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1 Introduction

At about the same time when Feynman developed the modern approach to perturbative

QED, based on Feynman diagrams, he also invented an alternative representation of the

QED effective action or S-matrix in terms of first-quantized relativistic particle path inte-

grals [1, 2]. For the simplest case, the one-loop effective action induced in scalar QED by

an external Maxwell field A, this representation reads

Γ[A] =

∫ ∞
0

dT

T
e−m

2T

∫
x(T )=x(0)

Dx(τ) e−
∫ T
0 dτ [ 1

4
ẋ2+ieẋµAµ(x(τ))] (1.1)

Here T denotes the proper-time of the scalar particle in the loop, m its mass, and∫
x(T )=x(0) Dx(τ) a path integral over all closed loops in spacetime with fixed periodicity in

the proper-time (we will use euclidean conventions throughout this paper). Photon ampli-

tudes as usual are obtained by specializing the effective action to backgrounds involving a

finite number of plane waves.

This formalism, which nowadays goes under various names, e.g. “Feynman-Schwinger

representation”, “particle presentation”, “quantum mechanical path integral formalism”,

“first-quantized formalism” or “worldline formalism” (which we will adopt here) has been

studied by many authors, and extended to other field theories (see [3] for an extensive bibli-

ography), but for several decades was considered as mainly of conceptual interest. However,

partly as a consequence of developments in string theory [4, 5], where first-quantized meth-

ods figure more prominently than in ordinary field theory, it has in recent years emerged

also as a powerful practical tool for the computation of a wide variety of quantities in quan-

tum field theory. This includes one-loop on-shell [6–9] and off-shell [10, 11] photon/gluon

amplitudes, one- and two-loop Euler-Heisenberg-Weisskopf Lagrangians [9, 12], heat-kernel

– 1 –



J
H
E
P
0
7
(
2
0
1
4
)
0
6
6

Figure 1. Six permuted diagrams contributing to QED photon-photon scattering.

Figure 2. Diagrams contributing to the three loop QED photon propagator.

coefficients [13, 14], Schwinger pair creation in constant [15] and non-constant fields [16, 17],

Casimir energies [18], various types of anomalies (see [19] and refs. therein), QED/QCD

bound states [20–22], heavy-quark condensates [23], and QED/QCD instantaneous Hamil-

tonians [24]. Extensions to curved space [25] and quantum gravity [26] have also been

considered.

One of the interesting aspects of this approach is that often it combines into a single ex-

pression contributions from a large number of Feynman diagrams. For example, in the QED

case it generally allows one to combine into one integral all contributions from Feynman

diagrams which can be identified by letting photon legs slide along scalar/fermion loops or

lines. Thus e.g. the well-known sum of six permuted diagrams for one-loop QED photon-

photon scattering (see figure 1) here naturally appears combined into a single integral [3].

While in this case the summation involves graphs that differ only by permutations of

the external legs, at higher loop orders the summation will generally involve topologically

different diagrams; as an example, we show in figure 2 the “quenched” contributions to the

three-loop photon propagator.

This property is particularly interesting in view of the fact that it is just this type of

summation which in QED often leads to extensive cancellations, and to final results which

are substantially simpler than intermediate ones (see, e.g., [27, 28]). More recently, similar

cancellations have been found also for graviton amplitudes (see, e.g., [29]).

Although this property of the worldline formalism is well-known, and has been occa-

sionally exploited [30–33] (see also [34]) a systematic study of its implications is presently

still lacking. In this paper, we will initiate such a study for the simplest case of scalar field

theory, considering two real scalar fields interacting through a cubic vertex. In this model,

we will look at the following three classes of Green’s functions: the first one, depicted in

figure 3, is the x-space propagator for one scalar interacting with the second one through

the exchange of N given momenta.

This object, to be called “N -propagator”, is given by a set of N ! simple tree-level

graphs, and in section 2 we will use the worldline formalism to combine them into a single

integral. We will also obtain the momentum-space version of this result.

– 2 –
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Figure 3. Sum of diagrams contributing to the N -propagator.
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Figure 4. Sum of diagrams contributing to the half-ladder.
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Figure 5. Sum of ladder and crossed-ladder contributions to the four-point function in x-space.

The second class are the similarly looking x-space N + 2-point functions shown in

figure 4, defined by a line connecting the points x and y and N further points z1, . . . , zN
connecting to this line in an arbitrary order.

These “N -rung half-ladders” again form a set of N ! diagrams, and we will give a uni-

fying integral representation in section 3. This class of diagrams is, apart from the first

(N =1) one, which is just the well-known off-shell scalar triangle integral [35], already highly

nontrivial; the four-point integral corresponding to N = 2 figures prominently in N = 4

SYM theory [36–39] (it was called f(x1, x2, x3, x4) in [36]) but is presently still not known

in closed form. Here we will derive for it a novel two-parameter integral representation.

Finally, in section 4 we come to the class of ladder graphs, depicted in figure 5, which

we obtain by “gluing together” two “N -propagators”.

Just as in the case of the N -propagators and half-ladders, one distinctive advantage

of the worldline representation over the usual Feynman parameterization of this type of

diagrams is the automatic inclusion of all possible ways of crossing the “rungs” of the

ladders. Here again we will obtain such unifying representations in explicit form both in

x-space and in momentum space.

Ladder graphs with a finite number N of rungs play an important role for scattering

processes in the high energy, large momentum transfer limit, see, e.g., ref. [40]. Math-

ematically, the completely massless case is special (in D = 4), since here the “proper”

(non-crossed) ladder graphs become conformally invariant, and possess closed-form expres-

sions in terms of polylogarithms for any N [35, 41–46].
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In this paper, we will concentrate on the case of infinite N , i.e., the sum over all ladder

and crossed ladder graphs. This is of paramount importance for the bound state problem,

however it will be necessary to keep at least the “vertical” mass m nonzero. In fact, our

hope that a fresh look at these graphs from the perspective of the worldline formalism,

usually refered to as the worldline representation in this context (see, e.g., [47]), can give

new insights in the bound state problem is the original motivation behind the present work.

It is our opinion that the bound state problem, in the sense of establishing an efficient

and systematic formalism that would allow one to calculate the bound states and their

properties for a given field theory, is one of the important open problems in quantum

field theory, and that the fact that so little work is dedicated at present to this problem

reflects its complexity rather than a lack of importance. It is evident, in fact, that the

present-day description of (light) hadrons, which are intrinsically relativistic bound states

of quarks and gluons, is not satisfactory from a theoretical standpoint. Not only a precise

description of the effective interaction of quarks and gluons is missing, but also a convenient

formalism for the calculation of the hadronic states once an appropriate description of the

interaction is established.

This being said, a fully relativistic equation for the masses and structure of the bound

states of two constituents has been established in quantum field theory a long time ago by

Salpeter and Bethe [48, 49]. Unfortunately, the practical application of this equation suffers

from all kinds of difficulties, see, e.g., ref. [50] for an early review. In particular, despite

the fact that the equation is exact in principle, applications can hardly go beyond the

ladder approximation to the equation which amounts to replacing the totality of diagrams

contributing to the four-point function with the ladder graphs, excluding all crossed ladder

graphs. The inclusion of the crossed ladder graphs, however, is essential for the consistency

of the one-body limit where one of the constituents becomes infinitely heavy, and for

maintaining gauge invariance (in gauge theories).

Alternatives to the Bethe-Salpeter equation have been devised that partially include

the crossed ladder graphs, the best-known being the Blankenbecler-Sugar equation [51, 52],

the Gross (or spectator) equation [53] and the equal-time equation [54]. In order to assess

how well these so-called quasipotential equations are doing in incorporating the effects

of the crossed-ladder graphs, and to establish some benchmark values for the relativistic

bound state problem, Nieuwenhuis and Tjon [21] have numerically evaluated the path

integrals of the worldline representation for the same scalar model field theory that we

are considering here, thus including all ladder and crossed ladder graphs. The results,

if the numerical evaluation is to be trusted, are not reassuring: while the predictions of

the quasi-potential equations are closer to the numerical values for the lowest bound state

mass than the solution of the Bethe-Salpeter equation, they still differ substantially from

the worldline values (and from one another). On the other hand, the predictions of the

quasipotential equations for the equal-time wave function of the lowest bound state are

worse than the ones of the Bethe-Salpeter equation. Similar conclusions concerning the

importance of crossed contributions were reached for the same model in the more extensive

study by Savkli et al. [22]. Here both numerical and analytical methods were used in the

evaluation of the worldline path integrals, and some results were obtained also for 1+1

dimensional Scalar QED.
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In section 5, we will apply the worldline representation to the same scalar model field

theory that was considered by Nieuwenhuis and Tjon, but we will derive concrete results

for the mass of the lowest bound state for the case of a massless exchanged particle (along

the “rungs” of the ladders), while Nieuwenhuis and Tjon took the mass of the exchanged

particle to be 0.15 times the mass of the constituents. Furthermore, we are interested

in exploring how far one can get in an (approximate) analytical, rather than numerical,

evaluation of the path integrals.

We should also like to mention that, particularly in the case of a massless exchanged

particle, field theoretical perturbation theory can be applied in order to calculate cor-

rections to the essentially nonrelativistic situation, as long as the coupling constant is

sufficiently small. In this way, very precise predictions have been obtained for the case

of positronium. For comparison, if one applies the Bethe-Salpeter equation in the ladder

approximation to the scalar model field theory with a massless exchanged particle, known

in this context as the Wick-Cutkosky model [55, 56], the bound state solutions tend to

their nonrelativistic counterparts (the interaction of the constituents being described by a

Coulomb potential) in the nonrelativistic limit of small coupling constant. However, al-

ready the first relativistic corrections (in an expansion in powers of the coupling constant)

as predicted by the Bethe-Salpeter ladder approximation are considered unphysical [57, 58].

We will return to this issue in section 5.

Now let us define our model. We will work in the euclidean throughout in this paper.

The action for our field theory with two scalars interacting through a cubic vertex is

S[φ, χ] =

∫
dDx

(
1

2
(∂µφ)2 +

1

2
m2φ2 +

1

2
(∂µχ)2 +

1

2
µ2χ2 +

λ

2!
φ2χ

)
. (1.2)

Our most basic object of interest is the propagator for the φ-field in the background of the

χ-field. The worldline representation of this propagator is (for a careful derivation see [59])

〈0|Tφ(x)φ(y)|0〉(χ) =

∫ ∞
0

dT e−m
2T

∫ x(T )=x

x(0)=y

Dx e−
∫ T
0 dτ

[
1
4
ẋ2+λχ(x(τ))

]
. (1.3)

Here the path integral runs over all trajectories in euclidean space that lead from y to x in

the fixed proper-time T . From this propagator in the background field we can obtain the

“N -propagator” for the φ-particle, describing its interaction with the χ-field through the

interchange of N quanta with four-momenta k1, . . . , kN . This simply requires specializing

the background scalar field χ(x) to a sum of N plane waves,

χ(x) =

N∑
i=1

eiki·x (1.4)

and picking the terms linear in each of the plane waves on the r.h.s. of (1.3). For the

N -propagator (1.3) induces the representation

〈0|Tφ(x)φ(y)|0〉(N) = (−λ)N
∫ ∞

0
dT e−m

2T

∫ T

0
dτ1 · · ·

∫ T

0
dτN

×
∫ x(T )=x

x(0)=y

Dx ei
∑N
i=1 ki·x(τi)e−

∫ T
0 dτ 1

4
ẋ2

. (1.5)
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The path integral is now of Gaussian type, so that it can be evaluated exactly using

only the determinant and the inverse (“worldline Green function”) of the kinetic operator,

which here is simply the second derivative operator in proper-time. In section 2 we will

do this in detail. For the scalar field theory amplitudes considered in this paper, the

resulting “worldline integrals” are related to standard Feynman parameter integrals in a

straightforward way. However, they offer an advantage over Feynman parameter integrals

in that they are valid independently of the ordering of the momenta k1, . . . , kN ; the r.h.s.

of (1.5) contains already all N ! possibilities of attaching the N momenta to the propagator,

as shown in figure 3.

Although all the integrals considered in this paper are finite in four dimensions, we

will work in a general dimension D, except in some of our more explicit calculations.

2 N -propagators

We proceed to the calculation of the Gaussian path integral (1.5). First, let us split xµ(τ)

into a background part xµbg(τ), which encodes the boundary conditions, and a quantum

part qµ(τ), which has zero Dirichlet boundary conditions at τ = 0, T ,

xµ(τ) = xµbg(τ) + qµ(τ) ,

xµbg(τ) = yµ + (x − y)µ
τ

T
,

qµ(0) = qµ(T ) = 0 . (2.1)

The propagator for qµ(τ) is the Green’s function for the second derivative operator on an

interval of length T with vanishing boundary conditions, which is [7, 8, 60]

〈qµ(τ)qν(σ)〉 = −2δµν∆T (τ, σ) ,

∆T (τ, σ) =
τσ

T
− τθ(σ − τ) − σθ(τ − σ)

=
τσ

T
+

|τ − σ|
2

− τ + σ

2
. (2.2)

We note also the coincidence limit of this Green’s function,

∆T (τ, τ) =
τ2

T
− τ . (2.3)

We will also need the free path integral normalization factor (see, e.g. [19])∫ q(T )=0

q(0)=0

Dq e−
∫ T
0 dτ 1

4
q̇2

=
1

(4πT )
D
2

. (2.4)

For the benefit of the reader unfamiliar with worldline path integrals, let us first

consider the case N = 1. From (1.5), (2.1) and (2.4)

〈0|Tφ(x)φ(y)|0〉
(1)

=

∫ ∞
0

dT

(4πT )
D
2

e−
(x−y)2

4T
−m2T (−λ)

∫ T

0
dτ eik·[y+(x−y) τ

T
]〈eik·q(τ)〉 (2.5)

– 6 –
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Figure 6. Scalar vertex.

with the Wick contraction

〈eik·q(τ)〉 = ek
2( τ

2

T
−τ) (2.6)

by (2.3). Summarizing,

〈0|Tφ(x)φ(y)|0〉
(1)

=

∫ ∞
0

dT

(4πT )
D
2

e−
(x−y)2

4T
−m2T (−λ)

∫ T

0
dτ eik·[y+(x−y) τ

T
]︸ ︷︷ ︸

classical path

e−k
2(τ− τ

2

T
)︸ ︷︷ ︸

Wick contr.

. (2.7)

We Fourier transform in x and y, rescale τ = Tu, do the T integral and obtain the product

of two propagators in the Feynman parametrization

〈φ̃(p1)φ̃(p2)〉(1)
=(2π)DδD(p1 + p2 + k)(−λ)

∫ 1

0
du

∫ ∞
0

dT T e−T [p2
1+m2+(k2+2p1·k)u]

=(2π)DδD(p1 + p2 + k) (−λ)

∫ 1

0
du

Γ(2)

[p2
1 + m2 + (k2 + 2p1 · k)u]2

=(2π)DδD(p1 + p2 + k)
1

p2
1 + m2

(−λ)
1

(p1 + k)2 + m2
. (2.8)

Thus we have recovered the standard Feynman rule expression for the basic scalar vertex

(figure 6).

Proceeding directly to the N -point case, here (2.5) generalizes to

〈0|Tφ(x)φ(y)|0〉
(N)

=

∫ ∞
0

dT

(4πT )
D
2

e−
(x−y)2

4T
−m2T (−λ)N

∫ T

0
dτ1 · · ·

∫ T

0
dτN

×ei
∑
i ki·
(
y+

τi
T

(x−y)
)
〈ei

∑N
i=1 ki·q(τi)〉 . (2.9)

After performing the Gaussian integration over qµ(τ) using the Green’s function (2.2), and

a rescaling τi = Tui, this becomes

〈0|Tφ(x)φ(y)|0〉
(N)

= (−λ)N
∫ ∞

0

dT

(4πT )
D
2

e−
(x−y)2

4T
−m2TTN

∫ 1

0
du1 · ·

∫ 1

0
duN

×ei
∑
i ki·
(
y+ui(x−y)

)
exp

[
T

N∑
i,j=1

ki · kj∆1(ui, uj)

]
. (2.10)
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Fourier transformation of this representation yields, after an easy computation,

〈φ̃(p1)φ̃(p2)〉(N)
= (2π)DδD(p1 + p2 +

∑
i

ki)(−λ)N
∫ ∞

0
dT

∫ T

0
dτ1 · ·

∫ T

0
dτN

×exp

{
−T
(
p2

1 + m2
)

−
∑
i

(k2
i + 2p1 · ki)τi −

∑
i<j

2ki · kjD(τi, τj)

}

= (2π)DδD(p1 + p2 +
∑
i

ki)(−λ)NN !

∫ 1

0
du1 · ·

∫ 1

0
duN

×
[
p2

1 + m2 +
∑
i

(k2
i + 2p1 · ki)ui +

∑
i<j

2ki · kjD(ui, uj)

]−N−1

. (2.11)

where we have further defined

D(τi, τj) := τiθ(τj − τi) + τjθ(τi − τj) . (2.12)

Each of the N ! orderings of the u1, . . . , uN parameters along the worldline region [0, 1]

identifies a range of integration. Each range of integration produces the product of the

(N + 1) propagators where the momentum flows according to momentum conservation.

This gives the total of N ! contributions corresponding to the various exchanges of the

external lines carrying momentum kµi . The explicit proof is given in the appendix.

Our leitmotif in this paper is to find representations like (2.10) and (2.11) that unify

the Feynman diagrams corresponding to different orderings. However, as an aside we wish

to mention also that the contribution of any ordered sector to (2.10) can be recast in a form

that is a finite-dimensional analogue of the initial path-integral (1.5). First, introducing

the inverse of the N × N matrix −∆ij = −∆1(ui, uj), as well as its determinant | − ∆|, we

can trivially rewrite the final exponential factor in (2.10) in terms of a Gaussian integral

over auxiliary variables ξ1, . . . ξN as

exp

[
T

N∑
i,j=1

ki · kj∆1(ui, uj)

]
=

∫
dDξ1 · · ·

∫
dDξN

(
(4πT )N | − ∆|

)−D
2

× exp

[
− 1

4T

N∑
i,j=1

(−∆−1)ijξi · ξj + i
N∑
i=1

ki · ξi

]
. (2.13)

It is sufficient to consider the standard ordering 1 ≥ u1 ≥ u2 ≥ . . . ≥ uN ≥ 0. For this

sector, it is straightforward to show inductively that | − ∆| and (−∆−1) are given by

| − ∆| = (1 − u1)(u1 − u2)(u2 − u3) · · · (uN−1 − uN )uN (2.14)

and

−∆−1=


1

1−u1
+ 1

u1−u2
− 1

u1−u2
0 0 0

− 1
u1−u2

1
u1−u2

+ 1
u2−u3

− 1
u2−u3

0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 − 1
uN−2−uN−1

1
uN−2−uN−1

+ 1
uN−1−uN

− 1
uN−1−uN

0 0 0 − 1
uN−1−uN

1
uN−1−uN

+ 1
uN

 (2.15)

– 8 –
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Thus in the first term in the exponent in (2.13) we can rewrite

N∑
i,j=1

(−∆−1)ijξi · ξj =
ξ2

1

1 − u1
+

N−1∑
i=1

(ξi − ξi+1)
2

ui − ui+1
+

ξ2
N

uN
(2.16)

Using (2.16) in (2.10) and performing a linear shift

ξi → ξi − y − ui(x − y) (2.17)

we get

〈0|Tφ(x)φ(y)|0〉(12...N)
(N)

= (−λ)N
∫ ∞

0

dT

(4πT )
D
2

e−m
2TTN

∫ 1

0
du1

∫ u1

0
du2 · · ·

∫ uN−1

0
duN

×
∫

dDξ1 · · ·
∫

dDξN

(
(4πT )N | − ∆|

)−D
2

×exp

{
− 1

4T

[
(x − ξ1)

2

1 − u1
+

N−1∑
i=1

(ξi − ξi+1)
2

ui − ui+1
+

(ξN − y)2

uN

]
+ i

N∑
i=1

ki · ξi

}
. (2.18)

Here on the l.h.s. the superscript (12 . . . N) indicates the restriction to the standard or-

dering. Comparing with the original path integral (1.5) it will be observed that (2.18) can

be viewed as a restriction of this path integral to the finite-dimensional set of polygonal

paths leading from x to y, corresponding to the propagation of a particle that is free in

between absorbing (or emitting), at proper-time τi = uiT and the space-time point ξi, the

momentum ki. Alternatively, the representation (2.18) of the N -propagator can also be

obtained using heat-kernel methods similar to the ones of [60]. Despite of its simplicity we

have not been able to find this formula in the literature.

3 N -point half-ladders

We proceed to the set of half-ladder diagrams depicted in figure 4. Those we will consider

in x-space only. They can be obtained from the N -propagators by replacing

eiki·x(τi) →
∫

dDki
(2π)D

eiki·(x(τi)−zi)

k2
i + µ2

(3.1)

for i = 1, . . . , N . For N = 1 we obtain, after this replacement, the usual Schwinger

exponentiation
1

k2 + µ2
=

∫ ∞
0

dα e−α(k2+µ2) (3.2)

and the use of (2.7), the following representation for the lowest-order scalar x-space three-

point function, with two propagators having mass m and one having mass µ:

Γ(x, y, z, m, µ) = −λ

∫ ∞
0

dT

(4πT )
D
2

e−
(x−y)2

4T
−m2T

∫
dDk

(2π)D

∫ ∞
0

dα e−(ik·z+α(k2+µ2))

×
∫ T

0
dτ eik·yeik·(x−y) τ

T e−k
2(τ− τ

2

T
) . (3.3)
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Performing the Gaussian k-integral and rescaling τ = Tu as well as α = T α̂, we obtain

Γ(x, y, z, m, µ) = − λ

(4π)D

∫ ∞
0

dT

TD−2
e−

(x−y)2

4T
−m2T

∫ ∞
0

dα̂ e−α̂µ
2T

×
∫ 1

0
du

1

[α̂ + u(1 − u)]
D
2

e
−(y−z+(x−y)u)2

4T (α̂+u(1−u)) . (3.4)

Now we specialize to the massless case, m = µ = 0. The T -integral then becomes elemen-

tary, and one gets

Γ(x, y, z, 0, 0) = − λ

(4π)D
Γ(D − 3)

∫ 1

0
du

∫ ∞
0

dα̂

× 1

[α̂ + u(1 − u)]
D
2

4D−3[
(x − y)2 + [y−z+(x−y)u]2

α̂+u(1−u)

]D−3
.

Further simplification is possible if we now also assume D = 4. This makes the α̂-integral

elementary, and results in

Γ(x, y, z, 0, 0) = − λ

64π4

∫ 1

0
du

1

uc + (1 − u)b − u(1 − u)a
log

[
uc + (1 − u)b

u(1 − u)a

]
(3.5)

where we have now abbreviated

(x − y)2 = a , (y − z)2 = b , (x − z)2 = c . (3.6)

The u-integral can be reduced to the standard integral∫
du

ln(Au + B)

u − C
= ln(Au + B) ln

(
1 − Au + B

AC + B

)
+ Li2

(
Au + B

AC + B

)
. (3.7)

The final result is then easy to identify with the well-known representation of the massless

triangle function due to Ussyukina and Davydychev [35],

Γ(x, y, z, 0, 0) = − λ

64π4

1

a
Φ(1)

(
b

a
,
c

a

)
(3.8)

where

Φ(1)(x, y) :=
1

Λ

{
2
(
Li2(−ρx) + Li2(−ρy)

)
+ ln

y

x
ln

1 + ρy

1 + ρx
+ ln(ρx) ln(ρy) +

π2

3

}
(3.9)

with

Λ :=
√

(1 − x − y)2 − 4xy,

ρ := 2(1 − x − y + Λ)−1. (3.10)

After this warm-up, we proceed to the much more challenging N = 2 case. Eq. (3.3)

generalizes straightforwardly to

Γ(x, y, z1, z2, m, µ) = (−λ)2

∫ ∞
0

dT T 2

(4πT )D/2
e−

(x−y)2

4T
−m2T

∫
dDk1

(2π)D

∫
dDk2

(2π)D
e−i(k1·z1+k2·z2)

×
∫ ∞

0
dα1e

−α1(k2
1+µ2)

∫ ∞
0

dα2 e−α2(k2
2+µ2)

∫ 1

0
du1

∫ 1

0
du2 (3.11)

×eik1·[y+(x−y)u1]eik2·[y+(x−y)u2]eT
[
k2

141(u1,u1)+k2
241(u2,u2)+2k1·k241(u1,u2)

]
.
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Here we have already rescaled τi = Tui, i = 1, 2. The ordered sector u1 < u2 of this

integral corresponds to the first diagram shown in figure 4 (for N = 2), the sector u1 > u2

to the second one.

As before, we first do the Gaussian k1,2-integrals, and obtain (in the following we

abbreviate 41(ui, uj) by 4ij)

Γ(x, y, z1, z2, m, µ) =
λ2

(4π)D

∫ ∞
0

dT T 2

(4πT )D/2
e−

(x−y)2

4T
−m2T

∫ 1

0
du1du2

∫ ∞
0

dα1dα2e
−(α1+α2)µ2

×
exp

{
− (α1−T411)β2

2+(α2−T422)β2
1+2T412β1·β2

4
[
(α1−T411)(α2−T422)−T 242

12

] }
[
(α1 − T411)(α2 − T422) − T 242

12

]D
2

(3.12)

where we have defined

βi := y − zi + ui(x − y) . (3.13)

Specializing to the massless case m = µ = 0, and changing from αi to α̂i via

αi = T (α̂i + 4ii), i = 1, 2, (3.14)

we can do the T -integral. This leads to

Γ(x, y, z1, z2, 0, 0) =
λ2

(4π)
3
2
D

Γ
(
1 +

3

2
(D − 4)

)∫ 1

0
du1du2

∫ ∞
−411

dα̂1

∫ ∞
−422

dα̂2

× 1[
α̂1α̂2 − ∆2

12

]D
2

[
4

(x − y)2 +
α̂1β2

2+α̂2β2
1+2∆12β1·β2

α̂1α̂2−∆2
12

]1+ 3
2

(D−4)

(3.15)

Setting D = 4, this becomes

Γ(x, y, z1, z2, 0, 0) =
4λ2

(4π)6

∫ 1

0
du1du2

∫ ∞
−411

dα̂1

∫ ∞
−422

dα̂2 (3.16)

× 1[
α̂1α̂2−∆2

12

][
(x−y)2(α̂1α̂2−∆2

12)+ α̂1β2
2 + α̂2β2

1 + 2∆12β1 · β2

] .

Performing the α̂1-integral, which is elementary, we find

Γ(x, y, z1, z2, 0, 0) =
4λ2

(4π)6

∫ 1

0
du1du2

∫ ∞
−422

dα̂2

×
ln

{
α̂2

[
α̂2(β2

1−∆11(x−y)2)+2∆12β1·β2−∆11β2
2−∆2

12(x−y)2
]

(α̂2(−∆11)−∆2
12)(α̂2(x−y)2+β2

2)

}
(α̂2β1 + ∆12β2)2

. (3.17)

The α̂2-integral is still a straightforward one. Introducing the zeroes α̂± of the quadratic

form in the denominator,

α̂± := −∆12

β2
1

[
β1 · β2 ± i

√
β2

1β2
2 − (β1 · β2)2

]
(3.18)
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we can write the result as

Γ(x, y, z1, z2, 0, 0) =
4λ2

(4π)6

∫ 1

0
du1du2

1

(α̂+ − α̂−)β2
1

[
ln

(
−∆11a + β2

1

−∆11a

)
ln

(
−∆22 − α̂−
−∆22 − α̂+

)

+I(0)+I

(
2∆12β1 · β2−∆11β

2
2 −∆2

12a

β2
1 − ∆11a

)
−I

(
∆2

12

∆11

)
−I

(
β2

2

a

)]
(3.19)

where

I(A) := (α̂+ − α̂−)

∫ ∞
−422

dα̂2
ln(α̂2 + A)

(α̂2 − α̂+)(α̂2 − α̂−)

=

{
Li2

(
A − ∆22

A + α̂−

)
+ ln(A − ∆22) ln

(
α̂− + ∆22

α̂− + A

)
+

1

2
ln2

(
− 1

A + α̂−

)}
− (α̂− → α̂+) (3.20)

and we have abbreviated a : (x − y)2 as before. To rewrite the new integrand completely

in terms of the external Lorentz invariants, we further introduce

bi := (x − zi)
2 ,

ci := (y − zi)
2 ,

d := (z1 − z2)
2 . (3.21)

In terms of these variables,

β2
i = uibi + (1 − ui)ci − ui(1 − ui)a ,

2β1 · β2 = (2u1u2 − u1 − u2)a + u2b1 + u1b2 + (1 − u2)c1 + (1 − u1)c2 − d . (3.22)

Although we are not able to perform the remaining two integrals analytically, the rep-

resentation (3.19) is still more explicit than other representations available for this inte-

gral which, as was mentioned in the introduction, plays an important role in SYM the-

ory [36–39].

For the general N -rung case, the formulas (3.3), (3.11) generalize immediately to

Γ(x, y, z1, z2, . . . , zN ) = (−λ)N
∫ ∞

0

dT TN

(4πT )D/2
e−

(x−y)2

4T
−m2T

∫
dDk1

(2π)D
· · · dDkN

(2π)D
e−i

∑
i=1 ki·zi

×
∫

dα1 · · · dαNe−
∑N
i=1 αi(k

2
i+µ2)

∫
du1 . . . duNei

∑N
i=1 ki·(y+(x−y)ui)

×exp

[
T

N∑
i,j=1

∆ijki · kj

]
. (3.23)

The formulas (3.4), (3.12) generalize to

Γ(x, y, z1, z2, . . . , zN ) =
(−λ)N

(4π)N
D
2

∫ ∞
0

dT TN(2−D/2)

(4πT )D/2
e−

(x−y)2

4T
−m2T

∫ 1

0
du1 · · · duN

×
∫ ∞

0
dα̂1 · · · dα̂Ne−

∑N
i=1 α̂iµ

2T 1

(det HN )
D
2

e−
1

4T
~bTNH

−1
N
~bN . (3.24)
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Here HN is the symmetric N × N matrix with entries

HNii = α̂i − ∆ii ,

HNij = −∆ij (i 6= j) , (3.25)

and ~bN = (β1, . . . , βN ) with βi as defined in (3.13).

Finally, also the massless four-dimensional formula (3.16) can still be generalized to

arbitrary N , in the form

Γ(x, y, z1, z2, . . . , zN , 0, 0) =
4(−λ)N

(4π)2(N+1)

∫ 1

0
du1 · · · duN

∫ ∞
0

dα̂1 · · · α̂N

× 1

(det HN )2
[
(x − y)2 +~bTNH−1

N
~bN

] . (3.26)

It seems not to be possible, though, to do all the α̂i-integrals in closed form for general N .

4 N -rung ladders

We will now come to our main purpose, namely to use the representations obtained for

the N -propagators in section 2 for constructing the sum of all ladder and crossed-ladder

graphs with N rungs (simply called “N -ladders” in the following) in our scalar Yukawa

theory (1.2).

Let us start with the graphs in momentum space. Starting with the product of two

copies of (2.11), identifying ki of one N -propagator with −ki of the second one, and inserting

the connecting propagator integrals∫
dk1

(2π)D
1

k2
1 + µ2

. . .

∫
dkN

(2π)D
1

k2
N + µ2

produces precisely N ! times the N -ladder graphs (the momentum space versions of the

graphs shown in figure 5; replace y, ȳ, x, x̄ by (incoming) momenta (p1, p2, q1, q2) there).

We obtain the following integral representation for the sum of these graphs:

〈φ̃(q1)φ̃(q2)φ̃(p1)φ̃(p2)〉(N)
= (2π)DδD(p1 + p2 + q1 + q2)

λ2N

N !

∫ ∞
0

dS

∫ ∞
0

dT e−m
2(S+T )

×
∫ S

0
dσ1 · ·

∫ S

0
dσN

∫ T

0
dτ1 · ·

∫ T

0
dτN (4.1)

×
∫

dk1

(2π)D
1

k2
1+µ2

. . .

∫
dkN

(2π)D
1

k2
N+µ2

(2π)DδD
(

p1+p2+
∑
i

ki

)
×exp

{
−Sp2

1 −
∑
i

(k2
i + 2p1 · ki)σi −

∑
i<j

2ki · kjD(σi, σj)

}

×exp

{
−Tq2

1 −
∑
i

(k2
i − 2q1 · ki)τi −

∑
i<j

2ki · kjD(τi, τj)

}
.
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Next, we introduce Schwinger parameters α1, . . . , αN to exponentiate the “rung” propaga-

tors, and we also (re-)exponentiate the second δ-function,

(2π)DδD
(

p1 + p2 +
∑
i

ki

)
=

∫
dv eiv·

(
p1+p2+

∑
i ki

)
. (4.2)

The ki-integrals are now Gaussian, and performing them involves only the inverse and the

determinant of the symmetric N × N -matrix AN with entries

ANii = σi + τi + αi ,

ANij = D(σi, σj) + D(τi, τj) (i 6= j) . (4.3)

The v-integral then also becomes Gaussian. Doing it one is left with the following inte-

gral representation for the N -ladder (henceforth we will omit the global δ function factor

(2π)DδD(p1 + p2 + q1 + q2)):

〈φ̃(q1)φ̃(q2)φ̃(p1)φ̃(p2)〉(N)
=

1

(4π)(N−1)D
2

λ2N

N !

∫ ∞
0

dS

∫ ∞
0

dT e−m
2(S+T ) (4.4)

×
∫ S

0
dσ1 · ·

∫ T

0
dτN

∫ ∞
0

dα1 · ·
∫ ∞

0
dαN

e−µ
2
∑
i αi

(aN detAN )
D
2

×exp

{
−Sp2

1 − Tq2
1 − b2

N

aN
+ (p1~σ − q1~τ) · A−1

N · (p1~σ − q1~τ)

}
.

Here we have further defined

aN := ~1 · A−1 ·~1 ,

bN := p1 + p2 −~1 · A−1
N · ~σ p1 +~1 · A−1

N · ~τ q1 , (4.5)

with ~1 := (1, . . . , 1), ~σ := (σ1, . . . , σN ) etc. It is understood that the matrix AN acts

trivially on Lorentz indices. Note that (4.4) is still valid in D dimensions.

Fourier transforming (4.4) we obtain the corresponding amplitude in x-space in

the form

〈φq(x)φq(x̄)φq(y)φq(ȳ)〉
(N)

=
1

(4π)(N+2)D
2

λ2N

N !

∫ ∞
0

dS

∫ ∞
0

dT e−m
2(S+T )

×
∫ S

0
dσ1 · ·

∫ T

0
dτN

∫ ∞
0

dα1 · ·
∫ ∞

0
dαN

e−µ
2
∑
i αi

(detLdetAN )
D
2

×exp

{
−1

4

[
aN (y − ȳ)2 + (w, w̄)L−1(w, w̄)

]}
(4.6)

where

L :=

S − ~σA−1
N ~σ ~σA−1

N ~τ

~σA−1
N ~τ T − ~τA−1

N ~τ

 ,

w := x − y +~1A−1
N ~σ (y − ȳ) ,

w̄ := x̄ − ȳ −~1A−1
N ~τ (y − ȳ) . (4.7)
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Starting instead directly from (2.10), one finds the alternative, very compact form

〈φq(x)φq(x̄)φq(y)φq(ȳ)〉
(N)

=
1

(4π)(N+2)D
2

λ2N

N !

∫ ∞
0

dS

∫ ∞
0

dT e−m
2(S+T )− (x−y)2

4S
− (x̄−ȳ)2

4T (4.8)

×
∫ S

0
dσ1 · ·

∫ T

0
dτN

∫ ∞
0

dα1 · ·
∫ ∞

0
dαN

e−µ
2
∑
i αi−

1
4
~rM−1

N ~r

(STdetMN )
D
2

where MN is the symmetric N × N matrix

MNij := δijαi − ∆S(σi, σj) − ∆T (τi, τj) (4.9)

and

~r := (y − ȳ)~1 +
x − y

S
~σ − (x̄ − ȳ)

T
~τ . (4.10)

We note that the two x-space representations (4.6), (4.8) can be related by

MN = AN − ~σ ⊗ ~σ

S
− ~τ ⊗ ~τ

T
,

M−1
N = A−1

N + L−1
11 A−1

N · ~σ ~σ · A−1
N − L−1

12 A−1
N · ~σ ~τ · A−1

N − L−1
21 A−1

N · ~τ ~σ · A−1
N

+L−1
22 A−1

N · ~τ ~τ · A−1
N , (4.11)

which also implies that

STdetMN = detL detAN . (4.12)

5 An application: lowest bound state mass from scalar ladders

We proceed to the simplest possible application of our formulas for the ladder graphs to

the physics of bound states, which is the extraction of the lowest bound state mass. Follow-

ing [21], this can be done by considering the limit of large timelike separation t → ∞, where

t =
1

2
(x4 + x̄4 − y4 − ȳ4) . (5.1)

Denoting the four — point Green’s function in the ladder approximation by G,

G =

∞∑
N=0

GN =

∞∑
N=0

〈φ(x)φ(x̄)φ(y)φ(ȳ)〉
(N)

(5.2)

one has

G
t→∞' c0 e−m0t (5.3)

where m0 is the lowest bound state mass. We can set D = 4, since no regularization will

be required. Since we are not interested in the wave function of the bound state at present,

we can simplify the formula for G by setting

x = x̄, y = ȳ (5.4)
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so that t = x4 − y4 = x̄4 − ȳ4. Further, since the limit t → ∞ is taken at finite spatial

displacement, in this limit we can effectively set

t2 = (x − y)2 = (x̄ − ȳ)2 . (5.5)

Using these relations in eqs. (4.8), introducing the dimensionless time parameter

t̂ :=
m

2
t (5.6)

as well as the effective coupling constant

g :=
λ2

(4π)2m2
, (5.7)

rescaling S, T, αi all by a factor t̂/m2, and changing variables from σi, τi to ui, vi through

σi = S
t̂

m2
ui, τi = T

t̂

m2
vi , (5.8)

we get our following “master formula”,

GN =
m4

(4π)4t̂2

(t̂g)N

N !

∫ ∞
0

dS SN−2

∫ ∞
0

dT TN−2

×
∫ 1

0
du1 · ·

∫ 1

0
dvN

∫ ∞
0

dα1 · ·
∫ ∞

0
dαN

1

(detM̂N )2

×exp

{
−t̂

[
S + T +

1

S
+

1

T
+

µ2

m2

∑
i

αi + (~u − ~v)M̂−1
N (~u − ~v)

]}
(5.9)

where now

M̂Nij := δijαi − S∆1(ui, uj) − T∆1(vi, vj) . (5.10)

We remark that in [33], inspired by Feynman’s famous treatment of the polaron prob-

lem [61], Barro-Bergflödt, Rosenfelder and Stingl have approximated the action in the

worldline or Feynman-Schwinger representation of the four-point Green’s function G (but

including the self-energy and vertex corrections) by a quadratic trial action, in order to

obtain an approximate value for the mass of the lowest-lying bound state. Here, we will

use the large t̂ limit to eliminate, at fixed S, T, αi, ui, the vi integrals by a Gaussian approx-

imation around the point ~v = ~u. For the validity of this approximation, it is essential that

the matrix M̂N be positive semidefinite, which we have checked numerically for various

values of N . The Gaussian approximation results in

GN =
m4

(4π)4t̂2

(πt̂g2)N/2

N !

∫ ∞
0

dS SN−2

∫ ∞
0

dT TN−2

×
∫ 1

0
du1 · ·

∫ 1

0
duN

∫ ∞
0

dα1 · ·
∫ ∞

0
dαN

1

(detM̄N )3/2

×exp

{
−t̂

[
S + T +

1

S
+

1

T
+

µ2

m2

∑
i

αi

]}
(5.11)
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where now

M̄Nij := δijαi − (S + T )∆1(ui, uj) . (5.12)

After a further rescaling

αi ≡ (S + T )α̂i (5.13)

and summation over N , we obtain the following representation for the full Green’s function:

G =
m4

(4π)4t̂2

∫ ∞
0

dS

S2

∫ ∞
0

dT

T 2
exp

{
−t̂

[
S + T +

1

S
+

1

T

]}
×
∞∑
N=1

(πt̂g2)N/2

N !

[
ST

(S + T )1/2

]N
cN

(
t̂(S + T )µ2/m2

)
(5.14)

where

cN (x) :=

∫ 1

0
du1 · · ·

∫ 1

0
duN

∫ ∞
0

dα̂1 · ·
∫ ∞

0
dα̂N

e−x
∑
i α̂i

(detHN )3/2
(5.15)

and the matrix HN had already been introduced in (3.25),

HNij = δijα̂i − ∆1(ui, uj) . (5.16)

It should be noted that, in diagrammatic terms, our Gaussian approximation ~v = ~u corre-

sponds to proper ladder graphs. The only case where a trace of the crossed ladder graphs

can still be left over is for “overlapping rungs” vi = ui = vj = uj (i 6= j) which can be

obtained as limits of crossed or uncrossed rungs.

We will determine the large-t̂ behavior of G (in a special case) by using a saddle point

approximation in the representation (5.14). First, however, we have to focus our attention

on the functions cN . The integrals in (5.15) are convergent, however this is not very

transparent the way they are written. This motivates the following transformations. To

begin with, let us rewrite the matrix HN as

HN = DN (1 − RN ) (5.17)

where DN is the diagonal part of HN

DNij := δij(α̂i − ∆1(ui, uj)) = δij(α̂i + ui(1 − ui)) (5.18)

and

RN := D−1
N ∆

′
(5.19)

where ∆′ denotes the matrix ∆ij with its diagonal terms deleted (here we use the abbre-

viated notation ∆ij = ∆1(ui, uj), as before). Then, we perform a change of variables from

α̂i to β̂i

β̂i :=

√
−∆ii

α̂i − ∆ii
. (5.20)
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The integrals in (5.15) then turn into

cN (x) = 2N
∫ 1

0

du1√
u1(1 − u1)

· · ·
∫ 1

0

duN√
uN (1 − uN )

∫ 1

0
dβ̂1 · · ·

∫ 1

0
dβ̂N

exp
−x

∑
i(−∆ii)

(
1

β̂2
i

−1
)

det
3
2 (1 − R)

.

(5.21)

Note that now D−1
Nij = δij β̂

2
i /(−∆ii).

Further, since the integrand is permutation symmetric, the full ui integrals can be

replaced by N ! times the integral over the ordered sector u1 ≥ u2 ≥ u3 · · · ≥ uN . Thus

we define

c̄N (x) :=
cN (x)

2NN !
=

∫ 1

0

du1√
u1(1 − u1)

∫ u1

0

du2√
u2(1 − u2)

· · ·
∫ uN−1

0

duN√
uN (1 − uN )

×
∫ 1

0
dβ̂1 · · ·

∫ 1

0
dβ̂N

exp
−x

∑
i(−∆ii)(

1

β̂2
i

−1)

det
3
2 (1 − R)

. (5.22)

From now on, we will focus on the case of a massless particle exchange µ = 0, where

the functions c̄N (x) reduce to numbers

c̄N (0) =: c̄N . (5.23)

The first coefficient is

c̄1 =

∫ 1

0

du1√
u1(1 − u1)

= π . (5.24)

For N > 1, inspection of the determinant det(1 − R) shows that it simplifies considerably

if, instead of u1, . . . , uN , one writes it in terms of new variables z2, . . . , zN defined by

conformal cross ratios,

zi :=

√
ui(1 − ui−1)

ui−1(1 − ui)
. (5.25)

Changing variables from ui to zi for i = 2,. . .,N , we obtain

c̄N = 2N−1

∫ 1

0
dz2

∫ 1

0
dz3 · · ·

∫
dzNMN

∫ 1

0
dβ̂1 · · ·

∫ 1

0
dβ̂N

1

det
3
2 (1 − R)

(5.26)

where R is now written as a function of β̂1, . . . , β̂N , z2, . . . , zN and MN is a function of

z2, . . . , zN defined as

MN :=
1

z2z3 · · · zN

∫ 1

0
du1

√
u2(1 − u2)u3(1 − u3) · · · uN (1 − uN )

u1(1 − u1)
(5.27)

Here it is understood that first u2, . . . , uN are, backwards starting from uN , transformed

to z2, . . . , zN via

ui =
ui−1z

2
i

1 − ui−1(1 − z2
i )

(5.28)

– 18 –



J
H
E
P
0
7
(
2
0
1
4
)
0
6
6

N 1 2 3 4 5 6 7 8 9 10 11

c̄N π π3

6 5.9319 5.3402 4.0192 2.6243 1.5349 0.8044 0.378 0.175 0.076

Table 1. The coefficients c̄N .

(i ≥ 2) and then the u1 integral is performed. For N = 2, 3, one finds

M2 =
2 log z2

(z2 − 1)(z2 + 1)
, (5.29)

M3 =
π

(z2 + 1)(z3 + 1)(z2z3 + 1)
. (5.30)

After this transformation, the integral for the second coefficient, too, has become

elementary:

c̄2 = 2

∫ 1

0
dz2M2

∫ 1

0
dβ̂1

∫ 1

0
dβ̂2

1

(1 − β̂2
1 β̂2

2z2
2)

3
2

=
π3

6
. (5.31)

The next coefficients up to N = 11 could be determined by numerical integration

employing the representation (5.26), see table 1.

Since an exact calculation of these coefficients for general N seems out of the question,

we will now try to determine their asymptotic behaviour in the large-N limit. We begin by

asking what the asymptotic behavior of the coefficients c̄N should be to get the expected

correction to the lowest bound state mass in the nonrelativistic limit. In this limit, the

exact bound state energy would, for µ = 0, be [48, 58]

Eb =
1

4
mα2 (5.32)

where

α =
λ2

16πm2
= πg . (5.33)

This corresponds to an exponential factor

e−Et = e−(2m−Eb)t = e−(2m−Eb)2t̂/m = e(−4+ 1
2
π2g2)t̂ (5.34)

for the large-t̂ behavior of G. This should become the exact answer for small g. Now, in

the representation (5.14) of G the trivial exponent −4t̂ corresponds to a saddle point at

S = T = 1; thus, at least for small g it should be a good approximation to set S = T = 1

also in the factor [ST/(S + T )1/2]N that appears in the sum over N . This leaves us with

the series (cf. eq. (5.14) with µ = 0)

∑
N

cN
N !

(πt̂

2

)N/2
gN =

∑
N

c̄N
(
2πt̂
)N/2

gN
!
= e

1
2
π2g2 t̂ . (5.35)
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N 1 2 3 4 5 6 7 8 9 10

βN 1.856 1.525 1.355 1.251 1.179 1.134 1.081 1.025 1.061 1.043

Table 2. The coefficients βN .

2 4 6 8 10

0.5

1.0

1.5

Figure 7. The coefficients βN .

From the Taylor series

∞∑
N=0

xN

Γ(1 + N/2)
= (1 + Erf(x)) ex

2 x→∞∼ 2 ex
2

(5.36)

we then conclude that the c̄N should have the asymptotic behavior

c̄N
N→∞∼ c∞βN

Γ(1 + N/2)
(5.37)

which would lead to an exponential

e2πβ2g2 t̂ . (5.38)

Comparison with (5.35) yields

β
!
=

√
π

2
= 0.886 . (5.39)

To compare with our numerical results for the c̄N , we note that from (5.37) it follows that

the sequence

βN :=
c̄N+1Γ

(
1 + N+1

2

)
c̄NΓ

(
1 + N

2

) (5.40)

should converge to β for N → ∞. The values of βN for N from 1 to 10 are given in table 2,

using the numerical values for the coefficients c̄N from table 1.

We have also plotted the βN together with the expected asymptotic limit β in figure 7.
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Figure 8. The coefficients c̃N .
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Figure 9. The coefficients c′N .

The plot suggests that, if there is convergence at all, it will be to a higher value than β.

In order to understand what is going on, let us return to the coefficients c̄N of table 1,

and plot the combination

c̃N := Γ

(
1 +

N

2

)
c̄N
βN

. (5.41)

If (5.37) were true, the coefficients would converge to the constant c∞; instead we find a

curve which looks parabolic, see figure 8.

Therefore, let us look at yet another set of coefficients c′N ,

c′N :=
c̃N
N2

. (5.42)

These modified coefficients indeed seem to converge to a constant (see figure 9); let us call

this constant c′∞. Thus we now have, instead of (5.37), the asymptotic behaviour

c̄N
N→∞∼ c′∞N2βN

Γ(1 + N/2)
. (5.43)
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N 1 2 3 4 5 6 7 8 9 10

β′N 0.464 0.678 0.762 0.801 0.818 0.833 0.827 0.817 0.859 0.861

Table 3. The coefficients β′
N .

Β = 0.886

2 4 6 8 10

0.5

1.0

1.5

Figure 10. The coefficients β′
N .

Fortunately, this does not change anything essential: instead of (5.36) we get

∞∑
N=0

N2 xN

Γ(1 + N/2)

x→∞∼ 8x4 ex
2
. (5.44)

So, there is no modification of the exponent, only of the prefactor, which does not interest us

right now.1 We can also adapt the definition (5.40) of βN to the asymptotic behavior (5.43)

by defining

β′N :=
N2c̄N+1Γ

(
1 + N+1

2

)
(N + 1)2c̄NΓ

(
1 + N

2

) =
βN

(1 + 1/N)2
. (5.45)

The first ten coefficients β′N are given in table 3.

From these values, it is at least credible that β′N asymptotically converges to β = 0.886;

see figure 10.

In the following, we hence assume that (5.43) is true, with β =
√

π/2. Let us then

undo the assumption of small g and of the saddle point at S = T = 1 and return to (5.14).

The asymptotic summation formula (5.44) now leads to a total exponential factor

exp

[
−t̂

(
S + T +

1

S
+

1

T
− π2g2 S2T 2

S + T

)]
. (5.46)

1It is curious to note, however, that this change of the prefactor precisely removes the factor 1/t̂2 in the

master formula (5.14).
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As long as g2 < 1/3π2, one finds a saddle point (local maximum) of the exponent at

S = T =

√
2

3

1

πg

√
1 −

√
1 − 3π2g2 (5.47)

with saddle point value

exp

{
−t̂

4
√

2

3

[(
1 +

√
1 − 3π2g2

)−1/2

+

(
1 +

√
1 − 3π2g2

)1/2]}
. (5.48)

From (5.3), (5.6) this gives for the lowest bound state mass m0

m0

m
=

2
√

2

3

[(
1 +

√
1 − 3π2g2

)−1/2

+

(
1 +

√
1 − 3π2g2

)1/2]
(5.49)

As g2 increases from zero to its maximal value 1/3π2, the result (5.49) for this mass m0

decreases monotonically from 2m to 4
√

2
3 m = 1.886m. An expansion of (5.49) in g yields

m0

m
= 2 − π2g2

4
− 9

64
(π2g2)2 − 81

512
(π2g2)3 − . . . (5.50)

In the second term of the expansion we find again, of course, the nonrelativistic limit (5.32)

of the binding energy, which we have already used as an input for our matching procedure;

but the order g4 term is already new. We note that in the expansion (5.50) of the bound

state mass in powers of g no term of the order g3 ln g appears, as it would be the case for

the corresponding result in the Wick-Cutkosky model, i.e., for the ladder approximation of

the Bethe-Salpeter equation in the same model theory [57]. As we have mentioned before

in the introduction, such a contribution is generally considered to be unphysical.

Our result for the mass of the lowest bound state may be compared to the result of

the relativistic eikonal approximation or Todorov’s equation [62, 63], in our notation,

m0

m
=

√
2

(
1 +

√
1 − π2g2

)1/2

= 2 − π2g2

4
− 5

64
(π2g2)2 − . . . (5.51)

In terms of diagrams, the eikonal approximation sums up all ladder and crossed ladder

diagrams, but neglects any self-energy contributions and vertex corrections, just as our

approach does. It has been argued to reproduce the contribution of the ladder and crossed

ladder diagrams correctly up to the order g4 (see, e.g., [33]). Note that the coefficient of

the g4-term in the expansion (5.51) of the bound state mass in powers of the coupling

constant is somewhat smaller (in absolute value) than in our approximation, but it has

the same sign.

Finally, we can compare the maximal possible value of the coupling constant, g2 =

1/3π2, to the critical value found in the variational worldline approximation of [33]. The

latter value is (approximately) α = 0.814 (without self-energy and vertex corrections, and

for a massless exchanged particle), somewhat larger than our value α = πg = 1/
√

3 = 0.577.

The existence of a critical coupling constant is attributed to the instability of the vacuum

in the scalar model theory in [33].
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6 Conclusions

To summarize, in this paper we have used the worldline formalism to derive integral rep-

resentations for three classes of amplitudes — the N -propagators, N -half-ladders and the

N -ladders — in scalar field theory involving an exchange of N momenta, and in each case

have given a compact expression combining the N ! Feynman diagrams contributing to the

amplitude. For the N -propagators and N -ladders we have given these representations in

both x and (off-shell) momentum space, for the N -half-ladders in x-space only. These

amplitudes are not only of interest in their own right, but, being off-shell, can also be used

as building blocks for many more complex amplitudes.

In particular, we have derived a compact expression for the sum of all ladder graphs

with N rungs, including all possible crossings of the rungs, which we use in section 5 to

extract an approximate formula for the mass of the lowest-lying bound state, explicitly for

the case of a massless particle exchange between the constituents. Technically, we apply

a saddle point approximation to our formula for the N -rung ladders, after summing over

all N . Before applying the saddle point approximation, however, we have made use of

a Gaussian approximation in eq. (5.11) that leads to an important simplification in the

formulas for the N -rung ladders. Both approximations exploit the large-time limit that is

being considered for the extraction of the lowest-lying bound state, but it would certainly

be more satisfying to have a way to arrive at an approximate formula for the lowest bound-

state mass by taking advantage of the large-time limit in a single step, instead of using two

consecutive approximations. Thus our procedure cannot claim mathematical rigor, but

we think it is worth presenting it in any case. This is because, differently from previous

attempts at this calculation [55–58], in our approach the truncation to the non-crossed

ladder graphs is induced naturally by the Gaussian approximation ~v = ~u, rather than done

ad hoc from the beginning, and moreover our final result (5.49) for the mass of the lowest

bound state does not display any obvious inconsistencies. Equation (5.49) is similar to

the result of the relativistic eikonal approximation [62, 63], and the maximal value of the

coupling constant for which a bound state is found in our approximation is comparable to

the critical coupling constant in a variational worldline approximation [33]. We intend to

further test our result by a direct numerical path integral calculation along the lines of [47],

but taking advantage of the sophisticated worldline Monte Carlo technology developed in

the meantime in [16, 18]. Our aim in the present paper has merely been to demonstrate

the feasibility of extracting information on the bound states of a theory from an analytical

evaluation of the worldline integrals, in an appropriate approximation.

Our second nontrivial application was to obtain a new two-parameter integral repre-

sentation for a massless four-point x-space integral of some importance in N = 4 SYM

theory [36–39].

Coming to possible generalizations, it would be straightforward to extend our various

master formulas to the case of scalar QED (i.e. scalar lines and photon exchanges). In

the spinor QED case (fermion lines and photon exchanges) closed-form expressions for

general N could still be achieved using the worldline super-formalism [3], however at the

cost of introducing additional multiple Grassmann integrals. For eventual extensions to
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the nonabelian case it may turn out essential to work with a path integral representation

of the color degree of freedom, such as the one recently given in [64], rather than with

explicit color factors. Finally, even a closed-form treatment of ladder graphs involving

the exchange of gravitons between scalars or spinors - a completely hopeless task in the

Feynman diagram approach due to the existence of vertices involving an arbitrary number

of gravitons - may be feasible in the worldline formalism along the lines of [25, 26].
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A Comparison with Feynman diagrams

Let us consider the term appearing in (2.11)

N !

∫ 1

0
du1 · ·

∫ 1

0
duN

[
p2

1 + m2 +
∑
i

(k2
i + 2p1 · ki)ui

+
∑
i<j

2ki · kj
(
uiθ(uj − ui) + ujθ(ui − uj)

)]−N−1

(A.1)

The integration region can be split into N ! subregions specified by a unique ordering σ(i)

of the indices i = 1, 2, . . . , N so that ti = uσ(i) are ordered as 1 ≥ t1 ≥ t2 ≥ . . . ≥ tN ≥ 0.

Then each integration subregion contributes

N !

∫ 1

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 · ·

∫ tN−1

0
dtN

[
p2

1 + m2 +
∑
i

(k2
σ(i) + 2kσ(i) · p1)ti (A.2)

+
∑
i<j

2kσ(i) · kσ(j)

(
ti θ(tj − ti)︸ ︷︷ ︸

=0

+tj θ(ti − tj)︸ ︷︷ ︸
=1

)]−N−1

=N !

∫ 1

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 · ·

∫ tN−1

0
dtN

[
p2

1+m2+
∑
i

(k2
σ(i)+2kσ(i) ·p1)ti+

∑
i<j

2kσ(i) ·kσ(j)tj

]−N−1

=N !

∫ 1

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 · ·

∫ tN−1

0
dtN

[
p2

1+m2+
∑
i

[
(k2
σ(i)+2kσ(i) ·

(
p1+

i−1∑
j=1

kσ(j)

)]
ti

]−N−1

=
1

p2
1 + m2

1

(p1 + kσ(1))2+m2

1

(p1 + kσ(1) + kσ(2))2 + m2
· · · 1

(p1 +
∑N

i=1 kσ(i))2 + m2

This shows that in each internal propagator flows the momentum as implied by momentum

conservation at each vertex. The last integration above has been carried out by using the
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well-known formula

1

A0A1A2 · · · AN
= N !

∫ 1

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 · ·

∫ tN−1

0
dtN (A.3)

× 1

[A0 + (A1 − A0)t1 + (A2 − A1)t2 + · · · + (AN − AN−1)tN ]N+1
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