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1 Introduction

In four dimensional de Sitter space (dS4) there are no known N = 1 unitary, supersym-

metric theories, while such theories abound in Minkowski and anti-de Sitter space. The

two main obstacles are (see [1, 2]):

• Majorana Killing spinors, which are generally necessary for the construction of N = 1

Lorentzian signature SUSY theories in curved space, do not exist in dS4.

• The usual de Sitter super-algebra — in which the {Q, Q̄} anti-commutator closes

on the generators of the SO(4, 1) de Sitter isometry group — has no unitary rep-

resentations. Indeed, one can show that
∑

α {Qα, Qα†} = 0, so any non-trivial

representation of the de Sitter superalgebra has negative norm states [1, 2].
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In this note we consider a modest exception to the above no-go results: global super-

conformal theories in dS4. These theories are consistent because dS4 is locally conformal

to Minkowski space. Indeed, the actions and transformation rules are determined by an

appropriate Weyl transformation of the flat space theory.

Our primary focus is the basic classical N = 1 superconformal theories in dS4. We

avoid the first obstacle noted above by constructing our theories using conformal Killing

spinors, for which there is no difficulty in imposing a Majorana condition. From these

one obtains 8 conserved supercharges whose anti-commutators give the 10 SO(4, 1) Killing

charges along with 5 conformal Killing charges necessarily to fill out the full SO(4, 2)

conformal algebra of de Sitter space. Thus the second obstacle noted above is avoided

because the {Q, Q̄} algebra closes on SO(4, 2), rather than SO(4, 1), and∑
α

{Qα, Q†α} = Q[K] ≥ 0 , (1.1)

in which Q[K] is a formally conserved conformal Killing charge with positive integrand

when expressed as an integral over a time slice.

There is interesting previous work. First, the positive energy theorem for de Sitter

space proven by Kastor and Traschen [3] (see also [4]) exploits, as we also do, the fact that

the coset SO(4, 2)/SO(4, 1) contains a conformal energy (i.e. a generator of conformal time

translations) with positive spectrum. Second, de Medeiros and Hollands [5–7] have studied

N = 2 superconformal supersymmetry in conformally flat spacetimes such as dS4. It is

puzzling that they state that N = 1 superconformal theories cannot be constructed in dS4.

The geometries that support conformal Killing spinors are studied in [7, 8]. Several authors

have also considered theories with rigid supersymmetry in Euclidean curved spaces [9,

10] and superconformal symmetry in Lorentzian curved spacetimes [11–13]; appendix A.1

of [13], in particular, proposes an approach to de Sitter supersymmetry similar to our own.1

Recently, in light of the dS/CFT correspondence [16–18], and its first realization in

terms of a higher spin theory in dS4 [19], some progress has been made in writing down

supersymmetric higher spin theories in dS4 [20, 21]. However, the known examples have

N = 2 supersymmetry.

In the following sections we will construct the non-abelian super Yang-Mills and the

chiral multiplet theories in de Sitter space. We will discuss why the N = 1 superconformal

field theories on dS4 satisfy (1.1). We also explore the SUSY Ward identities that relate

propagators of boson and fermion fields. Our N = 1 theories are conformal invariant only

at the classical level, since perturbative radiative corrections introduce a scale and an RG

flow. We also present N = 4 SYM on dS4 in appendix B, which we expect enjoys exact

SU(2, 2|4) supersymmetry.

2 De Sitter supersymmetry and conformal Killing spinors

In a general supersymmetric field theory, the commutator of two SUSY transformations

with spinor parameters ε′, ε has the structure (on any field Φ(x)):

[δε′ , δε]Φ = −(ε̄′γµ ε)DµΦ + . . . , (2.1)

1Recent work [14, 15] also develops de Sitter symmetry from superfields by embedding dS4 in flat space.

As the super-algebra closes on SO(4, 1), we suspect this theory is non-unitarity.
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where Kµ = ε̄′γµ ε is usually a Killing vector. With this perspective in view let us compare

the situation in AdS4 and dS4.2

SUSY in AdS4. Suppose that Y A, A = 0, 1, 2, 3, 4 are Cartesian coordinates in a 5-

dimensional space with metric ηAB = diag(− + + + −). Then AdS4 can be viewed as the

embedded hyperboloid satisfying ηABY
AY B = −a2 . The usual Killing spinor condition

and its Dirac adjoint

Dµε =
1

2a
γµε ε̄

←−
Dµ = − 1

2a
ε̄γµ (2.2)

are compatible with the integrability condition [Dµ, Dν ]ε = 1
4Rµνabγ

abε in a constant neg-

ative curvature spacetime. They are also real (in a Majorana representation) and admit a

maximal set of Majorana solutions. Further, the bilinear Kµ = ε̄′γµ ε satisfies

DµKν +DνKµ = 0 . (2.3)

It is a Killing vector, and the set of such bilinears spans the set of 10 Killing vectors of

SO(3, 2). This leads to the well known and understood theory of AdS SUSY.

SUSY in dS4? The embedded hyperboloid of dS4 is given by ηABY
AY B = a2 where

Y A are now coordinates in a 5-dimensional space with metric ηAB = diag(−+ + + +). The

would-be Killing spinor condition3

Dµε =
i

2a
γµε ε̄

←−
Dµ =

i

2a
ε̄γµ (2.4)

is required by integrability in dS4, which has constant positive curvature. There is a

maximal set of solutions. However, the Killing spinor equation is essentially complex, so

there are no Majorana spinor solutions. Further, the spinor bilinears Kµ = ε̄′γµ ε satisfy

DµKν +DνKµ = 1
2gµνDρK

ρ =
i

a
gµν(ε̄′ε) . (2.5)

These bilinears are conformal Killing vectors, since the right hand side is proportional to

gµν ; the “weights” (the coefficients of 2gµν) are 1
4DρK

ρ.

This is one clue that superconformal SUSY is needed in de Sitter space. However

spinors that satisfy (2.4) cannot be used, because their bilinears are complex, and their

appearance in (2.1) is not consistent with reality properties of the fields.

This problem can be bypassed by working with conformal Killing spinors (CKS) whose

definition, namely (
γµDν + γνDµ −

1

2
gµν /D

)
ε = 0, (2.6)

is compatible with the Majorana property. Contracting with γµ, one finds the equivalent

condition (
Dµ −

1

4
γµ /D

)
ε = 0 . (2.7)

2We present our Dirac matrix conventions in appendix A.
3The alternate condition in which iγµ → γ5γµ on the right side differs by a chiral rotation of the spinors

and is thus equivalent [3].
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One can show that the real and imaginary parts of any complex spinor in dS4 that satisfies

(2.4) are Majorana conformal Killing spinors (see appendix C). We will obtain the full set

of Majorana spinors in a simpler way, but this requires a choice of metric on dS4.

Many coordinate systems are useful to discuss physics in de Sitter space. Since con-

formal symmetry is central for us we use the conformally flat “Poincaré patch metric”

(obtained from planar coordinates by the transformation x0 ≡ −a exp(−t/a)):

ds2 = −dt2 + e2t/ad~x2 =
a2

(x0)2

[
−(dx0)2 + d~x2

]
. (2.8)

Its structure is similar to the Poincaré patch of anti-de Sitter space. The time coordinate

x0 ∈ [−∞, 0] is chosen so that spatial volumes increase with increasing x0.

In flat spacetime the most general CKS, given, for example, by Wess and Zumino [22],

is η1 + xµ̂γµ̂ η2, where η1, η2 are constant Majorana spinors. The spinor η1 is associated

with the usual Q-supersymmetry transformations in flat space, while η2 is associated with

conformally related S-supersymmetry transformations. The simplest way to obtain the

CKS’s for dS4 is to use the Weyl transformation from flat spacetime to define

ε(x) =
1√
−x0/a

(η1 + xµγµ̂ η2) . (2.9)

In the frame eµ̂ = − a
x0
dxµ, the spinor covariant derivatives are:

D0ε ≡ ∂0ε Diε =

(
∂i +

1

2x0
γîγ0̂

)
ε . (2.10)

It is straightforward to check that spinors (2.9) satisfy (2.7). Thus we have a basis con-

taining 8 real supercharges.

One can calculate the weights 1
4Dρ(ε̄

′γρε) of all bilinears in the basis (2.9) and learn

that they do not vanish. Thus, when ε′, ε are CKS’s, the SUSY commutator [δε′ , δε]

contains the CKV’s of dS4, albeit with admixtures of KV’s. As we will argue below, this

leads to a supercharge anti-commutator of the schematic form∑
α

{Qα, Q†α} = −
∫
d3x
√
−gKν(x)T 0ν , (2.11)

in which Kν is a future directed time-like CKV. Such conformal Killing charges are con-

served formally, i.e. if boundary conditions permit, and if the stress tensor is conserved and

traceless. Positivity holds if the stress tensor of the theory satisfies the dominant energy

condition. We elaborate on this point in section 5.

The conformal group of dS4 is SO(4, 2). Its Lie algebra is realized by the ten KV’s of

the isometry group SO(4, 1) plus the five CKV’s of the coset SO(4, 2)/SO(4, 1). The CKV’s

are translations of the embedding coordinates Y A of the hyperboloid. It is worthwhile to

display them as vector fields on the surface. In patch coordinates the five CKV’s are:

i. Translation of patch time K0 = ∂0. This is clearly future-directed and time-like.

ii. The Lorentz boost Ki = δijx
j∂0 + x0∂i which is not future-directed.

– 4 –
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iii. The special conformal K2 = (~x · ~x + (x0)2)∂0 + 2x0~x · ∂~x, also future-directed and

time-like.

In dS4 they are genuine CKV’s with non-vanishing weights 1
4DµK

µ. Readers are invited

to compute these weights. The CKV’s K0 and K2 are the main contribution to (2.11).

The Lie brackets [CKV,CKV ′] are linear combinations of the 10 KV’s, namely 3

space transformations, 3 rotations, 3 spatial special conformal transformations and the

scale transformation Ks = xµ∂µ.

3 The basic N = 1 SCFT’s in dS4

3.1 Non-abelian N = 1 SYM theory

The fields are Aaµ, λ
a, Da, where a is the index of the gauge group. The action is4

Sgauge = −
∫
d4x
√
−g
[

1

4
F aµνF

aµν +
1

2
λ̄a /Dλa +

1

2
DaDa

]
. (3.1)

This is just the flat space action extended by minimal coupling to the dS4 metric and spin

connection. The same holds for the SUSY variations:

δAaµ = − 1√
2
ε̄γµλa (3.2)

δλa =
1√
2

[
1

2
γρσF aρσ + iγ5D

a

]
ε (3.3)

δDa =
1√
2
ε̄γ5 /Dλ

a . (3.4)

It is now very easy to show that the action is invariant if ε is a CKS and thus satis-

fies (2.6). We simply “covariantize” the flat space calculation of [23] and show for a general

ε(x) that

δS = − 1

2
√

2

∫
d4x
√
−gε̄
←−
Dµγ

ρσγµF aρσλ
a . (3.5)

Note that ε̄
←−
Dµ is contracted with the conserved supercurrent. Now choose ε̄(x) to be a

CKS and use (2.6) to write

δS = − 1

8
√

2

∫
d4x
√
−gε̄
←−
/D(γµγ

ρσγµ)F aρσλ
a . (3.6)

But γµγ
ρσγµ = (d − 4)γρσ → 0 for d = 4. The first N = 1 de Sitter SUSY theory is thus

established!

3.2 The superconformal chiral multiplet

The N = 1 chiral multiplet contains the fields z, χ, F . The extension of the flat space

kinetic action to dS4 includes the conformal coupling −Rz̄z/6 = −2z̄z/a2 and is given by

Skin =

∫
d4x
√
−g
[
− gµν∂µz̄∂νz −

1

2
χ̄ /Dχ− 2

a2
z̄z + F̄F

]
(3.7)

4We use the conventions of Ch. 6 of [23], except that SUSY parameters are multiplied by
√

2.
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It is invariant under the transformation rules:

δz = ε̄PLχ , δz̄ = ε̄PRχ ,

δχ = PL

[
/Dz + F +

1

2
z /D

]
ε+ PR

[
/Dz̄ + F̄ +

1

2
z̄ /D

]
ε , (3.8)

δF = ε̄ /DPLχ , δF̄ = ε̄ /DPRχ .

The coefficient of the term proportional to /Dε in (3.8) is fixed by the requirement that

the sum of all terms transforms with weight 3/2 under the Weyl transformation gµν →
g′µν = e2σ(x)gµν . Under this transformation ε → ε′ = eσ/2, z → z′ = e−σz, F → e−2σF ,

χ → χ′ = e−3σ/2χ. One may check to see that ∂µσ cancels in the sum of the three terms

in δPLχ.

The transformations (3.8) are generated by the improved supercurrent

J µ = PL

[
( /Dz̄ − F )γµχ+

2

3
γµνDν(z̄χ)

]
+ PR

[
( /Dz − F̄ )γµχ+

2

3
γµνDν(zχ)

]
, (3.9)

which is conserved and γ-traceless.

3.3 Superpotentials

The chiral multiplet considered above is a theory of free fields. In flat space the Wess-

Zumino model with cubic superpotential W = z3/3 is superconformally invariant, so it

should have an extension to de Sitter space. We begin the discussion more broadly and

consider a general holomorphic superpotential W (z). The de Sitter covariant extension of

its flat space interaction term is

SW =

∫
d4x
√
−g[FW ′ − 1

2
(χ̄PLχ)W ′′] . (3.10)

It is easy to verify that its variation under the transformations (3.8) is

δSW =

∫
d4x
√
−gχ̄(W ′ − zW ′′/2)PL /Dε . (3.11)

This vanishes only for a cubic superpotential. The complete interacting theory is then

specified by the sum S = Skin + SW + SW̄ with W and W̄ cubic in z and z̄ respectively.

Let us look briefly at the possibility of generating supersymmetry using Killing spinors

ε(x) that satisfy (2.4) and thus also /Dε = 2i
a ε. The kinetic action (3.7) is invariant because

it is manifestly real and the real and imaginary parts of ε(x) are each conformal Killing

spinors. Although the variation δSW does not vanish for general W (z), the sum SW +∆SW
is invariant if ∆SW is chosen as the scalar term

∆SW = −3i

a

∫
d4x
√
−g(W − zW ′/3) . (3.12)

Notice that ∆SW vanishes when W is cubic. However, as an example of the problems with

this construction for general W , consider the mass term W = mz2/2 and its conjugate

– 6 –
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W̄ = mz̄2/2. After elimination of the auxiliary fields one finds a non-hermitean scalar

potential (note z = (A+ iB)/
√

2)

V =
1

2
(2/a2 +m2 + im/a)A2 +

1

2
(2/a2 +m2 − im/a)B2 (3.13)

with complex masses. A further pathology is that the SUSY variations δz = ε̄PLχ and

δz̄ = ε̄PRχ are not related by complex conjugation if ε is a complex Killing spinor.

3.4 Chiral multiplet with gauge interactions

Generalizing the N = 1 chiral multiplet to include gauge interactions is a straightforward

exercise that follows from the flat space case. The fields (z, χ, F ) are now taken to trans-

form in a representation of the gauge group with generators ta. The kinetic term is exactly

as in (3.7), except that the derivatives are replaced by the usual gauge covariant derivatives

∂µz → ∂µz + taA
a
µz, DµPLχ→ DµPLχ+ taA

a
µPLχ, DµPRχ→ DµPRχ+ t∗aA

a
µPRχ .

(3.14)

The transformation rules

δz = ε̄PLχ

δPLχ = PL

[
/Dz + F +

1

2
z /D

]
ε (3.15)

δF = ε̄ /DPLχ−
√

2ε̄PRλ
ataz

include the usual gauge covariant derivatives as well as an additional term in δF involving

λ and z. In addition, the following coupling term

Scoupling =

∫
d4x
√
−g
[
−
√

2
(
λ̄az̄taPLχ− χ̄PRtazλa

)
+ iDaz̄taz

]
(3.16)

must be added to the action to cancel the SUSY variation of the gauge fields appearing in

the kinetic action. The proof of invariance of the full action

S = Sgauge + Skin + Scoupling (3.17)

then proceeds much as in the flat space case.

4 The SUSY algebra for conformal Killing spinors

In this section we study the SUSY algebra of the N = 1 chiral and gauge multiplets in

dS4. We assume that ε(x), ε′(x) are conformal Killing spinors that satisfy (2.7). We define

Kµ = ε̄γµε′ and κ = 1
4(ε̄γ5 /Dε

′ − ε̄′γ5 /Dε) . For the chiral multiplet, the commutator of the

variations of (3.8) gives

[δ′, δ]z = KµDµz + (1
4DµK

µ)z + κz (4.1)

[δ′, δ]PLχ = KµDµ PLχ+
3

2
(1

4DµK
µ)PLχ+

1

8
(DµKν −DνKµ) γµνPLχ−

1

2
κγ∗PLχ

(4.2)

[δ′, δ]F = KµDµF + 2(1
4DµK

µ)F − 2κF (4.3)

– 7 –
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For the gauge multiplet the analogous computation from (3.2) leads to

[δ′, δ]Aρ = KµFµρ (4.4)

[δ′, δ]λ = KµDµλ+
3

2
(1

4DµK
µ)λ+

1

8
(DµKν −DνKµ) γµνλ+

3

2
κγ∗λ (4.5)

[δ′, δ]D = KµDµD + 2(1
4DµK

µ)D (4.6)

The structure and the coefficients agree with the commutators of flat space super-

conformal algebra compiled in [22]. The first term is the Lie derivative that effects the

diffeomorphism generated by the conformal Killing vector Kµ. It is accompanied by the

conformal weight term whose coefficients are the scale dimensions 1, 3/2, 2 respectively for

the fields z, χ, F . There is a local Lorentz transformation on χ. The last term is the U(1)R

transformation of the superconformal algebra. (The coefficients of κ satisfy the expected

relations between the R-charges of the various fields, but they are scaled by the factor 3/2

from the conventional values.) Similar comments apply to the gauge multiplet.

5 The supercharge algebra and unitarity

In this section we express the SUSY algebra in terms of conserved charges and derive (1.1)

at the classical level. The Noether charge associated with a covariantly conserved vector

current Jµ(x) is given by

Q = −
∫
d3x
√
γ nµJ

µ =

∫
d3x
√
−gJ0 . (5.1)

In the first expression d3x
√
γ is the volume element of the spatial 3-volume orthogonal to

the future-pointing timelike unit normal nµ. For the Poincaré patch metric (2.8) of dS4,

this volume may be taken to be the spatial slice of constant conformal time x0 (which

is negative in our conventions). The normal vector is nµ = (n0 = −x0/a, 0, 0, 0). Then

nµ = n0 = a/x0 and
√
γn0 = −

√
−g where g is the determinant of the full metric of dS4.

Thus we obtain the second expression for the charge. This charge is independent of the

time x0 provided that the current falls off sufficiently fast at spatial infinity.

For a conformal Killing vector Kν , the current Jµ = −KνΘµν is covariantly conserved

provided that the stress tensor Θµν is conserved and traceless. For a conformal Killing

spinor ε(x), the current Jµ = ε̄αJ µα is conserved if the supercurrent J µ is covariantly

conserved and γ-traceless, i.e. γµJ µ = 0. Thus we deal with the conformal Killing charges

and supercharges

Q[K] = −
∫
d3x
√
−gKνΘ0ν (5.2)

ε̄αQα =

∫
d3x
√
−gε̄αJ 0

α = Q̄αεα . (5.3)

Then the operator algebra statement that corresponds to the commutators of variations in

the previous section is

[ε̄
′αQα, Q̄

βεβ] = −iQ[ε̄′γνε] + . . . . (5.4)

– 8 –
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We now need to be more specific and strip off the constant Grassmann parameters η̄, η

in (5.4). We refer to the specific spinors of (2.9) and define the two spinor supercharges:

η̄α1Q1α ≡ η̄α1

∫
d3x
√
−g (S̄1(x))α

βJ 0
β (5.5)

η̄α2Q2α ≡ η̄α2

∫
d3x
√
−g (S̄2(x))α

βJ 0
β (5.6)

S1(x) ≡ 1√
−x0/a

S2(x) ≡ 1√
−x0/a

(γρ̂x
ρ) , (5.7)

where S1(x), S2(x) are 4× 4 matrices whose Dirac adjoints S̄i = iγ0̂(Si)
†iγ0̂ appear in the

supercharges. Then (5.4) can be replaced by the supercharge anti-commutator

{Qiα , Q̄βj } = −i
∫
d3x
√
−g(S̄i(x)γνSj(x))α

βΘ0ν . (5.8)

Since we are interested in deriving (1.1), we multiply from the right by iγ0̂ and trace,

and we choose i = j with no sum. We find the traced anti-commutator∑
α

{Qiα , Q†αi } =

∫
d3x
√
−gTr(S̄i(x)γνSi(x)γ0̂)Θ0ν . (5.9)

For i = 1, 2, the traces are

Tr(S̄1(x)γνS1(x)γ0̂) = −4(1, 0, 0, 0) = −4Kν
0 (5.10)

Tr(S̄2(x)γνS2(x)γ0̂) = −4(2x0xν − x · xην0) = −4Kν
2 . (5.11)

In each case we find one of the future pointing conformal Killing vectors described at the

end of section 2. So the general form of (5.9) becomes

1
4

∑
α

{Qiα , Q†αi } = −
∫
d3x
√
−gKνΘ0ν . (5.12)

in which Kν is the conformal Killing vector for time translation or time-like special con-

formal transformation in the Poincaré patch.

We now argue that the the operator on the right hand side of (5.12) is positive in

the classical approximation in which we include only the bosonic contribution to the stress

tensor of our basic N = 1 theories. Given (5.1), it is the integral of nµKνΘµν that must

be non-negative. Let’s first look into the stronger condition of positivity of the integrand.

We note that the standard dominant energy condition requires that

AµBνΘµν ≥ 0 (5.13)

where Aµ, Bν is any pair of future pointing timelike or null vectors. The dominant energy

condition is well known [24] for the electromagnetic field and the proof is immediately

applicable to Yang-Mills. Dominant energy is also valid for the canonical stress tensor of

the free scalar field [24], but it does not hold for conformally coupled scalar of the chiral

multiplet [25–27].

– 9 –



J
H
E
P
0
7
(
2
0
1
4
)
1
1
9

Let us look at the integral in (5.12) for a real conformally coupled scalar field φ and try

to show it is positive. The improved stress tensor, which is both conserved and traceless, is:

Θµν = DµφDνφ−
1

2
gµν(DρφD

ρφ)− 1

6

(
DµDν − gµν�−Rµν +

1

2
gµνR

)
φ2 (5.14)

=
2

3
DµφDνφ−

1

6
gµν(DρφD

ρφ)− 1

3
φDµDνφ+

1

6a2
gµνφ

2 (5.15)

where in the second line we used �φ = (2/a2)φ, Rµν = 1
4gµνR and R = 12/a2. We work

in the Poincaré patch and consider the conformal Killing charge

Q[K] =−
∫
d3x
√
−g Θ0

νK
ν (5.16)

=−
∫
d3x
√
−g
[
K0

(
2

3
D0φD0φ−

1

6
(DρφD

ρφ)− 1

3
φD0D0φ+

1

6a2
φ2

)
+Ki

(
2

3
D0φDiφ−

1

3
φDiD

0φ

)]
. (5.17)

The first step is to use the equation of motion in the form

D0D0φ =

(
2

a2
−DiDi

)
φ (5.18)

to rewrite the integrand in (5.16) as

Q[K] = −
∫
d3x
√
−g
[
K0

(
1

2
D0φD0φ−

1

6
DiφDiφ+

1

3
φDiDiφ−

1

2a2
φ2

)
+Ki

(
2

3
D0φDiφ−

1

3
φDiD

0φ

)]
. (5.19)

We assume that the fields on the time slice decay fast enough at spatial infinity to allow

partial integration without picking up boundary contributions. We integrate the 3rd term

in the first line and the 2nd term in the second line above to obtain

Q[K] = −
∫
d3x
√
−g
[
K0

(
1

2
D0φD0φ−

1

2
DiφDiφ−

1

2a2
φ2

)
+Ki

(
D0φDiφ

)
− 1

3
DiK

0
(
φDiφ

)
+

1

3
DiK

i
(
φD0φ

) ]
. (5.20)

Next we substitute D0φ = − (x0)2

a2
D0φ and Diφ = (x0)2

a2
Diφ, obtaining

Q[K] =

∫
d3x
√
−g (x0)2

a2

[
K0

2

(
D0φD0φ+DiφDiφ+

1

(x0)2
φ2

)
+Ki (D0φDiφ)

+
1

3
DiK

0 (φDiφ) +
1

3
DiK

i (φD0φ)

]
. (5.21)

We now apply (5.21) to the two positive timelike CKV’s in (5.10)–(5.11). For the

generator of translations of conformal time, K0 = ∂0. The CKV equation implies DiK
0
0 = 0

and 1
3DiK

i
0 = −1/x0. We regroup terms in (5.21) and find

Q[K0] =

∫
d3x
√
−g
[

1

2a2

(
(x0)2(D~xφ)2 +

(
φ− x0D0φ

)2)]
(5.22)

which is non-negative.
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The special conformal CKV, K2 = (~x · ~x + (x0)2)∂0 + 2x0 ~x · ∂~x , satisfies DiK
0
2 = 0

and 1
3DiK

i
2 = −x · x/(x0) , where x · x = −(x0)2 + ~x · ~x. In this case one can verify that

Q[K2] =

∫
d3x
√
−g
[
~x · ~x + (x0)2

2a2

{
(x0)2

(
D~xφ+

2x0 ~x

~x · ~x + (x0)2
D0φ

)2

+

(
φ− x0x · x

~x · ~x + (x0)2
D0φ

)2}]
, (5.23)

again non-negative.

The results (5.22) and (5.23) actually have the common form

Q[K] =

∫
d3x
√
−g
[
K0

2a2

(
(x0)2

(
Diφ+

Ki

K0
D0φ

)2

+

(
φ+

1

3
DiK

i (x
0)2

K0
D0φ

)2
)]

.

(5.24)

This form of the integrated conformal Killing charge matches with (5.21) for any CKV that

satisfies

DiK
0 = 0 and (Ki)2 + (x0)2

(
1

3
DiK

i

)2

= (K0)2 . (5.25)

These conditions are satisfied by the two CKV’s that appear in the traced de Sitter SUSY

algebra (5.12). They are also satisfied by the three Lorentz boost CKV’s discussed in

section 2, namely K0
(i) = δijx

j , Kj
(i) = x0δji , although their integrated charges are not

necessarily positive.

So far we have considered the SUSY anti-commutator {Qα, Q†α} summed over spinor

components. We would like to show that each individual diagonal term of {Qα, Q†β} is

classically positive. We summarize our progress on this question. In the usual Weyl rep-

resentation of the Dirac algebra (and in the Majorana representation of Sec 3.3.1 of [23]),

the diagonal terms take a simple form. The CKV Kν
0 in (5.10) is replaced by (1, 0, 0,±1),

the sum of the conformal time translation and a space translation. Similarly, Kν
2 is re-

placed by vµ(2xµxν − x · xηµν) which describes a special conformal transformation in the

null direction vµ = (1, 0, 0,±1). In both cases these are future-pointing null vectors, so

the dominant energy condition implies positivity for the gauge multiplet. For the chiral

multiplet we were not able to extend the analytic proof of positivity above.

6 Propagator Ward identities and the Vacuum

In a supersymmetric field theory there are Ward identities that relate the propagators of

boson and fermion fields. We will argue in this section that superconformal Ward identities

select the Bunch-Davies vacuum state which is the unique conformal invariant state among

the well known one-parameter family of SO(4, 1) invariant vacua.

We begin with a brief discussion of the propagators5 of a massive scalar field which

satisfy

(�−m2)G(x, y) =
δ(x, y)√
−g

. (6.1)

5We do not specify the time ordering prescription. See [28] for more information.
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A de Sitter invariant solution of this equation will be a function of P (x, y) [28] defined in

terms of the embedding coordinates of the hyperboloid by:

P (x, y) = ηABY
A(x)Y B(y) . (6.2)

The geodesic distance between two points D(x, y) in dS4 is given by D(x, y) = arccos

P (x, y)/a2. We use instead the chordal distance variable u ≡ 1− P/a2. In Poincaré patch

coordinates, u takes the simple form

u =
ηµν(x− y)µ(x− y)ν

2x0y0
. (6.3)

One can convert (6.1) into the hypergeometric equation

u(2− u)G′′(u) + 4(1− u)G′(u)− (ma)2G(u) = 0 . (6.4)

The general solution to (6.4) is given by:

G(u) =
Γ(h+)Γ(h−)

16π2a2

[
c1 2F1

(
h+, h−, 2, 1− u

2

)
+ c2 2F1

(
h+, h−, 2,

u
2

)]
, (6.5)

where

h± =
3

2
±
√

9

4
−m2a2 . (6.6)

The first term in (6.5) has the expected singularity for null separated points Y A(x) and

Y B(y), i.e. (Y A(x) − Y A(y))2 = 0. The second term is singular when one point is null

separated from the antipodal reflection of the other, i.e. when (Y A(x)+Y A(y))2 = 0. In de

Sitter space this unphysical term cannot be discarded because two antipodal points are sep-

arated by a horizon, and the singularity is undetectable to geodesic observers. Henceforth

we take c1 = 1 in order to normalize to the δ-function in (6.1), and simply replace c2 → c.

The one-parameter family of de Sitter invariant propagators in (6.5) then corresponds to

the family of Mottola-Allen or α-vacua of a field theory on dS4 (see e.g. [28–31, 35]). Of

these the choice c = 0 gives the Bunch-Davies vacuum.

The hypergeometric solution (6.5) simplifies significantly at the conformally coupled

mass point m2 = 2/a2 where we find:

G(u) =
1

8π2a2

(
1

u
+

c

2− u

)
. (6.7)

In this case the Bunch-Davies choice is the unique conformally invariant vacuum. One sim-

ple way to see this is to notice that, when c = 0, G(u) is related by to the flat space propaga-

tor by the factor (x0y0)/a2, determined by the Weyl transformation φ′(x) = −(x0/a)φ(x)

of the field to the Poincaré patch (see (2.8)). Alternatively, this can be seen by noting

that the condition that x and y are antipodally separated points is not preserved by a

conformal transformation on de Sitter space (though, of course the condition that x and y

are coincident is preserved).
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6.1 Ward identities

We are now ready to discuss propagator Ward identities for the chiral multiplet. Using

equations (3.8) and noting that δ〈χ(x)z(y)〉 = δ〈χ(x)z̄(y)〉 = 0 it is easy to derive a

consistency condition satisfied by the propagator 〈χ(x)χ̄(y)〉. In fact we use this to define

〈χ(x)χ̄(y)〉. We consider the SUSY transformations (3.8) for the general CKS ε(x) of (2.9).

We use (5.7) and note that /DS1 = − 2
aS1γ0̂ and /DS2 = + 2

aS2γ0̂. This allows us to derive

two independent expressions for 〈χ(x)χ̄(y)〉, namely:

〈χ(x)χ̄(y)〉 = − /Dx〈z̄(x)z(y)〉S1(x)S−1
1 (y) +

1

a
〈z̄(x)z(y)〉S1(x)γ0̂S

−1
1 (y) (6.8)

= − /Dx〈z̄(x)z(y)〉S2(x)S−1
2 (y)− 1

a
〈z̄(x)z(y)〉S2(x)γ0̂S

−1
2 (y) (6.9)

where 〈z̄(x)z(y)〉 is the scalar two-point function given in (6.7). A calculation (Mathemat-

ica!) then shows that the two conditions (6.8)–(6.9) are mutually consistent only for the

Bunch-Davies vacuum where c = 0. This is natural since only this vacuum is conformal

invariant, but it is satisfying to see how conformal SUSY forces this choice.

Using (6.8)–(6.9), it is easy to show that

〈χ(x)χ̄(y)〉 =
1

8π2a3 u2

(x− y)µ√
x0y0

γµ̂ . (6.10)

Notice again that this propagator is related to the flat space propagator by the factor of

((x0y0)/a2)3/2, corresponding to the Weyl transformation ψ′(x) = (−x0/a)3/2ψ(x).

It would be interesting to consider the propagator Ward identities for the gauge multi-

plet. However, the analysis becomes more complicated because the consistency conditions

include a new term due to the SUSY variation of the gauge-fixing term in the action.

7 Hawking temperature and dS SUSY

We now comment on the relationship between Hawking radiation and de Sitter supersym-

metry. An observer in de Sitter space will observe a bath of thermal particles emitted from

the de Sitter horizon at the Hawking temperature

TH =
1

2πa
. (7.1)

One might worry that the non-zero Hawking temperature of de Sitter space breaks super-

symmetry, because in flat space a finite temperature breaks supersymmetry. We will now

argue that this is not the case.

We begin by recalling the derivation of Hawking radiation in de Sitter space. The

Hilbert space of quantum field theory in a fixed de Sitter background is built on the Bunch-

Davies vacuum state |0〉. As we saw in section 6, the Bunch-Davies state is consistent with

the SUSY Ward identities. That is to say, the state |0〉 has unbroken supersymmetry. We

consider an inertial observer in de Sitter space who makes observations in this vacuum

state. To this observer, we can associate a static patch of de Sitter space, with coordinates

ds2

a2
= −(1− r2)dt2 +

dr2

1− r2
+ r2dΩ2 (7.2)
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Figure 1. Here we present the de Sitter Penrose diagram and how various coordinate systems cover

the manifold. Left: static patch coordinates cover one quarter of de Sitter space and are good for

describing static observers whose worldline coincides with the south pole at r = 0. The dash-dotted

lines represent lines of constant r and the arrows represent the flow of the time coordinate t. Note

that constant r slices become spacelike in the northern diamond. Right: Poincaré coordinates cover

half of de Sitter space. The dashed lines represent spacelike surfaces of constant conformal time x0.

The observer sits at r = 0 and the de Sitter horizon is at r = 1. The coordinate patch

0 ≤ r < 1 covers that part of de Sitter space which is causally accessible to the observer.

Because the static patch does not cover an entire Cauchy surface in de Sitter space, the

QFT Hilbert space can be written as a tensor product H = Hin⊗Hout, where Hin(Hout) is

the Hilbert space of degrees of freedom inside (outside) of the static patch. The expectation

value of an observable O which is inside the static patch can be written as Tr ρO, where

ρ is the reduced density matrix

ρ = TrHout |0〉〈0| (7.3)

obtained by tracing over the degrees of freedom outside the static patch. The standard

Hawking radiation computation [34, 35] then gives

ρ =
1

Z
e−2πaH H =

∂

∂t
(7.4)

where H is the Hamiltonian which generates time translation in the static time coordinate t.

We emphasize that this Hawking radiation computation is correct, even though the vacuum

state |0〉 is SUSY invariant.

Equation (7.4) is the standard form for a finite temperature density matrix. However,

we note that the interpretation of (7.4) is slightly different from that of a finite temperature

density matrix in flat space. In flat space, the matrix density (7.4) would break SUSY if H

were the standard Hamiltonian which generates time-translations. For example, correlation

functions in this vacuum would not obey standard SUSY Ward identities. A simple way

to see this is to note that this Hamiltonian is the square of a supersymmetry generator,

so its expectation value would vanish in an SUSY invariant state. In de Sitter space,
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however, the operator H which generates static-patch time translation is not the square

of a supersymmetry generator. Thus it is not subject to the usual requirement that it

vanish in a supersymmetric state. Indeed, none of the SO(4, 1) de Sitter isometries can be

written as the square of a fermionic generator. The only operators which can be so written

(and hence vanish in the ground state) are generators of conformal isometries in SO(4, 2)

which are not regular de Sitter isometries. For example, the generator K0 of conformal

time translation vanishes in the ground state.

An analogous situation would arise in flat space if we considered an observer undergoing

constant acceleration. In this case, the usual SUSY invariant flat space vacuum state |0〉
would appear to emit a finite temperature bath of Hawking quanta. Indeed, observables

in the causal region associated with the accelerating observer (the Rindler wedge) are

computed precisely with the density matrix (7.3)–(7.4), where H is the Hamiltonian which

generates translations in the Rindler time coordinate. This finite temperature radiation is

present even though the vacuum state exactly preserves supersymmetry.
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A Spinor and Dirac matrix conventions

Throughout the main text we use the conventions of [23]. Dirac matrices satisfy

{γµ, γν} = 2gµν . (A.1)

We use greek indices µ, ν . . . to denote curved space Dirac matrices, namely those which

contain a frame field γµ ≡ eµaγa. Latin indices a, b, . . . or hatted indices µ̂, ν̂ . . . denote the

local Lorentz frame. We define

γµν ≡
1

2
[γµ, γν ] . (A.2)

We use γ5 ≡ iγ0̂γ1̂γ2̂γ3̂ as well as the projection operators

PL =
1 + γ5

2
, PR =

1− γ5

2
. (A.3)

Finally the Dirac adjoint of a fermionic field such as χ is given by

χ̄ ≡ iχ†γ0̂ . (A.4)
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B N = 4 SYM with manifest SU(4)R symmetry

Radiative corrections in the N = 1 theories discussed in the main text break conformal and

superconformal symmetry. However, the N = 4 theory [32, 33] is an exact superconformal

theory in Minkowski spacetime and this property is expected to be maintained in dS4.

Therefore we present the de Sitter extension of this theory in a manifestly SU(4)R invariant

form closely related to the notation and formulation in [33].

The theory contains the gauge potential Aaµ, four Majorana gauginos whose chiral

projections are PLλ
a
α, PRλ

aα, and six real scalars Xi. We will use α, β to denote SU(4)

indices, which we will place down or up according to chirality (we hope this will not cause

confusion with the main text, where greek letters label spinor indices). The Lagrangian

consists of the sum of a quadratic kinetic term, a cubic Yukawa term and quartic scalar

potential:

L2 = −
[

1

4
F aµνF

µνa + λ̄aαγµDµPLλ
a
α +

1

2
DµX

a
i D

µXa
i +

1

a2
Xa
i X

a
i

]
. (B.1)

L3 = −1

2
fabcXa

i [Cαβi λ̄bαPLλ
c
β + Ciαβλ̄

bαPRλ
cβ] . (B.2)

L4 = −1

4
fabcfab

′c′Xb
iX

c
j X

b′
i X

c′
j . (B.3)

The cubic Lagrangian contains the (modified) set of six ’t Hooft instanton matrices Ci.

The Ci are real when i = 1, 2, 3 and imaginary when i = 4, 5, 6. The 4× 4 anti-symmetric

matrices Ci are

C1 =

(
0 σ1

−σ1 0

)
, C2 =

(
0 −σ3

σ3 0

)
, C3 =

(
iσ2 0

0 iσ2

)
,

C4 = −i

(
0 iσ2

iσ2 0

)
, C5 = −i

(
0 1

−1 0

)
, C6 = −i

(
−iσ2 0

0 iσ2

)
,

(B.4)

and σi are the usual Pauli matrices. The Ci matrices are written as Cαβi when applied to

left-handed spinors and as Ciαβ ≡ (Cαβi )∗ when applied to right-handed spinors. Note that

the operator [Cαβi λ̄bαPLλ
c
β + Ciαβλ̄

bαPRλ
cβ] is hermitian.

The action is invariant under the transformation rules that involve an SU(4) quartet

of Majorana conformal Killing spinors PLεα, PRε
α:

δAaµ = −ε̄αγµPLλaα − ε̄αγµPRλaα (B.5)

δXa
i = −[ε̄αPLC

αβ
i λaβ + ε̄αPRCiαβλ

aβ] (B.6)

δλaα =

[
1

2
γρσF aρσεα − (γµDµX

a
i )(PLC

αβ
i εβ + PRCiαβε

β) (B.7)

−1

2
Xa
i (PRC

αβ
i

/Dεβ + PLCiαβ /Dεβ)

]
+∆λaα

∆λaα = −1

2
fabcXb

iX
c
j [(CiCj)

α
βPRε

β + (CiCj)α
βPLεβ] . (B.8)
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The last term contains the effects of F and D aux. fields in the N = 1 description. To be

clear on notation, we write (CiCj)
α
β = Cαγi Cjγβ and (CiCj)α

β = CiαγC
γβ
j .

The SUSY parameters ε in these formulas are scaled by a factor of
√

2 compared to those

in the main text. Note that the formulas for δλ and ∆λ contain both chiralities and do not

fully conform to the down/up convention stated above. We note that these transformations

close only on shell.

C Conformal Killing spinors

We present here a compendium of formulae satisfied by conformal Killing spinors. Since

we wish to be as general as possible, we given our presentation in arbitrary dimension d.

Conformal Killing spinors are defined to live in the kernel of the Penrose operator

Pµ = Dµ −
1

d
γµ /D . (C.1)

Note that any CKS ε satisfying Pµε = 0 also satisfies DµPµε = 0, and therefore

�ε =
1

d
/D

2
ε =

1

d

(
�− 1

4
R

)
ε , (C.2)

where the second equality in (C.2) can be derived using the integrability condition[Dµ, Dν ]ε=
1
4Rµνabγ

abε. We therefore determine that a CKS ε must also satisfy additional constraints

given by

�ε = − R

4(d− 1)
ε , /D

2
ε = − dR

4(d− 1)
ε . (C.3)

A conformal Killing spinor is also a Killing spinor if it satisfies the added condition /Dε = λε

for some constant λ. From (C.3) we determine

λ± = ±

√
− dR

4(d− 1)
(C.4)

which are real for any spacetime of constant negative curvature, and pure imaginary for

spacetimes of constant positive curvature. This matches equations (2.2) and (2.4). Note

that in a constant curvature spacetime, given a conformal Killing spinor ε, one can construct

a pair of Killing spinors

ε± = ε∓
√
−4(d− 1)

dR
/Dε (C.5)

with eigenvalues λ±.

Using the integrability conditions one can further derive

Dµ /Dε =
d

2(d− 2)

(
−Rµν +

1

2(d− 1)
gµνR

)
γν ε . (C.6)
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C.1 Maximally symmetric spacetimes

In any maximally symmetric spacetime where Rµν = R
d gµν , equation (C.6) simplifies con-

siderably

Dµ /Dε = − R

4(d− 1)
γµ ε =

1

d
γµ /D

2
ε . (C.7)

Thus, if ε is a CKS for some maximally symmetric spacetime, then so is /Dε. In lieu of (C.5),

this makes it clear that the real and imaginary parts of any Killing spinor in de Sitter space

give two independent conformal Killing spinors.

We use this to derive

DµDνε = − R

4d(d− 1)
γνγµ ε (C.8)

and hence D(µDν) = − R
4d(d−1)gµν ε and D[µDν] = R

4d(d−1)γµν ε. From (C.7) we may also

derive

/DDµε =
R(d− 2)

4d(d− 1)
γµ ε , (C.9)

and finally

[Dµ, /D]ε = − R
2d
γµε . (C.10)

Open Access. This article is distributed under the terms of the Creative Commons
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