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1 Introduction

The AdS4/CFT3 correspondence between the N = 6 superconformal Chern-Simons-matter

theory of Aharony, Bergman, Jafferis, and Maldacena (ABJM) [1] and M-theory on AdS4×
S7/Zk presents a fertile playground for further explorations of the gauge-gravity duality,

beyond the well-trodden ground of the AdS5/CFT4 correspondence between N = 4 su-

persymmetric Yang-Mills in four dimensions and type-IIB strings on AdS5 × S5. In many

respects one expects a very similar picture to that found so far for N = 4 SYM: planar in-

tegrability, localization formulae, supersymmetric Wilson loops, scattering amplitudes, etc.

have been found on both sides of this AdS4/CFT3 correspondence. In many cases ABJM

simply presents an added complication, as in the case of perturbation theory where often

the analogue to one-loop corrections in N = 4 SYM are two-loop corrections in ABJM.

A point of departure is found however, in the three-point correlation functions of chiral

primary operators (CPO’s) of dimension J

OJA =
1√
J/2

(
k

4π
√
NM

)J/2
(CA)

A1...AJ/2
B1...BJ/2

Tr
(
Y B1Y †A1

· · ·Y BJ/2Y †AJ/2

)
, (1.1)

built from the U(N) × U(M) bifundamental scalar fields Y A of the ABJ(M) [2] theory

using the tensors CA which are symmetric in upper and in lower indices and are traceless
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in any pair consisting of one upper and one lower index.1 These operators have vanish-

ing anomalous dimension. Unlike in N = 4 SYM, where chiral primary operators have

protected three-point functions (cf. [3] and references therein), in ABJM we know from

supergravity [4] that they scale as λ1/4/N where λ = N/k is the ’t Hooft coupling.2 Given

the conformally-fixed form〈
O1(x1)O2(x2)O3(x3)

〉
=

1

(4π)γ
C123(λ)

|x12|γ3 |x23|γ1 |x31|γ2
, (1.2)

where γi = (
∑

j Jj − 2Ji)/2, γ = γ1 + γ2 + γ3, and xij = xi − xj , the specific pattern

of structure constants at strong coupling and for large N = M was given in [5] (we take

J3 ≥ J2 ≥ J1)

C123(λ� 1) =

1

N

(
λ

2π2

)1/4 ∏3
i=1

√
Ji + 1 (Ji/2)! Γ(γi/2 + 1)

Γ(γ/2 + 1)

γ3∑
p=0

(C1)
I1...IpIp+1...IJ1/2
K1...Kγ3−pKγ3−p+1...KJ1/2

(C2)
K1...Kγ3−pL1...Lγ1−J2/2+p
I1...IpM1...MJ2/2−p

(C3)
Kγ3−p+1...KJ1/2M1...MJ2/2−p
Ip+1...IJ1/2L1...Lγ1−J2/2+p

p!(γ3 − p)!(γ1 − J2/2 + p)!(J2/2− p)!(γ2 − J1/2 + p)!(J1/2− p)!
,

(1.3)

in terms of the three tensors C defining the three CPO’s. This is a remarkable difference

from N = 4 SYM: not only do the structure constants C123 depend on the coupling λ, they

consist of a host of interpolating functions — one for each γ3 + 1 ways3 the C tensors can

be contracted. These interpolating functions depend on the dimensions of the operators Ji
in a non-trivial way. Why should one associate an interpolating function to each possible

C tensor contraction? Because at tree-level in the planar theory there is a single way4 in

which the C tensors contract, which is included in the sum over p above and which we will

label as 〈C1 C2 C3〉tree (the colour factor CF is given in footnote 4)

C123(λ� 1) = CF
√

(J1/2)(J2/2)(J3/2) 〈C1 C2 C3〉tree + loop corrections. (1.4)

One therefore sees that the various interpolating functions kick-in at higher orders as the ’t

Hooft coupling is increased. This is not true for the extremal correlators where J3 = J1+J2
— they retain this form even at strong coupling because p is forced to zero

Cextremal
123 (λ� 1) =

1

N

(
λ

2π2

)1/4√
(J1 + 1)(J2 + 1)(J3 + 1) 〈C1C2C3〉tree. (1.5)

1In this normalization the two-point function is given by 〈OJA(x)OJB(0)〉 = δAB/(4π|x|)J .
2ABJM implies that N = M . When discussing results where N and M are distinct we will use λ = N/k

and λ̂ = M/k.
3Switching all upper and lower indices simultaneously on all C tensors is a symmetry of the three-point

functions. This reduces the number γ3 + 1→ (γ3 + 1)/2 if γ3 is odd or (γ3 + 2)/2 otherwise.
4 This statement is true when the γi are even, which means that each C tensor shares as many up as

down indices with each other C tensor. In this case C123 carries a colour factor of CF = (1/N + 1/M). In

the case of odd γi there are two contractions of the C tensors which are related by switching all down and

up indices simultaneously on all C tensors. In this case the colour factor is CF = 1/
√
NM .
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∫
d2ωx1 2

=
2

Figure 1. The main idea behind the method: two-loop corrections to the three-point function

are gotten via integration over an external point thus transforming three-point integrals into three-

loop propagator-type integrals. The line associated with the integrated operator has a doubled

propagator, i.e. 1/p4 in momentum space.

In this paper we will take the first steps towards exploring the C123(λ) in perturbation

theory. We will focus on one of the aforementioned interpolating functions arising from

three length-two operators. In this setting there are just two possible ways of contracting

the C tensors, but we will choose operators such that only one is non-zero.5 The first correc-

tion appears at O(λ2) or two-loops. This presents a challenge because three-loop integrals

with three off-shell legs are difficult to work with and have not been widely considered in

the literature. In order to overcome this obstacle, we integrate in configuration space over

one of the operators’ position using dimensional regularization, see figure 1. This reduces

the problem to three-loop propagator diagrams which have been widely studied and are

tractable. We believe that this trick works when dealing with protected operators since

the three-point function is guaranteed to be finite and the coordinate dependence is fixed

to a known form by conformal symmetry, where the powers of the coordinate differences

are independent of the coupling.

We begin in section 2 with a presentation of the details of our method. In section 3

we give an exhibition of it in the setting of N = 4 SYM at the one-loop level where we

show that the three-point function indeed comes out uncorrected, i.e. independent of the

coupling g2YMN . We continue in section 4 with our main result, the structure constant

for three length-two CPO’s in ABJ(M), given by (4.2). The calculational method is that

employed originally in [6] and recently in an almost identical setting (two-loop form factors

for the same operators) in [7]. Finally we end with a discussion in section 5 and give details

of the calculation in two appendices.

2 Method

We consider the three CPO’s

O1 =
k

4π
√
MN

Tr(Y 1Y †2 ), O2 =
k

4π
√
MN

Tr(Y 2Y †3 ), O3 =
k

4π
√
MN

Tr(Y 3Y †1 ). (2.1)

We know from conformal invariance that6

〈
O1(x1)O2(x2)O3(x3)

〉
=

1

(4π)3
√
NM

Ĉ123(λ)

|x12||x23||x31|
, (2.2)

5In any case, by footnote 3 there is only one interpolating function at play.
6From now on we choose to factor the colour factor out of the structure constant.
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where Ĉ123 = 1 + c1λ
2 + c2λ̂

2 + c3λλ̂ + . . .. We continue this expression to 2ω = d − 2ε

dimensions 〈
O1(x1)O2(x2)O3(x3)

〉
=

1√
NM

Ĉ123(λ)(
x212x

2
23x

2
31

)ω−1 Γ3(ω − 1)

(4πω)3
, (2.3)

and integrate over x1 using dimensional regularization. We obtain

√
MN

∫
d2ωx1 〈O1(x1)O2(x2)O3(x3)〉 =

Γ(ω − 1)Γ(ω − 2)

26π2ω(x223)
2ω−3 Ĉ123(λ). (2.4)

This integration is free from UV divergences in any dimension. It is however IR divergent

in any dimension ≤ 4. Thus the method leaves unmolested the short distance physics

determining the renormalization of the operators, but does introduce IR divergences into

the loop integrations in momentum space. Since the method relies crucially on using one

and the same renormalization parameter to regulate these two classes of divergences one

may encounter the accidental cancellation of IR and UV poles in intermediate stages in

the calculation, as we will see for example in section 3, see footnote 7. However, this is

not a cause for concern: the r.h.s. of (2.3) is a guaranteed finite quantity. Thus the only

true divergences are the IR divergences introduced by the integration over x1 and these

are regulated in a controlled way, i.e. by the r.h.s. of (2.4).

Using (2.4) we may express Ĉ123(λ) via

Ĉ123(λ) =
√
NM

26π2ω(x223)
2ω−3

Γ(ω − 1)Γ(ω − 2)

∫
d2ωx1

〈
O1(x1)O2(x2)O3(x3)

〉
. (2.5)

In general Ĉ123(λ) will be renormalized by the two-point function

〈
Oi(x)Oi(0)

〉
=

Γ2(ω − 1)

(4πω)2
gi(λ)

(x2)2(ω−1)
, (2.6)

where gi = g = 1 + d1λ
2 + d2λ̂

2 + d3λλ̂+ . . ., giving (cf. [8])

C123

∣∣
O(λ2)=

[
Ĉ123 −

1

2

3∑
i=1

gi

]
O(λ2)

. (2.7)

3 N = 4 SYM at one loop

Before moving on to ABJM, it is instructive to see how the method described in section 2

works in the case of N = 4 SYM at one-loop, where for CPO’s we expect to find that there

is no correction to C123. In analogy with the ABJM case we take three length-two CPO’s

(here λ = g2YMN , where gYM is the Yang-Mills coupling constant)

O1 =
1√
λ

Tr(Φ1Φ2), O2 =
1√
λ

Tr(Φ2Φ3), O3 =
1√
λ

Tr(Φ3Φ1), (3.1)

which we represent by three grey blobs in the diagrams below. Here we use dimensional

reduction in order to preserve supersymmetry. At one loop we find that the contributions
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to the three-point function are as follows, where we employ a double line to denote a

propagator with doubled weight, i.e. 1/p4 instead of 1/p2. Some details of the calculation

are provided in appendix B.7

∫
d2ωx1 = 2 + 2

∫
d2ωx1

(
+

)
= 2

(
+

+ + − 2p2 −

)

∫
d2ωx1

(
+ +

)
= 2

∫
d2ωx1

(
1 + 1 +

1

)

= −2 − 4

We will also need to compute the normalization of the two-point functions, given by the

following diagrams

= 4 − 2p2 −

1
+

1
= −4

7In the fourth line below we see that the bubble at the top of the first triangle integrates to zero. This

is an example of the coincidental UV-IR pole cancellation discussed in the previous section.
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Summing-up these diagrams we find the following results

N

∫
d2ωx1

〈
O(x1)O(x2)O(x3)

〉
O(λ) =

∫
d2ωp

(2π)2ω
eip·x23

(
4

+ 2 − 4p2
)
,

〈
Oi(x)Oi(0)

〉
O(λ) =

∫
d2ωp

(2π)2ω
eip·x

(
−2p2

)
.

These expressions evaluate to

N

∫
d2ωx1

〈
O1(x1)O2(x2)O3(x3)

〉
O(λ) =

1

x223

3ζ(3)

28π6
+O(ε),

〈
Oi(x)Oi(0)

〉
O(λ) = −ε3ζ(3)

64π6
1

(x2)2
+O(ε2).

(3.2)

Therefore we have from (2.5) and (2.6) that

Ĉ123

∣∣
O(λ)= gi

∣∣
O(λ)= −3ε

ζ(3)

4π2
, C123

∣∣
O(λ)= 3ε

ζ(3)

8π2
= O(ε), (3.3)

and so both gi and Ĉ123 are zero at the one-loop order and hence trivially so is C123

∣∣
O(λ)= 0

on the physical dimension as expected.

4 Main calculation and results

In this section we summarize the results of the ABJ(M) calculation. The method used is

that employed in [7]. Namely Feynman rules spelled-out in [6] are processed into master

integrals using FIRE [9]. Note that for ABJM we cannot use dimensional reduction as

there is no higher dimensional supersymmetric theory to reduce from. The scheme used

here is that employed successfully in [6]: i.e. to reduce all numerators to scalar products in

d = 3 before integrating using d = 3− 2ε. In figures 2 and 3 we list all non-zero Feynman

diagrams. The results for these diagrams and further details of the calculation are found in

appendix A. The results are as follows (below we quote the two-loop corrections to C123,

– 6 –
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2

Figure 2. The Feynman diagrams which contribute to the three-point function in ABJ(M). Note

that all unique diagrams obtained from these via rotations (by 2π/3) and reflections about the

perpendicular bisectors of the main triangle must also be considered.

1

2

Figure 3. The Feynman diagrams which contribute to the two-point function in ABJ(M). Unique

diagrams obtained through reflection about the horizontal axis must also be considered.

Ĉ123 and g; they are equal to unity at tree-level)

√
MN

∫
d2ωx1

〈
O1(x1)O2(x2)O3(x3)

〉
= − Ĉ123

32π2
= (λ+ λ̂)2

1

210

(
5

3
+

8

π2

)
+ (λ− λ̂)2

1

210

(
−1507

3
− 24

π2

)
+O(ε), (4.1)

〈
Oi(x)Oi(0)

〉
=

g

16π2x2
= −(λ+ λ̂)2

192

1

x2
+

47

48

(λ− λ̂)2

x2
+O(ε).

We notice here that the two-point function is finite, as expected, and that factors of Euler’s

constant γ and log π cancel out. This we interpret as confirmation of regularization scheme

independence. We thus find

C123 = −32π2
√
MN

∫
d2ωx1

〈
O1(x1)O2(x2)O3(x3)

〉
− 3g

2

= (λ+ λ̂)2
(

7π2

96
− 1

4

)
+ (λ− λ̂)2

(
−749π2

96
+

3

4

)
.

(4.2)

5 Discussion

We have computed the structure constant for a CPO three-point function in ABJ(M)

theory at leading order in perturbation theory (4.2). Concentrating on the ABJM case, we
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now have results for this quantity both at weak and at strong coupling in the planar limit;

indeed using (1.3) we have

C123(λ� 1) = 1− λ2
(

1− 7π2

24

)
, C123(λ� 1) =

(
λ

2

)1/4 √3π

2
. (5.1)

It would be very interesting to find a way to compute this interpolating function for all

values of the ’t Hooft coupling. Although the machinery of integrability has been applied

to computing three-point functions in N = 4 SYM [10–13], here we have a rather different

situation, in that three spin-chain vacuum states, i.e. states which are annihilated by the

dilatation operator, nevertheless have a non-trivial structure function dependent upon the

’t Hooft coupling. Indeed, because of the fact that at tree-level the tensors defining the

CPO’s contract in just one way, whereas at strong coupling they contract in all ways, it

is clear that there are a host of interpolating functions, and each one likely begins at a

different order in the ’t Hooft coupling in the perturbative expansion. Understanding the

connections between these functions remains a very interesting direction of future research.

We know that the M-theory dual of ABJ theory involves the appearance of a three-

form in an S3/Zk ⊂ S7/Zk [2]. It would be interesting to compute the fluctuation spectrum

around this background and repeat the three-point function calculation in order to have a

version of (1.3) with N 6= M .

Acknowledgments
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A Calculational details

We use the machinery developed in [6] and employed in a very similar setting, the calcu-

lation of the two-loop form factor of CPO’s, in [7]. These references contain ample detail

and we choose not to reprint the details of the action, Feynman rules, etc. here but rather

refer the interested reader to these papers.

A.1 Master integrals

The three-loop master integrals required to complete the calculation are as follows

P1 = = G2(1, 1)G(1, 2− ω), P2 = = G2(1, 1)G(1, 4− 2ω),

P3 = = G(1, 1)F2−ω, P4 = = G(1, 1)G(1, 2− ω)G(1, 3− 2ω),
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P5 = =
1

96
− 13

64π2
+O(ε), P7 = = G2(1, 1)G(1, 6− 2ω),

P6 = = G(1, 1)G(1, 2− ω)G(1, 5− 2ω),

where [14, 15]

Fλ =
2

π2ω
Γ(ω − 1) Γ(ω − λ− 1) Γ(λ− 2ω + 3)

(
−π cot (π(2ω − λ))

Γ(2ω − 2)

+
Γ(ω − 1) 3F2 (1, 2 + λ− ω, 2ω − 2;λ+ 1, λ− ω + 3; 1)

(ω − λ− 2) Γ(1 + λ) Γ(3ω − λ− 4)

)
,

(A.1)

and where

G(α, β) =
1

(4π)ω
Γ(α+ β − ω) Γ(ω − α) Γ(ω − β)

Γ(α) Γ(β) Γ(2ω − α− β)
. (A.2)

The non-planar integral P5 must be evaluated using the Gegenbauer polynomial tech-

nique [16], cf. [17]. The Fourier transform is given by∫
d2ωp

(2π)2ω
eip·x

[p2]s
=

Γ(ω − s)
4sπωΓ(s)

1

[x2]ω−s
. (A.3)

A.2 Integral reduction for ABJ(M) diagrams

We give here the results for the integrated three-point and two-point diagrams in terms of

basis integrals. Note that below a single triangle diagram represents all unique diagrams

obtained through reflection and rotation, similarly a given two-point diagram represents

all unique diagrams gotten through reflections. A factor of (4π/k)2 is suppressed while the

colour factors associated with the various diagrams are as follows

I7, T7 → −2MN, I1, I2, I10, T1, T2 → (N −M)2 − 2MN,

I3, I5, I8, I9, T3, T5, T8 → 2MN, I4, I11, T4 → N2 +M2,

I6, T6 → (N −M)2.

(A.4)

The two-loop self energy of the scalar field is given by [6]

Zscalar = − 1

(4π)2

[
MN

(
3

4(3− 2ω)
+

1

4

(
−3π2

2
+ 25− 3γ + 3 log(4π)

))

+
(M −N)2

4

(
1

2(3− 2ω)
− π2

4
+

1

2
(3− γ + log(4π))

)]
+O(ε).

(A.5)
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A.2.1 Three-point diagrams

I1 =− 1

4
I7 =

∫
d2ωx1 = −1

4

∫
d2ωx1 = − (ω − 1)2

2(ω − 2)
P6

+

(
ω − 3

2

)
P3 +

(
−12ω − 3

ω − 2
+ 11

)
P4

I2 =

∫
d2ωx1 = P1

(
−5ω +

1

ω − 2
+

17

2

)
+ P2

(
2ω +

1

4− 2ω
− 4

)

+ P3

(
19

4
− 3ω

)
+ P4

(
24ω − 5

ω − 2
− 3

2(ω − 2)2
+

1

2ω − 3
− 32

)

I3 = 2I4 =

∫
d2ωx1 = 2

∫
d2ωx1

=− 2P1(5ω − 8)(2(ω − 4)ω + 7)

(ω − 2)2

− P2

(
−24ω +

6

ω − 2
+

2

(ω − 2)2
+ 40

)
− P3

(
8ω +

1

ω − 2
− 10

)
− 2P4

(
−12ω − 6

ω − 2
+

1

3− 2ω
+ 5

)
− P6

(
−4ω − 2

ω − 2
+ 2

)
− 2P7(ω − 1)

I5 =

∫
d2ωx1 1 = P3(8ω − 12) + P6

(
8ω +

6

ω − 2

)

− 4P4(2ω − 3)(3ω − 5)(4ω − 5)

(ω − 2)2

I6 =

∫
d2ωx1 = −2G2(1, 1)G(2, 1)

I8 =

∫
d2ωx1 = P1

(
−74ω − 2(ω(5ω(5ω + 17)− 529) + 532)

(ω − 2)2(4ω − 7)

)

+
8P2(2ω − 3)(ω(9ω − 25) + 17)

(ω − 2)2
+ P3

(
7ω +

5

ω − 2
+

5

28− 16ω
− 7

4

)
+ 2P4

(
−504ω − 1004

ω − 2
− 376

(ω − 2)2
− 48

(ω − 2)3
+

1

3− 2ω
+

50

7− 4ω
− 181

)
+
P5(ω − 2)(2ω − 3)

4ω − 7
+

2P6(ω − 1)ω(2ω − 3)

(ω − 2)2
+ P7

(
1

2− ω
− 1

)
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I9 =

∫
d2ωx1 =

P1(3ω − 4)(ω(4(ω − 7)ω + 57)− 35)

(ω − 2)2(4ω − 7)

+
1

8
P3

(
36ω +

12

ω − 2
+

5

4ω − 7
− 25

)
+ 2P4

(
174ω +

328

ω − 2
+

118

(ω − 2)2
+

12

(ω − 2)3
+

1

2ω − 3
+

25

4ω − 7
+ 53

)
+
P5(ω − 2)(2ω − 3)

14− 8ω
− 2P2(2ω − 3)(ω(8ω − 25) + 19)

(ω − 2)2

I10 =

∫
d2ωx1 = −P1(3ω − 4)(ω(2ω − 5) + 4)

2(ω − 2)2
+ P2

(
3ω +

ω(ω + 5)− 12

2(ω − 2)2

)

+ P3

(
1

2(ω − 2)
+

3

4

)
+ P4

(
1

2ω − 3
− 6

ω − 2
− 6

)

I11 =

∫
d2ωx1 = −2P4(3ω − 4)(4ω − 5)(ω − 1)2

(ω − 2)2(2ω − 3)

+
P2(2ω − 3)(ω(4ω − 13) + 11)(ω − 1)

(ω − 2)3
+
P3(2ω − 3)(ω − 1)

2(ω − 2)2

− P1(3ω − 4)(2(ω − 3)ω + 5)(ω − 1)

(ω − 2)3

I12 =

∫
d2ωx1 2 = (2G(1, 5− 2ω) +G(2, 4− 2ω))Zscalar

A.2.2 Two-point diagrams

T1 =− 1

4
T7 = = −1

4
=
P3(3− 2ω)

4(3ω − 4)

+
1

6
P4

(
1

3ω − 4
+

3

2ω − 3
+ 10

)

T2 = =
P3(9− 6ω)

16− 12ω
+ P4

(
1

8− 6ω
+

1

3− 2ω
− 4

)
+ P1 −

P2

2

T3 = 2T4 = = 2 = P1

(
2

2ω − 3
+ 4

)
+
P3(5− 4ω)

4− 3ω

– 11 –
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(
2
0
1
4
)
1
2
0

− 2P4(ω − 1)(4ω − 5)(8ω − 11)

(3− 2ω)2(3ω − 4)
− 4P2

T5 = 1 =
P3(5− 4ω)

3ω − 4
+ P4

(
2

12− 9ω
+

12

ω − 2
+

40

3

)

T6 = = −G3(1, 1)

T8 = = P1

(
7

(ω − 2)2
+

35

4(4ω − 7)
+

3

3− 2ω
+

35

2(ω − 2)
+

43

4

)

+
P2(4(14− 5ω)ω − 38)

(ω − 2)2
+

1

24
P3

(
15

4ω − 7
+

16

4− 3ω
− 30

ω − 2
− 37

)
− P5(ω − 2)

4(4ω − 7)

+ P4

(
140

(ω − 2)2
+

24

(ω − 2)3
+

11

2ω − 3
+

50

4ω − 7

+
3

(3− 2ω)2
+

4

12− 9ω
+

222

ω − 2
+

401

3

)

T9 =

2

= 2G(1, 4− 2ω)Zscalar

B N = 4 SYM details

We follow the conventions given in [18]. The relevant terms in the Euclidean action arise

from the scalar potential and gauge coupling and are given by

S =

∫
d2ωx

(
fabc∂µΦIaAbµΦIc +

1

4
fabef cdeΦIaΦJbΦIcΦJd

)
+ not relevant. (B.1)

We use Feynman gauge where the gauge field propagator is

〈AaµAbν〉 = g2YM
δµνδ

ab

p2
. (B.2)

The one-loop correction to the scalar field is [18]

〈ΦIaΦJb〉 = g2YM
δIJδab

p2
− 2 g4YMN G(1, 1)

δIJδab

p6−2ω
. (B.3)

The integrals we need to evaluate for the N = 4 SYM example are as follows (cf. appendix

J of [6])

= G(1, 2)G(1, 4− ω),

– 12 –



J
H
E
P
0
7
(
2
0
1
4
)
1
2
0

= G(1, 1) [∆(1, 1) + 2C(1, 1)G(3− ω, 2)] ,

= G(1, 1) [∆(2, 1) + C(2, 1)G(3− ω, 3) + C(1, 2)G(4− ω, 2)] ,

where

C(α, β) =
α

α+ β + 2− 2ω
, ∆(α, β) = −αG(α+ 1, β) + β G(α, β + 1)

α+ β + 2− 2ω
, (B.4)

and where G(α, β) is given in (A.2).
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