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1 Introduction

String theory does not have a non-perturbative definition at present, but it gives a well

defined procedure for computing S-matrix elements involving BPS or a class of massless

external states — whose masses are protected from renormalization — to any order in

perturbation theory. Furthermore this perturbation expansion is free from ultraviolet di-

vergences (see e.g. [1–17] for recent discussion). However the usual procedure for computing

S-matrix elements breaks down for general massive states. This is due to the fact that for

general massive states loop corrections generate (ultraviolet finite) mass renormalizations,

and hence in order to compute the physical S-matrix elements we have to shift the external

momenta to their renormalized on-shell values. On the other hand string perturbation

theory, which is based on world-sheet conformal invariance, requires the vertex operators

representing external states to be dimension zero primary fields. This is equivalent to

requiring that the external momenta satisfy the tree level on-shell condition.

For many states this is not a problem since they appear as single particle intermediate

states in the S-matrix of massless and/or BPS external states and hence their renormalized

masses and S-matrix elements can be found by examining the locations and residues of the

poles of the S-matrix of massless and/or BPS states. For this reason direct computation

of the S-matrix of massive string states has not received much attention. However this

does not always work, e.g. if the massive state under consideration carries a conserved

charged that is not carried by any of the massless or BPS states, then the former cannot

appear as a single particle intermediate state in the S-matrix of the latter. For this reason

it seems important to find a more direct approach to computing the mass renormalization

and S-matrix elements of massive string states.

In this paper we undertake this task for a special class of states in bosonic string

theory. There are two related but independent problems which arise in the computation
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of mass renormalization in string theory. First we have to define the analog of the off-

shell Green’s function in string theory. This requires giving up the conformal invariance

of vertex operators and hence is ambiguous. Second, under renormalization the BRST

invariant physical states begin mixing with the unphysical states of string theory and

hence the definition of the physical state needs to be modified carefully. By choosing a

special class of states we avoid the second problem — these special class of states do not

mix with unphysical states due to some global symmetries. However we still need to deal

with the first problem, ı.e. the ambiguity in the definition of the off-shell Greens function.

We show that although the off-shell Greens functions are ambiguous, the renormalized

mass and S-matrix elements computed from them are free from these ambiguities.

The paper is organised as follows. In section 2 we make precise the problem associated

with mass renormalization in string theory, and also introduce the special class of states

for which we address the problem in this paper. In section 3 we describe how to compute

the renormalized mass of these special states and also show that this renormalized mass is

free from any ambiguity. In section 4 we show how to compute the S-matrix elements of

these special states, and demonstrate that they are also free from ambiguities. We end in

section 5 with a discussion of our results, extensions to heterotic and superstring theories

and future generalizations.

Various other approaches to studying mass renormalization in string theory can be

found in [18–31]

2 The question

Consider a string theory amplitude with n-external states representing particles carrying

momenta k1, · · · kn and other discrete quantum numbers a1, · · · an with tree level masses

ma1 , · · ·man . Then the momenta ki satisfy the tree level on-shell condition k2i = −m2
ai ,

— this is needed to ensure the BRST invariance of the vertex operators in the world

sheet theory. The world-sheet computation, involving correlation functions of these vertex

operators integrated over the moduli spaces of (punctured) Riemann surfaces, yields the

result for what in a quantum field theory can be called ‘truncated Green’s function on

classical mass shell’:1

R
(n)
a1···an(k1, · · · kn) ≡ lim

k2i→−m2
ai

F
(n)
a1···an(k1, · · · kn) ,

F
(n)
a1···an(k1, · · · kn) ≡ G

(n)
a1···an(k1, · · · kn)

n∏

i=1

(k2i +m2
ai) , (2.1)

where G
(n)
a1···an(k1, · · · kn) correspond to the momentum space Green’s function in the quan-

tum field theory. This is similar to but not the same as the combination that appears in

the expression for the S-matrix in a quantum field theory

S
(n)
a1···an(k1, · · · kn) = lim

k2i→−m2
ai,p

G
(n)
a1···an(k1, · · · kn)

n∏

i=1

{Z−1/2(ki, ai)(k
2
i +m2

ai,p)} , (2.2)

1We have absored all factors of i ≡
√
−1 and minus signs into the definition of G(n) and R(n).
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where mai,p is the physical mass of the i-th particle, defined as the location of the pole as

a function of −k2 in the untruncated two point Green’s function G(2) and Z(ki, ai)’s are

the residues at these poles.

For simplicity we have ignored the mixing between different states under wave-function

renormalization in writing down (2.2), but we shall discuss the general case now. If we

consider the set of all fields whose tree level masses are all equal to m then the two point

Green’s function G
(2)
ab (k, k

′) for all these fields is described by the matrix

G
(2)
ab (k, k

′) = (2π)D+1δ(D+1)(k + k′)Z1/2(k)ac(k
2 +M2

p )
−1
cd (Z

1/2(−k))Tdb , (2.3)

where M2
p is the mass2 matrix and Z1/2(k) is the wave-function renormalization matrix,

the latter being free from poles near k2+m2 ≃ 0. The sum over c, d are restricted to states

which have the same tree level mass m as the states labelled by the indices a, b. D + 1

is the total number of non-compact space-time dimensions. We can diagonalize M2
p and

absorb the diagonalizing matrices into the wave-function renormalization factor Z1/2(k) to

express M2
p as a diagonal matrix. These eigenvalues, which we shall denote by m2

a,p, are

the squares of the physical masses. Taking into account the non-diagonal nature of the

wave-function renormalization factor Z, (2.2) is modified to

S
(n)
a1···an(k1, · · · kn) = lim

k2i→−m2
ai,p

G
(n)
b1···bn

(k1, · · · kn)
n∏

i=1

{Z
−1/2
i (ki)ai,bi(k

2
i +m2

ai,p)} , (2.4)

where Z
−1/2
i is the inverse of the matrix Z1/2 introduced in (2.3) for the i-th external

state. In this expression we can interpret the sum over bi’s as sum over all fields in the

theory if we define Z1/2(k)ab and Z
−1/2(k)ab to be zero when a, b label fields with different

classical mass.

At tree level Z = 1, M2
p = m2 I and hence the R(n) defined in (2.1) and S(n) defined

in (2.4) agree. In general however R(n) and S(n) are different. While S(n) defined in (2.4) is

the physically relevant quantity, string theory directly computes R(n) defined in (2.1). Thus

the question arises: how can we use string theory to compute on-shell S-matrix elements

beyond tree level? At a more basic level: how can we use string theory to calculate the

physical mass mai,p of the i-th particle?

When the external strings represent massless gauge particles, the situation improves

dramatically. In this case gauge symmetry prevents mass renormalization and hence we

have m2
ai,p = m2

ai = 0. As a result R(n) and S(n) differ only by the wave-function renor-

malization factor Z. This can be fixed by using analyticity property of the S-matrix, e.g.

the S-matrix should factorize into the product of lower point S-matrices when the external

momenta are such that some internal line could become on-shell. Thus string world-sheet

computation can be used to compute the S-matrix of massless external states.

Now typically in string theories many massive string states appear as one particle

intermediate states in the scattering of massless states and as a result the S-matrix of the

massless states can have poles when the square of appropriate combination of external

momenta approaches the squared mass of a massive state. The location of this pole gives

information about the mass of the massive state while the residue at this pole contains
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information about the S-matrix involving massive external states. However this procedure

does not always work. Some string theories contain massive states which do not appear

as one particle intermediate states in the scattering of massless particles. We shall now

describe some examples of such situations.

1. Consider bosonic string theory compactifed on a circle S1. In this case a state car-

rying a winding number (and/or momentum) along S1 cannot be produced as single

particle intermediate state in the scattering of massless states which do not carry any

momentum and winding charge.2

2. Another notable example is SO(32) heterotic string theory which contains massive

states belonging to the spinor representation of SO(32). They cannot appear as

single particle intermediate states in the scattering of massless external states which

are all in the adjoint or singlet representation of SO(32). Thus the S-matrix element

involving these particles cannot be computed by examining any massless S-matrix

element near its poles.

In order to deal with these cases we shall try to develop a different strategy — compute

the mass renormalization directly. We shall focus on a special class of states — which we

shall call special states — for which the analysis simplifies. We shall conclude this section

by describing these special states and their relevance to the problems mentioned above.

Let us suppose that we are dealing with a string theory with D+1 non-compact dimen-

sions, with SO(D, 1) Lorentz invariance. Then while discussing the mass renormalization

of a massive state we can go to the rest frame of the particle so that the spatial component
~k of the momentum vanishes. In this frame we consider physical states described by vertex

operators of the form

c c̄ e±ik0X0
V (2.5)

where c, c̄ are ghost fields and V is a dimension (h, h) primary made of the compact coor-

dinates and the oscillators of the non-compact spatial coordinates. The on-shell condition

on k0 is

k0 = m, m2 = 4(h− 1) , (2.6)

in the α′ = 1 units. The operators V will form a finite dimensional representation of

the SO(D) little group. If the world-sheet theory has additional global symmetry group

G associated with the compact directions then the operators V will also belong to finite

dimensional representation of this symmetry group.

Now consider all operators of the form e±ik0X0
O where O’s are dimension (h−1, h−1)

operators made of the ghost fields, compact coordinates and oscillators of X0 and the

non-compact spatial coordinates. They can be organised into irreducible representations

of SO(D) × G. Among them the operators which are not of the form (2.5) will be called

2Such states could still appear in pairs in the intermediate channel, producing a cut in the S-matrix of

massless states, and by examining where the cut begins, we can find the mass of the intermediate state.

But it is much harder to identify cuts than poles in the S-matrix, and we shall not explore this option.
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unphysical vertex operators at mass level m.3 We shall define special vertex operators

to be a set of vertex operators of the form given in (2.5) belonging to those irreducible

representations of the symmetry group SO(D)×G such that there are no unphysical vertex

operator at mass level m transforming in these representations. Put another way, if the

unphysical vertex operators at mass levelm transform in certain irreducible representations

R1, R2, · · · then the special vertex operators are those physical states which transform in

representations other than R1, R2, · · · . In this case the two point function of any special

vertex operator and an unphysical operator on any Riemann surface will vanish.

We shall now give some examples of special vertex operators.

1. Consider bosonic string theory in 25 + 1 dimensions. We consider vertex operators

of the form (2.5) with V given by

S
[
∂Xi1 · · · ∂Xin ∂̄Xj1 · · · ∂̄Xjn

]
. (2.7)

where Xi for 1 ≤ i ≤ 25 are the spatial coordinates and S denotes the operation

of taking the symmetric traceless part of the product. This belongs to a rank 2n

symmetric traceless representation of SO(25) — also known as the leading Regge

trajectory. In order to get an unphyical state at the same mass level we have to

replace some of the ∂Xi or ∂̄Xj by ghost orX0 excitations and/or replace the product

of some of the ∂Xi’s and/or ∂̄Xi’s by higher derivatives of Xi’s. This clearly reduces

the rank of the tensor and hence the unphysical states cannot belong to the rank 2n

symmetric tensor representation of SO(25). Thus vertex operators of the form (2.7)

are special.

2. Consider bosonic string theory compactified on a circle. Let Y be the coordinate

along the compact direction, and YL and YR be its left and right-moving components

on the world-sheet. We now consider the vertex operator of the form (2.5) with

V = e±i(n/R−wR)YL/2e±i(n/R+wR)YR/2 S
[
∂̄Xi1 · · · ∂̄Xip∂Xj1 · · · ∂Xjq

]
, p− q = nw ,

(2.8)

where Xi for i = 1, · · · 24 denote the non-compact directions and S stands for the

projection into rank p + q symmetric traceless representation of SO(24). Following

the same argument as before it follows that there are no unphysical vertex operators

at this mass level carrying n units of momentum, w units of winding and belonging

to the rank p+ q symmetric traceless representation of SO(24). Thus these are also

special states according to the definitions given above.

3. Finally we note that the stable non-BPS states of SO(32) heterotic string theory —

which correspond to the lowest mass states in the spinor representation of SO(32)

— are also special states. Besides the ghost fields and the e±ik0X0
factor, the left-

moving part of the vertex operator is given by the SO(32) spin field of dimension

3Technically the unphysical operators described here can the divided into two kinds, BRST trivial ones

and states which are not invariant under BRST transformation. The former are called pure gauge and the

latter are called unphysical. We shall not need to make this distinction, and call all such states unphysical.
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2, and has no further oscillator excitations. Level matching requires that the right-

moving part of the Neveu-Schwarz (NS) sector vertex operator corresponds to level

3/2 excitations above the NS-sector ground state. We can take this to be ψiψjψk

where ψi for 1 ≤ i ≤ 9 are the world-sheet superpartners of the 9 non-compact bosonic

coordinates. This belongs to the totally anti-symmetric rank 3 tensor representation

84 of SO(9). It is easy to see that any other unphysical state at this mass level,

obtained by replacing some of the ψi’s by ghost or ψ0 oscillators or derivatives of ψi

or bosonic coordinates cannot belong to the 84 representation of SO(9). Thus these

states are special states.

The reader might have noticed that there is a close relationship between special states

which are prevented from mixing with the unphysical states due to global symmetry on the

world-sheet and the states which cannot appear as poles in the scattering of massless states

due to conserved charges. Indeed the lowest mass states in each of the examples of the latter

kind given earlier also correspond to special states. On general grounds one expects that

in every charge sector we can construct a set of special states by saturating the required

oscillator levels by (anti-)symmetric products of bosonic (fermionic) fields associated with

the non-compact coordinates. For this reason we shall focus on computation of physical

mass and S-matrix elements involving these special states and massless states, since the

renormalized mass and S-matrix elements of all other states can be obtained from the

locations of the poles of the S-matrix involving the special states and massless states.

3 Mass renormalization

If we work in the rest frame, then the off-shell continuation of a special vertex operator

would correspond to deforming k0 away from m. This keeps the vertex operator primary

but it no longer has dimension 0. Thus in order to define the correlation functions of

such vertex operators on a Riemann surface we need to make a choice of local coordinate

around every point on the Riemann surface. If z denotes some reference cordinate system

on the Riemann surface then the local coordinate w around some point z = z0 is described

by some function f(w; z0) that maps the w plane to the z plane around z = z0. We take

f(0; z0) = z0 and f(w; z0) to be analytic around w = 0. Thus f depends on both, the choice

of the reference coordinate system z and the choice of the local coordinate system w. The

vertex operator at z0 is inserted using the local coordinate w, which corresponds to inserting

its conformal transformation by the function f(w; z0) in the z coordinate system [32]. Thus

if the off-shell vertex operator is a primary operator of dimension (δ, δ) then we multiply it

by (f ′(0; z0))
δ(f ′(0; z0))

δ while inserting it into the correlation function in the z coordinate

system, f ′ being the derivative of the function f(w; z0) with respcet to w. For more general

vertex operator representing general off-shell string state the same procedure would work

although the conformal transform of the vertex operator will be more complicated..4 This

definition makes the correlation function invariant under a change of reference coordinate

system z, but dependent on the choice of local coordinates w, ı.e. the function f(w; z0).

4For related approaches to defining off-shell amplitudes in string theory, see [33–36]
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As a result, if we define off-shell strng amplitudes by integrating such correlation functions

over the moduli space, the result will depend on the choice of local coordinates.

In a sense the situation in string theory is not very different from that in a gauge theory.

In gauge theory for computing the mass renormalizaton of a massive charged particle we

have to first compute the off-shell propagator carrying momentum k = (k0,~0) and then

look for its poles in the k0 plane. The off-shell propagator is not gauge invariant; however

the location of its pole in the k0 plane is gauge invariant and leads to a gauge invariant

definition of the renormalized mass. Thus a possible strategy in string theory will be to

consider off-shell propagator that depends on the choice of local coordinates, look for its

poles in the k0 plane and prove that the location of the pole is independent of the choice

of local coordinates even though the propagator itself is not gauge invariant. If we had

an underlying string field theory then this analysis will be parallel to that in an ordinary

gauge theory. This can be done in principle for bosonic string theory where a complete

closed string field theory is known [37].5 At present there is no known string field theory

for closed heterotic and superstring theories except a closed heterotic string field theory

at tree level [38]. Nevertheless we can try to extract the relevant features of the off-shell

string theory amplitudes from a bosonic string field theory and then develop a general

proof of indpendence of the renormalized mass of the choice of local coordinates that does

not require the existence of an underlying string field theory. The essential features seem

to be the following:

1. Bosonic string field theory gives a triangulation of the punctured Riemann surface

equipped with local coordinate system at each puncture. Using this local coordinate

system we can define off-shell amplitudes.

2. Near boundaries of the moduli space where a Riemann surface of genus n degenerates

into two Riemann surfaces of genus n1 and n2 = n− n1 connected by a long handle,

the choice of the local coordinates of the original Riemann surface matches with the

choice of the local coordinates of the lower genus surfaces. The precise meaning on

‘near boundaries of the moduli space’ will be made clear later (see item 6 in the

discussion in section 3.2 (above eq. (3.21)).

For an off-shell amplitude induced from string field theory the above requirements

are automatically satisfied, but even in the absence of string field theory we could try to

choose local coordinates at the punctures consistent with the above criteria. Indeed even

before the construction of fully covariant closed string field theory, such choices of local

coordinates were explored (see e.g. [39]). Given such a choice of local coordinates, we can

define off-shell two point functions in string theory and define the mass to be the location of

the pole in the k0 plane. The important point is to show that this definition is independent

of the choice of local coordinates.

From now on we shall restrict our analysis to bosonic string theory. We discuss possible

generalizations to superstring and heterotic string theories in § 5.

5Due to the presence of tachyon, the mass renormalization in this case is infrared dvergent.
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3.1 Analysis of poles of off-shell two point function

Let us denote the set of all the special vertex operators by cc̄Vi e
ik0X0

and the corresponding

states as

c1c̄1|Vi〉 ⊗ |k0,~k = 0〉 . (3.1)

In the zero mode sector of non-compact bosons labelled by (k0,~k), the states satisfy the

usual δ-function normalization. The operaors Vi will be chosen so that in the rest of the

matter-ghost CFT, they satisfy the orthonormality relation

〈Vi|c−1c̄−1c0c̄0c1c̄1|Vj〉 = δij . (3.2)

Let F (k) be the off-shell two point function of special states obtained by summing over

all genera. If there are np special states at mass level m then F (k) is an np × np matrix

satifying

F (k) = F (−k)T , (3.3)

where F T denotes transpose of F . Then the off-shell propagator of special states is given by6

1

k2 +m2
+

(
1

k2 +m2

)2

F (k) , (3.4)

where m is the tree level mass. The first term represents the tree level propagator whereas

the first factor of the second term is the effect of the two external propagators. F (k)

admits a genus expansion of the form
∑

n Fng
2n in string coupling g, with higher genus

contributions having higher order poles at k2 +m2 = 0 from regions of the moduli space

where the Riemann surface degenerates into two or more Riemann surfaces of lower genera

connected by long handles, with the two external vertices lying on the two lower genus

Riemann surfaces at the two ends. We expect that after resummation, (3.4) may be

written as Z1/2(k) (k2+M2
p )

−1(Z1/2(−k))T for some physical mass2 matrix M2
p and wave-

function renormalization matrix Z1/2(k) which has no pole near k2 = −m2. This will

be seen explicitly in (3.11)–(3.15) below. We can take M2
p to be diagonal by absorbing

the diagonalizing matrix into the definition of Z1/2(k). If m2
a,p for a = 1, 2 · · ·np are

the eigenvalues of the mass2 matrix M2
p then the physical poles of the propagator are

at k2 = −m2
a,p.

Now consider the effect of changing the local coordinate system by an infinitesimal

amount. Let the change in F to first order be δF . Then in order that the location of the

poles of the propagator in the k2 plane does not shift, the net change in (3.4) must be of

the form of an overall multiplicative factor that renormalizes Z1/2(k). Thus we require

1

k2 +m2
+

(
1

k2 +m2

)2

(F (k) + δ F (k))

= (1 + δY (k))

{
1

k2 +m2
+

(
1

k2 +m2

)2

F (k)

}
(1 + δY (−k))T , (3.5)

6We have removed an overall factor of −i and also absorbed a factor of −i into the definition of F (k).
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for some matrix δY (k) whose genus expansion is free from any poles at k2 + m2 = 0.

Equivalently we can write

δF (k) = (k2 +m2) δY (k) + (k2 +m2) (δY (−k))T + δY (k)F (k) + F (k) δY (−k)T . (3.6)

At each genus the two point function δF receives two contributions — from the change

of local coordinates at the vertex carrying momentum k and the change in local coordinates

at the vertex carrying momentum −k. Both these contributions have an explicit factor

of k2 + m2 due to the fact that when k2 + m2 = 0 the vertex is on-shell and hence

there is no dependence on local coordinates. In concrete terms, since the off-shell vertex

operator of a special state is a primary of dimension ((k2 + m2)/4, (k2 + m2)/4), if we

insert such an operator at the origin w = 0 of the local cordinate system, and then change

the local coordinate from w to w + ǫ(w) then we pick up a net multiplicative factors of

(1 + ǫ′(0))(k
2+m2)/2 ≃ (1 + (k2 + m2)ǫ′(0)/2). Thus we introduce the function δH via

the relations

δF (k) = (k2 +m2) δH(k) + (k2 +m2) (δH(−k))T , (3.7)

where the first term is the effect of the change of local coordinates at the vertex carrying

momentum k and the second term is the effect of change of local coordinates at the vertex

carrying momentum −k. The rules for computing δH are the same as that of F except

that at one of the punctures the vertex cc̄Vi is replaced by ǫ′(0)cc̄Vi/2. We shall call the

puncture where the effect of change of local coordiantes is inserted the ‘special puncture’.

Eq. (3.6) can now be satisfied by choosing δY (k) such that

δH(k) = δY (k) + (k2 +m2)−1 δY (k)F (k) . (3.8)

Our goal will be to show the existence of δY (k) satisfying (3.8) such that the genus expan-

sion of δY (k) does not have any pole at k2 +m2 = 0.

We now claim that there exist quantities F̃ and δH̃ with the properties that the genus

expansion of neither of them has any poles near k2 +m2 = 0, both have genus expansion

starting at one loop and F and δH can be expressed in terms of F̃ and δH̃ as

F = F̃ (1− (k2 +m2)−1F̃ )−1 , (3.9)

δH = δH̃(1− (k2 +m2)−1F̃ )−1 . (3.10)

Let us first proceed assuming this to be true. From eqs. (3.9) and (3.4) we see that the full

propagator is given by

(k2 +m2)−1 + (k2 +m2)−2F̃ (1− (k2 +m2)−1F̃ )−1 = (k2 +m2 − F̃ (k))−1 . (3.11)

If we choose a real basis of fields in position space then we have F̃ (k)† = F̃ (k) and

F̃ (k)T = F̃ (−k). In this case by choosing suitable unitary matrix U(k) satisfying U(−k)T =

U(k)† we can express F̃ (k) as U(k)F̃d(k)U(k)† where F̃d(k) is a diagonal matrix satisfying

F̃d(−k) = F̃d(k). Furthermore the genus expansion of U(k) is free from poles at k2+m2 = 0

since F̃ (k) has this property. We can now express (3.11) as

U(k)(k2 +m2 − F̃d(k))
−1U(k)† = U(k)(k2 +m2 − F̃d(k))

−1U(−k)T . (3.12)
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Let M2
p denote the diagonal matrix that describes the locations of the zeroes of the eigen-

values of the diagonal matrix k2 + m2 − F̃d(k) in the −k2 plane. We can solve for this

iteratively starting with the leading order solution k2 = −m2. Then we can write

(k2 +m2 − F̃d(k))
−1 = Xd(k)(k

2 +M2
p )

−1 , (3.13)

where Xd(k) is a diagonal matrix whose genus expansion does not have any pole near

k2 = −m2 and satisfies Xd(−k) = Xd(k). Defining

Z1/2(k) = U(k)
√
Xd(k) , (3.14)

satisfying Z1/2(k)† = Z1/2(−k)T we can express the propagator (3.11) as

Z1/2(k) (k2 +M2
p )

−1 Z1/2(−k)T . (3.15)

The genus expansion of Z1/2(k) does not have any poles at k2+m2 = 0 since neither U(k)

nor X
1/2
d (k) has such poles.

Now using eq. (3.9) we can express (3.10) as

δH = δH̃(1 + (k2 +m2)−1F ) . (3.16)

Comparing this with (3.8) we get

δY = δH̃ . (3.17)

Since δH̃ does not have any pole near k2 +m2 = 0 this establishes that δY also does not

have any pole near k2+m2 = 0. This in turn establishes the desired result that the locations

of the poles of (3.4) in the k2 plane do not change under change in local coordinates.

3.2 Explicit construction of F̃ and δH̃

It now remains to prove the existence of pole free F̃ and δH̃ satisfying (3.9) and (3.10).

We shall do this in steps.

1. First we extend the definitions of δH and F where we allow the external states

inserted at the punctures (except at the special puncture) to be general string states

of ghost number two,7 inserted using the same local coordinate system as before.

This makes F into an infinite dimensional square matrix which we shall call F and

δH into an np× infinite dimensional matrix (since one of its two punctures is special)

which we shall call δH.

2. We now use another insight from string field theory [37]: it provides us with a triangu-

lation of the moduli space in which the full moduli space of a genus n Riemann surface

with two punctures can be decomposed into a ‘one particle irreducible’ region Rn and

the rest. The region Rn has the property that it does not contain any boundary of

the moduli space in which a genus n Riemann surface degenerates into a pair of two

7As will become clear later, we need to extend this definition only to those states which are annihilated

by L0 − L̄0, b0 and b̄0.
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punctured lower genus Riemann surfaces connected by a long handle, with each side

containing one of the original punctures. The rest of the moduli space is obtained by

gluing in all possible ways lower genus puctured Riemann surfaces corredponding to

regions Rn′ by the plumbing fixture procedure [39, 40]. If we denote by F̂ and δĤ the

contributions to F and δH from integration over the one particle irreducible regions

Rn of the moduli spaces, then F̂ and δĤ have no poles at k2+m2 = 0 since the region

of integration does not include the degenerating Riemann surfaces. We shall shortly

discuss how to define F̂ and δĤ in the absence of a string field theory underlying the

choice of local coordinates we have made. There is also an additional subtle point in

the definition of δĤ which will be discussed in point 11 of this discussion.

3. We can regard F̂ and F as maps from H × H to C where H denotes the space of

string states of ghost number 2. However since string states of ghost number 4 form

the dual vector space of string states of ghost number 2 via the inner product in the

CFT, we can also regard F and F̂ as maps from states of ghost number 2 to string

states of ghost number 4. We shall in fact include left multiplication by the operator

b̄0b0 — the zero modes of the b and b̄ ghost fields — to regard F and F̂ as maps

from states of ghost number 2 to states of ghost number 2. This is the way we shall

interpret F and F̂ from now on. By including similar factor in the definition of δH

and δĤ, they can be regarded as maps from string states of ghost number 2 to the

space of special states.

4. With this convention the full contribution to F and δH is obtained by gluing F̂ and

δĤ using the string propagator

∆ =
1

4π

∫ 2π

0
dθ

∫ ∞

0
ds e−s(L0+L̄0)+iθ(L0−L̄0) =

1

2
δL0,L̄0

∫ ∞

0
ds e−s(L0+L̄0) . (3.18)

The normalization of ∆ has been chosen such that acting on special states at mass

level m it gives (k2 +m2)−1. We can now express F and δH as

F = F̂ + F̂∆F̂ + F̂∆F̂∆F̂ + · · · = F̂(1−∆F̂)−1 = (1− F̂∆)−1F̂ ,

δH = δĤ+ δĤ∆F̂ + δĤ∆F̂∆F̂ + · · · = δĤ(1−∆F̂)−1 . (3.19)

Note that each factor of ∆ is accompanied by a hidden factor of b̄0b0 coming from

F̂ ; these are required to provide the correct integration measure on the moduli

space. Eqs. (3.19) provide us with explicit implementation of plumbing fixture,

building a higher genus Riemann surface from gluing of lower genus punctured

Riemann surfaces.

In the world-sheet description, F̂∆F̂ contains integration over those Riemann sur-

faces, which can be obtained by gluing two Riemann surfaces corresponding to regions

of the moduli space included in the definition of F̂ , at one each of their punctures by

the relation

w1w2 = e−s+iθ, 0 ≤ s <∞, 0 ≤ θ < 2π , (3.20)

where w1 and w2 are the local coordinates at the punctures. Similar interpretation

holds for terms like δĤ∆F̂ .
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5. In the absence of an underlying string field theory we can use (3.19) to define F̂

and δĤ. Consider for example F̂ . Let Fn and F̂n denote the genus n contribution

to F and F̂ respectively. Since both F and F̂ have genus expansion beginning at

genus one, the genus expansion of (3.19) tells us that F̂1 is identical to F1. Now

at genus two the right hand of the first equation in (3.19) gets a contribution from

the F̂1∆F̂1 term. This represents integration over certain region of the genus two

moduli space with the same integrand as that in the expression for F2. Then F̂2 is

given by the integral of the same integrand over the complementary region of the

genus two moduli space. The same process can now be repeated for higher genus, F̂n

being given by an integration over certain region of the genus n moduli space with

the same integrand as that of Fn. The region of integration is the region that is not

covered by gluing the lower genus F̂m’s by ∆. By construction F̂n defined this way

does not include integration over any region of the moduli space that corresponds to

degeneration of the Riemann surface of the kind discussed before, since these regions

are already included from the gluing of lower genus contributions. Since the structure

of the second equation in (3.19) is similar to that of the first equation, the genus n

contribution to δĤ will be given by integration over the same region of the genus n

moduli space as that for F̂n, with the integrand being the same as that of δH.

6. Note however that for this procedure to be consistent it is essential that for those

Riemann surfaces which are built by gluing lower genus Riemann surfaces, repre-

sented in the genus expansion of the right hand side of (3.19) by product of lower

genus contributions connected by ∆, the choice of local coordinates at the punctures

must coincide with those on the lower genus Riemann surfaces. We shall assume

that the local coordinates have been chosen this way even if they are not inherited

from an underlying string field theory. We also need to assume that the Riemann

surfaces produced by the gluing procedure are all distinct, ı.e. the same Riemann sur-

face should not be produced by two different gluing procedure. This can be achieved

with an appropriate choice of local coordinates, e.g. by scaling the local coordinates

by a sufficiently small number λ we can ensure that the gluing produces only Rie-

mann surfaces close to degeneration and hence different gluing produces different

Riemann surfaces.

7. We define PT to be the projection operator into all states of momentum k — physical

and unphysical — with L0 = L̄0 = (k2 +m2)/4, and define

∆̄ ≡ ∆−
1

k2 +m2
PT , (3.21)

F̄ ≡ F̂ + F̂∆̄F̂ + F̂∆̄F̂∆̄F̂ + · · · = F̂(1− ∆̄F̂)−1 = (1− F̂∆̄)−1F̂ ,

δH̄ ≡ δĤ+ δĤ∆̄F̂ + δH̃∆̄F̂∆̄F̂ + · · · = δĤ(1− ∆̄F̂)−1 . (3.22)

Physically F̄ and δH̄ denote ‘one particle irreducible’ contribution to appropriate two

point functions of fields at mass level m after integrating out the fields at other mass
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levels. Using (3.22) we can rewrite (3.19) as

F = F̄(1− (k2 +m2)−1PT F̄)−1

= F̄ + F̄(k2 +m2)−1PT F̄ + F̄(k2 +m2)−1PT F̄(k2 +m2)−1PT F̄ + · · · ,

δH = δH̄(1− (k2 +m2)−1PT F̄)−1

= δH̄+ δH̄(k2 +m2)−1PT F̄ + δH̄(k2 +m2)−1PT F̄(k2 +m2)−1PT F̄ + · · · .

(3.23)

8. We now define

P = c1c̄1|Vi〉〈Vi|c−1c̄−1c0c̄0 ⊗ Izero , (3.24)

as the projection operator into the special states with tree level mass m. Here Izero
corresponds to identity operator acting on the zero mode sector of non-compact

bosons, labelled by (k0,~k). In the following we shall omit explicit mention of the

operator Izero as the various operators we shall work with will always act as identity

operator in this sector. Applying the projection operator P on both sides of the first

equation in (3.23) and from the right in the second equation in (3.23), and noting that

P F P = F, δHP = δH, (3.25)

we get

F = P F̄ P + P F̄(k2 +m2)−1PT F̄ P

+P F̄(k2 +m2)−1PT F̄(k2 +m2)−1PT F̄ P + · · · ,

δH = δH̄P + δH̄(k2 +m2)−1PT F̄ P

+δH̄(k2 +m2)−1PT F̄(k2 +m2)−1PT F̄ P + · · · .

(3.26)

9. Now P denotes projection operator into special states which transform in certain

representations of the symmetry group SO(D)×G. PT −P denotes projection oper-

ator into states at the same mass level which are not special, and hence by definition

transform in representations of SO(D) × G other than those in which special states

transform. Thus the two point function of special and non-special states on any

Riemann surface vanishes, leading to (PT − P )F̂P = 0, (PT − P )∆P = 0. This in

turn gives

(PT − P ) F̄ P = 0, P F̄ (PT − P ) = 0 . (3.27)

Using this we can replace the PT F̄ P factors in (3.26) by P F̄ P . Defining

F̃ = P F̄ P, δH̃ = δH̄P, (3.28)

we get

F = F̃ + F̃ (k2 +m2)−1F̃ + F̃ (k2 +m2)−1F̃ (k2 +m2)−1F̃ + · · ·

δH = δH̃ + δH̃(k2 +m2)−1F̃ + δH̃(k2 +m2)−1F̃ (k2 +m2)−1F̃ + · · · . (3.29)
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10. This reproduces (3.9), (3.10). Furthermore since F̄ and δH̄ have no poles at k2+m2 =

0 it follows that F̃ and δH̃ defined in (3.28) also have no poles at k2 +m2 = 0. This

is the desired result.

11. We now come to a subtle point in the definition of δĤ alluded to earlier. First

consider the contributions δĤ to the right hand side of the second equation in (3.19).

Naively, (k2+m2)δĤ represents the difference between two contributions, both given

by integrating over the same subspace of the moduli space that is used to define

F̂ . In one of them we use the original local coordinate encoded in the function

f at the puncture carrying momentum k, while in the other one we use the local

coordinates encoded in the function f + δf at the puncture carrying momentum k.

This difference is clearly what we need to compute the contribution to (k2 +m2)δH

from these Riemann surfaces. For reasons that will become clear soon, let us denote

this contribution to δĤ by δ0Ĥ.

Now consider the contribution (k2 + m2)δ0Ĥ∆F̂ . Again this gives the difference

between two contributions: B − A. The first contribution A is obtained by gluing

the Riemann surfaces corresponding to F̂ to those corresponding to F̂ at one each

of their punctures using the original coordinate system f , with the coordinate at the

external punctures also given by the original local coordinate system f . This induces

a specific local coordinate system at the external punctures on the Riemann surfaces

represented by F̂∆F̂ (see e.g. [42, 43]). By the compatibiity condition discussed in

point 6, this is the correct choice of coordinate system on the Riemann surfaces in the

original system. The second contribution B is obtained by gluing Riemann surfaces

represented by F̂ and F̂ at one each of their punctures using the original coordinate

system f , with the coordinate at the external puncture carrying momentum k given by

the deformed local coordinate system f + δf . This induces a specific local coordinate

system at the external punctures carrying momentum k on the Riemann surfaces

represented by F̂∆F̂ , but this is not the correct choice of coordinate system as

prescribed in the deformed system since we are still using the original local coodinate

system f for the gluing. Let f + δ1f denote the coordinate at the external puncture

carrying momentum k that we get using the gluing procedure described above and

f+δf be the local coordinate at the external puncture for the deformed system which

we would get by using the coordinate system f + δf both for external puncture and

for the punctures we are using for gluing.8 Let us denote by (k2 + m2)δ1Ĥ the

difference between the two contributions, the (k2+m2) factor being there due to the

fact that the external vertex represents a dimension (0,0) primary in the k2+m2 → 0

limit, and hence f + δ1f and f + δf acting on the external vertex gives the same

result in the k2 + m2 → 0 limit. Then (k2 + m2)δ0Ĥ∆F̂ + (k2 + m2)δ1Ĥ gives

8Two points may need clarification here. First we are using the same symbol f for the coordinates on

the component Riemann surface and the Riemann surface we get by gluing these components since f stands

for the original choice of local coordinates on all Riemann surfaces. Similar remark applies to f + δf . The

second point is that while comparing the coordinate systems f + δf and f + δ1f we work at the same point

in the moduli space of the glued Riemann surface.
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the desired difference between the off-shell amplitudes computed using the deformed

system and the original system. We can then add the error term δ1Ĥ to δ0Ĥ to

define a corrected δĤ so that the net contribution to δH can still be written as

the right hand side of the second equation in (3.19). The only possible caveat with

this is that since the definition of δ1Ĥ involves integration over moduli spaces of

Riemann surfaces corresponding to F̂∆F̂ , this involve a degeneration limit where

the parameter s appearing in the definition of ∆ in (3.18) goes to ∞. Integration

over s from this region could produce a pole at k2 = −m2. We shall now argue that

this does not happen. For this note that in the s → ∞ limit the Riemann surface

degenerates into two Riemann surfaces, and the local coordinates induced at external

punctures are inherited from the local coordinates at the external punctures of the

Riemann surfaces which are being glued, and independent of the local coordinates at

the punctures which we use to glue the two Riemann surfaces. Thus the functions

f + δf and f + δ1f should become identical as s → ∞. From this we conclude

that for large s they should differ by a term proportional to q = e−s+iθ. As a

result the expression for δ1Ĥ, which involves difference in the contributions with

local coordinates f + δ1f and f + δf at the external puncture carrying momentum k,

will have an extra factor of q and/or q̄ in the integrand. Since the leading contribution

to the integrand in (3.18) in the s→ ∞ limit comes from states of mass level m and

is proportional to e−(k2+m2)s/2 ∼ |q|(k
2+m2)/2, we see that an extra factor of q and/or

q̄ in the integrand will kill the pole at k2 = −m2. Thus δ1Ĥ is free from poles at

k2 +m2 = 0.

To summarize, (k2 +m2)(δ1Ĥ + δ0Ĥ∆F̂), added to P F̂∆F̂ , produces correctly the

contribution to off-shell Green’s function with the deformed coordinate system from

those Riemann surfaces which correspond to F̂∆F̂ . Furthermore δ1Ĥ does not con-

tain any pole at k2 = −m2. Defining δĤ = δ0Ĥ+ δ1Ĥ, we ensure the equality of two

sides of the second equation of (3.19) to this order. We can then move on to the term

(δ1Ĥ+δ0Ĥ∆F̂)∆F̂ and carry out similar analysis, generating further correction δ2Ĥ

to δĤ. After carrying out this procedure to the desired order in perturbation theory

we can ensure that (3.19) and hence all subsequent equations still hold with this new

definition of δĤ.

4 S-matrix elements

The on-shell S-matrix element for massive external string states can be analyzed by follow-

ing a procedure similar to the one used for mass renormalization. Again we shall restrict

to S-matrix elements of special states (and possibly massless states for which there is no

mass renormalization); the S-matrix elements of other states can be found in principle from

the above by computing its residues at appropriate poles. Using the given local coordi-

nate system for n-punctured Riemann surfaces we compute the off-shell n-point function

F
(n)
a1···an(k1, · · · kn) of n external legs. With the help of (2.4), (2.1) we can then define the
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on-shell S-mtatrix elements via

S
(n)
a1···an(k1, · · · kn) = lim

k2i→−m2
ai,p

F
(n)
b1···bn

(k1, · · · kn)× (4.1)

×
n∏

i=1

{
Z

−1/2
i (ki)aibi(k

2
i +m2

ai,p) (k
2
i +m2

ai)
−1

}
.

We shall now prove that S(n) defined this way is invariant under a change of local coor-

dinates even though F (n)’s themselves transform under such changes. The change in S(n)

comes from two sources: the change in F (n) and the change in Z
−1/2
i (ki). We begin by

computing the change in Z
−1/2
i (ki). First of all comparing (2.3) with the transformation

law (3.5) of the propagator under a change of local coordinates, we get

δZ
1/2
i (ki) = δYi(ki)Z

1/2
i (ki) , (4.2)

where δYi is the same as δY introduced in (3.5) and computed in (3.17) for the i-th external

state. The multiplication on the right hand side of (4.2) should be regarded as a matrix

multiplication. This gives

δZ
−1/2
i (ki) = −Z

−1/2
i (ki)δYi(ki) = −Z

−1/2
i (ki)δH̃i(ki) , (4.3)

where in the last step we have used the equality of δY and δH̃(k) given in (3.17).

Next we shall analyze the contribution to δF
(n)
b1···bn

. This can be expressed as

δF
(n)
b1···bn

=
∑

j

δjF
(n)
b1···bn

, (4.4)

where δj denotes the effect of the change of local coordinates at the j-th puncture. We shall

later show that there exist quantities F̃
(n)
j;b1···bn

and δjH̃
(n)
b1···bn

whose perturbation expansions

have no poles at k2j +m2
aj = 0 and in terms of which we have the relations

F
(n)
b1···bn

=
(
1− (k2j +m2

aj )
−1F̃j(kj)

)−1

bjcj
F̃

(n)
j,b1···bj−1cjbj+1···bn

, (4.5)

and

δjF
(n)
b1···bj

= (k2j +m2
aj )

[
δjH̃

(n)
b1···bn

+ δH̃j(kj)bjcj

(
1− (k2j +m2

aj )
−1F̃j(kj)

)−1

cjdj
(4.6)

(k2j +m2
aj )

−1F̃
(n)
j,b1···bj−1djbj+1···bn

]
,

where the quantities F̃j(kj) and δH̃j(kj) are the same matrices which were called F̃ (kj) and

δH̃(kj) in eqs. (3.9), (3.10), with the subscript j indicating that we have to use appropriate

matrices (F̃j(kj))bjcj and (δH̃j(kj))bjcj relevant for the j-th external leg. The various

products and inverses appearing in (4.5), (4.6) are then interpreted as matrix products and

matrix inverses acting on the j-th leg.

We shall prove the existence of F̃
(n)
j;b1···bn

and δjH̃
(n)
b1···bn

with the desired properties later;

for now we shall proceed assuming this to be true. Using (4.5) we can express (4.6) as

δjF
(n)
b1···bj

= (k2j +m2
aj ) δjH̃

(n)
b1···bn

+ δH̃j(kj)bjcj F
(n)
b1···bj−1cjbj+1···bn

. (4.7)
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We are now in a position to calculate δS(n). Using eqs. (4.1), (4.3) and (4.7) we get

δS
(n)
a1···an = lim

k2i→−m2
ai,p

∀ i

n∑

j=1

n∏

ℓ=1
ℓ6=j

{
Z

−1/2
ℓ (kℓ)aℓbℓ(k

2
ℓ +m2

aℓ,p
) (k2ℓ +m2

aℓ
)−1

}

×(k2j +m2
aj ,p) (k

2
j +m2

aj )
−1

×
[
δZ

−1/2
j (kj)ajbjF

(n)
b1···bj

+ Z
−1/2
j (kj)ajbjδjF

(n)
b1···bn

]

= lim
k2i→−m2

ai,p
∀ i

n∑

j=1

n∏

ℓ=1

{
Z

−1/2
ℓ (kℓ)aℓbℓ(k

2
ℓ +m2

aℓ,p
) (k2ℓ +m2

aℓ
)−1

}

×
n∑

j=1

[
−δH̃j(kj)bjcjF

(n)
b1···bj−1cjbj+1···bn

+ (k2j +m2
aj )δjH̃

(n)
b1···bn

+ δH̃j(kj)bjcjF
(n)
b1···bj−1cjbj+1···bn

]

= lim
k2i→−m2

ai,p
∀ i

n∏

ℓ=1

{
Z

−1/2
ℓ (kℓ)aℓbℓ(k

2
ℓ +m2

aℓ,p
)
} n∑

j=1

n∏

ℓ=1
ℓ6=j

(k2ℓ +m2
aℓ
)−1 δjH̃

(n)
b1···bℓ

.

(4.8)

Now note that the genus expansion of the j-th term in the sum has no poles at k2j +m
2
aj = 0

since there is no explicit factor of (k2j + m2
aj )

−1 and the genus expansion of δjH̃
(n) does

not contain any poles at (k2j +m
2
aj ) = 0. As a result after resummation this term will have

no pole at k2j +m2
aj ,p = 0, and after being multiplied by the (k2j +m2

aj ,p) term, will give

vanishing contribution in the k2j → −m2
aj ,p limit. Since this analysis can be repeated for

every j, we see that δS(n) vanishes. Thus the S-matrix is invariant under a change in the

local coordinates.

It remains to prove the existence of F̃
(n)
j;b1···bn

and δjH̃
(n)
b1···bn

satisfying (4.5), (4.6) and

having no poles at k2j = −m2
aj in their genus expansion. For this we first define F

(n)
j by

allowing the j-th external state of F (n) to be an arbitrary string state. We also use the

fact that the change in local coordinates generates a vertex proportional to (k2 +m2) to

introduce the quantity δjH
(n) via

δjH
(n)
b1···bn

= (k2j +m2
aj )

−1 δjF
(n)
b1···bn

. (4.9)

Then in the same spirit as the F̂ and δĤ defined in (3.19) we introduce F̂
(n)
j and δjĤ

(n)

via the expansion:

F
(n)
j = F̂

(n)
j + F̂∆F̂

(n)
j + F̂∆F̂∆F̂

(n)
j + · · · = (1− F̂∆)−1 F̂

(n)
j ,

δjH
(n) = δjĤ

(n) + δĤj∆F̂
(n)
j + δĤj∆F̂∆F̂

(n)
j + δĤj∆F̂∆F̂∆F̂

(n)
j + · · ·

= δjĤ
(n) + δĤj∆(1− F̂∆)−1 F̂

(n)
j , (4.10)

where F̂ has been defined via (3.19) and δĤj is the same as δĤ defined in (3.19), but for

the j-th external state. All multiplications in (4.10) are matrix multiplications on the j-th
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external leg with fixed indices bi for i 6= j on all other legs. F̂
(n)
j and δjĤ

(n) represent

contributions to F
(n)
j and δjH

(n) which are one particle irreducible on the j-th external leg.

Thus they are given by integration over subregions of the moduli space of Riemann surface

with the same integrands as F (n) and δjH
(n), and these subregions have the property that

they do not include any degeneration of the j-th external leg.9 Thus the genus expansions

of F̂
(n)
j and δjĤ

(n) do not have any pole at k2j +m2
aj = 0. Now we define

F̄
(n)
j = F̂

(n)
j + F̂∆̄F̂

(n)
j + F̂∆̄F̂∆̄F̂

(n)
j + · · · = (1− F̂∆̄)−1 F̂

(n)
j

δjH̃
(n) = δjĤ

(n) + δĤj∆̄F̂
(n)
j + δĤj∆̄F̂∆̄F̂

(n)
j + δĤj∆̄F̂∆̄F̂∆̄F̂

(n)
j + · · ·

= δjĤ
(n) + δĤj∆̄(1− F̂∆̄)−1F̂

(n)
j = δjĤ

(n) + δĤj(1− ∆̄F̂)−1∆̄F̂
(n)
j , (4.11)

where ∆̄ has been defined in (3.21). Since ∆̄ has no poles at k2j +m
2
aj = 0, the genus expan-

sions of F̄
(n)
j and δjH̃

(n) also do not have any poles at k2j +m2
aj = 0. Using (3.22), (4.10)

and (4.11) we get

F
(n)
j = (1− F̄(k2j +m2

aj )
−1PT )

−1F̄
(n)
j

δjH
(n) = δjH̃

(n) + δH̄j(k
2
j +m2

aj )
−1PT (1− F̄(k2j +m2

aj )
−1PT )

−1F̄
(n)
j . (4.12)

We now define

F̃
(n)
j = P F̄

(n)
j . (4.13)

Since the genus expansion of F̄
(n)
j has no poles at k2j = −m2

aj , the genus expansion of

F̃
(n)
j also has no poles at k2j = −m2

aj . It follows from the definition of special states that

δH̄jPT = δH̄jP . Using this and (4.13), multiplying the first equation of (4.12) by P

from the left, using PF
(n)
j = F (n) and eqs. (3.27), (3.28) we can write the two equations

in (4.12) as

F (n) = (1− (k2j +m2
aj )

−1F̃j)
−1 F̃

(n)
j ,

δjH
(n) = δjH̃

(n) + δH̃j(k
2
j +m2

aj )
−1(1− (k2j +m2

aj )
−1F̃j)

−1F̃
(n)
j . (4.14)

This reproduces (4.5) and (4.6) after using (4.9).

5 Discussion and generalizations

In this paper we have given an algorithm for computing renormalized mass and S-matrix

elements for a special class of massive states in bosonic string theory, and have shown that

these are independent of the specific off-shell continuation that we use for computing them.

While the results are in the same spirit as the proof of gauge invariance of physical mass

and S-matrix elements in a gauge theory, in many sense the analysis here is simpler than

in gauge theories. In the latter the gauge invariance results from cancellation between the

9The definition of δjĤ
(n) suffers from subtleties of the same kind that affects the definition of δĤ, and

these are dealt with in the same way as in the case of δĤ, following the procedure discussed in point 11 at

the end of section 3.
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contributions from different Feynman diagrams, while here we do not require any such

cancellations. In fact if we had been trying to prove gauge invariance of renormalized

mass and S-matrix elements in string field theory, we would still need cancellation between

different Feynman diagrams.10

The simplicity in string theory of course is a consequence of the fact that in string

theory there is only one contribution from every genus. Technically the difference between

our analysis and the corresponding analysis in string field theory can be traced to the fact

that in string field theory a change in local coordinates will change the local coordinates

not only at the external punctures, but also at the internal punctures that we use to glue

two Riemann surfaces using the plumbing fixture procedure. As a result each Feynman

diagram gets additional contribution from the change in local coordinates at the internal

punctures which cancel between different Feynman diagrams.

Clearly there are many generalizations of our analysis that are needed. We expect that

for special vertex operators our analysis can be generalized in a straightforward manner

to heterotic and superstring theories. Consider bosonic states coming from the NS sector

(in heterotic string theory) or NS-NS sector (in type II string theories) — for Ramond

sector we expect similar analysis to go through with the propagator (3.18) acquiring extra

numerator factors [1]. In this case the choice of local coordinates at the punctures will have

to be replaced by a choice of local superconformal coordinates. On-shell vertex operators

are independent of local superconformal coordinates, and hence under a change of local

coordinates off-shell vertex operators change by a term proportional to (k2 + m2) as in

the case of bosonic string theory. We also have the analog of the gluing relations (3.20)

(see e.g. [1]) and hence the relations (3.19) with the bosonic propagator ∆ given by the

same expression as (3.18).11 Thus we expect that extending our analysis to superstring

and heterotic string theories is straightforward.

For general external states we expect new complications even in the bosonic string

theory. This is due to the fact that under quantum correction the physical states would

begin mixing with the unphysical states and we need to take into account this mixing for

defining an appropriate off-shell continuation. For example from genus two onwards F̂ will

have non-zero matrix element between a physical state and a BRST trivial state from the

boundary of the region of integration of the moduli space that defines F̂ , forcing us to

change the definition of the physical state. Furthermore the required mixing will depend

on the particular off-shell continuation we choose ı.e. on the choice of local coordinates at

the punctures. We expect that once these effects are taken into account, we shall be able

to directly prove that the renormalized mass and S-matrix elements are independent of the

off-shell continuation for all physical states, suitably defined.

10A change of local coordinates correspond to a field redefinition of the string field [41] followed by a

gauge transformation that is needed to bring the transformed fields to the Siegel gauge.
11By choosing the local coordinate system appropriately we can ensure that the splitting of the moduli

space we have used, e.g. in defining F̂ etc, requires only information about the region of the moduli

space near the boundary where complications arising out of non-splitness of the supermoduli space are

not present [17]. For example by scaling the function f(w; z0) introduced at the beginning of section 3 to

f(λw; z0) for sufficiently small λ, we can ensure that F̂ includes the contribution from most of the region

of the moduli space except those close to the boundaries where the Riemann surface splits apart into two

lower genus surfaces.
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In fact it seems to us that the off-shell formalism could be a useful way of studying

string perturbation theory both for massive and massless external states, and can be used

to give alternate proofs of well known results in string theory. For example in the standard

on-shell approach the proof of decoupling of pure gauge states, corresponding to trivial

elements of the BRST cohomology, involves first showing that the result is given by a

total derivative in the moduli space and then showing that the boundary terms arising

from the integration of the total derivative terms vanish. In the off-shell formalism the

boundary terms can be ignored altogether since they can be made to vanish by appropriate

off-shell continuation of the external momenta. The price we pay is that due to BRST non-

invariance of the external off-shell states there will be additional terms proportional to one

or more powers of (k2i +m
2
ai) associated with the external states. In individual terms these

may be cancelled by inverse powers of (k2i +m
2
ai) coming from integration over moduli near

the boundaries. Thus the task will be to show that the final result vanishes nevertheless

in the on-shell limit.
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