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1 Introduction

Recent progress in non-perturbative aspects of supersymmetric field theories owes a great

deal to the construction of rigid supersymmetry on curved backgrounds. Pestun [1] con-

structed N = 2 supersymmetric theories on S4 and computed the partition function and

the expectation values of circular Wilson loops. The results play a crucial role in the AGT

conjecture [2], which relates 4d N = 2 theories and 2d conformal field theories. The par-

tition function of supersymmetric theories on S3 [3–5] enables us to perform quantitative

checks of dualities among 3d theories and the AdS4/CFT3 correspondence. Supersymmet-

ric theories on 3d and 4d squashed spheres [6–9] and manifolds with other topologies [10–12]

are also constructed, and the exact partition functions for those provide useful information

about supersymmetric field theories.

Also in 5d, supersymmetric field theories are constructed on various curved manifolds.

Theories on round and squashed S5 are constructed in [13–17]. The perturbative [13, 15, 16,

18, 19] and instanton [20] partition functions on S5 are computed, and N3 behavior of the

free energy of the maximally supersymmetric Yang-Mills theory (SYM) is confirmed [21].

This is a strong evidence of the close relation [22, 23] between the 5d SYM and the 6d
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(2, 0) theory realized on a stack of N M5-branes. Supersymmetric theories on S4×S1 are

constructed in [24, 25], and the partition function [24] (superconformal index) provides an

evidence of the existence of non-trivial fixed points with enhanced global symmetries [26].

Theories on S3×Σ, the product of three-sphere and a Riemann surface Σ, are constructed

in [27, 28], and used to study a conjectured relation between the 6d (2, 0) theory and a

q-deformed 2d Yang-Mills theory. Supersymmetric theories on S2 ×M3 [29–31] are used

to confirm predictions of the 3d/3d correspondence [32].

A systematic construction of rigid supersymmetric field theories on curved backgrounds

was started in [33].1 To obtain rigid supersymmetry on a curved manifold, we couple

matter fields to a background off-shell supergravity multiplet, and require the supersym-

metry transformation of the gravitino, δQψµ, to vanish. If the gravity multiplet contains

other fermions their supersymmetry transformation should also vanish. By solving these

conditions, we obtain backgrounds that admit rigid supersymmetry. In 4d, the analysis

by using the new minimal supergravity [35] shows that we can realize at least one rigid

supersymmetry on backgrounds with Hermitian metrics [36, 37]. With the old minimal

supergravity [38, 39] we can realize a supersymmetry in (squashed) S4 or backgrounds

with Hermitian metrics [40]. (See also [41, 42] for studies of 4d supersymmetric theories

on curved background with the help of supergravity.) The analysis in [36, 43] using the

3d version of the new minimal supergravity shows that the manifold is required to have

the almost contact metric structure which satisfies a certain integrability condition. The

existence of two or more supersymmetries imposes stronger restrictions. See [36, 44] for

analysis from the holographic viewpoint.

In this paper, we realize rigid supersymmetry on a 5d manifoldM with Euclidean sig-

nature by using the 5d N = 1 off-shell Poincaré supergravity [45–47] whose Weyl multiplet

has 40 + 40 degrees of freedom [48]. The first step of the analysis with this supergravity is

taken in [49], where the condition associated with the gravitino, δQψµ = 0, is focused on.

(See also [50] for supersymmetric backgrounds in the minimal gauged supergravity without

auxiliary fields [51], and [52] for an analysis with off-shell conformal supergravity with a

smaller Weyl multiplet with 32 + 32 degrees of freedom [53–56].) There is actually another

fermion, which we denote by η, in the Weyl multiplet, and thus we should also consider

the condition δQη = 0. One of the purposes of this paper is to complete this analysis and

to give the solution to the supersymmetry conditions.

Another purpose of this paper is to study supersymmetry-preserving deformations of

the background. It is often happens that the partition functions for different backgrounds

are the same. For example, in the case of S3 partition function, a certain squashed S3

gives the same partition function as the round S3 [6]. The partition function of another

squashed S3 [7] is the same as that for an ellipsoid [6]. These facts suggests that the

partition function depends only on a small part of the data of the background. This is

confirmed in [57] by showing that the partition function of a supersymmetric theory on

manifolds with S3 topology depends on the background manifolds only through a single

1 See also [34] for construction of supersymmetric theories on AdS4 by taking the decoupling limit of

supergravity.
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parameter. Furthermore, [58] shows for 3d and 4d cases that although supersymmetric

backgrounds have functional degrees of freedom almost all deformations of the background

correspond to Q-exact deformations of the action, and do not affect the partition function.

We perform similar analysis in 5d.

This paper is organized as follows. In the next section we solve the conditions δQψ =

δQη = 0 and derive the restrictions for the background fields under the assumption of the

existence of at least one rigid supersymmetry parameterized by a symplectic Majorana

spinor. In section 3, we show that all supersymmetry-preserving deformations of the back-

ground fields can be realized by Q-exact deformations and gauge transformations as far

as we focus on a single coordinate patch. We also study supersymmetric backgrounds of

vector multiplets in section 4. In section 5 we discuss realization of some known examples

of supersymmetric theories in curved manifolds by using the supergravity. Section 6 is

devoted to discussion. Notation and conventions are summarized in appendix.

2 Supersymmetric backgrounds

2.1 5d N = 1 off-shell supergravity

The 5d N = 1 off-shell supergravity constructed in [45–47] has the following local bosonic

symmetries.

• The general coordinate invariance

• Sp(2)L: the local Lorentz symmetry

• Sp(1)R: the local R-symmetry

• U(1)Z : the gauge symmetry associated with the central charge

In addition to these, the formulation in [46, 47] has the local dilatation symmetry. The

corresponding gauge field bµ = α−1∂µα is pure-gauge, and in this paper we fix the gauge

by the condition bµ = 0.

The Weyl multiplet consists of the fields shown in table 1. In particular, it contains two

fermions: ψµ and η. A supersymmetric background is defined as a configuration of the Weyl

multiplet that is invariant under the supersymmetry transformation with a non-vanishing

parameter ξ. If we assume ψµ = η = 0 in the background the transformations of the bosonic

components automatically vanish, and the nontrivial conditions are δQψµ = δQη = 0. The

transformation laws of the fermions are [45, 46]

δQ(ξ)ψµ = Dµξ − fµνγνξ +
1

4
γµρσv

ρσξ − tγµξ,

δQ(ξ)η = −2γνξDµv
µν + ξC + 4(D\ t)ξ + 8(f\ − v\)tξ + γµνρσξfµνfρσ. (2.1)

See appendix for the notation of Sp(1)R and spinor indices. We treat the transformation

parameter ξ as a Grassmann-even variable. fµν = ∂µaν − ∂νaµ is the U(1)Z field strength

and Dµ is the covariant derivative defined by

Dµ = ∂µ + δM (ωµρ̂σ̂)− δU (V a
µ )− δZ(aµ), (2.2)
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fields dof Sp(1)R ours Zucker KO

bosons vielbein 10 1 eν̂µ eν̂µ eν̂µ
U(1)Z gauge field 4 1 aµ

κ√
3
Aµ − 1

2αAµ

anti-sym. tensor 10 1 vµν 2κvµν 2vµν

Sp(1)R triplet scalars 3 3 ta −2iκta ta
Sp(1)R gauge field 12 3 V a

µ
κi
2 V

a
µ −V a

µ

scalar 1 1 C 16κC −4C

fermions gravitino 32 2 ψIµα
κ√
2
ψIµα ψIµα

fermion 8 2 ηIα 8
√

2κλIα −8χ̃Iα
supersymmetry parameter 8 2 ξ 1√

2
ε ε

fermion bilinears (ψχ) i(ψχ) i(ψχ)

Table 1. Component fields in the Weyl multiplet. The last two columns show the relation to

Zucker’s [45] and Kugo-Ohashi’s [46] conventions. We also show the relations among supersymmetry

parameters and fermion bilinears in the three conventions in the last two lines.

where δM , δU , and δZ are Sp(2)L, Sp(1)R, and U(1)Z transformations, respectively. The

explicit form of Dµξ is

Dµξ = ∂µξ +
1

4
ωµρ̂σ̂γ

ρ̂σ̂ξ − Vµξ. (2.3)

In this paper terms in transformation laws (Lagrangians) including two (three) or more

fermions are always omitted.

2.2 Spinor bilinears and orthonormal frame

In a 5d spacetime with Lorentzian signature, the parameter ξ of the local N = 1 super-

symmetry transformation is a symplectic Majorana spinor. Although we can impose the

symplectic Majorana condition on ξ also in the Euclidean space, the condition is not the

same as that for Lorentzian signature, and we do not have to impose it. To study most

general case it is desirable to consider complex spinor without symplectic Majorana con-

dition imposed. In this paper, however, we restrict ourselves to the case with ξ satisfying

the symplectic Majorana condition. This is just for simplicity of the analysis.

Following a standard strategy, we define the bilinears of the spinor ξ:

S = (ξξ), Rµ = (ξγµξ), Jaµν =
1

S
(ξτaγµνξ). (2.4)

By a Fierz’s identity, we can show

γµξR
µ = ξS. (2.5)

The following equations are easily derived from this:

RµR
µ = S2, JaµνR

ν = 0, −1

2
εµν

λρσRλJ
a
ρσ = SJaµν . (2.6)

Because ξ is a solution to the first order differential equation δQψµ = 0, it is nowhere

vanishing and so are the bilinears. In particular, S > 0 everywhere. We assume the
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vielbein eν̂µ is real, and then Rµ is real, too. The existence of the non-vanishing real vector

field Rµ enables us to treat the background manifoldM as a fibration over a base manifold

B, at least locally. In this paper we will not discuss global issues and focus only on a single

coordinate patch. Let us define the fifth coordinate x5 by

Rµ∂µ = ∂5, (2.7)

and use a local frame with

em̂ = em̂n dx
n, e5̂ = S(dx5 + Vmdxm). (2.8)

With this frame Rµ has the local components

R5̂ = S, Rm̂ = 0. (2.9)

The second and third equations in (2.6) can be rewritten as

Ja
m̂5̂

= 0, −1

2
ε
(4)

m̂n̂k̂l̂
Ja
k̂l̂

= Jam̂n̂, (2.10)

where ε
(4)

m̂n̂k̂l̂
= ε

m̂n̂k̂l̂5̂
. The equation (2.5) means that ξ has positive chirality with respect

to γ5̂ = S−1Rµγµ;

γ5̂ξ = ξ. (2.11)

A symplectic Majorana spinor χ belongs to the (4,2) representation of Sp(2)L×Sp(1)R.

Because Sp(k) = U(k,H), we can treat χ as a vector with two quaternionic components.

If we use the matrix representation of quaternions we can represent χ as a 4× 2 matrix in

the form

χ = (χα
I) =

(
U

D

)
, U = U012 + iUaτa, D = D012 + iDaτa, Ui, Di ∈ R. (2.12)

The vector Rm̂ breaks the local Lorentz symmetry Sp(2)L to its subgroup Sp(1)l× Sp(1)r,

where Sp(1)l and Sp(1)r act on the upper and lower blocks of the matrix (2.12), respectively.

The chirality condition (2.5) implies that the spinor ξ has the upper block only. Fur-

thermore, we can choose a gauge such that U ∝ 12, and then ξ is given by

ξ = (ξα
I) =

√
S

2

(
12

0

)
, (2.13)

where the normalization is fixed by S = (ξξ). This gauge choice breaks Sp(1)l×Sp(1)R into

its diagonal subgroup Sp(1)D. It is obvious in this frame that the following eight spinors

form a basis of the space of symplectic spinors:

ξα
I , (γm̂)α

βξβ
I , ξα

J(τa)J
I . (2.14)

An arbitrary spinor can be expanded by this basis. For example, γm̂n̂ξ is related to ξτa by

γm̂n̂ξ = −ξτaJam̂n̂, ξτa =
1

4
Jam̂n̂γ

m̂n̂ξ. (2.15)
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The second relation in (2.15) implies that the three matrices Ja satisfy the same algebra

with the Pauli matrices τa;

Ja
m̂k̂
Jb
k̂n̂

= δabδm̂n̂ + iεabcJ
c
m̂n̂. (2.16)

Namely, Ja enjoy the quaternion algebra.2

2.3 δQψµ = 0

Let us first solve the condition δQψµ = 0, which is also investigated in [49]. Using the basis

(ξ, γm̂ξ, τaξ) = (γµ̂ξ, τaξ) in (2.14) we decompose δQψµ = 0 into the following conditions:

0 = (ξγ
λ̂
δQψµ̂) =

1

2
Dµ̂Rλ̂ − Sfµ̂λ̂ −

S

4
ε
5̂µ̂λ̂ρ̂σ̂

vρ̂σ̂ + StaJ
a
µ̂λ̂
, (2.17)

0 = (ξτaδQψµ̂) = (ξτaDµ̂ξ) +
1

4
(ξτaγµ̂ρ̂σ̂ξ)v

ρ̂σ̂ −Rµ̂ta. (2.18)

The symmetric part of (2.17), D{µ̂Rλ̂} = 0, means that Rµ is a Killing vector. We can take

an Sp(1)D × Sp(1)r gauge such that

∂5e
m̂
n = ∂5S = ∂5Vm = 0, (2.19)

and then em̂n , S, and Vm can be treated as fields on the base manifold B. The (λ̂, µ̂) = (5,m)

components of (2.17) give

fm5 =
1

2
∂mS. (2.20)

From the integrability condition ∂nfm5 = ∂mfn5 and the Bianchi identity for fµν we obtain

∂5fmn = 0. This means that the U(1)Z gauge field aµ is essentially a gauge field on B.

(2.20) can be solved, up to U(1)Z gauge transformation, by

a = amdx
m +

1

2
Sdx5, ∂5am = 0. (2.21)

For later use we give the non-vanishing components of the spin connection.

ω
k̂−m̂n̂ = ω

(4)

k̂−m̂n̂
, ωm̂−n̂5̂ = ω5̂−n̂m̂ =

S

2
Wm̂n̂ =

1

S
Dm̂Rn̂, ω5̂−5̂m̂ =

1

S
∂m̂S = 2fm̂5̂.

(2.22)

ω
(4)

k̂−m̂n̂
is the spin connection in the base manifold B defined with the vielbein en̂m and

Wmn = ∂mVn − ∂nVm is the field strength of Vm.

The anti-symmetric part of (2.17) can be used to represent the horizontal part of vµν

in terms of other fields;

vp̂q̂ = ε
(4)
p̂q̂m̂n̂

(
S

4
Wm̂n̂ − fm̂n̂ + taJ

a
m̂n̂

)
. (2.23)

By using (2.13) we obtain

(ξτaDµξ) =
S

4
ωµp̂q̂J

a
p̂q̂ − V

a
µ S, (2.24)

2The definition of Ja differs from the usual definition of the quaternion basis by factor i.
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and we can solve (2.18) with respect to V a
µ and obtain

V a
5̂

=
1

4
ω5̂p̂q̂J

a
p̂q̂ +

1

4
Jap̂q̂v

p̂q̂ − ta, V a
m̂ =

1

4
ωm̂p̂q̂J

a
p̂q̂ +

1

2
Jam̂p̂v

p̂5̂. (2.25)

Now we have completely solved δQψµ = 0. Independent fields are

em̂n (xm), S(xm), Vm(xm), am(xm), vm̂5̂(xm, x5), ta(x
m, x5), C(xm, x5), (2.26)

and the other fields are represented by these fields.

2.4 δQη = 0

By using the spinor basis (2.14) we decompose δQη = 0 into the following equations.

0 = S−1(ξδQη) = −2Dµv
µ5̂ + C + 4taJ

a
m̂n̂(f m̂n̂ − vm̂n̂) + ε

(4)
m̂n̂p̂q̂f

m̂n̂f p̂q̂, (2.27)

0 = S−1(ξγm̂δQη) = −2Dλvλm̂ + 4Jam̂n̂D
n̂ta + 8taJ

a
m̂p̂(f

p̂5̂ − vp̂5̂) + 4ε
(4)
m̂p̂q̂r̂f

p̂q̂f r̂5̂, (2.28)

0 = S−1(ξτaδQη) = 4D5̂ta + 4iεabcJ
c
m̂n̂tb(f − v)m̂n̂. (2.29)

(2.27) is the only condition including C, and can be used to determine C. (2.28) and (2.29)

are drastically simplified if we substitute the solution of δQψµ = 0;

0 = S−1(ξγm̂δQη) = 2∂5̂vm̂5̂, 0 = S−1(ξτaδQη) = 4∂5̂ta. (2.30)

Namely, vm̂5̂ and ta are x5 independent. After all, we have obtained the following solution:

ξα
I =

√
S

2

(
12

0

)
,

em̂n = (indep.),

e5̂
5 = S (indep.),

Vm = (indep.),

am̂ = (indep.),

a5 =
1

2
S,

vp̂q̂ = ε
(4)
p̂q̂m̂n̂

(
S

4
Wm̂n̂ − fm̂n̂ + taJ

a
m̂n̂

)
,

vm̂5̂ = (indep.),

ta = (indep.),

V a
m̂ =

1

4
ω

(4)
m̂p̂q̂J

a
p̂q̂ +

1

2
Jam̂p̂v

p̂5̂,

V a
5̂

=
1

2
Jam̂n̂

(
fm̂n̂ −

S

2
Wm̂n̂

)
+ ta,

C = 2D
(4)
m̂ vm̂5̂ + 4taJ

a
m̂n̂fm̂n̂ + 32tata − ε(4)

m̂n̂p̂q̂

(
f m̂n̂ − S

2
Wm̂n̂

)(
f p̂q̂ − S

2
W p̂q̂

)
.

(2.31)
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“(indep.)” means that the field is an independent field. All the fields are x5-independent.

This is in fact a direct consequence of the algebra. From the commutation relation (2.45)

in [46], we obtain

δQ(ξ)2 = RµDµ − δM
(

2Sfµ̂ν̂ +
1

2
εµ̂ν̂λρσR

λvρσ − 2SJaµ̂ν̂ta

)
+ δZ

(
1

2
S

)
+ δU

(
−3Sta −

S

2
Jam̂n̂(f m̂n̂ − vm̂n̂)

)
+ (terms with η or ψµ). (2.32)

In the background (2.31), the right hand side reduces to the x5 derivative;

δQ(ξ)2 = RµDµ − δM (Rλωλ−µ̂ν̂) + δZ(Rµaµ) + δU (RµV a
µ ) = ∂5. (2.33)

Therefore, a δQ(ξ)-invariant background is also invariant under the isometry ∂5.

3 Q-exact deformations

The solution obtained in the previous section depends on several functions and has large

degrees of freedom. However, as we will show in this section, only small part of them can

affect the partition function.
Let S0 be the action of a supersymmetric theory on a supersymmetric background

given by the solution (2.31). A small deformation around the background induces the
change of the action

S1 =

∫
d5x
√
g
[
−δeν̂µT

µ
ν̂ + δV aµR

µ
a + (δψµS

µ)− δaµJµ + δvµνMµν + δCΦ + (δηχ) + δtaXa

]
,

(3.1)

where the set of the operators

Rµa(12), SµIα(32), Tµν(10), Jµ(4),

Mµν(10), Φ(1), χIα(8), Xa(3), (3.2)

forms the supercurrent multiplet with 40+40 degrees of freedom. SµIα and χIα are fermionic

and the others are bosonic. The numbers in the parenthesis represent the degrees of freedom

of the operator.

If the change of the background fields are consistent to the solution (2.31) S1 is Q-

invariant and the deformed action S0 + S1 gives the supersymmetric theory on the de-

formed background. We would like to consider the problem whether such a supersymmet-

ric deformation affects the partition function. If the deformation S1 is Q-exact as well

as Q-invariant, it does not change the partition function. A Q-exact deformation that is

regarded as a change of the bosonic background fields in general has the form

δQ(ξ)

∫
√
gd5x [HµS

µ +Kχ] , (3.3)

where Hµ and K are vectorial-spinor and spinor coefficient functions. Both Hµ and K are

Grassmann-even. Because δQ(ξ)2 = ∂5 for the action (3.3) to be Q-invariant the functions

Hµ and K should be x5-independent.

– 8 –



J
H
E
P
0
7
(
2
0
1
4
)
0
5
5

δQS
µ and δQχ are determined as follows. For an arbitrary deformation that may not

preserve the supersymmetry S1 is invariant under the supersymmetry if we transform both

the Weyl multiplet and matter fields. The transformation laws of the bosonic components

of the Weyl multiplet are [45, 46]

δQe
ν̂
µ = −2(ξγν̂ψµ),

δQaµ = −(ξψµ),

δQV
a
µ = −1

4
(ξτaγµη) + (ξτaγ

λRλµ(Q)) + (ξτaγ
ρσfρσψµ)− (ξτaγ

ρσvρσψµ) + 6(ξψµ)ta,

δQta = −1

4
(ξτaη),

δQvµ̂ν̂ =
1

2
(ξγµ̂ν̂ρ̂σ̂R

ρ̂σ̂(Q)) +
1

2
(ξγµ̂ν̂η),

δQC = −(ξD̂\ η)− 11(ξtη)− 3

4
(ξγµνv

µνη)− 4(ξtγµνRµν(Q)), (3.4)

where Rµν(Q) and D̂µη are defined by

Rµν(Q) = 2D[µψν] +
1

2
γρσ[µψν]v

ρσ + 2γρψ[µfν]ρ − 2γ[µtψν],

D̂µη = Dµη − δQ(ψµ)η. (3.5)

By requiring the Q-invariance of S1 we can determine the transformation laws of the fields

in (3.2). For example, the transformation of χ is

δQχ =
1

4
τaγµξR

µ
a +

1

4
τaξXa −

1

2
γµνξM

µν + γµξDµΦ + fµνγ
µνξΦ + 16tξΦ. (3.6)

Let us consider the second term in the Q-exact action (3.3). It is convenient to expand

the spinor function K by the basis in (2.14) as

K = kξ +
4

S
kaξτa −

2

S
km̂ξγm̂. (3.7)

The first term in (3.7), kξ, gives the action

δQ

∫
d5x
√
gk(ξχ) =

∫
d5x
√
gk∂5Φ. (3.8)

This is total derivative, and does not give a non-trivial deformation of the theory.

The second term in (3.7) gives

δQ

∫
d5x
√
g

4

S
ka(ξτaχ)

=

∫
d5x
√
g
(
kaR5̂

a + kaXa − 2kaJam̂n̂M
m̂n̂ + 4kaJam̂n̂f

m̂n̂Φ + 64kataΦ
)
. (3.9)

Comparing this to (3.1), we find that the addition of (3.9) to the action is equivalent to

the background deformation

δta = ka, δV a
5̂

= ka, δvm̂n̂ = −2kaJam̂n̂, δC = 4kaJam̂n̂f
m̂n̂ + 64kata,

δeν̂µ = δaµ = δvm̂5̂ = δV a
m̂ = 0. (3.10)
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These variations are consistent to the solution (2.31). We obtain (3.10) by shifting ta by

ta → ta + ka, (3.11)

and keeping other independent fields intact.

Similarly, the addition of the Q-exact action

δQ

∫
d5x
√
g

(
− 2

S
km̂(ξγm̂χ)

)
=

∫
d5x
√
g

(
−1

2
km̂Jam̂n̂R

n̂
a + 2km̂M m̂5 + 2(D

(4)
m̂ km̂)Φ

)
(3.12)

corresponding to the third term in (3.7) is equivalent to the changes of the background

fields

δvm̂5̂ = km̂, δV a
m̂ =

1

2
Jam̂n̂k

n̂, δC = 2D
(4)
m̂ km̂,

δeν̂µ = δaµ = δvm̂n̂ = δta = δV a
5̂

= 0. (3.13)

These variations are again consistent to the solution (2.31), and generated by the shift of

the independent field vm̂5̂ by

vm̂5̂ → vm̂5̂ + km̂. (3.14)

Before considering Q-exact terms made from the supersymmetry current Sµ, which are

expected to be more complicated, it is convenient to simplify the prescription used above

to obtain the Q-exact deformations. A small deformation of the theory is schematically

expressed as

S1 = ABi J
B
i +AFi J

F
i , (3.15)

where (ABi , A
F
i ) is a small variation of the Weyl multiplet around a supersymmetric back-

ground and (JBi , J
F
i ) is the multiplet of currents. The superscripts ‘B’ and ‘F ’ indicate

the bosonic and fermionic statistics, respectively. The index i collectively represents all

indices of fields including the coordinates xµ. The transformation laws of the fermionic

components JFi of the current multiplet are obtained by requiring the cancellation

δQA
B
i J

B
i −AFi δQJFi = 0. (3.16)

We only need to consider linear order terms with respect to fermions, and the transforma-

tion of bosonic components ABi of the Weyl multiplet can be written as

δQA
B
i = AFj Mji, (3.17)

where Mji are functions of bosonic fields. Then the transformation of JFi is

δQJ
F
j = MjiJ

B
i , (3.18)

and the general Q exact term can be written as

δQ(fjJ
F
j ) = fjMjiJ

B
i , (3.19)
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where fj are Grassmann-even deformation parameters. This can be interpreted as the

following deformation of the background.

ABi = fjMji. (3.20)

This is nothing but the supersymmetry transformation (3.17) with the fermion fields AFj
replaced by the parameters fj . Namely, changes of the background which are realized by

Q-exact deformations are obtained from the supersymmetry transformation laws (3.4) by

replacing fermions by deformation parameters. Indeed, the deformations (3.10) and (3.13)

are respectively obtained from (3.4) by the replacements

(ψµ, η)→
(

0,− 4

S
kaτaξ

)
, (ψµ, η)→

(
0,− 2

S
km̂γm̂ξ

)
. (3.21)

Now let us consider Q-exact terms including δQS
µ by using this method. The corre-

sponding background deformation can be obtained from the transformation laws (3.4) by

the replacement

(ψµ, η)→ (Hµ, 0). (3.22)

We expand the function Hµ by the spinor basis as

Hµ = − 1

2S
hµξ +

1

S
haµτaξ −

1

2S
hm̂µ γm̂ξ. (3.23)

The deformation parameters hµ, haµ, and hm̂µ are arbitrary functions on the base manifold B.

The variations of the independent fields in the deformation by the parameter hµ are

δS = h5, δVm̂ =
1

S
hm̂, δam̂ = δvm̂5̂ = δta = 0. (3.24)

The variations of the dependent fields are obtained from the solution (2.31). By this

Q-exact deformation we can freely change the functions S and Vm̂.

The deformation by the parameter haµ is

δvm̂5̂ = 4iJam̂n̂h
b
n̂tcεabc, δS = δVm = δam = δta = 0. (3.25)

This is not independent of the deformation (3.14). Finally, the deformation by the param-

eter hm̂µ is

δem̂µ = hm̂µ , δe5̂
µ = δaµ = δta = 0,

δvm̂5̂ = ε
(4)

m̂p̂q̂k̂

(
1

2
D

(4)
p̂ hq̂

k̂ +
1

4
Wm̂n̂h5

k̂ − hq̂ k̂vp̂5̂
)

+ hq̂
m̂vq̂5̂ − hq̂ q̂vm̂5̂. (3.26)

The change of vm̂5̂ can be absorbed by the deformation (3.14), and we are not interested in

it. By using the parameter hm̂n we can freely change the vielbein en̂m of the base manifold B.

The deformation with the parameter hm̂5 breaks the choice of the gauge (2.8) for the vielbein.

To recover em̂5 = 0, we should perform the compensating local Lorentz transformation

δM (λµ̂ν̂)em̂5 = −hm̂5 , λm̂5̂ = − 1

S
hm̂5 , λm̂n̂ = 0. (3.27)
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fields dof Sp(1)R ours KO

bosons gauge field 4 1 Aµ −igWµ

scalar 1 1 φ gM

auxiliary fields 3 3 Da 2gYa
fermion gaugino 8 2 λ −2igΩ

prepotential F −1
2N

Table 2. Component fields in a vector multiplet. Relation to Kugo-Ohashi’s convention is also

shown.

This transformation, in turn, changes the vector field am̂ by

δM (λµ̂ν̂)am̂ = − 1

2S
hm̂5 . (3.28)

As a result, we can freely change am̂ by using the combination of the Q-exact deformation

with the parameter hm̂5 and the compensating δM transformation.

After all, by using Q-exact deformations and gauge transformations, we can freely

change all the independent fields. Of course this does not mean that the partition function

does not depend on the background at all. To clarify the background dependence of the

partition function, careful analysis of the global structure of the background is needed.

4 Background vector multiplets

In addition to the Weyl multiplet, we can introduce vector multiplets as background fields

coupling to global symmetry currents. A vector multiplet consists of the component fields

shown in table 2. The transformation laws for those are (eq. (3.2) in [46])

δQ(ξ)λ = −F\ ξ + 2iφf\ξ + i(D\φ)ξ + iDξ,

δQ(ξ)Aµ = −(ξγµλ)− 2i(ξψµ)φ,

δQ(ξ)φ = i(ξλ),

δQ(ξ)Da = i(ξτaD̂\ λ)− i(ξτa[φ, λ])− i

2
(ξτav\λ)− i(ξτatλ) + 4i(ξλ)ta, (4.1)

where Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ] is the gauge field strength and D̂µλ is the superco-

variant derivative

D̂µλ = Dµλ− δQ(ψµ)λ. (4.2)

In the presence of the background vector multiplets we should impose the condition

δQλ = 0. For simplicity, we consider a U(1) vector multiplet. We decompose the condition

into the following two.

0 = (ξγµδQλ) = −FµνRν + 2iφfµνR
ν + iSDµφ, (4.3)

0 = (ξτaδQλ) = −S
2

(Fµν − 2iφfµν)Jaµν + iSDa. (4.4)
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From (4.3) we obtain

D5φ = 0, Fm5 = iDm(Sφ). (4.5)

The solution of (4.5) together with Da represented in terms of other fields by solving (4.4) is

φ = (indep.),

A5 = iSφ,

Am = (indep.),

Da = − i
2

(Fm̂n̂ − 2iφfm̂n̂)Jam̂n̂, (4.6)

up to gauge transformation.

Next, let us specify the degrees of freedom realized by Q-exact deformations. As ex-

plained in the previous section, such deformations can be easily obtained from the transfor-

mation laws of the bosonic components in (4.1) by replacing the fermion λ by deformation

parameters. The replacement λ→ −S−1fµγ
µξ gives

δAµ = fµ, δφ = −iS−1f5, (4.7)

while λ→ faτaξ does not give non-trivial deformation. By using (4.7) we can freely change

the independent fields in (4.6), at least locally.

5 Examples

5.1 Conformally flat backgrounds

For a given superconformal field theory on the flat background, it is straightforward to

obtain the theory in a conformally flat background by a Weyl transformation that maps

the flat space to the conformally flat background. The parameter ξ of the superconformal

transformation on the background satisfies the Killing spinor equation

Dµξ = γµκ ∃κ. (5.1)

For vector multiplets, the Weyl transformation gives the superconformal transforma-

tion laws

δSCA
i
µ = −(ξγµλ

i),

δSCφ
i = i(ξλi),

δSCλ
i = −F\ iξ + i(D\φi)ξ + iD′iξ + 2iκφi,

δSCD
′i
a = i(ξτaγ

µDµλ
i)− i(ξτa[φ, λ]i)− i(κτaλi), (5.2)

where D′ is the auxiliary field, whose definition is different from the previous auxiliary field

D. The relation between D and D′ will be shown later. We use i, j, . . . for adjoint indices

of the gauge group. The superconformal Lagrangian is

e−1L(V )
SC = e−1L(V )

0 |conf +
R

4
F , (5.3)
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where L(V )
0 is the superconformal Lagrangian on the flat background covariantized with

respect to the local symmetries listed in 2.1:

e−1L(V )
0 =− 1

2
Fi[λ, λ]i

+ Fij
(

1

4
F iµνF

µνj +
1

2
Dµφ

iDµφj − 1

2
D′iaD

′j
a −

1

2
λiD\ λj

)
+ Fijk

(
i

6
[CS]ijk5 +

1

4
λi(iF\ j +D′j)λk

)
. (5.4)

L(V )
0 depends on the background Weyl multiplet, and (· · · )|conf in (5.3) represents the

substitution of the conformally flat background. In particular, the Sp(1)R gauge field V a
µ

vanishes in (5.3). [CS]ijk5 is the 5d Chern-Simons term defined by

[CS]ijk5 = ελµνρσAiλ∂µA
j
ν∂ρA

k
σ (5.5)

for Abelian gauge fields. For non-Abelian gauge fields A3dA and A5 terms should be

appropriately supplemented. The prepotential F(φ) is a homogeneous cubic polynomial of

the scalar fields φi, and Fi, Fij , and Fijk are its derivatives:

Fi =
∂F
∂φi

, Fij =
∂2F
∂φi∂φj

, Fijk =
∂3F

∂φi∂φj∂φk
. (5.6)

If all the vector multiplets are not backgrounds but dynamical the theory is conformal.

We will mention the non-conformal case later. The second term in (5.3) is the curvature

coupling of the scalar fields.

We would like to reproduce these transformation laws and the Lagrangian by the

supergravity. In the 5d N = 1 supergravity, the Killing equation (5.1) is realized if

V a
µ = 0, (5.7)

vµν + 2fµν = 0. (5.8)

Indeed, if these are satisfied, the transformation law of gravitino in (2.1) becomes

δQψµ = Dµξ − γµ(f\ + t)ξ, (5.9)

and the condition δQψµ = 0 gives the Killing equation with

κ = (f\ + t)ξ. (5.10)

It is easy to confirm that the transformation laws (5.2) agree with (4.1) if we shift the

auxiliary fields by

D′ia = Di
a − 2φita. (5.11)

We can also show that the Lagrangian (5.3) is reproduced from the supergravity La-

grangian. In the 5d N = 1 supergravity vector multiplets couple to the Weyl multiplet

through the Lagrangian ((2.11) in [47])

e−1L(V )
SUGRA = e−1L(V )

0 + e−1L(V )
1 , (5.12)
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where L(V )
0 is the Lagrangian in (5.4), and L(V )

1 is given by

e−1L(V )
1 = FP

− iFiF iµν(vµν + 2fµν) +
1

4
Fijλi(v\+ 2f\)λj

+ (terms with ψµI or ηI). (5.13)

P in the first line is defined by

P = C − 20tata − 4fµνv
µν − 6fµνf

µν . (5.14)

In the background (2.31) this is rewritten as

P = 3 (Jam̂n̂fm̂n̂ + 2ta)2 − S2

4
εm̂n̂p̂q̂Wm̂n̂Wp̂q̂

+ 2D
(4)
m̂ vm̂5̂ − 4

S
(∂m̂S)vm̂5̂ − 3

S2
(∂m̂S)2. (5.15)

The two terms in the second line in (5.13) contain vµν + 2fµν , and vanish if (5.8) holds.

What we need to show is that the first line in (5.13) is the same as the curvature coupling

in (5.3). This is easily shown by using the condition δQη = 0. If (5.8) holds, we can rewrite

δQη in (2.1) as

δQη = 4[D\ (f\ + t)]ξ + 4γµ(f\ + t)γµ(f\ + t)ξ + (C − 20tata + 2fµνf
µν)ξ. (5.16)

Using this and Dµξ = γµκ with κ in (5.10), we obtain

Pξ = (C − 20tata + 2fµνf
µν)ξ = −4DµD

µξ =
R

4
ξ. (5.17)

The third equality is shown by using Dµξ = γµκ as follows:

1

4
Rξ = −1

8
γµνRµνρσγ

ρσξ

= −γµνDµDνξ

= −D\D\ ξ +DµD
µξ

= −5D\ κ+DµD
µξ

= −5DµD
µξ +DµD

µξ

= −4DµD
µξ. (5.18)

We used the flatness of the Sp(1)R connection between the first and the second lines. (5.17)

shows that the first line in (5.13) is precisely the same as the curvature coupling in (5.3).

Next, let us consider hypermultiplets. For simplicity we consider a neutral on-shell

hypermultiplet that is not coupled by vector multiplets. A hypermultiplet consists of

scalar fields AIA and a symplectic Majorana fermion field ζA.3 (See table 3.) A = 1, 2 is an

3We use the convention in [46] for hypermultiplets.
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fields Sp(1)R Sp(1)F
bosons scalar fields 2 2 AIA

fermion symplectic Majorana 1 2 ζA

Table 3. Component fields in a hypermultiplet.

Sp(1)F flavor index. The local supersymmetry transformation laws for the hypermultiplet

are ((4.4) in [46])

δQAIA = 2(ξIζA),

δQζA = −(D\AIA)ξI +AIA(−3tξ − f\ξ + v\ξ)I , (5.19)

and the Lagrangian is ((3.1) in [47])

e−1L(H)
SUGRA = e−1L(H)

0 + e−1L(H)
1 , (5.20)

where L(H)
0 and L(H)

1 are given by

e−1L(H)
0 = DµAAI DµAIA − 2(ζAD\ ζA),

e−1L(H)
1 =

(
1

4
R− 1

4
P − 1

4
(vµν + 2fµν)2

)
AAI AIA

− 1

2
(ζAγµνζA)(vµν + 2fµν)

+ (terms with ψµI or ηI). (5.21)

By substituting (5.7) and (5.8) into the transformation laws (5.19) we obtain the

superconformal transformation laws

δSCAIA = 2(ξIζA),

δSCζA = −(D\AIA)ξI − 3AIAκI , (5.22)

which are obtained from those in the flat background by the Weyl transformation. For the

Lagrangian, the Weyl transformation gives

e−1L(H)
SC = e−1L(H)

0 |conf +
3R

16
AAI AIA, (5.23)

and the curvature coupling of the scalar fields AIA is reproduced by substituting (5.7)

and (5.8) into L(H)
1 in the same way as the vector multiplets.

Notice that the number of the solutions to δQψµ = 0 is at most 8, and the formula-

tion with the Poincaré supergravity cannot reproduce all the 16 supersymmetries in the

5d superconformal algebra. This is because the relation (5.10) partially breaks the super-

symmetry in the superconformal theory. This can be interpreted as the supersymmetry

breaking by a mass deformation. Mass deformations in the superconformal theory can be

realized by coupling global symmetry currents to the central charge vector multiplet [46]:
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a background vector multiplet with a constant scalar component. The components of the

central charge vector multiplet are

(φ,Aµ, λ,Da) = (1, 2iaµ, 0, 0). (5.24)

If we substitute this into δSCλ = 0, we obtain

0 = δSCλ = 2i[κ− (f\ + t)ξ], (5.25)

and this is nothing but the relation (5.10). Even if we consider a conformal theory, the

Weyl multiplet of the Poincare supergravity contains the central charge vector multiplet

as a submultiplet, and it breaks a part of the superconformal symmetry.

It is shown in [55] that we can construct a conformal supergravity by separating the

central charge vector multiplet from the Weyl multiplet. In the context of the conformal

supergravity κ can be regarded as the parameter of the S-transformation. The Poincare

supergravity is reproduced from the conformal supergravity by fixing the S and K sym-

metries. (See appendix D in [55].) The S symmetry is gauge fixed by setting the fermion

component of the central charge vector multiplet to be 0, and (5.25) defines the compen-

sating S-transformation necessary to keep the S-gauge fixing condition invariant under the

Q-transformation in the Poincare supergravity.

5.2 S5

The supersymmetric theories on the round S5 and the corresponding supergravity back-

ground are given in [14]. Let us confirm that this is a special case of the solution (2.31).

The S5 metric represented as the Hopf fibration over CP2 is

ds2 = ds2
CP2

+ e5̂e5̂, ds2
CP2

= em̂em̂, e5̂ = r(dx5 + V), (5.26)

where r is the radius of S5 and V is a one-form on CP2. We take a local frame such that

J3 is the complex structure of the CP2, and then the following relations hold.

S = r, W =
2i

r2
J3. (5.27)

Due to the Kählerity, the holonomy of CP2 is U(2) = Sp(1)r×U(1)l where U(1)l ⊂ Sp(1)l is

the stabilizer subgroup of the complex structure J3. The spin connection of CP2 commutes

with J3, and takes the form

ωCP2

m̂n̂ =
3i

2
VJ3

m̂n̂ + (Sp(1)r part). (5.28)

Let us assume the invariance of the matter Lagrangians L(V )
SUGRA and L(H)

SUGRA under

the SO(6) rotational symmetry of the S5. The second line of L(V )
1 in (5.13) and the second

line of L(H)
1 in (5.21) depend on the tensor fields fµν and vµν through the combination

v′µν = vµν + 2fµν . (5.29)
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The SO(6) invariance requires v′µν = 0, and the independent fields should satisfy

vm̂5̂ = 0, fm̂n̂J
a
m̂n̂ + 2ta = − i

r
δa3. (5.30)

The components of the Sp(1)R gauge field are

V a
m̂ = −3i

2
Vm̂δa3 , V a

5̂
=

3i

2r
δa3 . (5.31)

This is a flat connection and can be gauged away. Then this solution becomes a special

case of the conformally flat background we considered in 5.1. Although (5.30) do not

completely fix the background fields the ambiguity does not affect the Lagrangians L(V )
SUGRA

and L(H)
SUGRA, and they are given by (5.3) and (5.23) with R = 20/r2.

For a mass deformed theory the Lagrangian depends on the tensor field fµν through

the central charge vector multiplet (5.24). Then the SO(6) invariance requires fµν = 0,

and (5.30) is replaced by the stronger conditions

vm̂5̂ = 0, fm̂n̂ = 0, ta = − i

2r
δa3. (5.32)

This agree with the background fields given in [14].

Although a superconformal theory on the round S5 has 16 supersymmetries, as we

mentioned in 5.1, the supergravity formulation reproduces only a part of them. For the

background specified by (5.32) δQη = 0 is automatically holds and δQψµ = 0 gives

Dµξ = − i

2r
τ3γµξ. (5.33)

This has eight solutions belonging to the real representation (4,2)+(4,2) of SO(6)×Sp(1)R.

If we choose another background satisfying (5.30) we obtain a different Killing spinor

equation. Although different backgrounds give the same superconformal Lagrangians L(V )
SC

and L(H)
SC , the number of supersymmetries which are realized by the supergravity in general

depends on the choice of the background fields.

5.3 S4 × R

A supersymmetric theory on S4×R can be easily obtained by using Weyl rescaling from the

theory on the flat background, and is used in [24] for the computation of the superconformal

index. Although we can easily construct a supersymmetric background with the geometry

S4 ×R by using the solution (2.31) it gives a theory different from the Weyl-rescaled one.

Let us identify R with the fifth direction. S, en̂m, and Vm are given by

S = (positive constant), en̂m = (vielbein of round S4), Vm̂ = 0. (5.34)

We assume the SO(5) rotational invariance of the Lagrangians of vector and hypermulti-

plets. As in the case of S5, this requires v′µν ≡ vµν + 2fµν = 0 for a conformal theory and

vµν = fµν = 0 for a mass deformed theory. For independent fields these are rewritten as

vm̂5̂ = fm̂n̂J
a
m̂n̂ + 2ta = 0, (5.35)
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for the conformal case and

vm̂5̂ = fm̂n̂ = ta = 0, (5.36)

for the mass deformed case. The latter background is given in [49]. In both cases

P = 0 (5.37)

and the Sp(1)R connection is the instanton configuration related to the spin connection on

S4 by

V a =
1

4
ω

(S4)
p̂q̂ Jap̂q̂. (5.38)

(5.37) and (5.38) are different from what are expected in a Weyl-rescaled theory: P =

R/4 = 3/r2 and flat V a
µ . Actually it is impossible to realize a flat Sp(1)R connection in the

solution (2.31) because S4 does not admit an almost complex structure. It is necessary to

turn on a non-trivial Sp(1)R flux for the existence of Jam̂n̂.

This result does not change even if we take a different x5 direction. Because an

arbitrary rotation of S4 has fixed points and Rµ is nowhere vanishing, we cannot take x5

within S4 and Rµ necessarily has the component along R. Then the topology of the base

manifold B is S4, and the existence of Jam̂n̂ requires non-trivial Sp(1)R flux. Therefore, we

cannot realize the Weyl-rescaled theory on S4×R as a special case of the background (2.31).

The reason for this impossibility may be the symplectic Majorana condition imposed

on ξ. We have imposed this condition only for simplicity of the analysis, and it may be

possible to realize S4 × R background without Sp(1)R flux by relaxing this condition. In

the 3d case, it is shown in [58] that S2 × S1 backgrounds with and without U(1)R flux

can be both realized in the framework of the 3d new minimal supergravity. It would be

interesting to study whether this is the case in 5d by considering general ξ.

5.4 S3 × Σ

The last example we consider is S3 ×Σ, the direct product of three-sphere S3 with radius

r and a Riemann surface Σ. A supersymmetric theory on this background is constructed

in [27] for Σ = R2 and in [28] for general Σ. It can be reproduced by the solution (2.31) as

is shown below.

We treat S3 as the Hopf fibration over S2, and identify the Hopf fiber direction with

x5. The metric of S3 × Σ is

ds2 = ds2
Σ + ds2

S2 + e5̂e5̂, ds2
Σ = e1̂e1̂ + e2̂e2̂, ds2

S2 = e3̂e3̂ + e4̂e4̂, e5̂ = r(dx5 + V),

(5.39)

where V is a one-form on S2. The following equations hold.

S = r, ωS
2

3̂4̂
= 2V, W =

2

r2
e3̂ ∧ e4̂. (5.40)

We can take a local frame such that J3 is the complex structure of S2 × Σ, which is the

summation of the complex structures of S2 and Σ.
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Let us assume that the Lagrangians L(V )
SUGRA and L(H)

SUGRA are invariant under the

SO(4) isometry of S3. As in previous subsections, all components of v′µν should vanish

except for v′
1̂2̂

for the SO(4) invariance. This requires that the independent fields satisfy

vm̂5̂ = fm̂n̂J
a
m̂n̂ + 2ta = 0, (5.41)

and then the non-vanishing component of v′µν is

v′
1̂2̂

=
1

r
. (5.42)

The Sp(1)R connection is

V a
m̂=1̂,2̂

= − i
2
δa3ω

(Σ)

m̂1̂2̂
, V a

m̂=3̂,4̂
= iδa3Vm̂, V a

5̂
= − i

r
δa3. (5.43)

The S3 part of the connection (5.43)

V (S3)a = V a
3̂
e3̂ + V a

4̂
e4̂ + V a

5̂
e5̂ = −iδa3dx5 (5.44)

is flat, and can be gauged away. This guarantees the SO(4) invariance of L(V )
0 and L(H)

0 .

The Sp(1)R connection on Σ is topologically twisted in such a way that a covariantly

constant spinor on Σ exists.

If the conditions in (5.41) are satisfied, L(V )
1 and L(H)

1 are given by

e−1L(V )
1 = −2i

r
FiF i1̂2̂

+
1

4r
Fij(λiγ1̂2̂λ

j),

e−1L(H)
1 =

1

r2
AAI AIA −

1

r
(ζAγ1̂2̂ζA). (5.45)

Although (5.41) does not completely determine the background fields, the ambiguity does

not affect the Lagrangians in the absence of mass deformations with the central charge

vector multiplet. The hypermultiplet Lagrangian L(H)
SUGRA for this background agrees with

the Lagrangian in [28] up to field redefinition.

In the mass-deformed case for the SO(4) invariance only non-vanishing component of

fµν should be f1̂2̂ which is related to t3 by

t3 = if1̂2̂. (5.46)

If we take the prepotential F = (1/2g2
YM)φ0tr(φ)2 with φ0 = 1 being the scalar component

of the central charge vector multiplet, L(V )
0 and L(V )

1 are given by

e−1L(V )
0 =

1

g2
YM

tr

[
1

4
F 2
µ̂ν̂ +

1

2
(Dµ̂φ)2 − 1

2
D′2a −

1

2
(λD\ λ) +

1

2
(λ[φ, λ])

+ f1̂2̂

(
2iφF1̂2̂ + 2iφD′3 −

1

2
(λγ1̂2̂λ)− i

2
(λτ3λ)− [CS]3

)]
,

e−1L(V )
1 =

1

g2
YM

tr

[
−2i

r
φF1̂2̂ +

1

4r
(λγ1̂2̂λ) +

2

r
f1̂2̂φ

2

]
, (5.47)
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where [CS]3 is the Chern-Simons term on S3

[CS]3 = ε1̂2̂µνρ

(
Aµ∂νAρ −

2i

3
AµAνAρ

)
. (5.48)

(5.47) gives a family of the supersymmetric Yang-Mills Lagrangian parameterized by f1̂2̂,

which is a function on Σ. For the gauge invariance of the Chern-Simons term, the U(1)Z
flux on Σ should be quantized as

1

g2
YM

∫
Σ
f ∈ i

4π
Z. (5.49)

The supersymmetric Yang-Mills Lagrangian in [28] is obtained up to a field redefinition by

setting

f1̂2̂ = −it3 =
1

2r
. (5.50)

6 Discussion

We constructed supersymmetric backgrounds of a 5d N = 1 supergravity. We solved the

supersymmetry conditions δQψµ = δQη = 0, and obtained the solution that depends on

the independent fields

S(xm), Vm(xm), en̂m(xm), am(xm), vm̂5̂(xm), (6.1)

on which no local constraints are imposed. A supersymmetric background is specified by

choosing these functions. We also showed that the independent fields in the solution can

be freely changed by combining Q-exact deformations and gauge transformations. This

means that the partition function does not affected by the local degrees of freedom.

We should emphasize that we did not take care about global issues. In order to

determine the parameter dependence of the partition function, we need to investigate

global obstructions carefully. For example, for a compact background manifold, we cannot

freely change the fifth component of a gauge field by gauge transformations and it may

affect the partition function. Similarly, if the manifold has non-trivial two-cycles we have

the restriction that a flux through the cycles should be appropriately quantized. This

prohibit continuous deformations of background gauge fields, and may cause background

dependence of the partition function. Detailed analysis of these restrictions is necessary to

understand parameter dependence of the partition function. We hope we could return to

this problem in near future.

Important feature of the solution is the existence of the isometry. This suggests a close

relation to four-dimensional supersymmetric backgrounds. It would be interesting to study

supersymmetric configurations of 4d N = 2 off-shell supergravity [59, 60] and their relation

to the solution obtained in this paper.

In section 5 we reproduced some known examples as special cases of the general so-

lution. We also found that our solution does not include all the known supersymmetric

backgrounds. A possible reason for this is that we assumed for simplicity that the super-

symmetry parameter ξ satisfies the symplectic Majorana condition. Another possibility
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is that the choice of the supergravity is not suitable to realize some of supersymmetric

backgrounds.

Our analysis was based on a Poincaré supergravity. As is mentioned in 5.1 we cannot

reproduce all supersymmetries of a superconformal theory in the framework of Poincaré

supergravity. To realize a superconformal theory it would be more suitable to use a confor-

mal supergravity to describe curved backgrounds. As is shown in [55], the Weyl multiplet

shown in table 1 is obtained by fixing a part of the local superconformal symmetry by

using a vector multiplet as a compensator. It is also possible to write down the gauge

fixing condition by using a hypermultiplet [56] or a linear multiplet [61, 62] instead of a

vector multiplet. It may be possible to obtain a more general class of solutions by consid-

ering a system consisting of a superconformal Weyl multiplet and different kinds of matter

multiplets without gauge fixing conditions imposed.
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A Notations and conventions

We use Greek letters µ, ν, . . . = 1, . . . , 5 for 5d world indices, and hatted Greek letters

µ̂, ν̂, . . . = 1̂, . . . , 5̂ for orthonormal indices. Roman letters m,n, . . . and m̂, n̂, . . . are vector

indices running over 1, . . . , 4 or 1̂, . . . , 4̂.

The 5d anti-symmetric tensor εµνρστ is defined by

γµνρστ = εµνρστ14. (A.1)

We use α, β, . . . = 1, 2, 3, 4 for Sp(2)L spinor indices and I, J, . . . = 1, 2 for Sp(1)R dou-

blet indices. They are raised and lowered by Sp(2)L and Sp(1)R invariant anti-symmetric

tensors εIJ = εIJ and Cαβ = Cαβ satisfying

εIKεJK = δIJ , CαγCβγ = δαβ . (A.2)

We use NW-SE convention for implicit contraction of these indices. For example,

(ηχ) ≡ ηαIχαI ≡ CαβεIJηβJχαI .
For a rank n anti-symmetric tensor Aµ1···µn we define

A\ =
1

n!
Aµ1···µnγ

µ1···µn . (A.3)

For Sp(1)R triplet fields we use the matrix notation

tI
J ≡ ta(τa)IJ (A.4)
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where τa (a = 1, 2, 3) are the Pauli matrices. As an example, we present δQη in (2.1) with

all indices explicit;

δQηIα = −2(γν)α
βξIβDµv

µν + ξIαC + 4(Dµt
a)(γµ)α

β(τa)I
JξJβ

+ 8

(
1

2
fµν(γµν)α

β − 1

2
vµν(γµν)α

β

)
ta(τa)I

JξJβ + (γµνρσ)α
βξIβfµνfρσ. (A.5)

We use a convention in which a symplectic Majorana spinor χα
I is expressed in the

form

χ = (χα
I) =

(
U

D

)
, U = U012 + iUaτa, D = D012 + iDaτa, (A.6)

with real Ui and Di (i = 0, 1, 2, 3), and the scalar product of two symplectic Majorana

spinors are given by

(χ(1)χ(2)) = 2U
(1)
i U

(2)
i + 2D

(1)
i D

(2)
i . (A.7)

Therefore, (χχ) > 0 for a non-vanishing Grassmann-even symplectic Majorana spinor χ.

The following formulas for Grassmann-even spinors η and χ are useful.

(ηχ) = (χη), (ηγµχ) = (χγµη), (ητaχ) = −(χτaη). (A.8)

For Grassmann-odd spinors, the signs in (A.8) are flipped.

We do not rely on a particular choice of γm̂, C, and ε except in 5.4, where we use the

following matrices

γ1̂,2̂,3̂ =

(
−iτ1,2,3

iτ1,2,3

)
, γ4̂ =

(
12

12

)
, γ5̂ =

(
12

−12

)
, (A.9)

ε12 = ε12 = +1, Cαβ = Cαβ =

(
ε 0

0 ε

)
. (A.10)

With this choice of the matrices, εµ̂ν̂ρ̂σ̂τ̂ and Jam̂n̂ have the components

ε1̂2̂3̂4̂5̂ = +1,

Ja
b̂ĉ

= −iεabc, Ja
b̂4̂

= iδab (a, b, c = 1, 2, 3). (A.11)
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