection, captured

by the reduced space Sred (3.30), we shall focus on the classification of this space for

known gaugings. The task of computing (3.30) can be accomplished straightforwardly by

first choosing the set of gauge generators tr, and then solving the linear set of equations

in ϑM
r (2.4). This is equivalent to identifying the coset space (3.13), with the further

advantage that we can choose any convenient symplectic frame to perform the computation.

We shall then take into account equivalences due to field redefinitions: the computation

of (at least) the connected part of the normalizers in E7(7) can be also reduced to a set

of linear equations, using for example an explicit realization of the structure constants of

these groups. Then, either physical arguments or the use of tensor classifiers can be used

to pin down any residual discrete identifications.

In the next sections we will use the techniques developed so far to identify the space

of deformations of the gauge connection for all gauge groups contained in the SL(8,R) and

SU∗(8) subgroups of E7(7). Similarly to the SO(8) gaugings, all other Ggauge ⊂ SL(8,R) are

defined by two matrices θAB, ξAB in the 36′ and 36 of SL(8,R) [34–36]. The embedding

tensor reads

ΘAB
C
D = δC[AθB]D, ΘABC

D = δ
[A
D ξ

B]C
, (5.1)

and the consistency constraints impose θACξ
CB ∝ δBA or θACξ

CB = 0. The deformations

of the gauge connections that we are going to discuss in the next sections can be always

interpreted in terms of an ω parameter ‘rotating’ θ and ξ, as in the SO(8) case:

θAB → cosω θAB, ξAB → sinω ξAB. (5.2)

Similar expressions for the SU∗(8) case, in terms of tensors in the 36 and 36 irreps, can be

defined. We will show that the range of the ω parameter, when it is allowed, can be very

different from model to model.

Before embarking ourselves in this task, however, we may ask whether another well-

known class of gaugings of maximal D = 4 supergravity admits such deformations: the

Scherk–Schwarz and Cremmer–Scherk–Schwarz gaugings (CSS for brevity) [37–39]. The

formalism of equations (2.4), with tr defined in terms of the four CSS mass parameters as

explained in [39], allows to quickly identify the space Sred of deformations of the gauge

connection. Unfortunately, we find that for the CSS models no such deformation exists, as

the connection ϑM
r is unique up to the obvious overall rescaling, which is itself a modulus

of the theory. Therefore, the full S space of the CSS gaugings consists exclusively of

deformations of the θ-angle of the gauged U(1) vector field and of a large set of symplectic

redefinitions of the ungauged ones.
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5.1 SO(p, q) gaugings

The S space for the non-compact forms of SO(8) can be derived by analytic continuation of

the SO(8) theories. Most of the analysis of section 4 is unchanged, only with the off-diagonal

blocks of the matrices in (4.21)–(4.23) being proportional to the Cartan–Killing invariant

form ηΛΣ instead of 128. One subtlety regards the outer automorphisms of SO(p, q): the

analytic continuation will generally map the Γ(2) matrices used to define the S3 generators

to complex matrices. In particular, only for SO(4, 4) it is possible to reconstruct a real

Γsc matrix that can be used to define the T transformation, as was already noted in [34].

Other outer automorphisms would be quotiented away in any case, therefore this is the only

transformation that can affect the final result. The explicit construction of Γsc for SO(4, 4)

shows that the resulting T transformation does indeed belong to E7(7). We conclude that

the SO(4, 4) gauging has the same (reduced) space of symplectic deformations as SO(8),

namely:

SO(8), SO(4, 4) : Sred = S1/D8, fundamental domain: ω ∈ [0, π/8]. (5.3)

The full S space also contains a gauge invariant shift in the θ-term proportional to ηλΣ.

For p, q 6= 4, the analysis is still very similar to SO(8), but the T transformation in

equation (4.25) must be substituted with the centralizer iσ2 ⊗ η. This means that now ω

is identified to ±ω + kπ/2, k ∈ Z and we obtain the space

SO(p, 8− p), p 6= 0, 4 : Sred = S1/D4, fundamental domain: ω ∈ [0, π/4]. (5.4)

Again, a shift in the θ-angle is also possible. The absence of the triality identification is

also further confirmed by an analysis of the vacua of the SO(6, 2) ≃ SO∗(8) and SO(7, 1)

theories carried out in [18, 34]: both these gaugings admit vacua preserving their maximal

compact subgroups only for ω = π/4, which therefore cannot be equivalent to ω = 0.

5.2 The CSO(p, q, r) and CSO∗(2p, 2r) gaugings

A large class of gaugings that descend from SO(p, q) are Inönü–Wigner contractions of

SO(p, q) and SO∗(8), defined in the SL(8,R) and SU∗(8) electric frames respectively [40–

43]. Using the techniques described above, it is rather straightforward to calculate that

most of these gaugings do not admit deformations of the gauge connection ϑM
r. The only

exceptions are the gaugings ISO(p, 7 − p) ≃ CSO(p, 7 − p, 1) ⊂ SL(8,R) that, as we will

now prove, admit a discrete deformation corresponding to the ‘dyonic’ gauging of their

seven translational symmetries (with respect to the SL(8,R) frame). That most CSO and

CSO∗ gaugings have a trivial reduced S space may come as a surprise, since all of them

admit two singlets in the decomposition of the embedding tensor representation 912. One

singlet corresponds to the θAB matrix that defines the gauging (or its equivalent in the

36 of SU∗(8)); the second singlet is given by ξAB such that θACξ
CB = 0 (and, again,

its analogue for SU∗(8)). Contrary to the SO(p, q) case, however, turning on ξAB does

not generally correspond to a mere deformation of the gauge connection, because it also

introduces new gauge couplings, giving rise to the families of gaugings [18, 34]

[SO(p, q)× SO(p′, q′)]⋉N r ⊂ SL(8,R), (5.5)
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[SO∗(2p)× SO∗(2p′)]⋉N r ⊂ SU∗(8). (5.6)

This shows how having more than one gauge singlet in the decomposition of the embedding

tensor is a necessary, but not sufficient, condition for having deformations of the gauge

connection. We will discuss the gaugings (5.5), (5.6) in the next section. The only case

in which turning on ξAB gives rise to a symplectic deformation is when θAB has only one

vanishing eigenvalue, so that turning on ξAB gauges the same seven nilpotent generators

that were already gauged by θAB. This gives rise to the ISO(p, 7− p) gaugings.

The above analysis is confirmed by solving explicitly the gauge connection con-

straints (2.4) for the CSO(p, q, r) and CSO∗(2p, 2r) gaugings: only ISO(p, 7 − p) admit

more than one solution up to overall rescalings. If we introduce a parameter ω such that

ω = 0 corresponds to the electric gauge connection in the SL(8,R) frame and ω 6= 0

corresponds to gauging the seven nilpotent generators dyonically, then all non-vanishing

values of ω are equivalent up to a Z2 ⋉ E7(7) transformation: in fact, ISO(p, q) admits a

continuous outer automorphism corresponding to a rescaling of the nilpotent generators.

This automorphism is realized in E7(7) as the only non-compact generator that is a singlet

under SO(p, 7 − p). More explicitly, the Cartan generators of E7(7) can be chosen as the

diagonal elements of SL(8,R), and the relevant generator has the form (taking θA8 = 0)

(

17

−7

)

(5.7)

in the fundamental representation of SL(8,R). It is clear that such generator would rescale

θAB and ξAB separately. Finally, the sign of ξAB can be changed by a parity transformation,

just like in the SO(8) case. Therefore, the only inequivalent choices correspond to ξ = 0 or

ξ 6= 0 or, in the language of ‘ω deformations’, to:

ISO(p, 7− p) : ω = 0 or ω 6= 0 (mod π/2). (5.8)

A simple observation excludes the possibility that these two choices can be further identified

by some discrete transformation: the ω = 0 embedding tensors rescale homogeneously

under the action of (5.7), but not under any other non-compact generator of E7(7), while

turning on ω 6= 0 introduces non-homogeneous terms also under the action of (5.7).

The physical relevance of the symplectic deformation of these models is clear in the

ISO(7) case. On the one hand, by an argument given in [34], the ISO(p, 7 − p) theories

with ω = 0 can at most admit Minkowski vacua (although none are known) because of the

homogeneous rescaling of the embedding tensor with respect to a non-compact generator

of E7(7). On the other hand, the ISO(7) theory with ω 6= 0 is known to have an AdS

vacuum [34], which is possible precisely because ω 6= 0 breaks the homogeneity property of

the embedding tensor. Moreover, [9] identified another AdS vacuum of an ISO(7) gauging

of maximal supergravity, and we can now state that it also belongs to the ‘deformed’ model.

5.3 ‘Dyonic’ gaugings

The gaugings (5.5), (5.6), when defined in the SL(8,R) and SU∗(8) symplectic frames,

necessarily involve magnetic vectors for gauging one semisimple factor, as well as a mix of
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electric and magnetic vectors for the nilpotent generators. They are particularly relevant

for the study of Minkowski solutions of gauged maximal supergravity, as it has been

found that all Ggauge ⊂ SU∗(8), together with some more groups in SL(8,R), admit such

vacua, with fully or partially broken supersymmetry. Moreover, the models allowing for

Minkowski vacua are connected to the Cremmer–Scherk–Schwarz gaugings by singular

limits in their moduli spaces [18].

Repeating the analysis of previous sections, we find that the only gaugings that admit

a symplectic deformation of their gauge connection that is not removed by E7(7) transfor-

mations are of the form

Re(SO(4,C)× SO(4,C))⋉ T 16, (5.9)

where we can choose either two (p, q) real forms for the two factors (in which we obtain

a subgroup of SL(8,R)), or we can choose (SO∗(4) × SO∗(4)) ⋉ T 16 ⊂ SU∗(8). The only

deformation of the gauge connection of these models corresponds to the separate rescaling

of the couplings of the two Re(SO(4,C)) factors (which also gives an electric-magnetic

rotation of the vector fields associated with T 16). As usual, it can be parameterized in

terms of ω as in equations (5.1), (5.2).

Let us start with the analysis of the range of ω for SO(4,R)2 ⋉ T 16. In terms of (5.2),

ω = 0 (modπ/2) corresponds to the ungauging of one semisimple factor, and therefore these

values must be excluded. Hence, any linear identification on ω must map Zπ/2 to itself,

which means that at most we can expect the equivalence relation ω ≃ ±ω+ kπ/2. We can

in fact find the appropriate E7(7) transformations that yield this result: the change of sign

is associated as usual to the action of the outer automorphism of E7(7), while a shift of π/2

is induced by iσ2⊗128 ∈ E7(7) combined with an SL(8,R) transformation mapping θAB into

ξAB and vice-versa. This transformation clearly exists since θAB and ξAB have the same

signature in the current case and it is clearly associated with the Z2 outer automorphism

that exchanges the two SO(4,R) factors. The same result holds whenever we take the same

two real forms in (5.9), while in all other cases θAB and ξAB have different signatures, so

that we lose one identification, therefore we expect the range of the deformation to be

ω ≃ ±ω + kπ. Summarizing, the range of ω for these gaugings is

Re(SO(4,C)× SO(4,C))⋉ T 16 :







ω ∈ (0, π/4] same real form,

ω ∈ (0, π/2) different real forms.
(5.10)

The physical relevance of ω is most clear for SO∗(4)2 ⋉ T 16 ⊂ SU∗(8). This gauging

admits Minkowski vacua with fully broken supersymmetry for any value of ω, and the

masses of all fields are completely determined by a mass formula that effectively includes

their moduli dependence [17, 18]. The masses of the gravitini have even multiplicity,

therefore we can define three inequivalent mass ratios that determine the different scales of

supersymmetry breaking (the overall scale is set by the gauge coupling constant times the

Planck mass, multiplied by a modulus). It turns out that only two out of three of these

mass ratios are governed by the expectation value of some moduli. If we define the four

independent gravitino masses to be M1, M2, M3, M4, the ratio that is unrelated to any
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modulus can be taken to be M1M2/M3M4. We find that this ratio is governed by the ω

parameter according to
M1M2

M3M4
= tanω. (5.11)

The above discussion on the range of ω shows that it is exhaustive to consider this ratio to

be in the range (0, 1], as values greater than one can be mapped back to the fundamental

domain by a field redefinition that also has the effect of exchanging M1, M2 with M3, M4.

Sending ω → 0 also has a clear physical interpretation: on the one hand, it corresponds to

restoring some amount of supersymmetry, and on the other hand it corresponds to a gauge

group contraction that yields the model with CSO∗(4, 4) ≃ SO∗(4)⋉T 16 gauge symmetry,

which indeed admits Minkowski vacua with N = 4 supersymmetry [18].

A small puzzle arises when we notice that the algebras of (SO(4)×SO(2, 2))⋉T 16 and

of SO∗(4)2⋉T 16 are isomorphic. We may then ask if the above discussion also applies to the

former gauging, which can be seen as arising from a contraction of SO(6, 2)ω=π/4 along its

moduli space and indeed it admits non-supersymmetric Minkowski vacua [18, 34]. The mass

spectra coincide too, but the mass ratioM1M2/M3M4 in the (SO(4)×SO(2, 2))⋉T 16 model

is not regulated by its ω deformation, as the latter in fact breaks the vacuum condition. A

full analysis of the identifications between these Minkowski models goes beyond the scope

of this paper, and we leave it for future work.

6 Comments

With this work, we presented a detailed procedure to determine the space of symplectic

deformations of gauged maximal supergravity. This clarifies a number of pending issues

in understanding such theories. In particular, it is now clear that the deformations are

continuous, because they can be interpreted as non-local field redefinitions needed to change

the symplectic frame in which we introduce the gauge couplings X0. Hence it seems that

charge quantization conditions should not affect the deformation parameters, as S simply

parameterizes a set of Lagrangians compatible with the gauging X0. Moreover, in S two

Lagrangians are regarded as equivalent when they can be mapped to each other by local

field redefinitions, hence also these identifications are not affected by the discretization of

duality groups.

It is also interesting to see that the space of inequivalent deformations of the SO(8)

theory is not limited to the ω parameter introduced in [1], but that there is another

parameter, related to the introduction of a θ-term in the Lagrangian, which cannot be

reabsorbed in E7(7) dualities or local field redefinitions. Such a term is irrelevant at the

classical level, but it can affect quantum corrections and therefore it can be also relevant

for the dual field theory beyond the large N approximation.

There are many aspects that still deserve a better study. The first one is obviously the

generalization of the procedure described here to the case of models with N < 8. We expect

that this could be easily done in the case of models that include only the gravity multiplet,

adapting the dimensions of the symplectic group, the duality group and the dimension of

the group of linear transformations of the vector fields contained in the same multiplet. On
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G R N G R N

E7(7) 56 8 E7(−25) 56 2

SO∗(12) 32 2, 6 SO(6, 6) 32 0

SU(3, 3) 20 2 SL(6,R) 20 0

SU(1, 5) 20 5 Sp(6,R) 14’ 2

[SL(2,R)]3 (2,2,2) 2 SL(2,R) 4 2

Table 1. Simple, non-degenerate groups of type E7. We list the relevant symplectic representations

R of G and the number of supersymmetries of the corresponding supergravity theory. Note that in

the STU model G = [SL(2,R)]3 is semi-simple, but its triality symmetry [49, 50] makes it “effectively

simple” [51].

the other hand, we probably need more care and a refined analysis for generic gaugings in

models where the gravity multiplet couples to other matter multiplets. In fact, in this case,

only the field redefinitions involving scalar fields in the gravity and vector multiplets will

have a non-trivial effect also on the vector fields. It is actually straightforward to see that

the ω parameter survives various truncations of maximal supergravity [13–15], but that its

range changes also according to the number of supersymmetries preserved and the different

matter couplings of the truncated theory. We obviously expect that when applied to N = 4

theories, our general procedure include the de Roo–Wagemans angles [29]. Even if details

may vary, it is clear that the rule of thumb to identify symplectic deformations is to classify

duality redefinitions of the vector fields that are compatible with the chosen embedding of

the gauge group in the symplectic group, and then quotient by local field redefinitions (or

a larger set of transformations if we are only concerned with the classical theory).

An interesting case where the procedure described here could be applied with obvious

modifications is the one of supergravities with duality groups of type E7 [44–46], whose

simple, non-degenerate cases are listed in table 1 (For the difference between degenerate

and non-degenerate cases see [47]). The existence of a symplectic quadratic form and of

a unique quartic invariant satisfying suitable constraints for the representation R of the

vector fields under the action of the duality group suggest that most of the results we

found in the maximal theory can be reproduced in these models. In fact, at least in the

case where the vectors sit in an irreducible representation, as a consequence of a theory by

Dynkin [31], the existence of the symplectic form implies the maximal embedding of the

group G of duality symmetries:

G ⊂ Sp(dimRR,R). (6.1)

This subset of theories includes all extended supergravities with symmetric scalar mani-

folds, where we excluded the quaternionic fields of N = 2 theories. We may then propose

as a definition of S the quotient

SGL(nv ,R)(X
0
MN

P , f
(i)
M ) \ NSp(dimRR,R)(Ĝgauge) / NZ2⋉G(Ĝgauge), (6.2)
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where nv is the number of vectors, X0
MN

P denotes the embedding tensor for the subgroup

Ĝgauge ⊂ Ggauge that is embedded in G, while f
(i)
M are Fayet–Iliopolous terms, the index i

being inert under symplectic transformations. We may as well define Sred by substituting

GL(nv) with Sp(dimRR,R) in the left quotient. For instance, this definition correctly re-

produces the ω deformation of the gauged STU model obtained as a truncation of SO(8)

gauged maximal supergravity, recently analyzed in [15]. In this case only FI terms are

present so that Ĝgauge is trivial, and the quotients are easily computed. The fact that

the range of ω is still [0, π/8] is also a direct consequence of the above definition, and we

can see that for further ‘pairwise’ truncations the triviality of ω and the arising of a de

Roo–Wagemans angle are clearly encoded in our definition. Moreover, several new transfor-

mations can be identified and they definitely deserve further study. When hypermultiplets

are also considered, one may naively guess that, as far as isometries of the hypermulti-

plets’ scalar manifold are not gauged, the analysis of such theories can be encompassed

by the same generalization we expect for the other theories with duality groups of type

E7. Otherwise, we may propose to treat the embedding tensor that gauges isometries of

the Quaternionic Kähler manifold similarly to our proposed treatment of the FI terms.

However, more complications can arise, for instance from a careful study of the linear and

quadratic constraints on the embedding tensor formalism for generic gauged supergravities,

and we leave this interesting issue and related details for further future investigations.

Another point we would like to clarify in the future is the existence of deformation pa-

rameters of the gauge connection in the case of gauge groups that do not have dimension 28.

In particular, maximal supergravity imposes severe restrictions on the existence of gauge

groups of small dimension (for instance it is impossible to produce a U(1) gauging [20]) and

it would be interesting to see the effect on the structure of their symplectic deformations.

One of the most fascinating aspects of this analysis is the insight we obtained on the

possible origin of these deformation parameters, which is still elusive, despite some very

interesting attempts [6, 7, 48]. We clarified above why we expect it to remain a continuous

parameter also beyond the classical regime, at least from the point of view of the four

dimensional theory. In theories like SO(8), ω cannot be a modulus that has been truncated

away in the reduction procedure from some higher dimensional theory. Otherwise, this

would imply that the performed truncation to four dimensions is not consistent, because

the ratios between the cosmological constants of two different vacua of these theories are

often ω dependent. However, for theories with Minkowski vacua like SO∗(4)2 ⋉ T 16, ω

preserves the vacuum condition and the above argument clearly does not hold, so that ω

could be a truncated modulus. In any case, the relation of this parameter with non-local

field redefinitions of the ungauged theory hints to a precise mechanism for its generation

and we plan to discuss this in a future publication.
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