
J
H
E
P
0
7
(
2
0
1
4
)
1
2
8

Published for SISSA by Springer

Received: April 15, 2014

Accepted: June 9, 2014

Published: July 25, 2014

Wilson lines and gauge invariant off-shell amplitudes

Piotr Kotko

The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences,

Radzikowskiego 152, 31-342 Kraków, Poland

E-mail: piotr.kotko@ifj.edu.pl
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as a way to calculate gauge invariant tree-level amplitudes with off-shell gluons. The off-

shell gluons are assigned “polarization vectors” which (in the Feynman gauge) are trans-

verse to their off-shell momenta and define the direction of the corresponding Wilson line

operators. The infinite Wilson lines are first regularized to prove the correctness of the

method. We have implemented the method in a computer FORM program that can cal-

culate gluonic matrix elements of Wilson line operators automatically. In addition we

formulate the Feynman rules that are convenient in certain applications, e.g. proving the

Ward identities. Using both the program and the Feynman rules we calculate a few ex-

amples, in particular the matrix elements corresponding to gauge invariant g∗g∗g∗g and

g∗g∗g∗g∗g processes. An immediate application of the approach is in the high energy scat-
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of gauge invariant objects.
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1 Introduction

A basic off-shell object in QCD is a momentum space Green’s function, i.e. the Fourier

transform of a matrix element of time ordered field operators (in what follows we will

consider only gluon operators for definiteness). In case of the most standard collinear fac-

torization (see e.g. [1] for a review) the hard amplitude defining the perturbative core of

the process is defined by the reduced connected Green’s function, i.e. the external prop-

agators are amputated, taken on-shell and contracted with polarization vectors. Thanks

to on-shellness and transversality of the polarization vectors to corresponding momenta

such amplitudes are gauge invariant. However, for processes occurring at high energies one
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often has to deal with so called high-energy (or kT ) factorization [2–5] (we put aside here

the issues concerning the factorization breaking, see e.g. [6–10] for more details). In that

case the reduction of the Green’s function does not put all of the external legs on-shell;

the remaining one or two off-shell legs are contracted with eikonal vectors corresponding to

fast moving hadrons and off-shell momenta are restricted to be transverse to the pertinent

eikonal vectors. There is however an issue related to gauge invariance of such objects. In

general, in order to maintain the gauge invariance additional non-standard (i.e. not calcula-

ble from standard QCD Feynman rules) contributions are needed. One of the approaches is

to use the Lipatov’s effective action [11, 12] and interpret an off-shell gluon with additional

contributions as an effective reggeized gluon R. Even at tree-level this approach is rather

complicated for multiple final states. Therefore only recently some automatic methods to

calculate such amplitudes for larger multiplicities have been developed [13–15] (examples

of practical applications were presented in [16, 17]). They use different methods than the

Lipatov’s effective action (see also e.g. [18] for yet another approach). In particular, the

Lipatov’s effective action uses Wilson lines, i.e. path ordered exponentials of color gauge

fields, while the other methods do not refer to Wilson lines directly. However, the Wilson

lines are viewed as the basic objects at very high energies (see e.g. [19] or the Color Glass

Condensate formulation of QCD [20]), therefore they are always present in one or the other

form. For instance in [13] they show up as eikonalized quarks. Actually, as we will see in the

present paper also the additional contributions recovering the gauge invariance constructed

in ref. [14] from the Slavnov-Taylor identities do correspond to a bremsstrahlung from a

straight infinite Wilson line. Basing on this observation we will formulate a prescription to

calculate off-shell gauge-invariant “amplitudes” by considering matrix elements of Fourier

transforms of straight infinite Wilson line operators. The “momentum” of such an oper-

ator corresponds to an off-shell gluon (and additional contributions needed by the gauge

invariance), while the direction of the Wilson line corresponds to its “polarization” vector.

In our prescription the momenta and direction of a Wilson line are arbitrary, except that

they have to be mutually transverse. This allows to apply the method also outside the

high energy factorization approach as we will see.

In order to test the method we have implemented it in a computer program written

in FORM [21]. It allows to calculate matrix elements of Wilson line operators for sev-

eral external legs analytically. For instance, using the program a calculation of a process

with four reggeized gluons with arbitrary “orientation” and an additional gluon emission,

RRRRg, can be done automatically.

Let us collect at this point the main elements of the paper. i) Any tree-level amplitude

with arbitrary number of gluonic off-shell legs and any number of on-shell legs, where

the off-shell gluons have polarization vectors transverse to their off-shell momenta, can

be made gauge invariant by assigning a proper infinite Wilson line operators to off-shell

gluons. Those operators are at first sight ill-defined and we develop their regularized version

to prove the correctness of the approach. To this end we also prove the Ward identities.

ii) The off-shell amplitudes we consider here are more general than the ones appearing in

the high-energy literature, but they reduce to the Lipatov’s vertices with certain choice of

the off-shell momenta and Wilson line directions (some of the contributions vanish with
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that choice). We check some explicit examples using the Feynman diagrams, in particular

we give an example for the gauge invariant g∗g∗g∗g process. iii) We construct a computer

program that can calculate off-shell gluonic amplitudes automatically and analytically,

using the presented method. Using the program we cross-check the result for g∗g∗g∗g and

calculate the gauge invariant g∗g∗g∗g∗g matrix element.

The work is organized as follows. The first two sections are in a sense introductory.

In section 2 we will introduce Wilson lines in the context of the off-shell amplitudes. We

choose to do this by taking as an example the result of ref. [14] for off-shell high energy

amplitudes. In section 3 we recall some basics concerning Wilson lines. Next, in section 4

we make some more formal definitions of the off-shell amplitudes using the Wilson lines.

In section 5 we shortly present the computer program based on the method. We introduce

the Feynman rules in section 6 and prove the Ward identities in section 7. In section 8 we

give some examples of explicit calculations. Next, in section 9, we present a potentially

interesting application of the present approach in decomposing ordinary amplitudes into

gauge invariant pieces. Finally, we make some summarizing remarks in section 10.

2 High energy amplitudes and gauge invariance

In order to introduce the Wilson lines in the context of off-shell amplitudes, let us start with

a short recollection of the high-energy factorization of Catani, Ciafaloni and Hautmann

(CCH) [3, 5]. For more detailed albeit compact review we refer e.g. to [14, 16]. In the

original CCH approach a hadro- and lepto-production of heavy quarks was considered.

At high energies, the relevant hard partonic sub-amplitudes turn out to be off-shell, i.e.

we have to consider amplitudes g∗g∗ → QQ or γg∗ → QQ. They are defined by the

Green’s function with the on-shell legs amputated, while the off-shell gluon legs (including

propagators) are contracted with so called eikonal vertices. To be more precise, if the

momentum of the hadron A is pA the corresponding eikonal vertex is just pµA (modulo a

prefactor). Moreover, the momentum kA of the corresponding off-shell leg has the form

xApA+kTA, i.e. it is transverse to pA (kT ·pA = 0, p2
A = 0). Since the CCH factorization is

stated in the axial gauge, it turns out that the standard Feynman diagrams are enough to

obtain the gauge invariant set of diagrams (recall we consider the heavy quark production

case here). Moreover, for heavy quark lepto-production it is even true for any additional

radiation of gluons. Therefore in [5] the CCH factorization was demonstrated to hold up

to several loops for DIS heavy quark structure function. The last statement is also true

for the so-called hybrid version of CCH factorization in hadron-hadron collision, i.e. where

only one gluon is off-shell [14, 22]. This approach is thought to be a good approximation to

the full high-energy factorization in case of forward processes, e.g. forward jet production.

However in the case of jets one usually needs also purely gluonic sub-processes. In that

case the off-shell sub-process gg∗ → g . . . g is not gauge invariant. One can however still

get the correct result with a particular choice of polarization vectors, but some modern

methods relying on gauge invariance (e.g. the helicity method) cannot be used in that case.

The most natural approach to the gauge invariance problem in the above context is just to

see what kind of terms violate the gauge invariance and try to make use of that knowledge.
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This path was taken in ref. [14] and now we shall briefly recall this method and point out

the connection to the Wilson line.

The high-energy gluonic amplitude MpA (ε1, . . . , εN ) with a single off-shell leg with

incoming momentum kA is defined by the following reduction formula

MpA (ε1, . . . , εN ) = lim
kA·pA→0

lim
k21→0

. . . lim
k2N→0

pµAA k2
1ε
µ1
1 . . . k2

Nε
µN
N

G̃µAµ1...µN (kA, k1, . . . , kN ) , (2.1)

where ε1, . . . , εN are polarization vectors of on-shell gluons with momenta k1, . . . , kN and

G̃ is the momentum space Green’s function. The internal (off-shell) propagators of G̃,

including the leg with off-shell momentum kA are taken to be in the axial gauge with the

gauge vector pA, whereas the legs with momenta k1, . . . , kN are in the Feynman gauge.

This is allowed as it is known that for the legs that are eventually on-shell one can choose

a different gauge than for internal lines. Thanks to the first limit in (2.1) the momentum

kA has the structure

kµA = zA p
µ
A + kµTA (2.2)

with k2
A = −

∣∣∣~kT A∣∣∣2. The off-shell momentum kA has thus the structure complementary

to the high-energy factorization described above.1 As already mentioned the amplitude

MpA is in general not gauge invariant in the sense of the following Ward identity (unless

we choose the polarization vectors in a special way)

MpA (. . . , ki, . . .) 6= 0. (2.3)

However, since we have the relation between the Green’s function andMpA we can actually

calculate the r.h.s. of (2.3) using the Slavnov-Taylor identities (for an elementary review of

the Slavnov-Taylor identities see e.g. [23]). Furthermore, it turns out that within the gauge

we are using the sum of all the gauge contributions with a proper treatment of external

ghosts gives a “gauge-restoring amplitude” W, such that M̃pA = MpA +W satisfies the

Ward identity

M̃pA (. . . , ki, . . .) = 0. (2.4)

In order to write the amplitude W in a compact manner, let us recall that any gluonic

amplitude M may be decomposed into so called color-ordered amplitudes [24] as follows

(we omit the polarization vectors here)

M =
∑

Π′(a1,...,aM )

Tr (ta1 . . . taM ) M(a1...aM ), (2.5)

where a1, . . . , aM are color indices of the gluons with momenta k1, . . . , kM respectively, Π′

is the set of all non-cyclic permutations of the color indices, the matrices ta are genera-

tors of the SU (3) color group normalized as Tr
(
tatb
)

= δab/2. The amplitude M(a1...aN )

1There is a difference with respect to a definition of the corresponding amplitude given in [14], where

additional factors were inserted to maintain collinear limit already at this stage. The relation is M =∣∣∣~kT A∣∣∣ zAMpA , where l.h.s. is the amplitude of [14].
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kA

k1 k2 k3 kN

. . .

Figure 1. Graphical representation of the “gauge-restoring amplitude”W. Each gluon is coupled

via pµA thus giving a factor pA · εi for a gluon with momentum ki and polarization vector εi. The

double-line propagator between subsequent emissions has the form i/k · pA where k is a momentum

of the line. This picture will be further interpreted as a gauge link.

corresponds to a particular color ordering given in the superscript (see [25] for a review of

color-ordering techniques). Specifically, in the present case the color decomposition for the

off-shell amplitude reads

M̃pA =
∑

Π′(aA,a1,...,aN )

Tr (taAta1 . . . taN ) M̃(aAa1...aN )
pA

. (2.6)

The result for the color-ordered version of the “gauge-restoring amplitude” W turns out

to be very simple

W(aAa1...aN ) (ε1, . . . , εN ) =−
∣∣∣~kT A∣∣∣ (−g√

2

)N−1

ε1 · pA . . . εN · pA
k1 · pA (k1 − k2) · pA . . . (k1 − k2 − . . .− kN−1) · pA

. (2.7)

The above result (2.7) has a very transparent structure and expresses certain

bremsstrahlung contributions. Looking at the numerator, we see that each of the ex-

ternal on-shell gluons is coupled directly to the eikonal vector pA. There are no triple or

quartic gluon vertices as we have chosen the axial gauge with pA as the gauge vector; the

propagator is thus always perpendicular to pA and all such couplings are eliminated. Next,

looking at the denominator, we see that there are certain scalar propagators between each

emission, i.e. we have i/k ·pA between each emission with k being the momentum remaining

after the last emission. This is illustrated in figure 1.

For people working with the collinear factorization the eikonal couplings and eikonal

propagators are mainly familiar from the Feynman rules for PDFs [1, 26]. They originate

in a straight Wilson line connecting two fields separated on the light cone (and making the

whole object gauge invariant). This may suggest, that the high-energy amplitude M̃pA is

also related to a straight Wilson line. Indeed, as we shall see below the straight infinite

Wilson line has a structure complementary with the structure of W.

3 Basics of Wilson lines

Let us now recall some basic facts regarding gauge links (or Wilson lines; we shall use

both terms interchangeably) and define our notation. For a more comprehensive review of

Wilson lines in the context of Quantum Field Theory we refer e.g. to [23] (in that reference a

gauge link is referred to as the “parallel-transporter” due to its geometrical interpretation).
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The Wilson line along the path C joining two space-time points x, y is defined as

[x, y]C = P exp

{
ig

∫
C
dzµA

µ
b (z) tb

}
, (3.1)

where P is the operation of ordering color matrices tb along the path. Its crucial property

is the transformation law under the local gauge transformations U (x)

[x, y]C → U (x) [x, y]C U
† (y) . (3.2)

In many applications it is convenient to choose a straight line as the path C. Defin-

ing the straight line to lie along the direction specified by the four vector n, it can be

parametrized as

zµ (s) = xµ + snµ, zµ (1) = yµ. (3.3)

Then, for a gauge link from x to y we have simply

[x, y]n = P exp

{
ig

∫ 1

0
ds nµA

µ
b (x+ sn) tb

}
. (3.4)

Note, that we have used a subscript n to denote the path direction.

In the present paper we shall use the paths extending from minus to plus infinity. Let

us introduce the following formal definition

[x]n ≡ P exp

{
ig

∫ ∞
−∞

ds n ·Ab (x+ sn) tb
}
. (3.5)

The subtleties concerning the (divergent) integration over ds will be discussed below in

section 4. Consider now the expansion of the gauge link defined above:

[x]n = P
{

1 + ig

∫ ∞
−∞

ds n ·Ab (x+ sn) tb

+ (ig)2 1

2!

∫ ∞
−∞

ds

∫ ∞
−∞

ds′ n ·Ab (x+ sn) n ·Ab′
(
x+ s′n

)
tbtb

′
+ . . .

}
. (3.6)

In order to utilize the path ordering we use the symmetry of the integrands with respect

to s, s′, . . . and obtain

[x]n = 1 + ig

∫ ∞
−∞

ds n ·Ab (x+ sn) tb

+ (ig)2
∫ ∞
−∞

ds

∫ s

−∞
ds′ n ·Ab (x+ sn) n ·Ab′

(
x+ s′n

)
tbtb

′
+ . . . . (3.7)

Note, that the factorials originating from the expansion of the exponential cancel in the

formula above.
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4 Formal developments

Let us now make a more formal connection of (2.7) to a gauge link. At this point we see

from (3.7), that if the Wilson line direction is defined via the four vector pA appearing

in (2.2), the external gluons will be contracted with pA, as desired in view of eq. (2.7). The

eikonal propagators in (2.7) will come out from the path ordered integrals. In the following

we make those statements more formal.

First, note that the gauge link [x]n is gauge invariant on its own. This is due to eq. (3.2)

and the fact that for a local gauge transformation U (x) (more precisely for a small local

gauge transformation) we have U (x) → 1 for |~x| → ∞. So [x]n is gauge invariant for any

x as long as n has a nonzero spatial component. For definiteness we may restrict n to be

non-light-like at this point, but the gauge invariance of the matrix elements defined below

will be maintained for any n.

Consider next a matrix element of an operator defined as follows

Rc
n (k) =

∫
d4x eix·kTr

{
1

πg
tc [x]n

}
. (4.1)

More precisely, we consider

M (n, ε1, . . . , εN )
∗
= 〈k1, ε1, c1; . . . ; kN , εN , cN |Rc

n (k) |0〉 , (4.2)

where |ki, εi, ci〉 is an external on-shell gluon state in the Heisenberg picture with momen-

tum ki, polarization vector εi and color ci. The star adorning the equality sign means

that only connected contributions (i.e. proportional to δ4 (kA + k1 + . . .+ kN )) are to be

taken into account. At this stage, the momentum k is arbitrary, i.e. it is not restricted to

the form similar to (2.2). However, we shall see below in section 6 that the form of the

operator (4.1) assures that its matrix element is proportional to δ (k · n) implying thus the

high-energy kinematics (2.2) if n = pA.

The matrix element (4.2) can be calculated explicitly in perturbation theory using

field operators and the Wick theorem. The only complication is due to the integrals over

the path parameters in (3.7) which are formally divergent. In order to define a suitable

prescription, we propose the following finite-length (regularized) version of [x]n

[x](ε)n ≡
[
x− 2

ε
n, x+

2

ε
n

]
, (4.3)

with the path defined as

zµε (s) = xµ +
2

ε
tanh

(εs
2

)
nµ, s ∈ (−∞,∞) . (4.4)

Note that

zµε (s) = xµ + snµ +O
(
ε2
)

(4.5)
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thus in the ε → 0 limit we recover [x]n. Now, the regularized version of the expan-

sion (3.7) reads

[x](ε)n = 1 + ig

∫ ∞
−∞

ds sech2λs n ·Ab (zε (s)) tb (4.6)

+ (ig)2
∫ ∞
−∞

ds

∫ s

−∞
ds′ sech2λs sech2λs′ n ·Ab (zε (s)) n ·Ab′

(
zε
(
s′
))
tbtb

′
+ . . . ,

where

λs =
εs

2
. (4.7)

Let us pass to the momentum space

[x](ε)n = 1 + ig

∫
d4p

(2π)4 e
−ip·xn · Ãb (p)

∫ ∞
−∞

ds sech2λs e
−i 2

ε
tanhλs p·n tb

+ (ig)2
∫

d4p

(2π)4

d4p′

(2π)4 e
−i(p+p′)·xn · Ãb (p) n · Ãb′

(
p′
)

×
∫ ∞
−∞

ds

∫ s

−∞
ds′ sech2λs sech2λs′e

−i 2
ε

tanhλs p·ne−i
2
ε

tanhλs′ p
′·n tbtb

′
+ . . . , (4.8)

where Ã is the Fourier-transformed gauge field. There are two types of integrals. The

first one,

Iε (p · n) =

∫ ∞
−∞

ds sech2λs e
−i 2

ε
tanhλs p·n =

2

p · n sin

(
2p · n
ε

)
≡ δε (p · n) , (4.9)

is an approximation to the Dirac delta function,

lim
ε→0

δε (x) = 2πδ (x) , (4.10)

since ∫
dx δε (x) = 2π. (4.11)

The second integral is

Jε (s, p · n) =

∫ s

−∞
ds′ sech2λs′ e

−i 2
ε

tanhλs′ p·n =
i

p · n
(
e−i

2
ε

tanhλs p·n − ei 2ε p·n
)
. (4.12)

Those two types of integrals propagate for any of the terms in the expansion (4.8). The sec-

ond exponent in the r.h.s. of (4.12) will not contribute to the result in the ε→ 0 limit. This

is because it oscillates rapidly and its contribution is zero due to the Riemann–Lebesgue

lemma. Therefore for the regularized version of the operator (4.1) we obtain

Rc (ε)
n (k) = i n · Ãb (k)

δε (k · n)

2π
2Tr

(
tctb
)

+ i2g

∫
d4p

(2π)4 n · Ãb (p) n · Ãb′ (k − p)

× i

p · n

[
δε (k · n)

2π
+O (ε)

]
2Tr

(
tctbtb

′
)

+ . . . , (4.13)

– 8 –
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where the O (ε) terms come from the second exponent in (4.12). In the limit ε→ 0 we get

Rc
n (k) = i n · Ãb (k) δ (k · n) 2Tr

(
tctb
)

+ i2g

∫
d4p

(2π)4 δ (k · n) n · Ãb (p) n · Ãb′ (k − p)
i

p · n 2Tr
(
tctbtb

′
)

+ . . . (4.14)

From the above, we see that the operator Rn (k) should be considered as a generalized

function of k · n. Therefore, instead of the regularization (4.3), (4.4) one can use the

following more practical prescription known from the theory of the generalized functions;

we use the infinite gauge links (3.7) with the following prescriptions for the path-ordered

integrals
i

p · n+ iε
= eisp·n

∫ s

−∞
ds′ e−is

′p·n (4.15)

and

2πδ (p · n) =

∫ ∞
−∞

ds e−is p·n. (4.16)

Note, that the iε prescription in (4.15) is the same as used in [1, 26] for collinear PDFs.

In the view of the above considerations, also the matrix element (4.2) should be con-

sidered as a generalized function of k · n. It defines an object M̃n we call off-shell gauge

invariant amplitude for the process g∗ (k) g (k1) . . . g (kN )→ 0,

M (n, ε1, . . . , εN ) = δ (k · n) δ4 (kA + k1 + . . .+ kN )M̃n (ε1, . . . , εN ) . (4.17)

As a polarization vector for the off-shell gluon we understand a vector ε defined as

εµ = nνDµν (k) , (4.18)

where Dµν (k) is the numerator of off-shell gluon propagator. In particular in the Feynman

gauge we have simply

εµ = nµ (4.19)

and

k · ε = 0. (4.20)

If n = pA, the amplitude M̃n is the gauge invariant high-energy off-shell amplitude from

section 2.

We present a simple and instructive analytic calculation for a process g∗gg in ap-

pendix A. It is of course very cumbersome to do a similar calculation by hand for larger

multiplicities. However, the procedure is well defined and can be implemented in a com-

puter program, provided it can deal with many terms (see section 5). Alternatively it

is useful to construct the relevant Feynman rules. Besides the standard QCD rules, the

rules related to an insertion of the operator (4.1) are needed. They will be constructed

in section 6.
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One can also define the matrix element of several gauge link operators, with which

one can define the gauge invariant amplitude M̃nAnBnC ... with several off-shell gluons with

momenta kA, kB, kC , . . .

M (nA, nB, nC . . . , ε1, . . . , εN ) = δ (kA · nA) δ (kB · nB) δ (kC · nC) . . .

δ4 (kA + kB + kC + . . .+ k1 + . . .+ kN )M̃nAnBnC ... (ε1, . . . , εN )
∗
= 〈k1, ε1, c1; . . . ; kN , εN , cN |RcA

nA
(kA)RcB

nB
(kB)RcC

nC
(kC) . . . |0〉 (4.21)

by using the gauge links defined along nA, nB, nC ,. . .. Let us note that although in the

present paper we limit ourselves to gluonic on-shell states, the same prescription can be

used for any other on-shell state.

There is a limitation for the allowed vectors nX , X = A,B, . . .. If some of nX are equal

but not light-like, the parallel Wilson lines start to interact. This causes a problem. This

is most easily seen when we realize that such interactions give rise to terms of the form

i

kX1 · nX2

nX1 · nX2 , X1, X2 = A,B,C, . . . (4.22)

which is divergent for nX1 = nX2 , unless nX1 · nX2 = 0 (recall that kXi · nXi = 0, i = 1, 2).

Therefore, for definiteness, we assume that parallel Wilson lines have to be defined using

null vectors.

The construction (4.21) can be used in the following way. Suppose we have a Green’s

function, which is reduced in such a way that some of the legs are on-shell and have

standard polarization vectors, while some remain off-shell with momenta kA, kB, . . . and

are contracted with certain “polarization vectors” εA,εB,. . .. Call this reduced Green’s

function an off-shell amplitude MεAεB... — it is not gauge invariant. In order to find a

gauge invariant extension M̃nAnB... , we choose the vectors nA, nB, . . . satisfying

kX · nX = 0, εX µ = nνXDµν (kX) , X = A,B, . . . (4.23)

and use (4.21) with the gauge links directions along nA,nB,. . .. In the Feynman gauge the

gauge links directions correspond to polarization vectors of the off-shell gluons

εX = nX , X = A,B, . . . . (4.24)

The contribution to (4.21) coming from the first nontrivial term in expansion of the gauge

links is precisely the starting non-gauge-invariant amplitude MnAnB... while the rest form

an analog of W from section 2.

Since the delta functions δ (kX · nX) in (4.21) come entirely from the insertion of

RcX
nX

(kX) operators, one can define a more physical quantity by integrating the operators

over the arguments of the deltas. To this end let us decompose any four vector to the

component along nX as follows

vµ = v(nX)nµX + v(n)nµ + v
(nX ,n)µ
T (4.25)
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where v
(nX ,n)
T · nX = v

(nX ,n)
T · n = 0 and n is an arbitrary four vector such that nX · n 6= 0.

Using this we define ∫
dk

(nX)
X RcX

nX
(kX) ≡ RcXnX

(
k

(n)
X , k

(nX)
T X

)
. (4.26)

Note, that the gauge link defining R does not depend on the x component along n; the inte-

gration over k
(nX)
X gives the delta function δ

(
x(nX)n2

X + x(n)nX · n
)

(cf. the definition (4.1))

which in turn can be integrated over x(n) residing inside d4x measure in (4.1).

The action of the operator (4.26) on the vacuum state may be considered as a creation

of a certain state corresponding to an off-shell gluon (in the terminology of [12] they would

correspond to reggeized gluons if nX is eikonal momentum)

〈kX , nX , cX | = 〈0|RcXnX
(
k

(n)
X , k

(nX)
T X

)
. (4.27)

Such a state belongs to the cohomology of the Becchi-Rouet-Stora-Tyutin (BRST) trans-

formation, similar to other “physical” asymptotic states as gluons or quarks. Although

in principle it follows from the gauge invariance of infinite gauge links, we check this fact

explicitly in appendix B, as it may not be clear that the prescription for path-ordered

integrals preserves this property (see also section 7).

5 Automatic calculation of matrix elements

Having the definition (4.21) together with the prescriptions (4.15)–(4.16) the calculation

of any tree level amplitude is a purely algebraic task. The only integrals to be performed

are of exponential nature, which in turn can also be done symbolically. Therefore, we

have constructed a program written in FORM [21], that calculates (4.21) automatically.

It does not refer to the Feynman rules, instead it uses the Wick theorem (see an example

calculation presented in the appendix A). Therefore in the future fermionic and other

gauge fields can be added relatively easy. Although FORM is very powerful and can deal

with huge expressions, the number of terms that appear due to the Wick theorem is often

enormous. Therefore it was a crucial task to find a reasonable algorithm to deal with

the Wick contractions. At the moment the program was tested on amplitudes with time

ordered product of at most 13 gauge fields on a standard laptop. This corresponds for

example to a matrix element of four Wilson line operators and a gluon. Another difficulty

to overcome was related to a simplification of expressions; it is necessary to use momentum

conservation and relations between invariants at the intermediate steps of calculation and

the program does it automatically. The color algebra is also done automatically, so that

the results are given in the color-ordered representation [24, 25].

The program is called OGIME — an alias for Off-shell Gauge Invariant Matrix Elements.

It is available from the author’s web pages [27] or via email upon request. The technical

details concerning the program are beyond the scope of this paper and will be presented

elsewhere.
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6 The Feynman rules

In order to construct the relevant Feynman rules for an insertion of RcX
nX

(kX) operators in

the QCD matrix element, let us again consider one of the terms in its expansion, say the

m-th term

1

2πg
(ig)m

∫
d4xe−ikX ·x

∫ ∞
−∞

ds1

∫ s1

−∞
ds2 . . .

∫ sm−1

−∞
dsm

nX ·Ab1 (x+ s1nX) . . . nX ·Abm (x+ smnX) 2Tr
(
tcX tb1 . . . tbm

)
=

∫
d4p1

(2π)4 . . .
d4pm

(2π)4 δ
4 (p1 + . . .+ pm + kX)

∫ ∞
−∞

ds1

πg
. . .

∫ sm−1

−∞
dsm

δBmA0t
cX
A0B0

e−is1p1·nX δB1A2e
−is2p2·nX . . . δBm−1Ame

−ismpm·nX

igtb1A1B1
nX · Ãb1 (p1) . . . igtbmAmBmnX · Ãbm (pm) ,

where Ã are the Fourier-transformed gluon fields and the capital letter indices Ai, Bi are

the fundamental color indices (summed over). The above structure can be interpreted as

follows. The fields are separated on a line, graphically represented by a double line carrying

color quantum numbers in fundamental representation and the total momentum kX which

we assign to its beginning. Each gluon field with the color b is attached to this line via

ig tbAB n
µ
X vertex. The field attachments are separated by eikonal propagators which follow

from the integrals along the path:∫ ∞
−∞

ds1

πg
. . .

∫ sm−1

−∞
dsm t

cX
A0B0

δBmA0e
−is1p1·nX δB1A2e

−is2p2·nX . . . δBm−1Ame
−ismpm·nX

=

∫ ∞
−∞

ds1

πg
. . .

∫ sm−2

−∞
dsm−1 δBmA0t

cX
A0B0

e−is1p1·nX . . . δBm−2Am−1e
−ism−1(pm−1+pm)·nX iδBm−1Am

pm · nX + iε

=
2δBmA0t

cX
A0B0

g
δ (p1 · nX + . . . pm · nX)

iδB1A2

(p1 + . . .+ pm) · nX + iε
. . .

iδBm−1Am

pm · nX + iε
. (6.1)

Above, we have used iε prescription (4.15) as explained in the previous section. In the last

line we encounter the delta function (4.16), which together with momentum conservation

will give the delta function δ (kX · nX). The factor 2 in front of the color delta function

will assure the correct matching with the standard QCD result when the on-shell limit is

taken (of course after multiplying by inverse propagators for kX momenta).

In figure 2 we have gathered the resulting Feynman rules for insertion of (4.1) into a

QCD matrix element. The top diagram is a “skeleton” for a gauge link and originates in

the delta function in (6.1) with the prefactor. Its left-most side has the momentum and

adjoint color quantum number of the RcX
nX

(kX) operator. The momentum (and the color)

flows to the right. The end of the gauge link (the right-most part) has momentum zero.

Between the beginning and the end of the Wilson line gluons can be attached, according

to the rest of the rules given in figure 2.

In order to better trace the color (and momentum) flow in a diagram (especially when

more gauge links are present) it is convenient to “bend” the gauge link as shown in figure 3.

– 12 –
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. . .

k

= ig nµ
X tcAB

µ, c

=
iδAB

k · nX + iε

=
2

g
δ (kX · nX) t

cX
AB δAC

kX , cX

A CB

A B

A B

Figure 2. The Feynman rules for an insertion of the operator RcX
nX

(kX). The top diagram is a

“skeleton” for a gauge link; it consist in the transversality constraint, the color projection, and color

delta function eventually giving a trace. The right-most end of the double line has zero momentum.

The middle diagram represents the coupling of a gluon to the gauge link. The bottom diagram

represents the gauge-link propagator originating in path-ordered integrals.

. . .

. . .

k

k = 0

Figure 3. The improved graphical representation for the Feynman rule for the gauge link (the dots

stand for gluon attachments and gauge-link propagators). Such a representation is more convenient

when more gauge links are present and is easy to convert to color-ordered rule.

In case of two off-shell gluons, one can alternatively draw the two gauge links as the top-

most and the most bottom features, remembering that the direction of a momentum flow

(and the trace direction) has to be reversed for the bottom-most gauge link.

In the following it will be convenient to work with color-ordered amplitudes de-

fined in eq. (2.5). The standard color-ordered QCD Feynman rules are listed e.g. in

the appendix of [25] or [14]. We have to supply this list by the rules for gauge links.

This is straightforward, as gauge link contribution gives always a color trace, simi-

lar to a gluon sub-amplitude (recall that gluon vertices give products of traces due to

fabc = −2i
(
Tr
(
tatbtc

)
− Tr

(
tctbta

))
). We omit color indices, drop all the color matrices

and assign 1/
√

2 for each coupling of a gluon to a gauge link. Further, we consider only

planar diagrams with the “bent” gauge link (of course we can “unroll” it keeping track of

the color and momentum flow). Note, however that our definition (2.5) assumes the stan-

dard normalization of the color generators Tr
(
tatb
)

= δab/2, while the usual color-ordered

Feynman rules do assume that Tr
(
tatb
)

= δab (see e.g. [25]). In order to compensate for

this mismatch one has to multiply the result by a factor
(√

2
)N

, where N is the number

of external on-shell momenta.
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7 The Ward identities

We have seen in the beginning of the section 4 that the gauge links defining the opera-

tor (4.1) are manifestly gauge invariant with respect to small gauge transformations. How-

ever, the path integrals residing inside the expansion are divergent and a regularization is

required (or a prescription to give a physical meaning to the integrals). The regularization

leads to finite-length Wilson lines, thus violating the gauge invariance argument. After the

limit ε → 0 is taken the gauge invariance should be recovered. Therefore it is necessary

and instructive to prove that the off-shell amplitudes defined via (4.21) together with the

prescription to define the path integrals (4.15) do satisfy the Ward identities. Moreover,

this exercise nicely illustrates the reason the method of ref. [14] (and recalled in section 2)

does actually work. We consider only gluonic amplitudes hereafter; the amplitudes with

quarks can be analyzed even more easily in a similar manner. For another study of the

Ward identities in the context of Lipatov’s effective action see [28].

7.1 Preliminaries

Before we face our main task, we will gather some preliminary results that will be useful

later. Let us start with the Slavnov-Taylor identity for partially reduced Green’s function.

Suppose we have the Green’s function (in the Feynman gauge) and we contract one of the

external legs with the corresponding momentum. The Slavnov-Taylor identity states that

it equals to the sum of contributions with ghosts, diagrammatically

= − −+ + . . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

+

. . .

. . .

−

. . .

. . .

(7.1)

The large arrows denote the contraction with the momentum of a line, the big dots indicate

that a line has a propagator, whereas the horizontal dots between the upper and bottom

legs remind that there are several legs of the same type. A dot with a ghost and a gluon

connected to it is the the vertex due to the BRST transformation, namely gfabdAbµc
d with

cd being a ghost field. Finally, the ellipses after the plus sign denote similar diagrams for

the remaining legs. Suppose now that we want to reduce the Green’s function in such

a way that the bottom legs are on-shell. The standard reduction formula is applied to

those lines, i.e. they are multiplied by the inverse propagators and contracted with the

polarization vectors. After such reduction, we are left only with the diagrams where the

outgoing ghosts are off-shell (they exit in the upper part of the diagrams from (7.1)).

= − −+ + . . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

(7.2)

Above we have indicated that the bottom legs are on-shell (the big dots are missing there

because the propagators were amputated) while the top are still off-shell.

In what follows, in order to simplify the diagrammatic analysis we shall work with color

ordered amplitudes. Moreover, for further reduction of the number of diagrams we shall
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work in the axial gauge for internal propagators with the gauge vector n′, in general not

light-like. For that choice of gauge the identity (7.2) can still be applied (cf. [14]); in the

axial gauge ghosts couple to gluons via gfabcn′µ and the ghost propagator is i/ (k · n′ + iε).

Consider now an attachment of a sub-amplitude with N external on-shell gluons to the

gauge link defined via vector n, n 6= n′. When we replace one of the polarization vectors

by the corresponding momentum of the line we get

. . .

=

. . .

N − 1

−N N − i− 1

. . . . . .

i

i = 0

N − 2

(7.3)

where the numbers on the blobs denote the number of external on-shell legs. This identity

follows directly from the Slavnov-Taylor identity (7.2) in the axial gauge and the transver-

sality of the axial-gauge gluon propagator to the gluon-ghost coupling, i.e.

. . .

=
. . .

(7.4)

Note, that the first term on the r.h.s. of (7.3) has no gauge-link propagator as it was

canceled by the outgoing momentum of the ghost contracted with n

= (7.5)

The color-ordered rule for the BRST gluon-ghosts coupling is taken with the plus sign if

the ghost is to the right of the gluon (an exchange leads to a minus sign). We use here the

“unbent” gauge link with momentum flowing from the left to the right.

In order to derive the Ward identity for a gauge link, consider now the set of all the

contributions attached to a gauge link, starting from a certain point (i.e. we cut the gauge

link at some point and include the gauge-link propagator)

M

. . .
= +

. . .

M

. . .

M −m

. . .

m

m = 1

M − 1

+ . . .

. . .

M −m− k

. . .

k

. . .

m+

m = 1

M − 2

k = 1

M −m− 1

(7.6)

where the ellipses after the plus sign denote the contributions with more blobs attached

to the gauge link. Let us now replace the polarization vector by the momentum for the

rightmost gluon. Since for two consecutive blobs we have (following (7.3))
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=

. . .

m

. . .

k

. . .

m

. . .

k

i

. . .

m k − i− 1

. . . . . .

−
i = 0

k − 2

(7.7)

we find that the Ward identity for the whole series of the blobs attached to the gauge link

takes the following simple form

M

. . .
=

. . .

M − 1

(7.8)

All the terms canceled between the consecutive blobs in (7.6), except the first term.

Similar identities can be derived (with somewhat more effort) for the replacements of

the other gluons then the rightmost. Let us now discuss the Ward identities for (4.21) for

one and two Wilson line operator insertions.

7.2 One off-shell gluon

Since for a single off-shell gluon we have one Wilson line operator, the Ward identity follows

directly from (7.8). Let us suppose the gauge link is defined with the momentum kA and

the direction nA. We have

= (kA · nA) ×
. . .

M − 1

= (kA · nA) × = 0

M

. . .

M

. . .
(7.9)

To obtain the first equality we have multiplied and divided by the gauge link propagator.

The second equality follows directly from (7.8). Finally, the last equality follows in the

distributional sense, i.e. after integration over k(nA) due to the delta δ (kA · nA) which

resides in the gauge link.

Let us note, that when the axial gauge vector n′ = nA, the only contributions to (7.2)

are precisely of the form of the rightmost term of (7.9). This leads to the conclusion, that

in such a case the gauge link can be mimicked by the sum of the Slavnov-Taylor gauge

terms, with the external ghosts traded to longitudinal gluons projected on nA. This is

precisely what has been used in ref. [14].
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7.3 Two off-shell gluons

Now let us consider the situation with two Wilson line operators. Let us choose the

momentum and the direction of the first gauge link to be kA and nA, while the for the

second we choose kB and nB. The relevant matrix element is graphically expressed as

N ... =

i = 0

N

k = 0

N − i

...

i

k

. . .

. . .

N − i− k (7.10)

Since we use here the “unbent” Feynman rule for the gauge links (see the penultimate

paragraph of section 6), one has to remember that for the bottom gauge link the momen-

tum flows from the right to the left (the opposite to the top one). Let us now replace

the polarization vector of the top on-shell gluon by its momentum. It is convenient to

split (7.10) into three distinct topologies, i.e. we consider

N ... =

k = 0

N − 1

...

k

. . .
N − k

(A)

+

N

. . .
+

i = 1

N

k = 0

N − i

...

i

k

. . .

. . .

N − i− k

(B) (C)

(7.11)

Consider now the (A) and (B) terms. Using (7.8), (7.2) and the fact that kA · nA = 0 due

to the delta function δ (kA · nA) residing in the upper gauge link, they become

(A) + (B) = −
k = 0

N − 1

i = 0

N − k − 1

...

k

. . .

. . .

iN − k − i− 1

(D1)

−
k = 0

N − 1
...

k

. . .

N − k − 1

+

i = 1

N

k = 0

N − i

...

k

. . .

. . .

i− 1N − i− k

(D2) (D3)

(7.12)

Note that the first and the last sum cancel against each other

(D1) + (D3) = 0, (7.13)
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so we are left with the middle sum (D2). We have to show that it cancels with the term

(C) of (7.11). The last reads

= +
. . .

k = 1

N − 1

k

. . .

N − k

. . .

N

N

. . .

... N − 1
=

...N − i− 1

...−
i = 0

N − 2
i

(C1) (C2)

(7.14)

...− i

. . .

k

...
N − k − i− 1

+
. . .

k = 1

N − 1

k

. . .

N − k

(C3) (C4)

k = 0

N − 1

i = 0

N − k − 2

In order to proceed, let us note the following Slavnov-Taylor-like identity for a gauge link;

it follows simply from the momentum conservation, the form of the gauge-link propagator

and the asymmetry of the color-ordered BRST gluon-ghost vertex

= + (7.15)

Expanding the blob with k legs in the diagram (C3) according to (7.6) and using the above

result we have

(C3) =

(E1)

. . .
k = 1

N − 1

k

... N − k
+

k = 1

N − 1

(E2)

. . .

N − k
i = 0

N − k − 1

k − i

. . .
. . .

i

(7.16)

After reshuffling the sums, the second term (E2) cancels with (C4) due to (7.4). Finally, it

is easy to see that

(E1) + (C1) + (D2) = 0. (7.17)

We have shown that all the terms on the r.h.s. of (7.11) cancel against each other

and thus the Ward identity is indeed fulfilled. Similar proofs for more gauge links are also

possible, but very cumbersome to carry out explicitly. For three and four gauge links we

have checked the Ward identities using explicit results presented in section 8.
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kA

p

kB

Figure 4. The diagrams for the gauge invariant process g∗ (kA) g∗ (kB)→ g (p). The momentum

flow is displayed for the first diagram only.

Let us note that the proofs are in a sense purely algebraic and they do not refer to the

form of the off-shell momenta or gauge link directions, the only property that is relevant

here is their mutual transversality.

8 Examples

8.1 Gauge invariant amplitude for g∗g∗g

Let us start with a simple example of a gauge invariant matrix element for the following

process

g∗ (kA) g∗ (kB)→ g (p) . (8.1)

The momentum conservation is kA + kB = p with p2 = 0. We choose the Feynman gauge

and polarization vectors to be εA, εB, ε satisfying εA · kA = 0, εB · kB = 0, ε · p = 0. Let

the colors of the gluons be cA, cB and c respectively.

The relevant Feynman diagrams are displayed in figure 4. Using our Feynman rules

we get

M̃εAεB (ε) = εµAε
ν
Bε

γ 1

k2
Ak

2
B

f cAcBcVµβγ (kA, kB,−p) (8.2)

− 2ig
εA · εB ε · εA
k2
B p · εA

[Tr (tcAtcB tc)− Tr (tcAtctcB )] (8.3)

− 2ig
εA · εB ε · εB
k2
A p · εB

[Tr (tcB tcAtc)− Tr (tcB tctcA)] (8.4)

= igf cAcBc
{−iεµAενBεγVµβγ (kA, kB,−p)

k2
Ak

2
B

+ (8.5)

εA · εB ε · εA
k2
B p · εA

− εA · εB ε · εB
k2
A p · εB

}
(8.6)

where V abc
αβγ (k1, k2, k3) = fabcVαβγ (k1, k2, k3) with

Vαβγ (k1, k2, k3) = −g
[
ηαβ (k1 − k2)γ + ηβγ (k2 − k3)α + ηγα (k3 − k1)β

]
(8.7)

is the three-gluon coupling. It is easy to see that the above result recovers the Lipatov’s

RRP vertex [12], provided εA and εB are replaced by n− and n+ where n± = (1, 0, 0,∓1)

define the “plus” and “minus” light-cone directions. Actually, to get the precise equality,
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kA −kB

kC
p

Figure 5. The color-ordered diagrams for the process g∗ (kA) g∗ (kC) → g∗ (kB) g (p) and color

order (cA, cB , c, cC). The momentum flow is displayed in the last diagram only.

our eq. (8.6) has to be multiplied by the inverse propagators of the off-shell gluons, i.e.

k2
Ak

2
B. We will see in the next subsection, that such one-to-one correspondence between

our matrix elements and the Lipatov vertices does not hold for more off-shell gluons.

There are two color ordered amplitudes M̃(cAcBc)
εAεB and M̃(cBcAc)

εAεB that contribute to

eq. (8.6). They are easy to read out — they are the coefficients of the color traces. We

have checked that they match the result obtained automatically form the OGIME program

discussed in section 5.

8.2 Gauge invariant amplitude for g∗g∗g∗g

We turn now to the gauge-invariant amplitude for the process with three off-shell gluons

and one on-shell. Let us assign the momenta as follows

g∗ (kA) g∗ (kC)→ g∗ (kB) g (p) , (8.8)

and assign the color quantum numbers to be cA, cC , cB, c respectively. The momentum

conservation reads kA+kC = kB+p with p2 = 0. Let us assume, that the on-shell gluon has

the polarization vector ε whereas the off-shell gluons are assigned the polarization vectors

εA, εB, εC transverse to the momenta kA, kB, kC accordingly.

Let us work in the Feynman gauge and consider the color-ordered amplitude with the

color order (cA, cB, c, cC). There are 16 color ordered diagrams shown in figure 5. It is

straightforward to calculate them using the color ordered Feynman rules given in section 6

(and the ones for standard QCD listed e.g. in [14]). The relevant gauge links are defined

using εA, εB, εC vectors.
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The result from the Feynman diagrams has been cross-checked with the OGIME program.

We append the analytic result to the paper in a text file RRRG.txt (online resource 1).

The result is given in the most general form, when εA 6= εB 6= εC . If any of those vectors

coincide they should be light-like (see section 4). We have checked explicitly that our result

satisfies the Ward identity

M(cA,cB ,c,cC)
εAεBεC

(p) = 0. (8.9)

The other color ordered amplitudes can be obtained by suitable exchanges of the pairs

(kX , εX), X = A,B,C. The full result for the squared amplitude is just given by the sum

of color ordered amplitudes squared (let us recall that it is not a general rule and holds for

at most five external legs, see e.g. [25]).

Let us stress that the above result corresponds to the known result for RRRG vertex

given in [29] only for a special case, such that εA = n+, εB = εC = n− and kA =

xAn− + kAT , kB = xBn+ + kB T , kC = xCn+ + kC T with n± defined in the previous

section. With the above choice of the kinematics the diagrams with a gluon joining the

Wilson lines with momenta kB and kC vanish. The precise relation to the result of [29]

is the following: our result should be multiplied by ik2
Ak

2
Bk

2
C/6. The origin of inverse

propagators is obvious, while the factor of 6 comes entirely from our convention of defining

the R operator (there are three of them, each contributes a factor of 2). Namely, our

definition is such that when the on-shell limit is taken (after multiplying by inverse off-

shell propagators), we obtain the standard text-book result. This is also the case for the

Lipatov vertices listed in [12], but not for [29]. This is evident if we compare the RRP

vertices presented in both papers — they differ by a factor of 4.

We underline, that our result is more general than the one listed in [29], as it allows for

arbitrary “orientation” of reggeized gluons. The special cases can be obtained by imposing

additional restrictions on the εA, εB, εC vectors.

8.3 Gauge invariant amplitude for g∗g∗g∗g∗g

Finally, let us turn to the process

g∗ (kA) g∗ (kD)→ g∗ (kB) g∗ (kC) g (p) . (8.10)

The polarization vectors are respectively εA, εD, εB, εC , ε and the colors cA, cD, cB, cC , c.

The calculation using the Feynman diagrams is rather lengthy even for color-ordered

amplitude, therefore we have calculated this amplitude using OGIME program only. The

result is appended to the paper in a text file RRRRG.txt (online resource 2) for the most

general form, when εA 6=εB 6=εC 6=εD. If any of those vectors coincide they should be light-

like (see section 4). We have explicitly checked that the result satisfies the Ward identity.

We note, that for certain choice of polarization vectors εA = n+, εB = n−, εC = n−,

εD = n− (where n± were defined in the previous section) the result corresponds to RRRRP

Lipatov’s vertex, calculated in [30]. Similar as previously, the result we present is however

more general as it allows for any “orientation” for reggeized gluons.
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9 Gauge invariant decompositions

Let us now discuss another interesting application of gauge invariant off-shell matrix ele-

ments. As we have indicated it already a few times, they can be built using almost arbitrary

gauge link directions. Below, we will use this fact to decompose an ordinary gauge invariant

amplitude into gauge invariant off-shell sub-amplitudes.

Consider first a standard tree-level off-shell current Jµ (ε1, . . . , εN ; k) in the Feyn-

man gauge, where ε1, . . . , εN are polarization vectors of N on-shell gluons with momenta

k1, . . . , kN respectively and k = k1 + . . . + kN (we omit color indices for brevity). Let us

note that we may write

Jµ (ε1, . . . , εN ; k) =
2∑
i=0

Jν (ε1, . . . , εN ; k) ενi (k) εµi (k) di (k) . (9.1)

The auxiliary (in general complex) four-vectors εi (k) are defined in such a way that

k · εi (k) = 0, εi (k) · εj (k) = di (k) δij , (9.2)
2∑
i=0

ενi (k) εµi (k) di (k) = gµν − kµkν

k2
, (9.3)

where

d0 (k) =

{
1 k2 < 0

−1 k2 > 0
, d1 (k) = d2 (k) = −1. (9.4)

The identity (9.1) follows because of the current conservation Jµ (ε1, . . . , εN ; k) kµ = 0.

The auxiliary four vectors εi (k) can be easily constructed for any off-shell four momentum

k. For instance, if k is space-like we go to a frame where k =
(

0, 0, 0,
√
|k2|
)

and define

ε0 (k) = (1, 0, 0, 0), ε1 (k) = (0, sinφ, cosφ, 0), ε2 (k) = (0,− cosφ, sinφ, 0) and eventually

go back to the original frame. Obviously, the four-vectors εi (k) are not unique.

The off-shell current Jµ (ε1, . . . , εN ; k) is not gauge invariant. Thanks to the fact that

εi (k) · k = 0 we may however define a gauge invariant off-shell current as follows

J̃µi (ε1, . . . , εN ; k) = J̃i (ε1, . . . , εN ; k) εµi (k) di (k) (9.5)

=

[
− 1

k2
Jν (ε1, . . . , εN ; k) ενi (k) +Gi (ε1, . . . , εN ; k)

]
εµi (k) di (k) ,

where

J̃i (ε1, . . . , εN ; k)
∗
= 〈k1, ε1; . . . ; kN , εN |Rεi (k) |0〉 (9.6)

and Gi (ε1, . . . , εN ; k) are contributions coming from additional emissions from the Wilson

line residing in Rεi (k) (they are generalization of the “gauge-restoring amplitude”W from

section 2). The above equation leads to the following decomposition of the standard off-

shell current into gauge invariant and gauge non-invariant pieces

Jµ (ε1, . . . , εN ; k) = −
2∑
i=0

[
k2 J̃µi (ε1, . . . , εN ; k)−Gi (ε1, . . . , εN ; k) εµi (k) di (k)

]
. (9.7)
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Consider now a particular example, namely a color-ordered on-shell amplitude for the

four gluon process gggg → 0. It can be expressed in terms of color-ordered currents as

follows

M(1,2,3,4) (ε1, ε2, ε3, ε4) = J (1,2)
µ (ε1, ε2; k12)

i

k2
12

Jµ (3,4) (ε3, ε4; k34)

+ J (4,1)
µ (ε1, ε4; k14)

i

k2
14

Jµ (2,3) (ε2, ε3; k23) + V
(1,2,3,4)

4 (ε1, ε2, ε3, ε4) , (9.8)

where

V
(1,2,3,4)

4 (ε1, ε2, ε3, ε4) =
g2

2
V α1α2α3α4

4 ε1α1ε2α2ε3α3ε4α4 (9.9)

is the color-ordered four gluon coupling. The color-ordered objects, with the color order

indicated in the superscript parentheses were defined in section 2. In what follows, we

drop the arguments of color-ordered objects; such a shortcut notation does not lead to any

confusion here. Using the gauge invariant currents (9.5) we may write

M(1,2,3,4) = i
(
k2

12 J̃
(1,2) · J̃ (3,4) + k2

14 J̃
(4,1) · J̃ (2,3) + Ṽ

(1,2,3,4)
4

)
, (9.10)

where the gauge invariant (color-ordered) four-gluon vertex is defined as

Ṽ
(1,2,3,4)

4 = −iV (1,2,3,4)
4 −G(1,2) · J̃ (3,4) − J̃ (1,2) ·G(3,4) +

1

k12
G(1,2) ·G(3,4)

−G(4,1) · J̃ (2,3) − J̃ (4,1) ·G(2,3) +
1

k14
G(4,1) ·G(2,3). (9.11)

The scalar product in the expressions above is defined as

A ·B =
2∑
i=0

AiBidi. (9.12)

Let us summarize what we have done. We have used the matrix elements of Wilson lines

to decompose a gauge invariant on-shell amplitude (here we have used a simple example of

four-leg amplitude) to manifestly gauge invariant objects. Such decomposition is however

not unique, as the gauge invariant objects depend on the choice of four-vectors εi. Similar

decompositions are possible also for more complicated objects.

The practical applications of such decompositions are under study. At this point, as

an example, let us turn the attention to the ref. [31], where a decomposition of an on-shell

amplitude to ggg∗ subprocess (and the reminder) was used in order to study the spin effects

in the QCD evolution. There, however, the gauge-violating part was abandoned as it was

a non-leading-logarithmic contribution.

10 Discussion and outlook

We start by summarizing the main points of the paper. The notion “off-shell amplitude”

is motivated by the high-energy factorization and refers to an ordinary scattering ampli-

tude, where some of the gluonic legs are not taken on-shell, plus contributions needed to
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maintain the gauge invariance. We have defined such off-shell amplitudes in eq. (4.21) via

matrix elements of the Fourier transforms of straight infinite Wilson line operators. The

“polarization vectors” of off-shell gluons correspond (in the Feynman gauge) to the direc-

tions of the Wilson lines. We have implemented the method in the FORM program, called

OGIME, and tested it for certain processes involving several off-shell and on-shell gluons. In

the present work only tree-level gluonic matrix elements were studied.

As there are many applications of Wilson lines in the high-energy literature, let us

briefly compare their various instances to the present one. Let us start with the Lipatov’s

effective action [11, 12]. The Lipatov’s vertices are formulated in terms of two auxiliary

fields A+ and A−. Due to the equations of motion they are related to the Wilson lines

defined in terms of two light-like four vectors n+, n− defining the “plus” and “minus”

light cone components. The Wilson lines are however not infinite there, but they start at

certain fixed space-time position and span to infinity. If we defined the matrix elements in

terms of the R operators with the Wilson lines defined using only n± four vectors we would

recover the Lipatov’s vertices. It was also demonstrated explicitly in section 8. In [19, 32]

and [33] the Wilson line operators are infinite, but are explicitly taken to have “plus” or

“minus” light-cone component set to zero. This corresponds to our integrated R operators,

cf. eq. (4.26), with gauge link direction again defined to be along the “plus” or “minus”

light-cone vector. The present approach is more general — the gauge link directions need

not to be constrained to the “plus” or “minus” light-cone vectors and there are additional

contributions related to one gluon exchanges between the Wilson lines.

Let us also compare the present approach to the one of ref. [13]. There, also a set of

eikonal Feynman rules was introduced, using however completely different method. Again,

for our R operators taken to be along the hadrons momenta the results from both methods

coincide. However, at the moment the method [13] takes into account at most two off-shell

gluons within high energy kinematics described in section 2.

One of the main purposes of this work was to provide a practical formulation for off-

shell amplitudes. We may claim that we have reach that goal, as the relevant program, the

Feynman rules, as well as explicit calculations were presented. Since the program calculates

the amplitudes analytically, it obviously has certain limitations; already for five external

legs with arbitrary polarization vectors the results are rather lengthy. Therefore, as far as

the future applications for analytic calculations are concerned it is rather more interesting

to include other Standard Model fields in the program. This is planned for the near future.
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A Direct calculation of gauge invariant g∗gg matrix element

In order to illustrate how the OGIME program calculates the matrix elements let us present

a sample calculation. It uses only very basics of the Quantum Field Theory.

The precise definition of the process is as follows

g∗ (kA) g (k1)→ g (k2) , (A.1)

where the gluons have colors cA, a1, a2 and polarizations εA, ελ11 , ελ22 respectively. Here,

unlike in the main text we explicitly indicate the polarization projections λ1, λ2.

For the purpose of the explicit derivations let us define the necessary field operators

in the Heisenberg picture. We have for a gluon field

Acµ (x) =

∫
d̃q

1√
2Eq

∑
λ

[
âλc (q) ελµ (q) e−iq·x + âλ†c (q) ελ∗µ (q) eiq·x

]
, (A.2)

where Eq =
√
q2 + ~q2 and the hatted quantities are creation/annihilation operators with

the commutation relations[
âλc (q) , âλ

′†
c′
(
q′
)]

= (2π)3 δ3
(
~q − ~q ′

)
δλλ′δcc′ . (A.3)

We introduce the following shorthand notation for the integration measures

d4p

(2π)4 ≡ d̂p,
d3p

(2π)3 ≡ d̃p. (A.4)

A one-particle on-shell state with momentum q, color c and polarization vector ελ (q)

is defined as

|q, λ, c〉 ≡
∣∣∣q, ελ (q) , c

〉
=
√

2Eq â
λ†
c (q) |0〉 . (A.5)

The relevant interaction part of the Yang-Mills action is (skipping ghost and gauge-

fixing parts)

SI =

∫
d4x

(
gVggg (x) + g2Vgggg (x)

)
, (A.6)

where

Vggg (x) = fabc∂µA
a
ν (x) Ab µ (x) Ac ν (x) , (A.7)

Vgggg (x) = −1

4

(
fabcA

b
µ (x)Acν (x)

)2
, (A.8)

For further purposes, let us write Vggg interactions in the form

Vggg (x) = fabc

∫
d̂p

∫
d4y (−i) pµe−i(x−y)·pAaν (y)Ab µ (x) Ac ν (x) . (A.9)

The matrix element we are to calculate is

M (εA; ε1, ε2)
∗
=

∫
d4x eix·kA 〈k1, λ1, a1|Tr

{
1

πg
tcA [x]εA

}
|k2, λ2, a2〉 . (A.10)
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First, we use the Gell-Mann-Low formula what accounts in inserting the exponential of

the Yang-Mills interaction (A.6), exp (−iSI), switching to the interaction picture (in what

follows we shall not indicate this explicitly) and time ordering the fields. Taking the

connected diagrams only we are left with

M (εA; ε1, ε2) =

∫
d4x eix·kA (M1 +M2) = M̃1 + M̃2, (A.11)

where the tildes denote the Fourier transforms with respect to x and

M1 = − i
2g

π
Tr
(
tcAtb

)∫ ∞
−∞

ds

∫
d4y 〈k1, λ1, a1| T εA ·Ab (x+ sεA) : Vggg (y) : |k2, λ2, a2〉 ,

(A.12)

M2 =
i2g

π
Tr
(
tcAtbtb

′
)∫ ∞
−∞

ds

∫ s

−∞
ds′

〈k1, λ1, a1| T εA ·Ab (x+ sεA) εA ·Ab
′ (
x+ s′εA

)
|k2, λ2, a2〉 . (A.13)

Above, T denotes the time ordering of fields while the colon the normal ordering of fields.

Let us first calculate M1. Using the Wick theorem we get

M1 = − ig
2π

facdδcAbε
α
A

∫ ∞
−∞

ds

∫
d̂q

∫
d4y d4w qβe−i(y−w)·q{

Sabαν (x− w + sεA) 〈k1, λ1, a1| : Acβ (y)Ad ν (y) : |k2, λ2, a2〉

+Sbcαβ (x− y + sεA) 〈k1, λ1, a1| : Aaν (w)Ad ν (y) : |k2, λ2, a2〉

+Sbdαν (x− y + sεA) 〈k1, λ1, a1| : Aa ν (w)Acβ (y) : |k2, λ2, a2〉
}
, (A.14)

where

Sabµν (x) =

∫
d̂p e−ip·x

−iηµν
p2 + iε

(A.15)

is a position space Feynman propagator for a gluon. For the subsequent matrix elements

we get explicitly

〈k1, λ1, c1| : Acβ (y)Ad ν (y) : |k2, λ2, c2〉 = (A.16)

= eiy·(k1−k2)
[
δcc1δdc2ε

λ1∗
β (k1) ελ2 ν (k2) + δdc1δcc2ε

λ2
β (k2) ελ1 ν∗ (k1)

]
,

〈k1, λ1, c1| : Aaν (w)Ad ν (y) : |k2, λ2, c2〉 = δac1δdc2ε
λ1∗
ν (k1) ελ2 ν (k2) eiw·k1−iy·k2 (A.17)

+ δdc1δac2ε
λ2
ν (k2) ελ1 ν∗ (k1) e−iw·k2+iy·k1 ,

〈k1, λ1, c1| : Aa ν (w)Acβ (y) : |k2, λ2, c2〉 = δac1δcc2ε
λ1 ν∗ (k1) ελ2β (k2) eiw·k1−iy·k2 (A.18)

+ δcc1δac2ε
λ2 ν (k2) ελ1∗β (k1) e−iw·k2+iy·k1 .
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Inserting this to M1 we get

M1 = − ig
2π

facdδcAbε
α
A

∫ ∞
−∞

ds

∫
d4qd4p qβe−ip·xe−isp·εA

−i
p2{

ηανδ
4 (q + p) δ4 (q − k1 + k2) δab[

δcc1δdc2ε
λ1∗
β (k1) ελ2 ν (k2) + δdc1δcc2ε

λ2
β (k2) ελ1 ν∗ (k1)

]
+ηαβ

[
δ (q + k1) δ (q − p+ k2) δbcδac1δdc2ε

λ1∗
ν (k1) ελ2 ν (k2)

+δ (q − k2) δ (q − p− k1) δbcδdc1δac2ε
λ2
ν (k2) ελ1 ν∗ (k1)

]
+ηαν

[
δ (q + k1) δ (q − p+ k2) δbdδac1δcc2ε

λ1 ν∗ (k1) ελ2β (k2)

+δ (q − k2) δ (q − p− k1) δbdδcc1δac2ε
λ2 ν (k2) ελ1∗β (k1)

]}
. (A.19)

Now, we perform the Fourier transform with respect to x and utilize the deltas

M̃1 = − g

2π
δ4 (kA + k1 − k2)

∫ ∞
−∞

ds e−iskA·εA
εαA
k2
A

fcAc1c2{
− ηανkβA

[
ελ1∗β (k1) ελ2 ν (k2)− ελ2β (k2) ελ1 ν∗ (k1)

]
+ηαβ

[
kβ1 ε

λ1∗
ν (k1) ελ2 ν (k2) + kβ2 ε

λ2
ν (k2) ελ1 ν∗ (k1)

]
−ηαν

[
kβ1 ε

λ1 ν∗ (k1) ελ2β (k2) + kβ2 ε
λ2 ν (k2) ελ1∗β (k1)

]}
. (A.20)

Using ∫ ∞
−∞

ds e−isp·εA = 2π δ (p · εA) (A.21)

and rearranging the terms we get

M̃1 = −g δ4 (kA + k1 − k2) δ (kA · εA)
εαAηαγ
k2
A

fcAc1c2[
ηα1α2 (kγ1 + kγ2 ) + ηγα1

(
kα2
A − kα2

1

)
+ ηα2γ

(
−kα1

2 − kα1
A

)]
ελ1∗α1

(k1) ελ2α2
(k2) . (A.22)

Let us note, that in the square bracket we have the standard triple-gluon vertex.

Next let us calculate M2. We have

M2 = − g
π

Tr
(
tcAtbtb

′
)
εαAε

β
A

∫ ∞
−∞

ds

∫ s

−∞
ds′

〈k1, λ1, a1| : Abα (x+ sεA) Ab
′
β

(
x+ s′εA

)
: |k2, λ2, a2〉 . (A.23)

Further

〈k1, λ1, a1| : Abα (x+ sεA) Ab
′
β

(
x+ s′εA

)
: |k2, λ2, a2〉 =

= eix·(k1−k2)
[
eisεA·k1e−is

′εA·k2δbc1δb′c2ε
λ1∗
α (k1) ελ2β (k2)

+e−isεA·k2eis
′εA·k1δbc2δb′c1ε

λ2
α (k2) ελ1∗β (k1)

]
. (A.24)
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Thus we have

M2 = − g
π

Tr
(
tcAtbtb

′
)
εαAε

β
A

∫ ∞
−∞

ds

∫ s

−∞
ds′ eix·(k1−k2)[

eisεA·k1e−is
′εA·k2δbc1δb′c2ε

λ1∗
α (k1) ελ2β (k2)

+e−isεA·k2eis
′εA·k1δbc2δb′c1ε

λ2
α (k2) ελ1∗β (k1)

]
. (A.25)

Next, we have to integrate over the path parameters. Using the iε prescription (4.15)

we have ∫ ∞
−∞

ds

∫ s

−∞
ds′ eisεA·k1e−is

′εA·k2 =
2πi

εA · k2 + iε
δ (εA · k1 − εA · k2) , (A.26)∫ ∞

−∞
ds

∫ s

−∞
ds′ e−isεA·k2eis

′εA·k1 =
2πi

−εA · k1 + iε
δ (εA · k1 − εA · k2) . (A.27)

Taking the Fourier transform we get

M̃2 =− 2g δ4 (kA + k1 − k2) εA · ελ1∗ (k1) εA · ελ2 (k2)

δ (εA · kA)

[
Tr (tcAtc1tc2)

i

εA · k2

+ Tr (tcAtc2tc1)
−i

εA · k1

]
. (A.28)

or

M̃2 = g δ4 (kA + k1 − k2) εA · ελ1∗ (k1) εA · ελ2 (k2)
1

εA · k1
fcAc1c2 . (A.29)

Collecting M̃1 and M̃2 we get

M (εA; ε1, ε2) =− g δ4 (kA + k1 − k2) δ (kA · εA) fcAc1c2εAγε
λ1∗
α1

(k1) ελ2α2
(k2){

1

k2
A

[
ηα1α2 (kγ1 + kγ2 ) + ηγα1

(
kα2
A − kα2

1

)
+ ηα2γ

(
−kα1

2 − kα1
A

)]
− εα1

A ε
α2
A

εA · k1

}
. (A.30)

Let us note, that for εA taken to be n+ or n− and after multiplying by k2
A it coincides with

the RPP vertex of [12].

B The BRST invariance of the R operator

In this appendix we argue that the state (4.27) defined by the action of the operator (4.26)

on the vacuum state belongs to the cohomology of the BRST transformation. For a

pedagogical review of the subject we refer to [35]. Here, let us just recall the neces-

sary basic facts. Let QBRST be a charge generating the BRST transformation. It is

nilpotent, i.e. Q2
BRST = 0. Below, the following commutation relation will be useful:

i
[
QBRST, A

a
µ

]
= Dab

µ c
b, where Dab

µ = δab∂µ − gfabcAcµ and cb is the ghost field. A state |φ〉
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belongs to the cohomology ofQBRST if it belongs to the kernel ofQBRST (i.e.QBRST |φ〉 = 0)

but not to the image. From nilpotency it directly follows that any state in the image has

zero norm. It is the basic requirement for physical states that they belong to the cohomol-

ogy of the BRST transformation.

Let us now turn to the Rcn operator. Note that since the vacuum state belongs to the

cohomology and since the state Rcn |0〉 has a nonzero norm, it is enough to show that[
Rdn (k) , QBRST

]
= 0. (B.1)

To this end we expand the definition (4.26) ofRcn. The first nontrivial term of the expansion

of (B.1) is

i

∫
dk(n)

2π

∫
d4x eix·k

∫ ∞
−∞

ds nµta
[
QBRST, A

a
µ (x+ sn)

]
= −i

∫
dk(n)δ (k · n) k · n tac̃a (k)

− g
∫
dk(n)

∫
d4p

(2π)4 δ (k · n) tafabcnµÃcµ (p) c̃b (k − p) , (B.2)

where we have switched to the Fourier space (the tildes denote Fourier-transformed fields).

Note that the first term on the r.h.s. vanishes after integrating the delta function. The

second term of the expansion of the commutator (B.1) is

i2g

∫
dk(n)

2π

∫
d4x eix·k

∫ ∞
−∞

ds

∫ s

−∞
ds′ nµnνtata

′
[
QBRST, A

a
µ (x+ sn)Aa

′
ν

(
x+ s′n

)]
= g

∫
dk(n)

∫
d4p

(2π)4

d4p′

(2π)4 δ
4
(
k − p− p′

)
δ
(
p · n+ p′ · n

)
p′ · n{

i

p′ · n+ iε
tata

′
+

i

p · n+ iε
ta
′
ta
}
nµÃaµ (p) ca

′ (
p′
)

+O
(
g2
)

= ig

∫
dk(n)

∫
d4p

(2π)4 δ (k · n)
[
ta, ta

′
]
nµÃaµ (p) c̃a

′
(k − p) +O

(
g2
)
, (B.3)

where we have suppressed the term of the order of g2. Using
[
ta, ta

′
]

= ifaa
′btb and

reshuffling the indices we see that the first term on the r.h.s. cancels against (B.2). Similar

canceling will occur order by order in g.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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