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Abstract: We show that the classification of shearless and incompressible stationary

fluid flows on ultrastatic manifolds is equivalent to classifying the isometries of the spatial

sections (Σ, ḡ). For a flow on the closed Einstein static universe R × S2 this leaves only

one possibility, since on the 2-sphere all Killing fields are conjugate to each other, and

it is well-known that the gravity dual of such a (conformal) fluid is the spherical Kerr-

Newman-AdS4 black hole. On the other hand, in the open Einstein static universe R×H2

the situation is more complicated, since the isometry group SL(2,R) of H2 admits elliptic,

parabolic and hyperbolic elements. One might thus ask what the gravity duals of the flows

corresponding to these three different cases are. Answering this question is one of the

scopes of this paper. In particular we identify the black hole dual to a fluid that is purely

translating on the hyperbolic plane. Although this lies within the Carter-Plebański class, it

has never been studied in the literature before, and represents thus in principle a new black

hole solution in AdS4. For a rigidly rotating fluid in R × H2 (holographically dual to the

hyperbolic KNAdS4 solution), there is a certain radius where the velocity reaches the speed

of light, and thus the fluid can cover only the region within this radius. Quite remarkably,

it turns out that the boundary of the hyperbolic KNAdS4 black hole is conformal to exactly

that part of R × H2 in which the fluid velocity does not exceed the speed of light. Thus,

the correspondence between AdS gravity and hydrodynamics automatically eliminates the

unphysical region. We extend these results to establish a precise mapping between possible

flows on ultrastatic spacetimes (with constant curvature spatial sections) and the parameter

space of the Carter-Plebański solution to Einstein-Maxwell-AdS gravity. Finally, we show

that the alternative description of the hyperbolic KNAdS4 black hole in terms of fluid

mechanics on R×S2 or on flat space (both conformal to the open Einstein static universe)

is dynamical and consists of a contracting or expanding vortex.
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1 Introduction

The AdS/CFT correspondence has provided us with a powerful tool to get insight into the

dynamics of certain field theories at strong coupling by studying classical gravity solutions.

In the long wavelength limit, where the mean free path is much smaller then any other

scale, one expects that these interacting field theories admit an effective hydrodynamical

description. In fact, it was shown in [1]1 that the five-dimensional Einstein equations with

negative cosmological constant reduce to the Navier-Stokes equations on the conformal

boundary of AdS5. The analysis of [1] is perturbative in a boundary derivative expansion,

in which the zeroth order terms describe a conformal perfect fluid. The coefficient of the

1Analogous results in four and higher dimensions were obtained in [2] and [3, 4] respectively.
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first subleading term yields the shear viscosity η and confirms the famous result η/s =

1/(4π) by Policastro, Son and Starinets [5], which was obtained by different methods.

Subsequently, the correspondence between AdS gravity and fluid dynamics (cf. [6] for a

review) was extended in various directions, for instance to include forcing terms coming

from a dilaton [7] or from electromagnetic fields (magnetohydrodynamics) [8, 9]. The

gravitational dual of non-relativistic incompressible fluid flows was obtained in [10].

In addition to providing new insights into the dynamics of gravity, the map between

hydrodynamics and AdS gravity has contributed to a better understanding of various issues

in fluid dynamics. One such example is the role of quantum anomalies in hydrodynam-

ical transport [11]. Moreover, it has revealed beautiful and unexpected relationships be-

tween apparently very different areas of physics, for instance it was argued in [12] that the

Rayleigh-Plateau instability in a fluid tube is the holographic dual of the Gregory-Laflamme

instability of a black string.2 The hope is that eventually the fluid/gravity correspondence

may shed light on fundamental problems in hydrodynamics like turbulence. Another possi-

ble application is the quark-gluon plasma created in heavy ion collisions, where perturbative

QCD does not work, and lattice QCD struggles with dynamic situations, cf. e.g. [14]. We

will come back to this point in section 5.

Here we will use fluid dynamics to make predictions on which types of black holes can

exist in four-dimensional Einstein-Maxwell-AdS gravity. In particular, we shall classify

all possible stationary equilibrium flows on ultrastatic manifolds with constant curvature

spatial sections, and then use these results to predict (and explicitely construct) new black

hole solutions.

The remainder of this paper is organized as follows: in the next section, we briefly

review the basics of conformal hydrodynamics. In section 3 we consider shearless and

incompressible stationary fluids on ultrastatic manifolds, and show that the classification

of such flows is equivalent to classifying the isometries of the spatial sections (Σ, ḡ).3 This

is then applied to the three-dimensional case with constant curvature spatial sections, i.e.,

to fluid dynamics on R× S2, R×H2 and Minkowski space R×E2. It is shown that, up to

isometries, the flow on the 2-sphere is unique, while there are three non-conjugate Killing

fields on the hyperbolic plane and two on the Euclidean plane. In almost all cases, it turns

out that the fluid can cover only a part of the manifold, since there exist regions where the

fluid velocity exceeds the speed of light. This property is quite obvious for rigid rotations

on H2 or E2: here there is a certain radius where the velocity reaches the speed of light, and

thus the fluid can cover only the region within this radius. Due to the diverging gamma

factor at the boundary of the fluid, the global thermodynamic variables like energy, angular

momentum, entropy and electric charge are infinite in these cases. Nevertheless, we show

that a local form of the first law of thermodynamics still holds. At the end of section 3,

we transform the rigidly rotating conformal fluid on the open Einstein static universe to

2Note in this context that the instability of the effective fluid that describes higher-dimensional asymp-

totically flat black branes, analyzed in [13], is not of the Rayleigh-Plateau type, but rather one in the sound

modes.
3Since every static spacetime is conformally ultrastatic, these results extend of course to arbitrary static

spacetimes in the case of conformal hydrodynamics.
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R× S2 and to Minkowski space (this is possible since both are conformal to R×H2), and

shew that this yields contracting or expanding vortex configurations.

In section 4, the gravity duals of the hydrodynamic flows considered in 3 are identi-

fied. Although they all lie within the Carter-Plebański class [15, 16], many of them have

never been studied in the literature before, and represent thus in principle new black hole

solutions in AdS4. Quite remarkably, it turns out that the boundary of these black holes

are conformal to exactly that part of R×S2, R×H2 or Minkowski space in which the fluid

velocity does not exceed the speed of light. Thus, the correspondence between AdS gravity

and hydrodynamics automatically eliminates the unphysical region.

We conclude in section 5 with some final remarks. In appendix A, our results are

extended to establish a precise mapping between possible flows on ultrastatic spacetimes

(with constant curvature spatial sections) and the parameter space of the Carter-Plebański

solution to Einstein-Maxwell-AdS gravity. The proofs of some propositions are relegated

to appendix B.

Note that a related, but slightly different approach was adopted in [17], where un-

charged fluids in Papapetrou-Randers geometries were considered. In these flows, the fluid

velocity coincides with the timelike Killing vector of the spacetime (hence the fluid is at

rest in this frame), and the Cotton-York tensor has the form of a perfect fluid (so-called

‘perfect Cotton geometries’). We will see below that there is some overlap between the

bulk geometries dual to such flows, constructed explicitely in [17], and the solutions ob-

tained here.

Throughout this paper we use calligraphic letters T , V, S, . . . to indicate local ther-

modynamic quantities, whereas T, V, S, . . . refer to the whole fluid configuration. µ and φe

are local and global electric potentials respectively.

2 Conformal hydrodynamics

Consider a charged fluid on a d-dimensional spacetime. The equations of hydrodynamics

are simply the conservations laws for the stress tensor Tµν and the charge current Jµ,

∇µTµν = 0 , ∇µJµ = 0 . (2.1)

Since fluid mechanics is an effective description at long distances, valid when the fluid

variables vary on scales much larger than the mean free path, it is natural to expand the

energy-momentum tensor, charge current and entropy current JµS in powers of derivatives.

At zeroth order in this expansion, one has the perfect fluid form [18]

Tµνperf = (ρ+ P)uµuν + Pgµν , Jµperf = ρeu
µ, JµS perf = suµ, (2.2)

where u denotes the velocity profile, and ρ, P, ρe and s are the energy density, pressure,

charge density and entropy density respectively, measured in the local rest frame of the

fluid.

At first subleading order, one obtains the dissipative contributions [18]

Tµνdiss = −ζϑPµν − 2ησµν + (qµuν+qνuµ) , Jµdiss = qµe , JµS diss =
qµ−µqµe
T

, (2.3)
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where

Pµν = gµν + uµuν , (2.4)

and

aµ = uν∇νuµ, ϑ = ∇µuµ, σµν =
1

2
(Pµρ∇ρuν+P νρ∇ρuµ)− 1

d−1
ϑPµν , (2.5)

qµ = −κPµν(∂ν + aν)T , qµe = −DPµν∂ν
µ

T
(2.6)

denote the acceleration, expansion, shear tensor, heat flux and diffusion current respec-

tively. Moreover, T and µ are the local temperature and electric potential, ζ is the bulk

viscosity, η the shear viscosity, κ the thermal conductivity and D the diffusion coefficient.

Note that the equations (2.6) are the relativistic generalizations of Fourier’s law of heat

condution and Fick’s first law.

At first order in the derivative expansion, the entropy current is no longer conserved,

but obeys [18]

T ∇µJµS =
qµq

µ

κT
+
T
D
qµe qeµ + ζϑ2 + 2ησµνσ

µν . (2.7)

If the coefficients satisfy certain non-negativity conditions, this implies ∇µJµS ≥ 0, and

thus entropy is always non-decreasing. In equilibrium, JµS must be conserved, which is the

case if and only if qµ, qµe , ϑ and σµν all vanish.4

Since we consider fluids on curved manifolds, we could add to Tµν also terms con-

structed from the curvature tensors. In fact, at second order in a derivative expansion,

there is a term proportional to the Weyl tensor of the boundary, cf. equation (2.10) of [3].

However, in all explicit examples considered here, the boundary is three-dimensional, and

thus its Weyl tensor vanishes. Note that in three dimensions there is a possible third or-

der contribution from the Cotton tensor [17], but since our boundary geometries (4.5) are

conformally flat for vanishing NUT-parameter, this contribution vanishes as well.

In what follows, we specialize to conformal fluids.5 Upon a Weyl rescaling g̃µν = Ω2gµν ,

the energy-momentum tensor must transform as T̃µν = ΩwTµν for some weight w, and

hence

∇̃µT̃µν = Ωw∇µTµν + Ωw−1
(
(w + d+ 2)Tµν∂µΩ− Tµµ ∂νΩ

)
, (2.8)

from which we learn that w = −(d+ 2) and Tµµ = 0 in order for T̃ to be conserved. The

tracelessness of T implies the equation of state ρ = (d−1)P and requires the bulk viscosity

ζ to be zero. The transformation laws for the fluid variables are

ũ = Ω−1u , ρ̃ = Ω−dρ , P̃ = Ω−dP , ρ̃e = Ω−(d−1)ρe , s̃ = Ω−(d−1)s , T̃ = Ω−1T .

Furthermore, the charge- and entropy current transform as

J̃µ = Ω−dJµ, J̃µS = Ω−dJµS .

4In the case of zero viscosities, ζ = η = 0, one can in principle allow for nonvanishing expansion and

shear tensor. In particular, for conformal fluids (cf. below), the bulk viscosity vanishes, and therefore the

third term on the r.h.s. of (2.7) is zero without imposing ϑ = 0.
5For a Weyl-covariant formalism that simplifies the study of conformal hydrodynamics cf. [20].
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Note that, if the charged fluid moves in an external electromagnetic field Fµν , its stress

tensor is no more conserved, and the equations of motion become

∇µTµν = F νµJ
µ, (2.9)

where the r.h.s. represents the Lorentz force density. This scenario was studied in full

generality in [9]. According to the AdS/CFT dictionary, such an external field is related

to the magnetic charge of the dual black hole. Quite surprisingly, it turns out that for all

the magnetically charged black holes considered here, there is no net Lorentz force acting

on the dual fluid, since the electric and magnetic forces exactly cancel. One has thus

F νµJ
µ = 0, hence Tµν is conserved.

At the end of this section, we briefly review the constraints imposed on the thermody-

namics by conformal invariance. First of all, define the grand-canonical potential

Φ = E − T S − µQe , (2.10)

which satisfies the first law

dΦ = −SdT − PdV −Qedµ . (2.11)

Conformal invariance and extensivity imply that Φ must have the form [19]

Φ = −VT dh(ψ) , (2.12)

for some function h(ψ), where ψ := µ/T . The remaining thermodynamic quantities are

then easily obtained using (2.11),

P =
ρ

d− 1
= T dh(ψ) , ρe =

Qe

V
= T d−1h′(ψ) , s =

S
V

= T d−1
(
dh(ψ)− ψh′(ψ)

)
.

(2.13)

3 Equilibrium flows in ultrastatic spacetimes

We will now focus on conformal fluids in ultrastatic spacetimes, and explain how the

equilibrium flows can be classified using the isometries of the spatial sections.

A d-dimensional spacetime (M, g) is said to be ultrastatic if there are a timelike Killing

field ξ such that ξµξ
µ = −1 and a hypersurface Σ orthogonal to ξ. In such a spacetime one

can always choose a coordinate system such that

g = −dt2 + ḡijdx
idxj , (3.1)

where ḡ is the induced metric on Σ. The velocity field u for a flow on M can be written as

uµ = γ(1, vi) , (3.2)

and the constraint uµu
µ = −1 implies that γ2 = 1/(1−v2), where v2 := ḡijv

ivj . We assume

that the fluid is stationary in the frame (t, ~x), that is ∂tu
µ = 0. Eq. (3.2) defines then a

vector field v on Σ. Note that the property of ultrastaticity is not conserved under general

– 5 –



J
H
E
P
0
7
(
2
0
1
4
)
1
2
2

Weyl rescalings. Thus when we say that a conformal spacetime (M, [g]) is ultrastatic, we

mean that it has some metric representative g which is ultrastatic.

As was explained in section 2, a fluid is in equilibrium when the entropy current is

conserved, which implies that the flow must be shearless and incompressible. The clas-

sification of such flows becomes quite easy if we use the following proposition, proven in

appendix B.

Proposition 1. σµν = 0 and ϑ = 0 ⇔ v is a Killing field for (Σ, ḡ).

The classification of shearless and incompressible flows on ultrastatic manifolds is thus

equivalent to classifying the isometries of the spatial sections (Σ, ḡ).

In equilibrium, the dissipative contribution to Tµν in (2.3) vanishes, and the stress

tensor is just

Tµν = P(d uµuν + gµν) , (3.3)

where we used the equation of state ρ = (d− 1)P of conformal fluids. The solution of the

Navier-Stokes equations becomes then particularly simple:

Proposition 2. When σµν = ϑ = 0 and P, uµ are independent of t, the stress tensor (3.3)

satisfies ∇µTµν = 0 if and only if

P = P0γ
d (3.4)

for some constant P0.

Consider now the heat flux qµ and the diffusion current qµe , given in (2.6).

Proposition 3. If the flow is stationary, incompressible and shearless, then qµ = 0 implies

T = τγ for some constant τ .

Proposition 4. For a stationary flow, qµe = 0 implies µ = ψT , where ψ is a constant.

The proofs of propositions 2–4 are again given in appendix B. With 2, 3 and 4, (2.13)

becomes

P0 = τdh(ψ) , ρe = τd−1γd−1h′(ψ) , s = τd−1γd−1
(
dh(ψ)− ψh′(ψ)

)
. (3.5)

Finally, the second of these equations implies that the charge current Jµ = ρeu
µ is con-

served.

At this point, some comments are in order: we have shown that we can construct all

stationary shearless and incompressible fluid configurations on the spacetime M , if we know

the Killing fields on the spatial sections (Σ, ḡ). A Killing field v is defined on the whole

manifold Σ, but it gives a physically meaningful flow only on the subset U ⊂ Σ in which

v2 < 1. Notice that v2 is constant along the integral curves of v, and therefore the flow

does not cross the boundary of U , where the fluid moves at the speed of light. Moreover,

we do not need to consider the flow arising from each Killing field v, since different flows

can be isometric. Suppose in fact that we have two Killing fields v, ṽ which are related

– 6 –
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by an isometry Ψ, i.e., ṽ ◦ Ψ = dΨ ◦ v. In terms of the 1-parameter groups of isometries

Φ(v),Φ(ṽ) that these fields generate, this condition reads

Φ
(ṽ)
λ ◦Ψ = Ψ ◦ Φ

(v)
λ . (3.6)

When this holds, the flows arising from v and ṽ are physically equivalent. Now, to the

Killing fields v, ṽ correspond two elements A, Ã in the Lie algebra i(Σ) of the isometry

group I(Σ), namely the generators of the 1-parameter subgroups λ 7→ Φ
(v)
λ and λ 7→ Φ

(ṽ)
λ ,

for which eq. (3.6) becomes

Ã = AdΨ(A) , (3.7)

where Ad is the adjoint representation of I(Σ) on i(Σ). This reduces the problem of finding

inequivalent flows to the study of the properties of the Lie algebra i(Σ) under the adjoint

representation.

3.1 Stationary conformal fluid on the 2-sphere

Let us first study the case (partially considered in [9, 19]) in which the conformal fluid lives

on the ultrastatic spacetime R× S2, with metric given by

g = −dt2 + `2(dθ2 + sin2 θdϕ2) . (3.8)

As was explained above, the 3-velocity of the fluid is uµ = γ(1, vi), where v is a Killing

field of S2. By a rotation, v can be brought to a multiple of any other Killing field, say ∂ϕ.

Thus we can take v = ω∂ϕ, with ω ∈ R, without loss of generality. Hence

u = γ(∂t + ω∂ϕ) , (3.9)

where γ = (1− ω2`2 sin2 θ)−1/2. This means that the motion of the fluid in equilibrium is

just a rigid rotation on S2. The physical constraint v2 < 1 limits the fluid to polar caps at

|ω|` sin θ < 1. Thus, if we restrict |ω|` < 1, the physical region U is the whole sphere.

The stress tensor of the fluid is Tµν = (ρ + P)uµuν + Pgµν (dissipative terms vanish

because of equilibrium), where ρ = 2P. This gives

Tµν = P

3γ2 − 1 0 3γ2ω

0 1
`2

0

3γ2ω 0 3γ2−2
`2 sin2 θ

 , (3.10)

which is conserved if

P = P0γ
3, (3.11)

where we used (3.4). The heat flux qµ and diffusion current qµe vanish by virtue of propo-

sitions 3 and 4.

We now want to compute the conserved charges associated to the stress tensor Tµν and

the currents Jµ, JµS . These are well-defined only for |ω|` < 1, since otherwise the physical

region U has a boundary where the Lorentz factor γ diverges. We consider the foliation

– 7 –
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of spatial surfaces Σt ' S2 of constant t, with induced metric ḡ. In the case |ω|` < 1 the

electric charge and entropy are given respectively by

Qe =

∫
Σt

d2x
√
ḡJ t =

4π`2τ2h′(ψ)

1− ω2`2
, S =

∫
Σt

d2x
√
ḡJ tS =

4π`2τ2
(
3h(ψ)− ψh′(ψ)

)
1− ω2`2

,

(3.12)

while the total energy E and angular momentum L read

E = −
∫

Σt

d2x
√
ḡT tµξ

µ =
8π`2τ3h(ψ)

(1− ω2`2)2
, (3.13)

L = −
∫

Σt

d2x
√
ḡT tµχ

µ =
8π`4τ3ωh(ψ)

(1− ω2`2)2
, (3.14)

where we used the Killing vectors ξ = ∂t and χ = −∂ϕ. The charges (3.12)–(3.14) were

obtained for the first time in [19]. The volume V = 4π`2 is fixed and not considered as

a thermodynamical variable. It is straightforward to verify that E, L, S, Qe, which are

functions of the parameters ω, τ, ψ, satisfy the first law

dE = τdS + ωdL+ τψdQe . (3.15)

As a consequence, the intensive variables conjugate to S,L,Qe are respectively

T =

(
∂E

∂S

)
L,Qe

= τ , Ω =

(
∂E

∂L

)
S,Qe

= ω , φe =

(
∂E

∂Qe

)
S,L

= τψ . (3.16)

Finally, the grandcanonical potential G = E − TS − ΩL− φeQe reads

G = −4π`2τ3h(ψ)

1− ω2`2
, (3.17)

where ψ = φe/T .

3.2 Stationary conformal fluid on a plane

We now consider a conformal fluid on three-dimensional Minkowski space R × E2, with

metric

g = −dt2 + dx2 + dy2. (3.18)

The Killing fields on the plane E2 are linear combinations of

ξ(R) = −y∂x + x∂y , ξ(T1) = ∂x , ξ(T2) = ∂y . (3.19)

By using the commutation relations

[R, T1] = T2 , [R, T2] = −T1 , [T1, T2] = 0

of the Euclidean group ISO(2), it is easy to shew that

eam̂·TRe−am̂·T = R+ a(m2T1 −m1T2) , (3.20)

– 8 –
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where a is a constant, m̂ = (m1,m2) denotes a unit vector, and T = (T1, T2). If we choose

a =
β

ω
, m1 = −β

2

β
, m2 =

β1

β
, β :=

√
(β1)2 + (β2)2 ,

(3.20) implies that ωR + β1T1 + β2T2 is in the same orbit as ωR under ISO(2), as long

as ω 6= 0. For ω = 0 the spatial fluid velocity is v = β1∂x + β2∂y, i.e., one has a purely

translating fluid on R×E2, which is dual to a boosted Schwarzschild-AdS black hole with

flat horizon. We shall thus assume ω 6= 0 in what follows. In this case, as just explained,

it is (up to isometries) sufficient to consider a fluid that rotates around the origin. If we

introduce polar coordinates r, ϕ, the 3-velocity becomes

u = γ(∂t + ω∂ϕ) , (3.21)

where γ = (1− ω2r2)−1/2. Note that the flow is well-defined only for r < 1/ω. At ωr = 1

the fluid rotates at the speed of light.

The stress tensor of this configuration is given by

Tµν = P

3γ2 − 1 0 3γ2ω

0 1 0

3γ2ω 0 3γ2−2
r2

 , (3.22)

which is again conserved if (3.11) holds.

3.3 Stationary conformal fluid on hyperbolic space

The last example that we consider is a conformal fluid in equilibrium on R × H2, with

metric given by

g = −dt2 + `2(dθ2 + sinh2 θdϕ2) . (3.23)

To begin with a simple scenario, one can just follow what we did for the 2-sphere in

subsection 3.1, taking the fluid in rigid rotation on the hyperboloid. Most of the results

reflect what we found for the spherical flow. However, there are also some differences: as

we shall see, no matter how small the angular velocity is, there always exists a certain

critical distance from the center of rotation where the fluid moves at the speed of light,

and hence the physical region U is always smaller than the whole hyperboloid H2. As a

consequence, one cannot analyze the global thermodynamic properties of the system, since

the extensive variables diverge. Anyway, we will show that for this fluid configuration one

can make a local thermodynamical analysis to find some results comparable with those of

subsection 3.1.

While in the spherical case the rigidly rotating flux is the only solution in equilibrium,

for the hyperbolic plane there are different, inequivalent solutions, since this space admits

non-conjugate Killing fields. (The isometry group SL(2,R) of H2 has parabolic, hyperbolic

and elliptic elements.) We denote the generators of SL(2,R) by R,B1, B2. These obey

[R,B1] = B2 , [R,B2] = −B1 , [B1, B2] = −R ,

– 9 –
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and are represented on the Poincaré disk by

ξ(R) = i(z∂z−z̄∂z̄) , ξ(B1) =
1

2
(1−z2)∂z+

1

2
(1−z̄2)∂z̄ , ξ(B2) =

i

2
(1+z2)∂z−

i

2
(1+z̄2)∂z̄ .

The complex coordinate z is related to θ, ϕ by z = eiϕ tanh θ
2 . One easily shows that

eαR(ωR+ βB1)e−αR = ωR+ β(B1 cosα+B2 sinα) , (3.24)

and thus a general linear combination ωR+ β1B1 + β2B2 is conjugate to ωR+ βB1, so we

can drop B2 without loss of generality. Moreover, one has

eχB2Re−χB2 = R coshχ+B1 sinhχ . (3.25)

If ω2 > β2, we can put tanhχ = β/ω, and (3.25) implies that ωR + βB1 is conjugate to

ω̃R, where ω̃ := ω
√

1− β2/ω2. This case corresponds to an elliptic element of SL(2,R),

and describes a fluid in rigid rotation on H2.

For ω2 < β2 (hyperbolic element), use

eχB2B1e
−χB2 = R sinhχ+B1 coshχ , tanhχ = ω/β ,

to show that ωR+ βB1 is in the same orbit as β̃B1, with β̃ := β
√

1− ω2/β2.

Finally, for ω2 = β2 (parabolic element), one can set ω = β without loss of generality,

since the case ω = −β is related to this by the discrete isometry J obeying

JRJ−1 = −R , JB1J
−1 = B1 , JB2J

−1 = −B2 .

In the complex coordinates z, z̄, the transformation J acts as z → z̄. As representative in

this last case we can thus take the Killing vector ω(ξ(R) + ξ(B1)). Notice that due to

eχB2(R+B1)e−χB2 = eχ(R+B1) , (3.26)

the absolute value of ω can be set equal to 1/` without loss of generality.6

The integral curves of the fluid two-velocity v = ωξ(R)+βξ(B1) are visualized in figure 1.

For ω2 > β2 the stream lines are closed and the flow has one fixed point. For ω2 < β2

there are two fixed points lying on the boundary of the Poincaré disk (which does not

belong to the manifold itself). If ω2 = β2, these fixed points coincide. Of course, the cases

(ω, β) = (1, 0.5) and (0.2, 0.4) are isometric to (1, 0) and (0, 0.5) respectively.

In what follows, we shall analyze each of the three distinct cases separately.

3.3.1 Rigid rotation

As was explained above, for ω2 > β2 one can take β = 0 without loss of generality. The

3-velocity of the fluid is then given by

u = γ(∂t + ω∂ϕ) , (3.27)

6This corresponds to the choice made in case 8 of appendix A.1.
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Figure 1. Integral curves (stream lines) of the vector field v = ωξ(R) + βξ(B1) on the Poincaré

disk, for different values of ω and β. The white area denotes the physical region, where the fluid

velocity does not exceed the speed of light.

where ω ∈ R and γ = (1 − ω2`2 sinh2 θ)−1/2. Note that the flow is well-defined only in

the region U = {(θ, ϕ) | |ω|` sinh θ < 1}. At the boundary of U , the fluid rotates at the

speed of light. Since v = ω∂ϕ is a Killing field of H2, this configuration is shearless and

incompressible. The stress tensor is given by

Tµν = P

3γ2 − 1 0 3γ2ω

0 1
`2

0

3γ2ω 0 3γ2−2
`2 sinh2 θ

 , (3.28)

which is conserved once (3.11) is satisfied. Moreover, the heat flux qµ and diffusion current

qµe vanish by virtue of propositions 3 and 4.

Since the fluid velocity tends to the speed of light at the boundary of U , γ diverges

there and the total energy and angular momentum are infinite. Thus, unlike in the spherical

case, we cannot define global thermodynamical variables here, and have to consider instead

only their densities. These are

1. the energy density ε = Ttt = P0γ
3(3γ2 − 1),

2. the angular momentum density l = −Ttϕ = 3P0`
2ωγ5 sinh2 θ,

3. the entropy density σ = J tS = τ2γ3
(
3h(ψ)− ψh′(ψ)

)
= γs,

4. the charge density %e = J t = τ2γ3h′(ψ) = γρe.
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We remark that these densities are evaluated in the frame (t, θ, ϕ), in which the fluid

is moving, while the densities ρ, s, ρe are measured in the local rest frame of the fluid.

Pointwise, ε, l, σ and %e are functions of the free parameters ω, τ, ψ. Calculating their

differentials one finds a local form of the first law,

dε = τdσ + ωdl + τψd%e , (3.29)

which implies that the intensive variables conjugate to σ, l and %e are respectively given by

∂ε(σ, l, %e)

∂σ
= τ ,

∂ε(σ, l, %e)

∂l
= ω ,

∂ε(σ, l, %e)

∂%e
= τψ . (3.30)

The local grandcanonical potential g = ε− τσ − ωl − τψ%e reads

g = −τ3γ3h(ψ) = − τ3h(ψ)

(1− ω2`2 sinh2 θ)3/2
. (3.31)

(3.29) is of course a consequence of local thermodynamical equilibrium.

3.3.2 Purely translational flow

Now we consider the case ω2 < β2, in which one can take ω = 0 without loss of generality.

This flow is visualized in the last figure of 1. In this case it is convenient to use the

coordinates

X = sinh θ cosϕ , Y = sinh θ sinϕ , (3.32)

in which the metric of the spacetime is given by

g = −dt2 +
`2

1 +X2 + Y 2

(
(1 + Y 2)dX2 + (1 +X2)dY 2 − 2XY dXdY

)
, (3.33)

and the the fluid moves along the X direction,

v = β
√

1 +X2 + Y 2∂X . (3.34)

Since v2 = β2`2(1 + Y 2), the physical region U is vertically narrowed by the condition

Y 2 <
1

β2`2
− 1 , (3.35)

which also shows that the flow exists only for β2 < `−2. The 3-velocity reads

u = γ
(
∂t + β

√
1 +X2 + Y 2∂X

)
, (3.36)

where γ = (1− β2`2(1 + Y 2))−1/2.

Notice that the lower two figures of 1 look very reminiscent of the black funnels con-

structed in [21] to study heat transport in holographic CFT’s. This raises the question

whether the bulk duals of the fluid flows in hyperbolic space considered here could be used

as toy models for the gravity side of the construction in [21]. In this context, one should

note however that the black funnels of [21] contain a single connected bulk horizon that

extends to meet the conformal boundary. Thus the induced boundary metric has smooth

horizons as well. In our case instead, it turns out that the bulk horizon does not extend

to meet the boundary, although the boundary metric itself may be considered to contain

a horizon, since R × H2 is conformal to the static patch of three-dimensional de Sitter

space [21], which has a cosmological horizon.

– 12 –
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3.3.3 Mixed flow: ω2 = β2

Finally, in the parabolic case ω2 = β2 one can choose ω = β, as was explained above. The

Killing vector v becomes then

v = β

(
iz +

1

2
(1− z2)

)
∂z + c.c.

It proves useful to introduce new coordinates A,B defined by

A = ln
1− zz̄

zz̄ + i(z − z̄) + 1
, B =

z + z̄

zz̄ + i(z − z̄) + 1
,

such that v = β∂B and

g = −dt2 + `2(dA2 + e−2AdB2) . (3.37)

The 3-velocity becomes

u = γ(∂t + β∂B) , (3.38)

with the Lorentz factor γ = (1 − β2`2e−2A)−1/2. The physical region U is thus given by

1− β2`2e−2A > 0.

3.4 Fluid in rigid rotation on H2 seen on the sphere or plane

The manifolds R × S2 and R × H2, with metrics (3.8) and (3.23), are conformally flat.

This means that each of them can be brought by a combined diffeomorphism plus Weyl

rescaling into a part of the other or into a part of three-dimensional Minkowski space M3.

One might thus ask how a fluid in one of these spaces appears when seen in the others after

a conformal transformation. Since one may be interested in the description of hyperbolic

AdS black holes in terms of hydrodynamics on Minkowski space or on R× S2, we study as

an example the rigidly rotating fluid on R×H2 analyzed in subsection 3.3.1 to see how it

looks like on M3 or on the closed Einstein static universe. We will see that this leads to

interesting dynamical fluid configurations.

The coordinate transformation

T = `e
t
` cosh θ , X = `e

t
` sinh θ cosϕ , Y = `e

t
` sinh θ sinϕ , (3.39)

combined with a conformal rescaling g̃ = Ω2g, where

Ω = e
t
` =

√
T 2 −X2 − Y 2

`
, (3.40)

brings (3.23) to the flat metric

g̃ = −dT 2 + dX2 + dY 2. (3.41)

Now consider the rigidly rotating fluid in 3.3.1, which has 3-velocity

u = γ(∂t + ω∂ϕ) =
γT

`

(
∂T +

X − ω`Y
T

∂X +
Y + ω`X

T
∂Y

)
, (3.42)
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Figure 2. Fluid in rigid rotation on H2 with ω = ` = 1, seen on the plane in coordinates X,Y ,

at times T = 1, T = 2 and T = 3. The grey area is the region of spacetime where the flow is not

defined.

where

γ = (1− ω2`2 sinh2 θ)−
1
2 =

√
T 2 −X2 − Y 2

T 2 − (1 + ω2`2)(X2 + Y 2)
. (3.43)

Recall that the flow is defined only for |ω|` sinh θ < 1. In the coordinates (T,X, Y ), this

condition becomes (1 + ω2`2)(X2 + Y 2) < T 2. Notice also that (3.39) maps R×H2 to the

inside of the future light cone X2 + Y 2 < T 2, T > 0. The conformal rescaling transforms

u into

ũ = Ω−1u =
T√

T 2 − (1+ω2`2)(X2+Y 2)

(
∂T +

X−ω`Y
T

∂X +
Y +ω`X

T
∂Y

)
. (3.44)

This flow is plotted in coordinates (T,X, Y ) in figure 2. We see that the rigidly rotating

fluid in R×H2 appears in Minkowski space as an expanding vortex.

Let us now transform the same fluid configuration to the closed Einstein static universe

R× S2. To this aim, introduce new coordinates

τ = −` arctan
cosh θ

sinh t
`

, Θ = arctan
sinh θ

cosh t
`

, Φ = ϕ , (3.45)

where τ ∈ (−`π2 , 0), Θ ∈ (0, π2 ) and Φ ∈ (0, 2π). The inverse of (3.45) is

t = ` arsinh
cos τ`√

cos2 Θ− cos2 τ
`

, θ = arsinh
sin τ

`√
cos2 Θ− cos2 τ

`

, (3.46)

hence one has the additional restriction Θ < − τ
` . Subsequently, rescale (3.23) as g̃ = Ω2g,

where

Ω =

√
cos2 Θ− cos2

τ

`
, (3.47)

to get

g̃ = −dτ2 + `2(dΘ2 + sin2 ΘdΦ2) . (3.48)
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Figure 3. Fluid in rigid rotation on H2 with ω = ` = 1, seen on the 2-sphere (from the north pole

and projected on the equatorial plane), at times τ ' −`π2 , τ = −` and τ = − `
2 . The grey area is

the region of spacetime where the flow is not defined.

Now the 3-velocity (3.27) of the rigidly rotating fluid on H2 is mapped into

ũ = Ω−1u =
− sin τ

` cos Θ√
sin2 τ

` − (1+ω2`2) sin2 Θ

(
∂τ +

tan Θ

` tan τ
`

∂Θ +
ω

− sin τ
` cos Θ

∂Φ

)
. (3.49)

In the coordinates (τ,Θ,Φ), the constraint |ω|` sinh θ < 1, limiting the region where the

fluid is located, becomes

sin Θ <
− sin τ

`√
1 + ω2`2

. (3.50)

This flow is plotted in figure 3 at different times τ projected on the equatorial plane of S2

and viewed from the north pole. Again, we encounter a dynamical fluid configuration that

is a sort of contracting vortex on S2.

Note that a similar technique was applied in 3+1 dimensions in [22]. There, it was

shown (using the Weyl covariance of the stress tensor) that the dynamical solution of [23]

(which represents a generalization of Bjorken flow [24]) can be recast as a static flow in

three-dimensional de Sitter space times a line. The simplicity of the de Sitter form enabled

the authors of [22] to obtain several generalizations of it, such as flows in other spacetime

dimensions, second order viscous corrections, and linearized perturbations.

4 Dual AdS black holes

Now we want to identify the AdS black holes dual to the fluid configurations classified in

section 3. It turns out that these bulk spacetimes are all contained in the Carter-Plebański

family [15, 16], whose metric is given by

ds2 =
p2 + q2

P(p)
dp2 +

P(p)

p2 + q2
(dτ + q2dσ)2 +

p2 + q2

Q(q)
dq2 − Q(q)

p2 + q2
(dτ − p2dσ)2, (4.1)

where

P(p) = α− g2 + 2lp− εp2 +
p4

`2
, Q(q) = α+ e2 − 2mq + εq2 +

q4

`2
. (4.2)
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This solves the Einstein-Maxwell equations with cosmological constant Λ = −3`−2 and

electromagnetic field

A = − e q

p2 + q2
(dτ − p2dσ)− g p

p2 + q2
(dτ + q2dσ) , (4.3)

whose field strength is

F =
e(p2 − q2) + 2g pq

(p2 + q2)2
dq ∧ (dτ − p2dσ)− g(p2 − q2)− 2e pq

(p2 + q2)2
dp ∧ (dτ + q2dσ) . (4.4)

(4.1) can be obtained by a scaling limit from the Plebański-Demiański spacetime [25],7

which is the most general known Petrov-type D solution to the Einstein-Maxwell equations

with cosmological constant. Other references studying algebraically special spacetimes and

their fluid duals include [26], where the AdS/CFT interpretation of the Robinson-Trautman

(RT) solution to vacuum AdS gravity was investigated. This is slightly different from our

case, since the boundary metric of the RT geometry is in general time-dependent [26].

The metric ĝ on the conformal boundary of (4.1) can be obtained by setting q =

const.→∞ and rescaling with `2/q2. This leads to

ĝ = −dτ2 +
`2

P(p)
dp2 +

(
`2P(p)− p4

)
dσ2 + 2p2dτdσ . (4.5)

Notice that for vanishing NUT-parameter l this metric is conformally flat.8 In what follows,

we shall consider the case l = 0 only.9

Using standard holographic renormalization techniques [29], one can compute the holo-

graphic stress tensor associated to (4.1), with the result

T̂µν =
m

8π`2
(γµν + 3uµuν) , (4.6)

where u = ∂τ . T̂ describes thus a conformal fluid in equilibrium, at rest in the frame

(τ, p, σ). The external electromagnetic field F̂ and the U(1) current Ĵ dual to (4.3) on the

conformal boundary of (4.1) are found to be respectively

F̂ = g dp ∧ dσ , Ĵ =
e

4π`2
∂τ =

e

4π`2
u . (4.7)

The last equation shows that the fluid has a constant charge density e/(4π`2). Note also

that the current Ĵ is conserved, ∇̂µĴµ = 0, where ∇̂ denotes the Levi-Civita connection

of ĝ. Moreover, since F̂µν Ĵ
ν = 0, the Lorentz force exerted by the field F̂ on the charged

fluid vanishes, and thus T̂ is conserved as well, ∇̂µT̂µν = 0.

7This scaling limit eliminates the acceleration parameter.
8The nonvanishing components of the Cotton tensor Cµνρ of ĝ are given by

Cτpσ = −Cpτσ = Cστp = −Cτσp =
2l

`2
, Cσpτ = −Cpστ =

4l

`2
, Cpσσ = −Cσpσ =

6lp2

`2
.

9Holographic fluids that are dual to geometries with NUT charge were considered in [17, 27, 28].

– 16 –



J
H
E
P
0
7
(
2
0
1
4
)
1
2
2

Notice that the solution (4.1), (4.4) enjoys the scaling symmetry

p→ λp , q → λq , τ → τ/λ , σ → σ/λ3, α→ λ4α ,

g→ λ2g , e→ λ2e , m→ λ3m, l→ λ3l , ε→ λ2ε , (4.8)

that can be used to eliminate one unphysical parameter.

The line element (4.1) describes a black hole whose event horizon H is located at the

largest root of the polynomial Q(q). As we shall see below, the horizon geometry depends

crucially on the choice of parameters contained in the function P(p), which determine the

number of real roots of P. In what follows, we will discuss more in detail some subcases of

the Carter-Plebański family, which are dual to the fluid configurations classified in section 3.

4.1 Spherical and hyperbolic Kerr-Newman-AdS4 black holes

If we set

α = ka2 + g2, ε = k +
a2

`2
, τ =

t− aϕ
Ξ

, q = r , p = ack(θ) , σ = − ϕ

aΞ
,

where

k = ±1 , Ξ = 1− ka2

`2
, ck(θ) =

dsk(θ)

dθ
, sk(θ) =

{
sin θ , k = 1 ,

sinh θ , k = −1 ,

the metric (4.1) becomes

ds2 = − ∆r

Ξ2ρ2

(
dt−ka s2

k(θ)dϕ
)2

+ρ2

(
dr2

∆r
+

dθ2

∆θ

)
+

∆θ

Ξ2ρ2

(
adt−(r2+a2)dϕ

)2
s2
k(θ) , (4.9)

with

ρ2 = r2 + a2c2
k(θ) , ∆r = (r2 + a2)

(
k +

r2

`2

)
− 2mr + e2 + g2, ∆θ = 1− ka2

`2
c2
k(θ) .

For k = 1 this is the Kerr-Newman-AdS4 black hole, while for k = −1 one has the rotating

hyperbolic solution constructed in [30]. Note also that in the spherical case (k = 1) the

rotation parameter a is bounded by a2 < `2 in order for ∆θ to be positive, while it can

take any value if k = −1.

The metric on the conformal boundary of (4.9) reads

ĝ = −dt2

Ξ2
+
`2dθ2

∆θ
+
`2

Ξ
s2
k(θ)dϕ

2 + 2
ak

Ξ2
s2
k(θ)dtdϕ . (4.10)

Since this is conformally flat there exist coordinates in which, after a conformal rescaling,

it takes the ultrastatic spherical or hyperbolic form (like in eqs. (3.8) and (3.23)). These

are given by

τ =
t

Ξ
, ck(Θ) = ck(θ)

√
Ξ

∆θ
, Φ = ϕ+

kat

`2Ξ
. (4.11)

Notice that Θ ranges in (0, π) when k = 1 and in (0, arsinh(`/|a|)) when k = −1, cf. figure 4,

where Θ(θ) is plotted for different values of a/`. In the new coordinates, the boundary
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Figure 4. Graphs of Θ(θ) for k = 1 (left) and k = −1 (right), for different values of a/`.

metric (4.10) takes the form

ĝ =
∆θ

Ξ

(
− dτ2 + `2

(
dΘ2 + s2

k(Θ)dΦ2
))
, (4.12)

such that, after a Weyl rescaling

ĝ → g̃ = Ω2ĝ , Ω2 = Ξ/∆θ , (4.13)

one obtains the desired metric

g̃ = −dτ2 + `2
(
dΘ2 + s2

k(Θ)dΦ2
)
. (4.14)

Thus the boundary of the Kerr-AdS4 black hole is conformal to R × S2 for k = 1, and to

the part of R × H2 with sinh Θ < `/|a| for k = −1. If we identify |ω| = |a|/`2, this is

exactly the part of R× H2 on which a fluid in rigid rotation with angular velocity ω does

not exceed the speed of light. We will have to say more on this below.

The holographic stress tensor associated to (4.9) can be written in the form

T̂µν =
m

8π`2
(ĝµν + 3uµuν) , (4.15)

where u = Ξ∂t. This is the stress tensor of a conformal fluid at rest in the coordinate frame

(t, θ, ϕ), with pressure P = m/(8π`2). After the diffeomorphism (4.11) and the subsequent

Weyl rescaling (4.13) (recall that T̂ transforms as T̃µν = Ω−d−2T̂µν) one obtains

T̃µν =
mγ3

8π`2

3γ2 − 1 0 3kaγ2

`2

0 1
`2

0
3kaγ2

`2
0 3γ2−2

`2s2k(Θ)

 , (4.16)

with γ := (1 − a2s2
k(Θ)/`2)−1/2. This can also be rewritten as T̃µν = P̃(g̃µν + 3ũµũν),

where

P̃ = Ω−3P =
mγ3

8π`2
, ũ = Ω−1u = γ

(
∂τ +

ka

`2
∂Φ

)
. (4.17)

For k = 1, T̃ is exactly the stress tensor (3.10) of the stationary conformal fluid on the

2-sphere, if we identify

P0 =
m

8π`2
, ω =

a

`2
. (4.18)
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On the other hand, for k = −1, (4.16) coincides with the stress tensor (3.28) of the rigidly

rotating conformal fluid on the hyperbolic plane, after the identifications

P0 =
m

8π`2
, ω = − a

`2
. (4.19)

The KNAdS black hole is thus dual to a fluid in rigid rotation on S2 for k = 1 and on H2 for

k = −1. In the spherical case, this is of course well-known [9, 19]. The result for hyperbolic

black holes is new, and it is remarkable how the conformal transformation (4.11), (4.13)

maps the boundary geometry of the rotating hyperbolic black hole precisely to the region

of R×H2 on which a fluid in rigid rotation does not exceed the speed of light.

The electromagnetic field and electric current on the boundary are given respectivey by

F̂ =
kgsk(θ)

Ξ
dθ ∧ dϕ , Ĵ =

eΞ

4π`2
∂t =

e

4π`2
u . (4.20)

After the coordinate change (4.11) and Weyl rescaling (4.13), they become10

F̃ = kgγ3sk(Θ) dΘ ∧
(

dΦ− ka

`2
dτ

)
, J̃ =

eγ3

4π`2

(
∂τ +

ka

`2
∂Φ

)
=

eγ2

4π`2
ũ , (4.21)

and thus J̃ coincides with the hydrodynamical expression if the charge density of the fluid is

ρe =
eγ2

4π`2
. (4.22)

Note that in the coordinate system (τ,Θ,Φ) there is also an electric field. Moreover, one

has F̃ νµJ̃
µ = 0, so there is no net Lorentz force acting on the charged fluid due to an exact

cancellation of electric and magnetic forces.11 In the orthonormal frame

e0 = dτ , e1 = `dΘ , e2 = `sk(Θ)dΦ ,

the electric field in 1-direction and the spatial current in 2-direction are

E1 =
gγ3sk(Θ)a

`3
, J̃ 2 =

eγ3sk(Θ)ka

4π`3
= σ21E1, (4.23)

with the Hall conductivity

σ21 =
ek

4πg
. (4.24)

In the spherical case k = 1, it was furthermore shown in [19] that, in the large black

hole limit where fluid dynamics provides an accurate description of the dual conformal

field theory, the black hole electric charge, entropy, mass and angular momentum coincide

precisely with the conserved charges (3.12), (3.13) and (3.14) computed in fluid mechanics,

if we identify the Hawking temperature T with the global fluid temperature in (3.16).12

10One has F̃µν = F̂µν and J̃µ = Ω−dĴµ. In this way, the MHD equations (2.9) are conformally invariant.
11In the case of the spherical KNAdS black hole this fact was first noticed in [9].
12The remaining fluid parameters ω and ψ are fixed by (4.18) and (4.22) (combined with ρe = τ2γ2h′(ψ),

cf. (3.5)) respectively. The function h(ψ) determining the hydrodynamic grandcanonical potential is that

of the unrotating black hole, given by eqs. (3.19) and (3.20) of [9].
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On the other hand, for k = −1, we already saw in the previous section that the

conserved charges are ill-defined in fluid mechanics. The same problem is encountered

on the gravity side: if one tries to compute for instance the entropy of the solution (4.9)

with k = −1, one has to integrate over the noncompact variable θ, which makes the result

divergent. A possible way out could be to consider only excitations above some ‘ground

state’, which may have finite energy, but we shall not attempt to do this here. In spite

of these difficulties, we saw in section 3.3.1 that a local form of the first law of black hole

mechanics holds.

4.2 Boosting AdS4 black holes

In the previous subsection it was shown that the spherical and hyperbolic KNAdS4 black

holes are holographically dual to conformal fluids in rigid rotation on R × S2 and R × H2

respectively. While a rigid rotation is (up to isometries) the only possible equilibrium con-

figuration for a stationary conformal fluid on a sphere, the same is not true for hyperbolic

space: we saw in 3.3 that on the hyperbolic plane one can also have purely translational

(‘boosting’) or mixed flows, which are not isometric to rotations. In this section we de-

scribe a family of black holes, obtained by analytically continuing the hyperbolic KNAdS4

metric, whose dual fluid is translating on the hyperbolic plane. We will call these solutions

‘boosting black holes’.

Consider the KNAdS4 metric (4.9) with k = −1, and analytically continue

a→ ib , θ → θ − iπ

2
, ϕ→ iϕ . (4.25)

This leads to

ds2 = − ∆r

Ξ2ρ2
(dt+b cosh2 θdϕ)2+ρ2

(
dr2

∆r
+

dθ2

∆θ

)
+

∆θ cosh2 θ

Ξ2ρ2

(
bdt−(r2−b2)dϕ

)2
, (4.26)

where now

ρ2 = r2 + b2 sinh2 θ , ∆r = (r2− b2)

(
− 1 +

r2

`2

)
− 2mr+ e2 + g2, ∆θ = 1 +

b2

`2
sinh2 θ ,

and Ξ = 1−b2/`2. Alternatively, (4.26) can be obtained directly from the Carter-Plebański

solution (4.1) by setting

α = b2 + g2, l = 0 , ε = −1− b2

`2
, τ =

t+ bϕ

Ξ
, q = r , p = b sinh θ , σ = − ϕ

bΞ
.

The electromagnetic 1-form potential (4.3) becomes then

A = − er

Ξρ2
(dt+ b cosh2 θdϕ)− g sinh θ

Ξρ2

(
bdt− (r2 − b2)dϕ

)
. (4.27)

Notice that now θ, ϕ are not polar coordinates on H2 (in that case it would not be possible

to extend the 1-form cosh θ dϕ to θ = 0), but they are rather Cartesian-type coordinates

on a plane, possibly compactified to a cylinder by periodic identifications of ϕ.13

13In the latter case the dual fluid lives on a quotient space of H2.
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The metric on the conformal boundary of (4.26) is given by

ĝ = −dt2

Ξ2
+

`2

∆θ
dθ2 +

`2

Ξ
cosh2 θdϕ2 − 2

b

Ξ2
cosh2 θdtdϕ , (4.28)

from which we see that ∂ϕ is spacelike only for b2 < `2. Now introduce the ultrastatic

coordinates

T =
t

Ξ
, X =

cosh θ√
∆θ

sinh

(
ϕ− bt

`2Ξ

)
, Y =

√
Ξ

∆θ
sinh θ , (4.29)

where T,X ∈ R and Y is bounded by Y 2 < `2/b2−1, and perform a Weyl rescaling g̃ = Ω2ĝ

with

Ω =

√
Ξ

∆θ
=

√
1− b2

`2
(1 + Y 2) . (4.30)

This yields

g̃ = −dT 2 +
`2

1 +X2 + Y 2

(
(1 + Y 2)dX2 + (1 +X2)dY 2 − 2XY dXdY

)
, (4.31)

which is the slice Y 2 < `2/b2 − 1 of the spacetime R×H2, cf. (3.33).

In the frame (t, θ, ϕ) the holographic stress tensor on the conformal boundary is found

to be

T̂µν =
m

8π`2
(γµν + 3uµuν) , (4.32)

with u = Ξ∂t. After the diffeomorphism (4.29) and the Weyl rescaling (4.30), the stress

tensor becomes

T̃µν = P̃(g̃µν + 3ũµũν) , (4.33)

where

P̃ =
mγ3

8π`2
, ũ = γ

(
∂T −

b

`2

√
1+X2+Y 2∂X

)
, γ = Ω−1 =

(
1− b2

`2
(1+Y 2)

)−1/2

.

This is exactly the energy-momentum tensor and 3-velocity of a conformal fluid translating

on the hyperbolic plane studied in section 3.3.2, after the identifications

P0 =
m

8π`2
, β = − b

`2
. (4.34)

The gravity dual of the ‘boosting’ fluid on H2 is thus given by the black hole solu-

tion (4.26), (4.27).14 Although the latter is contained in the general Carter-Plebańksi

solution, it is in principle new, since its physical properties have not been discussed in

the literature so far. Note again the remarkable fact that the conformal transforma-

tion (4.29), (4.30) maps the boundary geometry of (4.26) precisely to the region of R×H2

in which the fluid velocity does not exceed the speed of light.

14Strictly speaking, in order to prove this rigorously, one would have to apply the map (4.1) of [3], and

show that this yields (up to second order in the boundary derivative expansion) the metric (4.26). We leave

this for future work. In this context, note also that [3] deals only with the uncharged case. We are not

aware of a magnetohydrodynamical generalization of the results of [3].
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4.3 Black holes dual to mixed (parabolic) flow on the hyperbolic plane

Consider now the following choice for the parameters and coordinates of the Carter-

Plebański solution (4.1):

α = g2, l = 0 , ε = −1 , q = r , p = aP , σ = −ϕ
a
,

which leads to

ds2 = −∆r

ρ2
(dτ + aP 2dϕ)2 + ρ2

(
dr2

∆r
+

dP 2

∆P

)
+

∆P

ρ2
(adτ − r2dϕ)2, (4.35)

A = −er

ρ2
(dτ + aP 2dϕ)− gP

ρ2
(adτ − r2dϕ) , (4.36)

where

ρ2 = r2 + a2P 2, ∆r = r2

(
r2

`2
− 1

)
− 2mr + e2 + g2, ∆P = P 2

(
1 +

a2

`2
P 2

)
.

The metric on the conformal boundary of (4.35) reads

ĝ = −dτ2 +
`2

∆P
dP 2 + `2P 2dϕ2 − 2aP 2dτdϕ , (4.37)

and the holographic stress tensor takes the usual form

T̂µν =
m

8π`2
(ĝµν + 3uµuν) , (4.38)

with 3-velocity u = ∂τ . Like in the previous cases, one can introduce ultrastatic coordinates

on the conformal boundary, defined by

T = τ , A =
1

2
ln

∆P

P 4
, B = ϕ− aτ

`2
, (4.39)

where A > 1
2 ln a2

`2
and T,B ∈ R. After a subsequent Weyl rescaling g̃ = Ω2ĝ with

Ω =
P√
∆P

=

√
1− a2

`2
e−2A , (4.40)

one gets the metric

g̃ = −dT 2 + `2(dA2 + e−2AdB2) . (4.41)

Thus we have shown that the boundary geometry of (4.35) is conformal to the subset

A > 1
2 ln a2

`2
of the spacetime R × H2. After the coordinate transformation (4.39) and the

Weyl rescaling (4.40), the 3-velocity u becomes

ũ = γ

(
∂T −

a

`2
∂B

)
, (4.42)

where

γ = Ω−1 =

(
1− a2

`2
e−2A

)−1/2

. (4.43)
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Figure 5. Poincaré disk compactified by identifications of the coordinate B; the two thick black

lines have to be identified. The grey area is the unphysical region where the fluid velocity exceeds

the speed of light. The fluid is located in the red region.

The transformed energy-momentum tensor T̃ and the 3-velocity ũ coincide with the ones

considered in section 3.3.3, if we identify

P0 =
m

8π`2
, β = − a

`2
. (4.44)

The gravity dual of the mixed (parabolic) flow on H2 is thus given by the black hole

solution (4.35). Again, the conformal transformation (4.39), (4.40) maps the boundary

of (4.35) exactly to the region 1 − β2`2e−2A > 0 where the fluid velocity is smaller than

the speed of light. If ϕ is compactified, B becomes also a compact coordinate. The flow in

this case is visualized in figure 5.

4.4 Black holes dual to rotating fluid on the Euclidean plane

The family of black holes dual to a rotating fluid in Minkowski space R × E2 is obtained

by making the following choice for the parameters and coordinates of the Carter-Plebański

solution (4.1):

α = g2, l = 0 , ε =
a2

`2
, q = r , p = aP , σ = −ϕ

a
,

which leads to

ds2 = −∆r

ρ2
(dτ + aP 2dϕ)2 + ρ2

(
dr2

∆r
+

dP 2

∆P

)
+

∆P

ρ2
(adτ − r2dϕ)2, (4.45)

A = −er

ρ2
(dτ + aP 2dϕ)− gP

ρ2
(adτ − r2dϕ) , (4.46)
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where

ρ2 = r2 + a2P 2, ∆r =
r2

`2
(r2 + a2)− 2mr + e2 + g2, ∆P =

a2

`2
P 2(P 2 − 1) ,

and P > 1. In the uncharged case (e = g = 0), the solution (4.45) appeared in (C.10)

of [17]. Notice that, unlike in the previous cases, the Killing vector ∂ϕ becomes timelike

for large r. Hence, to avoid closed timelike curves, we shall not compactify ϕ. Instead we

replace the coordinates τ, ϕ with T,Φ defined by

T = τ + aϕ , Φ =
aτ

`2
. (4.47)

Since ∂Φ is spacelike everywhere outside the horizon (located at the largest root of ∆r), we

compactify Φ ∼ Φ + 2π. This choice is done in order that the conformal boundary has the

topology of R times a disk, as we will see shortly.

The boundary geometry of (4.45) is given by

ĝ = −dτ2 +
`2

∆P
dP 2 − a2P 2dϕ2 − 2aP 2dτdϕ , (4.48)

and the holographic stress tensor has the usual form (4.38), where u = ∂τ . Now consider

the coordinate transformation (4.47), supplemented by

R =
`2

a

√
1− P−2 , 0 < R <

`2

a
, (4.49)

and perform a Weyl rescaling g̃ = Ω2ĝ with

Ω = P−1 =

√
1− a2R2

`4
. (4.50)

This yields the metric

g̃ = −dT 2 + dR2 +R2dΦ2. (4.51)

Thus we have shown that the conformal boundary is the subset R < `2/a of the spacetime

R × E2, i.e., the real line times a disk. After the coordinate change to (T,R,Φ) and the

conformal rescaling (4.50), the energy momentum tensor becomes

T̃µν = P̃(g̃µν + 3ũµũν) , (4.52)

where

P̃ =
mγ3

8π`2
, ũ = γ

(
∂T +

a

`2
∂Φ

)
, γ = Ω−1 =

(
1− a2R2

`4

)−1/2

.

The stress tensor (4.52) and the 3-velocity ũ coincide with the ones considered in section 3.2,

if we identify

P0 =
m

8π`2
, ω =

a

`2
. (4.53)

The gravity dual of the rotating fluid on E2 is thus given by the black hole solution (4.45),

and the conformal transformation that we used here maps the boundary geometry of (4.45)

to a line times the disk R < `2/a, where the fluid flow is well-defined.
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4.5 Super-rotating hyperbolic black holes

We saw in section 4.1 that the spherical KNAdS black hole is dual to a rotating fluid on S2

if the angular velocity of the latter is limited by |ω|` < 1, which translates on the gravity

side into a2 < `2. For |ω|` > 1 the constraint v2 < 1 restricts the rotating fluid to the polar

caps |ω|` sin θ < 1. It turns out that in this case the dual black hole can be obtained from

the KNAdS4 metric (4.9) with k = 1 by the analytical continuation θ → iθ, which leads to

ds2 = − ∆r

Ξ2ρ2
(dt+ a sinh2 θdϕ)2 + ρ2

(
dr2

∆r
+

dθ2

∆θ

)
+

∆θ sinh2 θ

Ξ2ρ2

(
adt− (r2 + a2)dϕ

)2
,

(4.54)

A = − er

Ξρ2
(dt+ a sinh2 θdϕ)− g cosh θ

Ξρ2

(
adt− (r2 + a2)dϕ

)
, (4.55)

where

ρ2 = r2 + a2 cosh2 θ , ∆r = (r2 + a2)

(
1+

r2

`2

)
− 2mr + e2 + g2 , ∆θ =

a2

`2
cosh2 θ − 1 ,

and Ξ = a2/`2−1. Note that there is a lower bound on the rotation parameter a: positivity

of ∆θ requires a2 > `2, so that these black holes exist only above some minimum amount

of rotation and thus have no static limit.

The metric (4.54) is again a special case of the Carter-Plebański family, obtained by

setting

γ = a2 +g2, l = 0 , ε = 1+
a2

`2
, τ =

t− aϕ
Ξ

, q = r , p = a cosh θ , σ = − ϕ

aΞ
.

The metric on the conformal boundary of (4.54) is given by

ĝ = −dt2

Ξ2
+

`2

∆θ
dθ2 +

`2

Ξ
sinh2 θdϕ2 − 2a

Ξ2
sinh2 θdtdϕ . (4.56)

Now introduce new coordinates τ,Θ,Φ defined by

τ =
t

Ξ
, sin Θ =

sinh θ√
∆θ

, Φ = ϕ− at

`2Ξ
, (4.57)

where 0 < Θ < arcsin(`/|a|), and perform a Weyl rescaling g̃ = Ω2ĝ with

Ω =

√
Ξ

∆θ
. (4.58)

This gives

g̃ = −dτ2 + `2(dΘ2 + sin2 ΘdΦ2) , (4.59)

and thus the conformal boundary of (4.54) is, up to conformal transformations, the polar

cap Θ < arcsin(`/|a|) of R× S2.

After the conformal transformation (4.57), (4.58), the holographic stress tensor asso-

ciated to the spacetime (4.54) becomes

T̃µν = P̃(g̃µν + 3ũµũν) , (4.60)
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Spacetime Eq. Fluid configuration Section

Spherical Kerr-Newman-AdS4 (4.9), with k = 1 Fluid in rigid rotation on

the 2-sphere with ω < 1/`

3.1

Solution (4.45) (4.45) Fluid in rigid rotation on

the Euclidean plane

3.2

Hyperbolic KNAdS4 (4.9), with k = −1 Fluid in rigid rotation on

the hyperbolic plane

3.3.1

Boosting AdS4 black hole (4.26) Fluid translating on the

hyperbolic plane

3.3.2

Solution (4.35) (4.35) Mixed (parabolic) flow on

the hyperbolic plane

3.3.3

Super-rotating hyperbolic black

hole

(4.54) Fluid in rigid rotation on

the 2-sphere with ω > 1/`

3.1

Table 1. Spacetimes and corresponding fluid configurations.

where

P̃ =
mγ3

8π`2
, ũ = γ

(
∂τ −

a

`2
∂Φ

)
, γ = Ω−1 =

(
1− a2

`2
sin2 Θ

)−1/2

. (4.61)

T̃ is exactly the stress tensor (3.10) of the stationary conformal fluid on the 2-sphere

with |ω|` > 1, if we identify

P0 =
m

8π`2
, ω = − a

`2
. (4.62)

5 Final remarks

In this paper, we used hydrodynamics in order to make predictions on the possible types

of black holes in Einstein-Maxwell-AdS gravity. In particular, we classified the stationary

equilibrium flows on ultrastatic manifolds with spatial sections of constant curvature, and

then used these results to identify the dual black hole solutions. Although these are all

contained in the Carter-Plebański family, only a few of them have been studied in the

literature before, so that the major part is in principle new. Table 1 summarizes the results,

relating to each spacetime the corresponding dual fluid configuration.

It would be interesting to study more in detail the physics of these new black holes.

Another possible direction for future work is to repeat our analysis for hydrodynamics in

four dimensions (cf. e.g. [22] for work in this direction) and to see if the dual metrics still

enjoy any sort of algebraic speciality.

Some remaining open questions concern for instance the boundary geometries of the

Carter-Plebański metric that have either no irrotational Killing field ξ (∆ < 0 in ap-

pendix A), or where ξ is lightlike (∆ = 0). These cases include the black holes with

noncompact horizons but finite entropy constructed recently in [31, 32], as well as the

cylindrical (or planar) solutions of [30]. Although the boundary metric (4.5) is still confor-

mally flat for ∆ ≤ 0 (if the NUT charge vanishes), we were not able to find the coordinate

transformation that makes this manifest. However, the explicit form of this diffeomorphism
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would be needed in order to quantitatively determine the hydrodynamic flow that is dual

to these black holes.

Another intriguing point is the absence of a net Lorentz force acting on the charged

fluid on the boundary, as we saw in section 4. It would be very interesting to see if this

can be relaxed and, if so, what the holographic duals of such fluid configurations are. For

instance, one might ask which gravity dual corresponds to a charged fluid rotating in a

plane, with only a magnetic field orthogonal to that plane.

In section 3.4 we saw that a conformal fluid in rigid rotation on hyperbolic space looks

completely different when transformed to the 2-sphere or the plane: there it becomes highly

dynamical, and takes the form of an expanding or contracting vortex. There is thus no need

to have dynamical spacetimes (which are notoriously difficult to construct) in order to build

holographic models of nonstationary (conformal) fluids. This raises the question if bulk

geometries of the type considered here can have applications in a holographic description

of the (dynamical) quark-gluon plasma produced in heavy-ion collisions, cf. [33] for first

attempts in this direction. We hope to come back to some of these points in the future.
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A Notes on the Carter-Plebański metric

In this section, we present a systematic classification of the possible types of black holes

contained in the Carter-Plebański family (4.1), with a particular emphasis on the geome-

tries that can arise on the conformal boundary. The various cases are distinguished by

the number of real roots of the function P(p). This function must be positive in order for

the induced metric on the horizon to have the right signature. We consider the case of

vanishing NUT charge only, l = 0, and define Γ = α − g2, such that P(p) in (4.2) boils

down to

P(p) =
p4

`2
− εp2 + Γ . (A.1)

Consider the discriminant ∆ = ε2 − 4Γ/`2. For ∆ ≥ 0 one has

P(p) =
1

`2
(p2 − α+)(p2 − α−) , (A.2)

where α± = `2(ε±
√

∆)/2. We have then the following subcases:

1. If Γ > 0, ε > 2
√

Γ/`, then ∆ > 0,
√

∆ < ε, so α± > 0, and P has 4 real roots,

P(p) =
1

`2
(p−

√
α+)(p+

√
α+)(p−

√
α−)(p+

√
α−) . (A.3)

P is positive for |p| >
√
α+ or |p| <

√
α−.
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In the latter region, use the scaling symmetry (4.8) to set α+ = `2 without loss of

generality, and define a2 := α−. This gives the spherical KNAdS solution ((4.9) with

k = 1).

In the range |p| >
√
α+, use (4.8) to set α− = `2, and define a2 := α+, which leads

to the super-rotating black hole (4.54).

2. If Γ > 0, ε = 2
√

Γ/`, then ∆ = 0, so α± = `
√

Γ, and

P(p) =
1

`2

(
p−

√
`
√

Γ
)2(

p+

√
`
√

Γ
)2
. (A.4)

P is positive for p 6= ±
√
`
√

Γ. By virtue of (4.8) one can always take ε = 2, i.e.,√
`
√

Γ = `. Then, for |p| < `, we get the black holes that have a noncompact horizon

with finite area, constructed recently in [31, 32]. For |p| > ` one obtains new solutions

that have not been discussed in the literature so far.

3. If Γ > 0, −2
√

Γ/` < ε < 2
√

Γ/`, then ∆ < 0, so P has no real roots and is always

positive. These solutions are new, except the case ε = 0, which corresponds (with

the definition a2 := Γ) to the cylindrical black holes found in [30].

4. If Γ > 0, ε = −2
√

Γ/`, then ∆ = 0, so α± = −`
√

Γ. P has no real roots and is always

positive,

P(p) =
1

`2
(p2 + `

√
Γ)2. (A.5)

Also this case has not been considered in the literature yet.

5. If Γ > 0, ε < −2
√

Γ/`, then ∆ > 0, ε < −
√

∆, so α± < 0. P has no real roots and is

given by (A.2). It is easy to see that one can always use (4.8) to set ε = −1− Γ/`2.

If we define b2 := Γ, we obtain the boosting AdS4 back holes (4.26).

6. If Γ = 0, ε > 0, then ∆ > 0, α+ = ε`2, α− = 0, and

P(p) =
p2

`2
(p− `

√
ε)(p+ `

√
ε) , (A.6)

which is positive for |p| > `
√
ε. This case yields the solution (4.45), dual to a rotating

fluid on R× E2, with rotation parameter a given by ε = a2/`2.

7. If Γ = 0, ε = 0, then ∆ = 0, α+ = α− = 0, and P(p) = p4/`2. This is again a hitherto

undiscussed geometry.

8. If Γ = 0, ε < 0, then ∆ > 0, α+ = 0, α− = ε`2, and

P(p) =
p2

`2
(p2 − ε`2) , (A.7)

which is positive for p 6= 0. By means of (4.8) one can scale ε = −1, and gets the

solution (4.35), dual to a mixed flow on R×H2.
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9. If Γ < 0, then ∆ > 0,
√

∆ > |ε|, α+ > 0, α− < 0, and

P(p) =
1

`2
(p−√α+)(p+

√
α+)(p2 − α−) . (A.8)

P is positive for |p| > √α+. Use (4.8) to set α− = −`2 and define a by a2 = α+.

This leads to the hyperbolic KNAdS black hole, i.e., (4.9) with k = −1.

A.1 The static Killing fields of the conformal boundary

The metric ĝ on the conformal boundary of the Carter-Plebański family is given by (4.5).

The only Killing fields ξ of ĝ are linear combinations of ∂τ and ∂σ, i.e., ξ = A∂τ + B∂σ,

and the orthogonal distribution of ξ is generated by the fields f∂τ + ∂σ and ∂p, where

f =
Ap2 +B

(
`2P(p)− p4

)
A−Bp2

. (A.9)

ξ is irrotational if and only if ∆ ≥ 0 and A = α±B. With this choice, the function f reduces

to f± = α∓. To see this, consider the orthogonal distribution of ξ, which is involutive if

and only if [f∂τ + ∂σ, ∂p] = −∂pf∂τ belongs to it, which happens when ∂pf vanishes, i.e.

when A2 − ε`2AB + B2`2Γ = 0. This equation has solutions A for ∆ ≥ 0; these are

A± = `2B(ε±
√

∆)/2 = α±B. Plugging A± into f yields f± = α∓. The only irrotational

Killing fields are thus multiples of

ξ± = α±∂τ + ∂σ , (A.10)

and the orthogonal distribution of ξ± is generated by ξ∓ and ∂p.

Now introduce, for ∆ ≥ 0, the functions

Ψ±(p) = ĝ(ξ±, ξ±) = ±`2
√

∆(p2 − α±) . (A.11)

We have then:

• For ∆ < 0 (case 3) there are no irrotational Killing fields.

• For ∆ = 0 (cases 2,4,7), ξ+ = ξ− is lightlike, so there is no static Killing field.

• For Γ > 0 and ε > 2
√

Γ/` (case 1), one has α± > 0, so ξ+ is timelike for |p| < √α+

and spacelike for |p| >
√
α+, while ξ− is timelike for |p| > √α− and spacelike for

|p| < √α−.

• If Γ > 0 and ε < −2
√

Γ/` (case 5), then α± < 0, and thus ξ+ is always spacelike,

whereas ξ− is always timelike.

• If Γ = 0 and ε > 0 (case 6), then α+ > 0, α− = 0, hence ξ+ is timelike for |p| < √α+

and spacelike for |p| > √α+, while ξ− is timelike for p 6= 0 and never spacelike.

• When Γ = 0 and ε < 0 (case 8), then α+ = 0, α− < 0, so ξ+ is spacelike for p 6= 0

and never timelike, whereas ξ− is always timelike.
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• For Γ < 0 (case 9), we have α+ > 0, α− < 0, and thus ξ+ is timelike for |p| < √α+

and spacelike for |p| > √α+, while ξ− is always timelike.

In each case with ∆ > 0, in the regions where P(p) > 0 either ξ+ is spacelike and ξ− is

timelike or vice versa. ξ± do not change their causal character inside these regions, and

therefore the spacetime is static. Moreover, ξ+, ξ−, ∂p form an orthogonal frame. Now

introduce coordinates τ± such that ∂τ± = ξ±, given by

τ± = ± 1

`2
√

∆
(τ − α∓σ) . (A.12)

In these coordinates the boundary metric (4.5) reads

ĝ = Ψ+(p)dτ2
+ + Ψ−(p)dτ2

− +
`2

P(p)
dp2. (A.13)

If ξ+ is timelike (Ψ+ < 0), then we rescale ĝ with Ω2 = −κ/Ψ+(p) (where κ ∈ R+ has been

introduced for later convenience) to get the ultrastatic metric

g̃ = −κdτ2
+ −

κ

Ψ+(p)

(
`2

P(p)
dp2 + Ψ−(p)dτ2

−

)
. (A.14)

Note that the sections of constant τ+ have constant scalar curvature R = 2α+∆/κ. If ξ−
is timelike (Ψ− < 0), then we rescale ĝ with Ω2 = −κ/Ψ−(p) to get the ultrastatic metric

g̃ = −κdτ2
− −

κ

Ψ−(p)

(
`2

P(p)
dp2 + Ψ+(p)dτ2

+

)
, (A.15)

whose τ− = constant sections have scalar curvature R = 2α−∆/κ.

We have thus shown that in the cases 1,5,6,8,9 the spacetime has one static Killing field,

and is conformal to an ultrastatic manifold with spatial sections of constant curvature. In

what follows, we shall consider each of these cases separately, and show that they correspond

precisely to the equilibrium flows considered in section 3.

• Case 1, region p ∈ (−√α−,
√
α−)

Consider case 1 (Γ > 0, ε > 2
√

Γ/`). Take the region p ∈ (−√α−,
√
α−), where

P(p) > 0, Ψ+(p) < 0, Ψ−(p) > 0, and thus the boundary metric is conformal

to (A.14). If we choose κ = `2α+∆ (which is positive), the sections of constant τ+

have scalar curvature R = 2/`2. Now introduce new coordinates (T,Θ,Φ) defined by

T = `
√
α+∆τ+ , cos Θ =

√
α+ − α−

α−(α+ − p2)
p , Φ = −

√
α−∆τ− , (A.16)

where Θ ranges in (0, π). Then (A.14) simplifies to

g̃ = −dT 2 + `2(dΘ2 + sin2 ΘdΦ2) . (A.17)

In section 4 it was found that the 3-velocity of the fluid dual to the Carter-Plebanski

geometry is given by u = ∂τ . In the coordinates (A.16) and after the conformal

rescaling with Ω2 = −κ/Ψ+(p), this becomes

ũ =
1√

1− ω2`2 sin2 Θ
(∂T + ω∂Φ) , (A.18)
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with ω =
√

α−
α+

1
` . Notice that ω ∈ (0, 1

` ). This is precisely the flow on R × S2

considered in section 3.1.

• Case 1, region p ∈ (−∞,−√α+) ∪ (
√
α+,+∞)

Consider still case 1, but this time take the region |p| > √α+, where P(p) > 0,

Ψ+(p) > 0, Ψ−(p) < 0, and thus the boundary metric is conformal to (A.15). If

we choose κ = `2α−∆ (which is positive), the scalar curvature of the constant τ−
sections becomes R = 2/`2. Now introduce new coordinates (T,Θ,Φ) according to

T = −`
√
α−∆τ− , sin Θ =

√
α−(p2 − α+)

α+(p2 − α−)
, Φ =

√
α+∆τ+ , (A.19)

where now Θ ranges in (0, arcsin
√

α−
α+

) when p ∈ (
√
α+,+∞) and (π−arcsin

√
α−
α+
, π)

when p ∈ (−∞,−√α+). Then the metric (A.15) becomes again (A.17), and the 3-

velocity u = ∂τ of the fluid is still transformed into (A.18), but this time with

ω =
√

α+

α−
1
` , which satisfies ω > 1/`. Moreover, Θ is now restricted to the polar caps

ω` sin Θ < 1. This is again the flow on R × S2 considered in section 3.1, but with

ω > 1/`.

• Case 5

In this case (Γ > 0, ε < −2
√

Γ/`) we have, for each p ∈ R, P(p) > 0, Ψ+(p) >

0, Ψ−(p) < 0, hence the boundary metric is conformal to (A.15). If we choose

κ = −`2α−∆ (which is positive), the sections of constant τ− have scalar curvature

R = −2/`2. After the coordinate change

T = −`
√
−α−∆τ− , sinh Θ =

√
α+ − α−

−α+(p2 − α−)
p , Φ =

√
−α+∆τ+ ,

(A.20)

where |Θ| < arcosh
√

α−
α+

, the metric (A.15) boils down to

g̃ = −dT 2 + `2(dΘ2 + cosh2 ΘdΦ2) , (A.21)

while the fluid velocity becomes

ũ =
1√

1− β2`2 cosh2 Θ
(∂T + β∂Φ) , (A.22)

with β =
√

α+

α−
1
` . Notice that β ∈ (0, 1/`) and β` cosh Θ < 1. This is the purely

translational flow on R×H2 of section 3.3.2.15

• Case 6

In this case (Γ = 0, ε > 0), P(p) is positive for |p| > √α+, where Ψ+(p) > 0,

Ψ−(p) < 0. The boundary metric is thus conformal to (A.15), and (since α− = 0)

15Set X = cosh Θ sinh Φ, Y = sinh Θ to compare with section 3.3.2.
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the scalar curvature of the constant τ− sections vanishes. Now put κ = `4∆ and

introduce new coordinates (T,R,Φ) defined by

T = −`2
√

∆τ− , R =
`2
√
α+

√
1− α+

p2
, Φ =

√
α3

+

`2
τ+ , (A.23)

where 0 < R < `/
√
ε. Then (A.15) turns into

g̃ = −dT 2 + dR2 +R2dΦ2, (A.24)

and the 3-velocity of the fluid becomes

ũ =
1√

1− ω2R2
(∂T + ω∂Φ) , (A.25)

with ω =
√
α+/`

2. Notice that R < 1/ω. This is the rigidly rotating fluid on

Minkowski space considered in 3.2.

• Case 8

Here we have Γ = 0, ε < 0, and P(p) > 0 for p 6= 0. Moreover, Ψ+(p) > 0 and

Ψ−(p) < 0, and thus the boundary metric is conformal to (A.15). If we choose

κ = −`2α−∆ (which is positive), the scalar curvature of the sections τ− = constant

becomes R = −2/`2. Now introduce new coordinates (T,A,B) according to

T = −`
√
−α−∆τ− , A =

1

2
log

(
1− α−

p2

)
+ ln `β , B = `β

√
−α−∆τ+ ,

(A.26)

where we have introduced an arbitrary parameter β > 0, which can be chosen as

β = 1/` without loss of generality. Note that ln `β < A <∞. This casts (A.15) into

the form

g̃ = −dT 2 + `2(dA2 + e−2AdB2) , (A.27)

while the 3-velocity u = ∂τ , after the conformal rescaling g̃ = Ω2ĝ, becomes

ũ =
1√

1− β2`2e−2A
(∂T + β∂B) . (A.28)

This corresponds to the mixed (parabolic) flow on R×H2 of section 3.3.3.

• Case 9

The last case is Γ < 0. The polynomial P(p) is positive for p >
√
α+, where Ψ+(p) >

0, Ψ−(p) < 0. Therefore the boundary metric is conformal to (A.15). If we choose

κ = −`2α−∆ (which is positive), the constant τ− sections have scalar curvature

R = −2/`2. After the coordinate change

T = −`
√
−α−∆τ− , sinh Θ =

√
−α−(p2 − α+)

α+(p2 − α−)
, Φ =

√
α+∆τ+ , (A.29)
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where Θ ranges in (0, arcsinh
√
−α−/α+), the metric (A.15) boils down to

g̃ = −dT 2 + `2(dΘ2 + sinh2 ΘdΦ2) , (A.30)

and the 3-velocity of the fluid is

ũ =
1√

1− ω2`2 sinh2 Θ
(∂T + ω∂Φ) , (A.31)

with ω =
√
−α+/α−/`. Notice that ω` sinh Θ < 1. This corresponds to the rigidly

rotating fluid on R×H2, considered in 3.3.1.

Note that in all cases where the positivity region of P(p) consists of two disconnected parts

(1b,6,8,9), the corresponding coordinate transformations map both the branch where p is

positive and the one where p is negative to the same spacetime. (In case 1b up to isometries,

since the region p < −√α+ maps to the lower polar cap, while p >
√
α+ maps to the upper

polar cap.)

B Proof of propositions

Prop. 1. Eq. (3.2) implies that

∇tuµ = 0 , ∇µut = ∂µu
t, ∇iuj = vj∂iγ + γ∇̄ivj , ϑ = vi∂iγ + γ∇̄ivi, (B.1)

where ∇̄ denotes the Levi-Civita connection of (Σ, ḡ). Moreover

∂iγ = γ3vj∇̄ivj . (B.2)

These expressions can be used in (2.5) to compute σµν , with the result

σtt =
γ2

d− 1
(d− 1− v2)vi∂iγ −

v2γ3

d− 1
∇̄ivi, (B.3)

σti =
d− 2

d− 1
γ2vivj∂jγ +

1

2
ḡij∂jγ + γ3

(
1

2
vj∇̄jvi −

1

d− 1
vi∇̄jvj

)
, (B.4)

σij =

(
1

2
ḡikvj +

1

2
ḡjkvi − 1

d− 1
ḡijvk

)
∂kγ + γ

(
1

2
∇̄ivj +

1

2
∇̄jvi − 1

d− 1
ḡij∇̄kvk

)
+
d− 2

d− 1
γ2vivjvk∂kγ + γ3

(
1

2
vivk∇̄kvj +

1

2
vjvk∇̄kvi −

1

d− 1
vivj∇̄kvk

)
. (B.5)

Putting together eqs. (B.4) and (B.5) we find that

σij = viσtj + vjσti − d− 2

d− 1
γ2vivjvk∂kγ +

1

d− 1
γ3vivj∇̄kvk

− 1

d− 1
ḡij(vk∂kγ + γ∇̄kvk) +

γ

2
(∇̄ivj + ∇̄jvi) . (B.6)

Now let ϑ = 0 and σµν = 0. From (B.3) one gets

vi∂iγ =
γv2

d− 1− v2
∇̄ivi. (B.7)
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Using the last eq. of (B.1), we obtain then

0 = ϑ = vi∂iγ + γ∇̄ivi = γ
d− 1

d− 1− v2
∇̄ivi, (B.8)

and thus

∇̄ivi = 0 . (B.9)

Plugging (B.7) into (B.6) yields

0 = σij =
γ∇̄kvk

(d− 1)(d− 1− v2)

(
(d− 1)vivj − γ2v2vivj − (d− 1)ḡij

)
+
γ

2
(∇̄ivj + ∇̄jvi) ,

and hence, by (B.9),

∇̄ivj + ∇̄jvi = 0 , (B.10)

i.e., v is Killing.

Viceversa, suppose that v is a Killing field: taking the trace of (B.10) gives (B.9);

moreover, eqs. (B.10) and (B.2) give

vi∂iγ = γ3vivj∇̄ivj = 0 , (B.11)

so that ϑ = 0 by eq. (B.1). Now (B.3) leads to σtt = 0, while eq. (B.4) becomes, us-

ing (B.7), (B.9) and (B.2),

σti =
1

2
ḡij∂jγ +

γ3

2
vj∇̄jvi =

γ3

2
ḡijvk(∇̄jvk + ∇̄kvj) = 0 . (B.12)

Finally, using these results in (B.6) we find σij = 0, which completes the proof.

Prop. 2. Since ϑ = 0 and ∂tP = 0, we have

∇µTµν = ∂iP(d uiuν + giν) + Pd uµ∇µuν . (B.13)

Using eqs. (3.2), (B.1), (B.11) one gets

uµ∇µut = ui∂iu
t = γvi∂iγ = 0 , uµ∇µuj = ui∇iuj = γvi(vj∂iγ + γ∇̄ivj) = γ2vi∇̄ivj ,

and thus

∇µTµt = d γ2vi∂iP, ∇µTµj = d γ2vivj∂iP + ∂jP + Pdγ2vi∇̄ivj .

The vanishing of these two expressions is equivalent to16

∂jP + Pdγ2vi∇̄ivj = 0 , (B.14)

which can be rewritten as17 ∂i lnP = d∂i ln γ.

16Contracting (B.14) with vj yields vj∂jP = 0 by (B.10).
17Use ∂jγ = γ3vi∇̄jvi = −γ3vi∇̄ivj , which follows from (B.2) and (B.10).
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Prop. 3. Using (3.2) we get

at = −at = −γvi∂iγ , ai = ḡija
j = γvk(vi∂kγ + γ∇̄kvi) .

Owing to ∂iγ = γ3vj∇̄ivj one has moreover

P tνaν = γ4vivj∇̄ivj , P iνaν = γ2vk∇̄kvi + γvivk∂kγ .

The components of the heat flux in (2.6) become thus

qt = −κ
(
(γ2 − 1)∂tT + γ2vi∂iT + T γ4vivj∇̄ivj

)
,

qi = −κ
(
γ2vi∂tT + (ḡij + γ2vivj)∂jT + T (γ2vk∇̄kvi + γvivk∂kγ)

)
. (B.15)

Since our assumptions imply ∂tT = 0, ∇̄ivj+∇̄jvi = 0, vi∂iγ = 0, ∂iγ = −γ3vk∇̄kvi, (B.15)

boils down to

qt = −κγ2vi∂iT , qi = −κT ∂i ln
T
γ

+ viqt. (B.16)

The vanishing of qµ gives thus ∂i ln(T /γ) = 0, i.e., T /γ = τ , where τ is a constant.

Prop. 4. The components of the diffusion current in (2.6) read

qte = −D
(

(γ2−1)∂t
µ

T
+γ2vi∂i

µ

T

)
, qie = −D

(
γ2vi∂t

µ

T
+(ḡij+γ2vivj)∂j

µ

T

)
. (B.17)

Stationarity implies ∂t(µ/T ) = 0, hence (B.17) reduces to

qte = −Dγ2vi∂i
µ

T
, qie = −D∂i µ

T
+ viqte . (B.18)

qµe = 0 leads thus to ∂i(µ/T ) = 0, i.e., µ/T = ψ, with ψ constant.
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