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1 Introduction

Bound state of heavy-light quark-antiquark system Qq̄ is of special interest. Weak decays

of such heavy-light system can be used to determine the fundamental parameters such as

the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements in the standard model (SM),

and to explore the source of CP violation. Experimental data from B factories have

confirmed the existence of CP violation in B meson weak decays [1, 2]. Theoretically to

treat the weak decays of heavy-flavored mesons B and D, effects of strong interactions have

to be considered. Strong interactions in B decays can be separated into two parts, one of

which can be calculated perturbatively in QCD, while the other part is dynamically non-

perturbative. The binding effect in the quark-antiquark system is one of the main source

of the non-perturbative dynamics. How to treat the binding effect in QCD is still an open

question at present. Before the non-perturbative problem in QCD being completely solved,

using phenomenological method to treat the bound state is an effective way in practice.

The bound state of quark-antiquark can be described by the wave equation [3, 4]

with an effective potential compatible with QCD. The potential shows a linear confining

behavior at large distance and a Coulombic behavior at short distance. Since the light

quark in the heavy-light system is relativistic, the wave equation is assumed to be with a

relativistic kinematics.

The bound state effects in B and D mesons have been investigated with the relativistic

potential model previously in refs. [4–10]. In the works of [5–10] the spin-dependent interac-

tions are not included. For the heavy-light quark-antiquark system, the heavy quark can be

viewed as a static color source in the rest frame of the meson, and the light quark is bound

around the heavy quark by an effective potential. In the heavy quark limit the spin of the

heavy quark decouples from the interaction [11–18]. For the realistic heavy-quark mass,

the spin-dependent interactions can be treated as perturbative corrections. In ref. [4], the

spin-dependent interactions were considered several decades ago. For most charmed and

b-flavored mesons, the theoretical predictions are well consistent with experiment. Only
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some masses of states with orbital angular momentum l ≥ 1 are approximately 100MeV

higher than experimental measurements. Currently, with more experimental data avail-

able, the prediction to the spectrum of charmed and b-flavored mesons in the relativistic

potential model needs to be improved.

In this work we will revisit the bound state effect in the heavy-flavored mesons. The

spectrum of B, B∗, D, D∗ and other heavy-light bound states with higher orbital angular

momentum and higher radial quantum number are studied. Comparing with the work

of ref. [4], the details of the method of solving the relativistic wave equation are given,

the mixing between more possible states are considered. The spin-dependent potential

is slightly modified, the predictions for the masses of charmed and b-flavored mesons are

more consistent with experimental measurements. We also give more predictions for the

bound states with higher radial quantum number, which can be tested in experiment in

the future.

The paper is organized as follows. In section 2, the relativistic wave equation for the

heavy-light quark-antiquark system and the effective Hamiltonian are given. In section 3

the wave equation is solved. Section 4 is for the numerical result and discussion. Section 5

is a brief summary.

2 The wave equation for heavy-light system and the effective Hamilto-

nian

The heavy flavor mesons B and D contain light quarks, which requires the wave equa-

tion describing the heavy-light system include relativistic kinematics. The equation is a

relativistic generalization of Schrödinger equation

Hψ(~r) = Eψ(~r) . (2.1)

The effective Hamiltonian can be written as

H = H0 +H ′, (2.2)

with

H0 =
√

−~2c2∇2
1 +m2

1 +
√

−~2c2∇2
2 +m2

2 + V (r) , (2.3)

where ~r = ~x2 − ~x1, and ~x1 and ~x2 are the coordinates of the heavy and light quarks, re-

spectively. The operators ∇2
1 and ∇2

2 involve partial derivatives relevant to the coordinates

~x1 and ~x2, respectively. m1 is the mass of the heavy quark, and m2 the mass of the light

antiquark. V (r) is the effective potential of the strong interaction between the heavy and

light quarks. It can be taken as a combination of a Coulomb term and a linear confining

term, whose behavior is compatible with QCD at both short- and long-distance [4, 19, 20]

V (r) = −4

3

αs(r)

r
+ b r + c . (2.4)

The first term is contributed by one-gluon-exchange diagram calculated in perturbative

QCD. The Coulomb term dominates the behavior of the potential at short-distance. The
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second term is the linear confining term. The third term c is a phenomenological constant,

which is adjusted to give the correct ground state energy level of the quark-antiquark

system.

The running coupling constant in coordinate space αs(r) can be obtained from the

coupling constant in momentum space αs(Q
2) by Fourior transformation. It can be written

in the following form [4]

αs(r) =
∑

i

αi
2√
π

∫ γir

0
e−x2

dx , (2.5)

where αi are free parameters fitted to make the behavior of the running coupling constant

at short distance be consistent with the coupling constant in momentum space predicted

by QCD. The numerical values of these parameters fitted in this work are α1 = 0.15,

α2 = 0.15, α3 = 0.20, and γ1 = 1/2, γ2 =
√
10/2, γ3 =

√
1000/2.

The second term H ′ in eq. (2.2) is the spin-dependent part of the Hamiltonian

H ′ = Hhyp +Hso, (2.6)

where Hhyp is the spin-spin hyperfine interaction, Hso is spin-orbit interaction.

The spin-spin hyperfine interaction used in this work is

Hhyp =
32π

9m1m̃2a
αs(r)δσ(r)~s1 · ~s2 +

4

3

αs(r)

m1m̃2b

1

r3

(

3~s1 · ~r~s2 · ~r
r2

− ~s1 · ~s2
)

(2.7)

with

δσ(r) =

(

σ√
π

)3

e−σ2r2 , (2.8)

where the parameter σ is taken as quark mass-dependent [4]

σ =

√

√

√

√σ20

(

1

2
+

1

2

(

4m1m2

(m1 +m2)2

)4
)

+ s20

(

2m1m2

m1 +m2

)2

, (2.9)

here σ0 and s0 are phenomenological parameters.

The spin-orbit interaction is

Hso =
4

3

αs(r)

r3

(

1

m1
+

1

m̃2c

)(

~s1 · ~L
m1

+
~s2 · ~L
m̃2c

)

− 1

2r

∂V (r)

∂r

(

~s1 · ~L
m2

1

+
~s2 · ~L
(m̃2d)2

)

, (2.10)

where ~L = ~r× ~P is the relative orbital angular momentum between the quark and antiquark.

The spin-dependent interactions can be predicted by one-gluon-exchange forces in

QCD [3, 4]. The exact form of ∝ δ(~r) for the spin-spin contact term ~s1 · ~s2 and 1/mq

for the tensor term in Hhyp and spin-orbit interaction Hso are the predictions of one-

gluon-exchange calculation in the non-relativistic approximation. It is reasonable that

there might be contributions of non-perturbative dynamics in the bound state system and

relativistic corrections for the light quark. In this work the form of the spin-spin contact

hyperfine interaction is replaced by an interaction with the behavior of exponential suppres-

sion e−σ2r2 as in ref. [21], the mass of the light quark m2’s in the denominators are replaced
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by a set of new parameters m̃2i, i = a, b, c, d, which include the relativistic corrections

and the bound-state effect in the heavy meson. Originally in the potential calculated with

one-gluon-exchange diagram [3, 4], the light quark mass m2’s are in the places of the new

parameters m̃2i’s in eqs. (2.7) and (2.10), which are obtained with the approximation that

both the heavy and light quarks are viewed as non-relativistic, the momenta of the quarks

are dropped. However, the light quark in the heavy meson should be highly relativistic,

dropping the momentum of the light quark is not a good approximation. In addition, there

may also be bound-state effect in the spin-spin and spin-orbit interaction terms, which can

not be treated by one-gluon-exchange diagram. To include the relativistic effect for the

light quark and the nonperturbative bound-state effect, we assume these effects can be

effectively described by introducing a set of new parameters which replace the light quark

mass in the denominator of the spin-dependent interaction terms. These new parameters

are to be determined by fitting the experimental data on the spectrum of the charmed

and b-flavored meson states. In the section of numerical treatment, one can find that this

assumption does work. All the masses measured in experiment can be accommodated well.

3 The solution of the wave equation

Without the spin-dependent interaction, the solutions of the wave equation for pseudoscalar

and vector states of the quark-antiquark system shall be degenerate. The prediction to the

masses of B and B∗, D and D∗ will be the same. For the heavy quark and light antiquark

system, the interaction decouples to the heavy quark spin in the heavy quark limit [11–18].

Quark-spin dependent interaction can be treated as perturbation. The masses of B and

B∗, D and D∗ measured in experiment support this treatment, the mass-differences of B

and B∗, D and D∗ are only at the order of a few percent [22].

We solve the eigen equation of H0 at first, then treat the spin-dependent Hamiltonian

H ′ in the perturbation theory. The effect of H ′ will be considered to the first order in the

perturbative expansion. Denote the eigenfunction and eigenvalue of the Hamiltonian H0

by ψ(0)(~r) and E(0), respectively, then the eigen equation of H0 is
[

√

−~2c2∇2
1 +m2

1 +
√

−~2c2∇2
2 +m2

2 + V (r)
]

ψ(0)(~r) = E(0)ψ(0)(~r) . (3.1)

To solve the above equation, we express the wave function in terms of spectrum integration

ψ(0)(~r) =

∫

d3r′δ3(~r − ~r ′)ψ(0)(~r ′)

=

∫

d3r′
∫

d3k

(2π~c)3
ei
~k·(~r−~r ′)/~cψ(0)(~r ′) . (3.2)

With the above expression, the wave equation becomes
∫

d3k

(2π~c)3
d3r′

(

√

k2+m2
1+
√

k2+m2
2

)

ei
~k·(~r−~r ′)/~cψ(0)(~r ′) =

(

E(0)−V (r)
)

ψ(0)(~r) . (3.3)

The exponential ei
~k·~r/~c can be decomposed in terms of spherical harmonics

ei
~k·~r/~c = 4π

∑

ln

iljl

(

kr

~c

)

Y ∗
ln(k̂)Yln(r̂) , (3.4)
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where jl is the spherical Bessel function, Yln(r̂) is the spherical harmonics, and r̂ the

unit vector along the direction of ~r. The spherical harmonics satisfies the normalization

condition
∫

dΩYl1n1
(r̂)Yl2n2

(r̂) = δl1l2δn1n2
. (3.5)

Using eq. (3.4) and factorize the wave function into radial and angular parts

ψ(0)(~r) = Φl(r)Yln(r̂) , (3.6)

eq. (3.3) is transformed to be

V (r)Φl(r) +
2

π(~c)3

∫

dkk2
∫

dr′r′2
(

√

k2 +m2
1 +

√

k2 +m2
2

)

jl

(

kr

~c

)

jl

(

kr′

~c

)

Φl(r
′)

= E(0)Φl(r) . (3.7)

Define a reduced radial wave function ul(r) by

Φl(r) =
ul(r)

r
, (3.8)

then the wave equation becomes

V (r)ul(r) +
2

π(~c)3

∫

dkk2
∫

dr′rr′
(

√

k2 +m2
1 +

√

k2 +m2
2

)

jl

(

kr

~c

)

jl

(

kr′

~c

)

ul(r
′)

= E(0)ul(r) . (3.9)

As explained in ref. [10], for a bound state of quark and antiquark, when the distance

between them is large enough, the wave function will drop seriously. Eventually the wave

function will effectively vanish at a typically large distance. We assume such a typical

distance is L, then the quark and antiquark in bound state can be viewed as if they are

restricted in a limited space, 0 < r < L. In the limited space the reduced wave function

ul(r) for angular momentum l can be expanded in terms of the spherical Bessel function

ul(r) =
∞
∑

n=1

cn
anr

L
jl

(

anr

L

)

, (3.10)

where cn’s are the expansion coefficients, an the n-th root of the spherical Bessel function

jl(an) = 0. In practice the above summation can be truncated to a large enough integer N

ul(r) =
N
∑

n=1

cn
anr

L
jl

(

anr

L

)

. (3.11)

In the limited space, the momentum k will be discrete. From the argument of jl
(

anr
L

)

in

eq. (3.10), one can see the relevance

anr

L
⇐⇒ kr

~c
. (3.12)
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Then the momentum is discretized, and the integration over k in eq. (3.9) should be replaced

by a summation
k

~c
→ an

L
,

∫

dk

~c
→
∑

n

∆an
L

, (3.13)

where ∆an = an − an−1.

Considering the limited space 0 < r, r′ < L, the discrete momentum of eq. (3.13), and

substituting eq. (3.11) into eq. (3.9), and simplify it, one can finally obtain the equation

for the coefficients cn’s

N
∑

n=1

an
N2

mam

∫ L

0
drV (r)r2jl

(

amr

L

)

jl

(

anr

L

)

cn +
2

πL3
∆am

· a2mN2
m

(

√

(

am~c

L

)2

+m2
1 +

√

(

am~c

L

)2

+m2
2

)

cm = E(0)cm , (3.14)

where Nm is the module of the spherical Bessel function

N2
m =

∫ L

0
dr′r′2jl

(

amr
′

L

)2

. (3.15)

Eq. (3.14) is the eigenstate equation in the matrix form. It can be reduced to eq. (17)

in ref. [10] for the case l = 0. It is not difficult to solve this equation numerically. The

solution only slightly depends on the values of N and L if they are large enough. We find

that when N > 50, L > 5 fm, the solution of the wave equation will be stationary.

Next we shall discuss the contribution of the spin-dependent interaction.

The spin-dependent interaction is considered perturbatively in the basis of the |JM, sl〉
sectors. |JM, sl〉 is the eigenvector of spin-independent Hamiltonian H0, where J is the

total angular momentum of the bound state, M the magnetic quantum number, s the

total spin of the quark and antiquark, l the relevant orbital angular momentum between

them. The tensor part of the hyperfine interaction Hhyp in eq. (2.7) does not conserve

the orbital angular momentum, it causes mixing between the states with different orbital

angular momenta 3LJ ↔3 L′
J , while the spin-orbit interaction Hso in eq. (2.10) does not

conserve the total quark and antiquark spin, it can cause mixing between the states with

different total spin quantum numbers 1LJ ↔3 LJ . The mass matrix elements are calculated

perturbatively in the basis of |JM, sl〉. The matrix is then diagonalized to get the mixing

eigenstates. The perturbative contribution of the spin-dependent Hamiltonian H ′ to the

eigenvalues of the bound states are given below.

(1) The eigenvalue of pseudoscalar state

The quantum number of the pseudoscalar state is JP = 0−, the total spin and

orbital angular momentum are s = 0, l = 0, i.e., it is 1S0 state. The eigenvalue of

the pseudoscalar state is calculated to be

m(0−) = E
(0)
l=0 −

3

4
〈ψ(0)

l=0(r)|f(r)|ψ
(0)
l=0(r)〉 . (3.16)
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(2) The mass matrix of the vector state, JP = 1−

Both s = 1, l = 0 and s = 1, l = 2 can construct JP = 1− state. The 3S1 and
3D1 states can mix through the spin-orbit interaction. The basis for the mixing is

denoted to be |ψ1〉 = |3S1〉, and |ψ2〉 = |3D1〉. The mass matrix can be written as

H =

(

H11 H12

H21 H22

)

, (3.17)

the results of the matrix elements are

H11 = E
(0)
l=0 +

1

4
〈ψ(0)

l=0(r)|f(r)|ψ
(0)
l=0(r)〉 , (3.18)

H12 =
1√
2
〈ψ(0)

l=0(r)|g(r)|ψ
(0)
l=2(r)〉 , (3.19)

H21 = H∗
12 , (3.20)

H22 = E
(0)
l=2 + 〈ψ(0)

l=2(r)|
[

1

4
f(r)− 1

2
g(r)− 3

2
h1(r)−

3

2
h2(r)

]

|ψ(0)
l=2(r)〉 . (3.21)

Diagonalizing the matrix H, one can get the eigenvalues of the two mixing states and

the mixing angle. With the matrix elements given in eqs. (3.18)–(3.21), the above

mixing matrix (3.17) can be easily extended to the cases with more |3S1〉 and |3D1〉
states mixing.

(3) The eigenvalue of the scalar state, JP = 0+

For the scalar state, JP = 0+, the spin and orbital angular momentum are s = 1,

l = 1. It is the 3P0 state. The eigenvalue of the scalar state is

m(0+) = E
(0)
l=1 + 〈ψ(0)

l=1(r)|
[

1

4
f(r)− g(r)− h1(r)− h2(r)

]

|ψ(0)
l=1(r)〉 . (3.22)

(4) The mass matrix of the axial-vector state, JP = 1+

The JP = 1+ state is mixture of 1P1 and 3P1 states, both states with s = 0, l = 1

and s = 1, l = 1 can construct the JP = 1+ state. The basis for the mixing is

|ψ1〉 = |1P1〉, and |ψ2〉 = |3P1〉. The matrix elements of the mass matrix are

H11 = E
(0)
l=1 −

3

4
〈ψ(0)

l=1(r)|f(r)|ψ
(0)
l=1(r)〉 , (3.23)

H12 =
1√
2
〈ψ(0)

l=1(r)|h2(r)− h1(r)|ψ(0)
l=1(r)〉 , (3.24)

H21 = H∗
12 , (3.25)

H22 = E
(0)
l=1 + 〈ψ(0)

l=1(r)|
[

1

4
f(r) +

1

2
g(r)− 1

2
h1(r)−

1

2
h2(r)

]

|ψ(0)
l=1(r)〉 . (3.26)

With eqs. (3.23)–(3.26), the cases with more |1P1〉 and |3P1〉 mixing states can be

obtained.
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(5) The mass matrix of the tensor state, JP = 2+

The JP = 2+ state is mixture of 3P2 and 3F2 states, both states with s = 1, l = 1

and s = 1, l = 3 can construct the JP = 2+ state. The basis for the mixing is

|ψ1〉 = |3P2〉, and |ψ2〉 = |3F2〉. The matrix elements of the mass matrix are

H11 = E
(0)
l=1 + 〈ψ(0)

l=1(r)|
[

1

4
f(r)− 1

10
g(r) +

1

2
h1(r) +

1

2
h2(r)

]

|ψ(0)
l=1(r)〉 , (3.27)

H12 =
3

5

√

3

2
〈ψ(0)

l=1(r)|g(r)|ψ
(0)
l=3(r)〉 , (3.28)

H21 = H∗
12 , (3.29)

H22 = E
(0)
l=3 + 〈ψ(0)

l=3(r)|
[

1

4
f(r)− 2

5
g(r)− 2h1(r)− 2h2(r)

]

|ψ(0)
l=3(r)〉 . (3.30)

With eqs. (3.27)–(3.30), the cases with more |3P2〉 and |3F2〉 mixing states can be

obtained.

In the above equations, the functions f(r), g(r), h1(r) and h2(r) are defined as

f(r) =
32π

9m1m̃2a
αs(r)δσ(r) , (3.31)

g(r) =
4

3

αs(r)

m1m̃2b

1

r3
, (3.32)

h1(r) =

[

4

3

αs(r)

r3

(

1

m1
+

1

m̃2c

)

− 1

2r

∂V (r)

∂r

1

m1

]

1

m1
, (3.33)

h2(r) =

[

4

3

αs(r)

r3

(

1

m1
+

1

m̃2c

)

1

m̃2c
− 1

2r

∂V (r)

∂r

1

(m̃2d)2

]

. (3.34)

4 Numerical result and discussion

The parameters used in this work include the quark masses, the potential parameters b, c,

m̃2i, σ0 and s0. They are selected to fit the masses of the quark-antiquark bound states.

The values we obtain by fitting are

mb = 4.99GeV, mc = 1.59GeV,

ms = 0.30GeV, mu = md = 0.06GeV,

b = 0.16GeV2, c = −0.28GeV,

σ0 = 1.80GeV, s0 = 1.55 . (4.1)

The values of m̃2a, m̃2b, m̃2c and m̃2d depend on the quark-antiquark system, they can be

written as

m̃2i = ǫim̃2 , i = a, b, c, d . (4.2)

We find the values of ǫi’s and m̃2 are

(ǫa, ǫb, ǫc, ǫd) = (1.00, 1.30, 1.30, 1.32) (4.3)
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for (bq̄) and (cq̄) systems,

(ǫa, ǫb, ǫc, ǫd) = (1.00, 1.10, 1.10, 1.31) (4.4)

for (bs̄) and (cs̄) systems, and

m̃2 =



























0.562GeV for (bq̄) system ,

0.679GeV for (bs̄) system ,

0.412GeV for (cq̄) system ,

0.488GeV for (cs̄) system ,

(4.5)

here q is the light quark u or d.

The solution of the wave equation does not depend on the values of L and N if they are

taken large enough. Numerical calculation shows that the solution is stable when L > 5 fm,

N > 50. Here we take L = 10 fm, N = 100.

The numerical results for (bq̄), (bs̄), (cq̄) and (cs̄) bound states with the component

of radial quantum number n = 1 dominant are given in table 1. Mixings between states

with appropriate quantum numbers are considered in our calculation. We find that the

theoretical calculation can accommodate the experimental data well. In addition to the

masses, the mixing states relevant to each meson is also given in this table. The vector

meson states are generally mixing states of |3S1〉 and |3D1〉. The components of |13S1〉 in
B∗, B∗

s , D
∗ and D∗

s are overwhelmingly dominant, while the components of |3D1〉 states

are tiny. The masses of vector states with |13D1〉 component dominant have also been

predicted, which are shown in table 1.

The axial vector states with JP = 1+ found in experiment, such asB1(5721), Bs1(5830),

D1(2420), can be explained as mixing states of |1P1〉 and |3P1〉 states. For (bq̄) and (cq̄)

systems, we predict two almost degenerate states, respectively. The mass difference of the

two mixing states in each system is very tiny. For B1(5721), we predict two states with

masses 5.72GeV and 5.74GeV. For D1(2420), the predicted masses of the two mixing

states are 2.40GeV and 2.41GeV, which are very close. For the JP = 1+ state of (cq̄)

system, the component of state with higher radial quantum number n = 2 is not so small,

the amplitude of |23P1〉 can be as large as 0.116.

The 2+ states can be explained as mixing states of |3P2〉 and |3F2〉. The details can be

found in table 1. Also the mixing from state of higher radial quantum number with n = 2

can not be completely neglected, it can be as large as 10%.

Compared with the theoretical predictions given in ref. [4], mixings between more

quantum states are considered in this work. For bound states of (bq̄) and (bs̄), the masses

obtained in this work are approximately consistent with the theoretical masses given in

ref. [4], but more predicted masses are presented in this work. For 0+ state of (cq̄) and 0+,

1+ states of (cs̄), the masses predicted in this work are about 100MeV smaller than the

relevant predictions given in ref. [4], our results are more consistent with the experimental

data now. The other states predicted in this work are also consistent with experiment well.

The radial excited states with the quantum number up to n = 2 are also predicted,

they are given in table 2. In general, our results for n = 2 are slightly smaller than the
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Meson JP Multiplet Mass (GeV) GI (GeV) Exp. (MeV)

B 0− |11S0〉 5.27 5.31 5279.25± 0.17

B∗ 1−
0.99958|13S1〉+0.011|13D1〉+0.021|23S1〉+0.011|23D1〉

−0.010|33S1〉−0.009|33D1〉
5.32 5.32 5325.2± 0.4

−0.012|13S1〉+0.9963|13D1〉+0.018|23S1〉+0.074|23D1〉

+0.010|33S1〉−0.037|33D1〉
6.05

(bq̄) 0+ |13P0〉 5.68

B1(5721) 1+ −0.519|11P1〉+0.844|13P1〉+0.078|21P1〉−0.111|23P1〉 5.72 5723.5± 2.0

0.851|11P1〉+0.524|13P1〉+0.030|21P1〉+0.029|23P1〉 5.74

B∗
2
(5747) 2+

0.995|13P2〉−0.005|13F2〉+0.086|23P2〉−0.004|23F2〉

−0.047|33P2〉−0.003|33F2〉
5.76 5.8 5743± 5

0.006|13P2〉+0.9995|13F2〉−0.008|23P2〉+0.020|23F2〉

−0.005|33P2〉+0.020|33F2〉
6.33

Bs 0− |11S0〉 5.35 5.39 5366.77± 0.24

B∗
s 1−

0.9995|13S1〉−0.013|13D1〉+0.021|23S1〉−0.012|23D1〉

−0.011|33S1〉+0.010|33D1〉
5.40 5.45 5415.4+2.4

−2.1

0.015|13S1〉+0.992|13D1〉−0.026|23S1〉+0.113|23D1〉

−0.009|33S1〉−0.050|33D1〉
6.09

(bs̄) 0+ |13P0〉 5.72

1+ −0.540|11P1〉+0.822|13P1〉+0.103|21P1〉−0.151|23P1〉 5.75

Bs1(5830) 0.834|11P1〉+0.548|13P1〉+0.053|21P1〉+0.039|23P1〉 5.82 5829.4± 0.7

B∗
s2
(5840) 2+

0.993|13P2〉+0.006|13F2〉+0.107|23P2〉+0.005|23F2〉

−0.054|33P2〉+0.004|33F2〉
5.84 5.88 5839.7± 0.6

−0.007|13P2〉+0.998|13F2〉+0.013|23P2〉+0.052|23F2〉

+0.007|33P2〉+0.030|33F2〉
6.36

D 0− |11S0〉 1.87 1.88 1869.62± 0.15

D∗ 1−
0.997|13S1〉+0.033|13D1〉−0.056|23S1〉−0.031|23D1〉

−0.029|33S1〉−0.025|33D1〉
2.01 2.04 2010.28± 0.13

−0.042|13S1〉+0.984|13D1〉−0.079|23S1〉−0.137|23D1〉

+0.037|33S1〉−0.067|33D1〉
2.75 2.82

(cq̄) D∗
0
(2400)0 0+ |13P0〉 2.30 2.40 2318± 29

1+ −0.096|11P1〉+0.986|13P1〉−0.075|21P1〉+0.116|23P1〉 2.40 2.44

D1(2420) 0.992|11P1〉+0.106|13P1〉+0.022|21P1〉−0.063|23P1〉 2.41 2.49 2421.3± 0.6

D∗
2
(2460) 2+

0.989|13P2〉−0.013|13F2〉−0.130|23P2〉+0.011|23F2〉

−0.068|33P2〉+0.009|33F2〉
2.45 2.50 2464.4± 1.9

0.016|13P2〉+0.998|13F2〉+0.024|23P2〉−0.045|23F2〉

−0.019|33P2〉−0.037|33F2〉
3.07

D±
s 0− |11S0〉 1.96 1.98 1968.49± 0.32

D∗±
s 1−

0.996|13S1〉−0.041|13D1〉−0.056|23S1〉+0.037|23D1〉

−0.030|33S1〉−0.029|33D1〉
2.10 2.13 2112.3± 0.5

0.057|13S1〉+0.963|13D1〉+0.157|23S1〉−0.187|23D1〉

−0.042|33S1〉+0.087|33D1〉
2.77 2.90

(cs̄) D∗
s0
(2317)0 0+ |13P0〉 2.31 2.48 2317.8± 0.6

Ds1(2460) 1+ −0.480|11P1〉+0.850|13P1〉−0.111|21P1〉+0.184|23P1〉 2.42 2.53 2459.6± 0.6

Ds1(2536) 0.869|11P1〉+0.493|13P1〉−0.037|21P1〉−0.031|23P1〉 2.51 2.57 2535.12± 0.13

D∗
s2
(2573) 2+

0.984|13P2〉−0.016|13F2〉−0.157|23P2〉−0.012|23F2〉

−0.077|33P2〉−0.010|33F2〉
2.55 2.59 2571.9± 0.8

0.025|13P2〉+0.992|13F2〉+0.057|23P2〉+0.091|23F2〉

−0.032|33P2〉+0.054|33F2〉
3.09

Table 1. Theoretical spectrum of (bq̄), (bs̄), (cq̄) and (cs̄) bound states mainly with the radial

quantum number n = 1, and the comparison with the prediction of ref. [4] and experimental data.

The numbers in the column labeled “GI” are theoretical masses from ref. [4]. The experimental

masses in the last column are PDG averages [22].
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JP Multiplet Mass (GeV) GI (GeV)

0− |21S0〉 5.81 5.90

1−
−0.020|13S1〉 − 0.017|13D1〉+ 0.999|23S1〉 − 0.015|23D1〉

+0.024|33S1〉+ 0.011|33D1〉
5.85 5.93

−0.011|13S1〉 − 0.077|13D1〉+ 0.014|23S1〉+ 0.994|23D1〉

−0.029|33S1〉 − 0.071|33D1〉
6.38

(bq̄) 0+ |23P0〉 6.04

1+ −0.077|11P1〉+ 0.112|13P1〉 − 0.557|21P1〉+ 0.820|23P1〉 6.10

−0.034|11P1〉 − 0.023|13P1〉+ 0.826|21P1〉+ 0.561|23P1〉 6.16

2+
−0.077|13P2〉+ 0.009|13F2〉+ 0.984|23P2〉+ 0.007|23F2〉

+0.161|33P2〉+ 0.006|33F2〉
6.18

0.006|13P2〉 − 0.021|13F2〉 − 0.011|23P2〉+ 0.998|23F2〉

+0.028|33P2〉+ 0.042|33F2〉
6.61

0− |21S0〉 5.89 5.98

1−
−0.020|13S1〉+ 0.024|13D1〉+ 0.999|23S1〉+ 0.017|23D1〉

+0.025|33S1〉 − 0.012|33D1〉
5.94 6.01

0.013|13S1〉 − 0.117|13D1〉 − 0.016|23S1〉+ 0.987|23D1〉

+0.044|33S1〉 − 0.097|33D1〉
6.41

(bs̄) 0+ |23P0〉 6.08

1+ −0.103|11P1〉+ 0.151|13P1〉 − 0.550|21P1〉+ 0.815|23P1〉 6.15

−0.055|11P1〉 − 0.037|13P1〉+ 0.827|21P1〉+ 0.558|23P1〉 6.24

2+
−0.095|13P2〉 − 0.014|13F2〉+ 0.977|23P2〉 − 0.008|23F2〉

+0.192|33P2〉 − 0.007|33F2〉
6.26

−0.016|13P2〉 − 0.053|13F2〉+ 0.036|23P2〉+ 0.984|23F2〉

−0.148|33P2〉+ 0.079|33F2〉
6.64

0− |21S0〉 2.46 2.58

1−
0.049|13S1〉+ 0.075|13D1〉+ 0.991|23S1〉 − 0.050|23D1〉

−0.072|33S1〉 − 0.034|33D1〉
2.59 2.64

0.036|13S1〉+ 0.142|13D1〉+ 0.052|23S1〉+ 0.970|23D1〉

+0.153|33S1〉+ 0.111|33D1〉
3.11

(cq̄) 0+ |23P0〉 2.67

1+ 0.080|11P1〉 − 0.130|13P1〉 − 0.474|21P1〉+ 0.867|23P1〉 2.83

0.010|11P1〉+ 0.011|13P1〉+ 0.877|21P1〉+ 0.480|23P1〉 2.87

2+
0.108|13P2〉 − 0.028|13F2〉+ 0.962|23P2〉+ 0.019|23F2〉

−0.248|33P2〉+ 0.015|33F2〉
2.93

−0.047|13P2〉+ 0.040|13F2〉 − 0.102|23P2〉+ 0.929|23F2〉

−0.344|33P2〉+ 0.062|33F2〉
3.39

0− |21S0〉 2.55 2.67

1−
0.043|13S1〉 − 0.147|13D1〉+ 0.982|23S1〉+ 0.074|23D1〉

−0.070|33S1〉 − 0.046|33D1〉
2.68 2.73

−0.045|13S1〉+ 0.183|13D1〉 − 0.071|23S1〉+ 0.893|23D1〉

−0.383|33S1〉 − 0.125|33D1〉
3.14

(cs̄) 0+ |23P0〉 2.69

1+ 0.112|11P1〉 − 0.184|13P1〉 − 0.504|21P1〉+ 0.837|23P1〉 2.87

0.042|11P1〉+ 0.025|13P1〉+ 0.856|21P1〉+ 0.515|23P1〉 2.97

2+
0.127|13P2〉 − 0.063|13F2〉+ 0.946|23P2〉 − 0.028|23F2〉

−0.289|33P2〉 − 0.020|33F2〉
3.02

0.000|13P2〉 − 0.100|13F2〉 − 0.013|23P2〉+ 0.978|23F2〉

−0.123|33P2〉+ 0.136|33F2〉
3.41

Table 2. Theoretical spectrum of (bq̄), (bs̄), (cq̄) and (cs̄) bound states with the radial quantum

number mainly n = 2, and the comparison with the prediction of ref. [4]. The results in the column

labeled “GI” are theoretical masses from ref. [4].
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theoretical masses given in ref. [4]. In addiction, more predicted masses are given in this

work, which can be tested in experiment in the future.

Both Belle and BaBar collaborations found aDsJ resonance in the analysis ofDK mass

distribution, DsJ(2700) denoted by Belle collaboration [23, 24], and X(2690) denoted by

BaBar collaboration [25]. The mass and width are

M = 2708± 9+11
−10MeV,

Γ = 108± 23+36
−31MeV (4.6)

measured by Belle collaboration [23, 24], and

M = 2688± 4± 3MeV,

Γ = 112± 7± 36MeV (4.7)

measured by Babar collaboration [25].

It is possible that DsJ(2700) and X(2690) are the same resonance. Comparing the

masses DsJ(2700) and X(2690) measured by Belle and BaBar collaborations with the

predicted mass for JP = 1− (cs̄) state given in table 2, one can find that the state with

predicted mass 2.68GeV is consisted with the DsJ meson found in experiment. Therefore

DsJ(2700) and/or X(2690) can be identified as the first radial excitation of D∗
s(2112),

which agrees with ref. [26] analyzed due to heavy quark limit.

It is interesting to discuss the properties of the heavy-light quark-antiquark bound

states from the point view of heavy quark symmetry. The spectroscopy of mesons with

open charm and beauty flavors was analyzed in the heavy quark limit recently in ref. [26–

28], where the mesons are classified in heavy quark doublets and the quantum numbers are

assigned to the heavy flavored mesons. Here we would like to discuss how the properties

of the heavy flavored mesons implied by the heavy quark limit are reproduced in the

calculation in the potential model. In the heavy quark limit, the spin of the heavy quark

decouples from the light degrees of freedom. The heavy quark spin sQ and the total

angular momentum of the light antiquark sl conserve separately in the bound state of the

heavy-light system. Therefore heavy-flavored mesons can be classified according to the

values of the angular momentum of the light antiquark sl. The total spins of the mesons

are J = sl ± 1
2 , according to which the mesons can be collected into doublets. For any

value of the orbital angular momentum of the light antiquark l, the parity of the meson is

P = (−1)l+1, and the total angular momentum of the light antiquark ~sl = ~sq + ~l, where

sq is the spin of the light antiquark. Since the properties of the hadronic states do not

depend on the spin and flavor of the heavy quark due to the heavy quark symmetry, the

mesons within the same doublet degenerate in the heavy quark limit. For l = 0, the

total angular momentum of the light antiquark is sl =
1
2 , then the total spin of the Qq̄

meson could be 0 and 1. These two states form a doublet with JP
sl

= (0−, 1−)1/2. For

l = 1, the possible angular momenta of light antiquark are sl =
1
2 and sl =

3
2 . There are

two doublets in this case, JP
sl

= (0+, 1+)1/2 and JP
sl

= (1+, 2+)3/2. For each meson state

with specified quantum numbers classified in the heavy quark limit, we can denote them

by |JP 〉lsl . By analyzing angular momentum addition with the help of Clebsch-Gordan
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coefficients, we can decompose the states in the heavy quark limit into combination of

states with definite quantum numbers l, S and J , i.e., the state |2S+1LJ〉. For states in the

doublet JP
sl

= (0−, 1−)1/2, we get

|0−〉l=0
sl=1/2 = |1S0〉 , (4.8)

|1−〉l=0
sl=1/2 = |3S1〉 . (4.9)

For states in the doublet JP
sl

= (0+, 1+)1/2, we can obtain

|0+〉l=1
sl=1/2 = |3P0〉 , (4.10)

|1+〉l=1
sl=1/2 = −

√

1

3
|1P1〉+

√

2

3
|3P1〉 . (4.11)

For states in the doublet JP
sl

= (1+, 2+)3/2, the results are

|1+〉l=1
sl=3/2 =

√

2

3
|1P1〉+

√

1

3
|3P1〉 , (4.12)

|2+〉l=1
sl=3/2 = |3P2〉 . (4.13)

For the 1− state in the doublet JP
sl

= (1−, 2−)3/2, the result is

|1−〉l=2
sl=3/2 = |3D1〉 . (4.14)

The result of 2+ state in the doublet JP
sl

= (2+, 3+)5/2 is

|2+〉l=3
sl=5/2 = |3F2〉 . (4.15)

The above eqs. (4.8)–(4.15) give the results that the meson states with definite JP quantum

number expanded as states of |2S+1LJ〉 in the heavy quark limit. Comparing these results

with the column “Multiplet” in table 1 and 2 for each meson, one can see that the results

are consistent with the heavy quark limit, there are only small deviation from the heavy

quark limit for most mesonic states. The small deviation is due to the masses of the

heavy quarks b and c used here are realistic values, not infinity. Only the component

for the JP = 1+ state of non-strange cq̄ meson is greatly different from the case in the

heavy quark limit. The mixing of |11P1〉 and |13P1〉 in 1+ state of cq̄ is very small, the

mixing angle is only about −0.10 rad, while the mixing angle in the heavy quark limit

should be −ArcSin
√

1/3 = −0.615 rad. We checked the reason and find that without

considering the contribution of states with n = 2, the mixing angle is indeed very close to

the heavy quark limit. In addition, the eigenvalues of the two mixing states is very near,

they almost degenerate, and the gap between the energy levels with radial numbers n = 1

and n = 2 is not large, the mixing effect of n = 2 state will not be negligible. After adding

the mixing effect of n = 2 state, the mixing angle between |11P1〉 and |13P1〉 is seriously

affected, which makes it very small, i.e., the mixing angle is θ = −0.10 rad. The result with

small mixing angle is consistent with experiment. The Belle collaboration determined the

possible mixing angle between the two 1+ non-strange charmed meson states. They obtain
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a small mixing angle: θ = −0.10 ± 0.03 ± 0.02 ± 0.02 rad [29]. The theoretical prediction

for the mixing angle in this work is in good agreement with experiment.

Finally the wave function of each bound state can be obtained simultaneously when

solving the wave equation, which is not given here explicitly. But it is easy to get the wave

function when it is needed.

5 Summary

The bound states of heavy-light quark and antiquark system are studied in the relativistic

potential model. The dynamics of the light quark in the system requires the wave equation

describing the bound state include relativistic kinematics. The potential is compatible

with QCD, it shows the behavior of Coulomb potential at short distance, and a linear

confining behavior at large distance. The spin-dependent interactions are also considered.

The spectrums of B and D system are obtained. Compared with the results obtained in

the relativistic potential model previously, the predictions to the spectrum are improved.

The masses of the bound states with the radial quantum number n = 1 are well consistent

with the experimental measurement. In addition, the masses of more meson states are

predicted, which can be tested in experiment in the future. The wave function of each

bound state can be also obtained by solving the wave equation.

Note added. After this work is finished, we find the experimental data newly presented

by LHCb collaboration [30], where several new resonances are observed in the mass region

between 2500 and 3000MeV. Comparing with the experimental data, we find that the

resonance DJ(2580) can be assigned as dominantly |23S1〉 state of (cq̄) with JP = 1−,

DJ(3000) assigned as |23P2〉 state with JP = 2+, which can be seen by comparing the

theoretical prediction in table 2 with experimental data in [30].
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