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Abstract: We establish resolution bounds on reconstructing a bulk field from boundary

data on a timelike hypersurface. If the bulk only supports propagating modes, reconstruc-

tion is complete. If the bulk also supports evanescent modes, local reconstruction is not

achievable unless one has exponential precision in knowledge of the boundary data. With-

out exponential precision, for a Minkowski bulk, one can reconstruct a spatially coarse-

grained bulk field, but only out to a depth set by the coarse-graining scale. For an asymp-

totically AdS bulk, reconstruction is limited to a spatial coarse-graining proper distance

set by the AdS scale. AdS black holes admit evanescent modes. We study the resolution

bound in the large AdS black hole background and provide a dual CFT interpretation.

Our results demonstrate that, if there is a black hole of any size in the bulk, then sub-AdS

bulk locality is no longer well-encoded in boundary data in terms of local CFT operators.

Specifically, in order to probe the bulk on sub-AdS scales using only boundary data in

terms of local operators, one must either have such data to exponential precision or make

further assumptions about the bulk state.
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1 Introduction

This paper concerns reconstructing the state of the anti-de Sitter (AdS) bulk from the

conformal field theory (CFT) boundary. Finding which CFT quantities encode the bulk

and, if so, in what ways have been actively pursued recently, e.g. [1–12]. One standard

approach is to start with local CFT data and use bulk equations of motion to evolve

radially inward. The questions we seek to answer are: under what circumstances is this

evolution possible, how deep into the bulk can we evolve, on what scales can the bulk be

reconstructed, and what assumptions about the bulk state must be made?

We first address these questions in a simpler context: the electromagnetic field in

Minkowski spacetime. Given boundary field data on a timelike codimension-1 hypersur-

face (which we conveniently place at z = 0), can the electromagnetic field be determined

everywhere (z > 0)? Suppose the bulk is filled with homogeneous air. The only solutions

to the wave equation consistent with translation symmetry are propagating waves and re-

construction is trivially achieved. On the other hand, suppose that the bulk is filled with

air for 0 ≤ z < zg and with glass for z > zg. The translation symmetry being broken, there

is now a new class of solutions: waves which are propagating for z > zg but evanescent for
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0 ≤ z < zg. Evanescent modes are solutions with imaginary momentum. While legitimate

solutions of the wave equation, these modes are forbidden in vacuo because of exponential

growth at large z and hence of non-normalizability. The presence of glass at finite z cuts

off this unboundedness and renders the mode permissible. Reconstructing the field inside

the glass from measurements at z = 0 is hopeless; a small mistake will get exponentially

amplified. It would be like trying to measure the electromagnetic field inside a waveguide

while standing a kilometer away. In fact, even reconstruction of the field for 0 ≤ z < zg
from the boundary data at z = 0 is no longer straightforward. If we do not measure the

evanescent modes (in the absence of assumptions on the form of the solution), we can

not reconstruct the field anywhere. We can, however, measure the evanescent modes at

z = 0 to some extent without resorting to exponential precision. If we do, then the field,

coarse-grained in x over a scale σ, can be reconstructed, but only for z < σ.

We next address the reconstruction question in the context of the AdS/CFT corre-

spondence: we consider a free scalar field in a fixed asymptotically AdS background. A

background which is pure AdS, or a perturbation thereof, is like the electromagnetic field

in the vacuum - exact reconstruction using boundary data is possible. Thus, local CFT

operators give a probe of the bulk on the shortest of scales. A background with a small

AdS black hole is like putting in a region with glass. The geometry in the black hole

atmosphere, the region from 2M to 3M , changes the boundary conditions and permits

evanescent modes. Analogously to the case with glass, reconstructing the field in the at-

mosphere is hopeless. Reconstructing the field far from the black hole is possible to some

extent and, like in the case of the electromagnetic field, requires measuring the evanescent

data. The condition z < σ translates into the ability to resolve the bulk on AdS scales

and no shorter. The measurement of evanescent modes is the basis of the functioning of a

Scanning Tunneling Microscope (STM). In this sense, the CFT is acting like an STM for

the bulk at macroscopic scales.

It may seem puzzling that a small black hole deep in the bulk should have any im-

pact on our ability to reconstruct the bulk close to the boundary. One may pretend the

evanescent modes do not exist and work only with the propagating modes. This might

be a good approximation for some states and for regions close to the boundary, but it is

one that is violated by legitimate finite energy solutions having a significant amplitude

for an evanescent mode. Even in the Hartle-Hawking vacuum, the CFT Green’s function

G2(ω,k) ( given by the Fourier transform of the finite temperature two-point correlator

〈T |O(t,x)O(0,0)|T 〉) is nonzero but exponentially small ∼ exp(−α̃|k|/T ) in the evanescent

regime k � ω. The evanescent modes are part of the spectrum of micro-canonical states, so

even if one might opt to ignore them for two-point correlators, they necessarily contribute

to any finite-temperature n−point function as intermediate states.

We have organized the paper as follows. In section 2, we formulate in Minkowski

spacetime the problem of spacelike reconstruction from timelike boundary data. We show

that reconstruction is exact in situations with only propagating modes but requires expo-

nential precision in knowledge of boundary data in situations with evanescent modes. In

the latter situation, reconstruction without exponential precision is possible but only at the

cost of coarse-graining over directions parallel to the boundary and only out to a distance
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set by this averaging scale. In section 3, we formulate the reconstruction problem in AdS

space and demonstrate that the situation is exactly parallel to the Minkowski spacetime

counterpart. In a pure AdS background, all modes are propagating and the reconstruction

is exact. In an AdS black hole background, evanescent modes open up near the black

hole horizon and reconstruction requires exponential precision. Here again, reconstruction

without exponential precision is possible but only at the cost of an AdS scale averaging

over directions parallel to the boundary. In section 4, via the AdS/CFT correspondence,

we discuss the impact of evanescent modes on bulk reconstruction from the CFT viewpoint.

We show that in general precise determination of Green’s functions at finite temperature

requires exponential precision. In appendix A we review evanescent modes in optics, the

principles of a microscope, and scanning tunneling (optical) microscopy (STM).

2 Bulk reconstruction in Minkowski space

In this section, we pose the question: for a field φ(x, t, z) satisfying the wave equation in

(2 + 1)-dimensional Minkowski spacetime,1 is the boundary data φ(x, t, 0) specified at a

timelike hypersurface z = 0 sufficient to reconstruct the field φ(x, t, z) everywhere? (See the

setup shown in figure 1.) The wave equation admits solutions with both real and complex

momentum. The solutions with real momentum are the propagating waves, e±ikzz. If the

space is everywhere homogeneous, such as pure Minkowski space, then these are the only

admissible delta-function normalizable modes. In this case, reconstruction of φ(x, t, z) from

the boundary data φ(x′, t′, 0) works perfectly — we show in section 2.1 that the smearing

function K(x, t, z|x′, t′), whose convolution with φ(x′, t′, 0) yields φ(x, t, z), is well-defined

everywhere in the bulk. On the other hand, if the space is inhomogeneous by, for instance,

having a spatially varying index of refraction, then modes with imaginary momentum can

become permissible. Instead of propagating, these modes grow exponentially in the z

direction: e±κzz. They are known as “evanescent modes”. Our goal is to point out that

the evanescent modes cause serious difficulties in reconstructing the field anywhere from

given boundary data.

2.1 Success with propagating modes

We consider the wave equation in (2 + 1)-dimensional Minkwoski spacetime R2,1:(
−∂2

t + ∂2
x + ∂2

z

)
φ(x, t, z) = 0. (2.1)

We will be interested in reconstructing φ(x, t, z) from boundary data φ(x, t, 0) specified on

a timelike hypersurface b at z = 0. To accomplish this, we decompose the solutions to (2.1)

in terms of the propagating wave basis:

φ(x, t, z) =

∫ ∫
dkx dω φ(kx, ω) e−ikxx−ikzz−iωt, (2.2)

where the delta-function normalizability condition puts

kz ≡
√
ω2 − k2

x ∈ R+ → |ω| ≥ |kx|. (2.3)

1Extension to higher dimensions is straightforward and does not reveal any new physics.

– 3 –



J
H
E
P
0
7
(
2
0
1
4
)
0
5
0

Figure 1. The setup of bulk reconstruction in (2 + 1)-dimensional Minkowski half space R2,1
+ . We

have a bulk field φ(x, t, z) obeying the wave equation, which we wish to reconstruct from the data

φ(x, t, 0) on a timelike hypersurface at z = 0.

We chose kz to be positive, as we will for simplicity assume there are only left-movers.2

The decomposition (2.2) is slightly nonstandard as ω is one of the independent variables

as opposed to kz. This is a convenient choice here as the boundary data is specified on a

timelike hypersurface. The Fourier transform of φ(x, t, z = 0) yields

φ(kx, ω) =

∫∫
b
dx′dt′ eikxx

′+iωt′φ(x′, t′, 0). (2.4)

Inserting (2.4) into (2.2),

φ(x, t, z) =

∫∫
b
dx′dt′ K(x, t, z|x′, t′)φ(x′, t′, 0). (2.5)

Here, K is the smearing function given by

K(x, t, z|x′, t′) =

∫ ∞
−∞

dω

∫
|kx|≤|ω|

dkx e
−iω(t−t′)e−ikx(x−x′)e−i

√
ω2−k2

x z

=

∫ ∞
−∞

dkx

∫
|ω|≥|kx|

dω e−iω(t−t′)e−ikx(x−x′)e−i
√
ω2−k2

x z. (2.6)

The integral in (2.6) is convergent, so (2.5) realizes our goal of reconstructing φ(x, t, z) in

terms of the boundary data φ(x, t, 0). This is not surprising, as for every mode the field

at some value of z is related to the field at z = 0 by the phase-factor eikzz associated with

the translation, where kz is given by (2.3).

It will be useful for later to first reconstruct per each monochrome ω mode and then

combine them together. We then use

φω(x, 0) ≡
∫ ∞
−∞

dt eiωt φ(x, t, z = 0) (2.7)

2Assuming there are only left-movers allows us to connect more directly with the analogous problem

in AdS space. The more general case in Minkowski space for which right-movers are also included is

a straightforward extension and requires specifying ∂zφ(x, t, z = 0) in addition to φ(x, t, z = 0) at the

boundary b.
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to reconstruct φω(x, z),

φω(x, z) =

∫ ∞
−∞

dx′ Kω(x, z|x′) φω(x′, 0) (2.8)

where

Kω(x, z|x′) =

∫
|kx|≤|ω|

dkx e
−ikx(x−x′)e−i

√
ω2−k2

x z. (2.9)

The full smearing function is then recovered through the spectral sum

K(x, t, z|x′, t′) =

∫ ∞
−∞

dω Kω(x, z|x′)e−iω(t−t′). (2.10)

2.2 Reality with evanescent modes

In the above discussion, we restricted kz to be real-valued as a consequence of the mode’s

delta-function normalizability condition. If one were to consider kx > ω such that kz is

imaginary: kz ≡ iκz, a mode would take the form

e−ikxxe−iωteκzz (z ≥ 0) . (2.11)

This solution diverges at large z, and is therefore not permissible. We were thus correct

to discard it. However, if the Minkowski space is inhomogeneous in the z-direction, often

solutions such as (2.11) become permissible. In appendix A, we give two situations which

generate evanescent modes: (1) a wave traveling in a medium with a z-dependent index of

refraction, and (2) a wave scattering off a material that has an x-dependent transmission

coefficient and is located at some fixed z.

If evanescent modes are present, then they pose a serious challenge for reconstructing

the field from the z = 0 boundary data. Unlike propagating modes, evanescent modes will

have an exponentially suppressed imprint on the z = 0 boundary compared to their value

at z > 0. This exponential behavior renders the reconstruction procedure of section 2.1

inapplicable: the smearing function K (2.6) is ill-defined because of the divergence from the

kx � ω region of integration. For the rest of this section, we simply assume that evanescent

modes are present and do not inquire as to their origin. An exemplary situation helpful

to keep in mind is the one where the index of refraction of the background changes at

some large value of z > 0. For simplicity, we will assume the change made at large z

is such that all possible evanescent modes are produced so that the mode solutions now

contain all values of kx regardless of ω. We would like to understand the impact this has

on reconstructing the field from boundary data.

We can take two approaches in dealing with evanescent modes. We may ignore the

modes from the outset, contending that they are not propagating. Or we may include

the modes. We now argue that in both cases we will face unavoidable limitations on the

resolving power of the reconstruction.

2.3 Ignoring evanescent modes

Consider first the approach of ignoring the evanescent mode data at the boundary: we

will not try to extract their coefficient from the boundary data provided at z = 0. In the
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procedure of section 2.1, we are now in the situation that the Fourier decomposition of

φ(x, t, z) (2.2) extends over all kx and ω, but we truncate the Fourier decomposition of

the smearing function K in (2.6) to |ω| ≥ |kx| . Reconstruction of φ(x, t, z) can be done

monochromatically per each frequency ω, first reconstructing φω(x, z) and then combining

them to get φ(x, t, z). Reconstruction of φω(x, z) is the same problem as the one encoun-

tered in optics when one tries to resolve features of a sample by shining monochromatic

light on it. (For those who need to refresh optics, consult appendix A.) Ignoring the evanes-

cent modes is the standard assumption in optical microscopy: the detector (playing the

role of the boundary) is far from the sample, so the magnitude of the evanescent modes at

the screen is exponentially small and is zero for all practical purposes. For this reason, we

only have knowledge of features of the sample, T (kx), for |kx| ≤ |ω|. This is the standard

result we would expect: detecting light of frequency ω, we can probe the features of a

sample but only on scales larger than the resolution power set by ω−1.

Specifically, we assume the boundary data specified at the z = 0 hypersurface tells

us nothing about the coefficients φω(kx) for |kx| ≥ |ω|. Clearly, we can then not hope

to confidently reconstruct φω(x, z), as the coefficient φω(kx) for the large kx could be

arbitrarily large. To ameliorate this, we may ask for reconstructing the field φω(x, z)

coarse-grained over x with the Gaussian window function of resolution scale σ. We denote

this coarse-grained field as φσω(x, z):

φσω(x, z) =

∫ ∞
−∞

dx′ e−(x−x′)2/σ2
φω(x′, z) . (2.12)

We would expect reconstructing φσω(x, z) should only require knowledge of modes with

|kx| . |σ|−1. To verify this, we rewrite (2.12) as

φσω(x, z) =

∫
dkx φω(kx, z) e

−k2
xσ

2
e−ikxx. (2.13)

Unless φω(kx, z) grows exponentially in k2
x for large kx, its value is irrelevant for |kx| & |σ|−1.

Therefore, if we are only interested in reconstructing the field φω(x, z) coarse-grained over

x with resolution scale σ, then we can reconstruct it using only the propagating mode data

at the z = 0 boundary as long as |ω| & 1/σ (and provided a reasonable assumption is

made about the behavior of the |kx| � |ω| modes).

All seems well, but there is a problem. To reconstruct φσ(x, t, z) for all time t, we need

φσω(x, z) for all ω. Yet, there is no σ for which this condition will be satisfied: for any σ,

there is an interval of missing ω, |ω| < 1/σ. This means that, with the assumption we made

that we ignore the evanescent mode data at z = 0, we can not possibly reconstruct the

temporal evolution of the field at any z location, regardless of how large a coarse-graining

resolution σ in x we are willing to compromise for. In short, for reconstruction relying only

on propagating mode data, coarse-graining over x achieved reconstructability over z but

sacrificed reconstructability over t.

2.4 Dealing with evanescent modes

Consider next the approach of retaining all the evanescent mode data at the boundary

b. If we wish to resolve the field on a scale |∆x| ' σ, we expect to require knowledge of

– 6 –
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the field profile with kx . σ−1. But then, evanescent modes with ω = 0 and kx = σ−1

behave like ez/σ, and we would expect we can determine φσ(x, t, z) only for z . σ. At

bulk locations z larger than σ, the evanescent modes grow exponentially large compared

to what we have access to on the boundary. We will show below that one would require

exponential accuracy in the knowledge of the z = 0 boundary data to reconstruct the field

at bulk regions as deep as z � σ. To foreshadow considerations in section 3 for AdS

space, let us mention that the criterion z . σ will turn into σproper(z) & LAdS[1 + ε(z)],

where σproper(z) is the proper distance at a bulk location z corresponding to the coordinate

interval σ, up to a correction factor ε(z) that depends on details of the bulk.

We now redo the computation of section 2.1 but with evanescent modes taken into

account. The monochrome field φω(x, z) is expressed in terms of φω(x, 0) through Kω

of (2.9). In the expression (2.9) for Kω, we must integrate over all |kx| < ∞. We split

this integral into contributions of the propagating modes and of the evanescent modes,

respectively,

Kω(x, z|x′) =

∫ ω

−ω
dkx e

−ikx(x−x′)e−i
√
ω2−k2

x z +

∫
|kx|>ω

dkx e
−ikx(x−x′) e

√
k2
x−ω2 z. (2.14)

The second integral is badly divergent. Thus, the evanescent modes have obstructed our

ability to reconstruct the field in the bulk. As before, we instead ask for reconstructing the

more physical quantity: the field coarse-grained over x with a Gaussian window function.

We have

φσω(x, z) =

∫
b
dx′ Kσ

ω(x, z|x′) φω(x′, 0) (2.15)

where

Kσ
ω(x, z|x′) =

∫
b
dx̄ e−(x−x̄)2/σ2

Kω(x̄, z|x′) . (2.16)

Inserting (2.9) into (2.16) yields

Kσ
ω(x, z|x′) =

∫
dkx e

−ikx(x−x′) e−i
√
ω2−k2

x z e−k
2
xσ

2
. (2.17)

Asking for the field smeared over σ in the x direction thus amounts to coarse-graining

the smearing function (2.14) over momentum kx with the Gaussian window function

exp(−k2
xσ

2) to suppress large kx. The kx � ω part of the integral in (2.17) gives

[e−2i(x−x′)z/σ2 · ez2/σ2
] e−(x−x′)2/σ2

. (2.18)

Having smeared out in the x-direction, let’s examine the behavior in the bulk z-direction.

As measured at deeper bulk regions z � σ, this function oscillates rapidly in phase and

grows exponentially in amplitude. So, to determine the σ−grained field at a z greater

than σ, one needs to measure the boundary data φω(x, z = 0) with exponential preci-

sion. In short, for reconstruction retaining evanescent mode data, coarse-graining over x

ameliorated reconstructability over z for a depth of order the coarse-graining scale or so.
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2.5 Window function

In both approaches to dealing with evanescent modes, bulk reconstruction required a choice

of a window function for the x-direction to regularize the divergence in (2.14). In (2.17),

we chose a Gaussian window function to achieve the regularization. What about other

choices? One might try a hard-wall window function, Θ(σ−1 − |kx|), which gives perfect

regularization, and whose x-space window function takes the form

sin
(
x−x′
σ

)
x− x′

. (2.19)

One might also try a Laplace window function, e−kxσ, but this function would be insufficient

to regulate the divergence. Details of reconstruction certainly depend on the choice of the

window function, but the fact that we are limited by resolution bounds does not depend

on the choice.

The choice of the window function is also a practical matter for the Scanning Tunneling

Microscopy (STM). The basis of STM is the measurement of evanescent modes. In the

problem of resolving the features of a sample (appendix A), the location of the sample is

held fixed and bringing the STM probe needle a distance σ close to the sample allows image

resolution on a scale σ. From the optics perspective, determining the spatial features of

a sample regardless of the frequency with which it is illuminated, as an STM allows, is

an enormous achievement. We have shown that the ability to do this in the STM context

translates into our ability to reconstruct the bulk field φσ(x, t, z) for z < σ from boundary

data. While the precise depth to which reconstruction is possible would certainly depend

on the chosen window function, the fact that the STM probes to a depth set by the image

resolution scale is independent of the choice.

One should note that the coarse-grained smearing function, for any coarse graining

other than the hard wall choice (2.19), makes little distinction between σ less than or greater

than 1/ω. This appears in tension with the standard assumption (reviewed in section 2.3)

that, for σ > 1/ω, reconstruction should still be possible even while ignoring the evanescent

modes. However, regardless of ω, Kσ
ω has the same behavior coming from kx � ω and

leading to the same complications with reconstruction for z & σ. The resolution is that the

smearing function makes no assumption regarding the high kx behavior of the field we aim

to reconstruct, whereas our previous argument that modes with kx > σ are not needed for

the σ-grained field relied on a (very reasonable) assumption about the high kx behavior of

the field.

2.6 Conclusions

Let’s summarize what we have learned so far. Our question of interest has been whether

we can reconstruct the field φ(x, t, z) using the data φ(x, t, z = 0) at the z = 0 timelike

hypersurface. We assumed we can do this reconstruction monochromatically, reconstruct-

ing φω(x, z) from φω(x, 0). If the medium is homogeneous and only propagating modes

are present, then the reconstruction works flawlessly and is given by (2.5), (2.6). If, how-

ever, the medium is inhomogeneous and evanescent modes are present, then reconstructing
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φ(x, t, z) point by point in the bulk is not achievable. We could instead reconstruct φω(x, z)

coarse-grained in x with a σ-sized resolution, φσω(x, z). This reconstruction can be done

while not measuring any of the evanescent modes, but only for ω & σ−1. Since recon-

structing φσ(x, t, z) for all time t requires reconstructing φσω(x, z) for all ω, we are unable

to reconstruct φσ(x, t, z) for any z. If, on the other hand, we do include the evanescent

modes, the reconstruction of φσ(x, t, z) can be done but only for the bulk depth z . σ.

This is because reconstructing for z & σ would require exponential accuracy in measuring

the value of φ(x, t, 0).

3 Bulk reconstruction in AdS space

We now turn to AdS space and repeat the bulk reconstruction analysis. In short, we will

find that the conclusion is exactly the same as in the flat Minkowski space case, except

that we now need to understand the resolving power in proper distances. In section 3.1, we

make some general remarks regarding the relation between restricting the boundary data

to local CFT operators and reconstructing a bulk AdS field from this data. In section 3.2

we focus on reconstruction of the near-boundary region of the bulk. In section 3.3, we

consider evolving deeper into the bulk and find how the resolving power is modified.

3.1 Local CFT operators as boundary data

The AdS/CFT dictionary in extrapolate form [13] relates the boundary limit of a bulk

operator φ̂ to a local CFT operator O:

limz→0 z
−∆ φ̂(x, t, z) = O(x, t). (3.1)

Hereafter, the only boundary CFT data we will consider is that of local CFT operators.

We also hold the CFT Hamiltonian fixed, corresponding to the restriction that all non-

normalizable modes of the bulk field φ are turned off. So, different states of the bulk field φ

correspond to exciting different normalizable modes. The CFT operator O(x, t) dual to the

bulk field φ has a scaling dimension ∆ set by the mass of the bulk field φ, ∆(∆− d) = m2.

In non-vacuum states, the CFT operators acquire nonzero expectation values.

Defining the boundary tail through limz→0φ(x, t, z) = φ0(x, t)z∆, one would like to

express the field φ(x, t, z) in the bulk in terms of the boundary tail φ0(x′, t′). This ques-

tion is a nonstandard boundary-value problem of evolving boundary hyperbolic data at a

timelike hypersurface into the bulk along a spacelike ‘radial’ direction. This is precisely the

sort of problem we addressed in section 2 in the simpler context of flat Minkowski space.

In normal Cauchy evolution of an initial-value problem, we take a Fourier transform with

respect to the spatial direction x, z of elliptic data on the t = 0 Cauchy surface to obtain

their spectral initial values. Here, we must work with hyperbolic data on the z = 0 timelike

hypersurface. So, as in section 2, instead of doing a Fourier transform with respect to z,

we do one with respect to boundary time t and obtain spectral boundary values.

Suppose complete reconstructability of the bulk is possible. Then, the bulk operator

φ̂(x, t, z) at a bulk location z is a linear combination of the CFT operator O(x, t), smeared
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over the boundary hypersurface b:

φ̂(x, t, z) =

∫
b
dx′ dt′K(x, t, z|x′, t′) O(x′, t′) + · · · . (3.2)

Here, the ellipses refer to nonlinear interactions in the bulk. Although (3.2) is an operator

statement, as a result of (3.1), findingK is reduced to a classical field theory problem. In the

limit of weakly interacting bulk dynamics (corresponding to arbitrarily large CFT central

charge), the nonlinear bulk interactions denoted by the ellipses in (3.2) are negligible and

the reconstruction can be done mode by mode. In what follows, we will only be interested

in the leading-order term of (3.2). In the bulk, we then have a fixed background on which

the non-interacting bulk field φ(x, t, z) evolves according to the AdS wave equation.

Indeed, we can construct a smearing function for pure AdS space, as was done in [14,

15]. Using perturbation theory, we can also construct a smearing function for an asymp-

totically AdS space perturbatively connected to pure AdS space (such as the one with a

planet). In cases when a smearing function exists, through (3.2), the operators O provide

us with a probe of bulk locality on as short of scales as the semiclassical equations of motion

are valid. In cases when a well-defined smearing function K can be constructed, (3.2) can

be used to express bulk n-point correlators of φ̂ in terms of boundary CFT correlators of O.

We stress that having a well-defined smearing function is a more stringent requirement

than simply having an algorithm for determining the bulk field φ(x, t, z) from given con-

formal boundary data φ0(x′, t′). For instance, one might suppose that, for any particular

bulk solution, even if φ0(x′, t′) is extremely small, one can pick an appropriate resolution

for one’s measuring device so as to see it and reconstruct φ(x, t, z). However, it could be

that no matter how good a resolution one picks, there always exist field configurations

having a near-boundary imprint φ0(x′, t′) that is below the resolution power of one’s mea-

suring apparatus. In such a case, one does not have a well-defined smearing function as its

existence implies a state-independent way of reconstruction. In a sense, one has to pick a

priori the resolution power without preconceived knowledge of which field configurations

will be under consideration. Indeed, in some cases, there is no smearing function [11]. A

black hole background is such a case — there are modes with ω � l (where l is the linear or

angular momentum measured in units of the AdS-scale) whose relative boundary imprint

e−l is exponentially small.

A remark is in order regarding our working assumption on the boundary data. Nothing

we have said so far regarding reconstruction has made use of there actually existing a dual

CFT, except that we assumed from the outset that the boundary conformal data is spanned

by the set of local CFT operators. We can consider a collection of near-boundary observers

who reconstruct the bulk field, their limitation of being confined to z = 0 is overcome by

making measurements over an extended period of time. This setup is the equivalent of the

statement that a complete set of local CFT operators O(x, t) smeared over space and time is

sufficient to reconstruct the bulk. It is important to note that this is a working assumption.

The CFT is equipped with many quantities that local near-boundary observers are not.

For instance, one could reconstruct the bulk by measuring CFT Wilson loops [16–18] or

entanglement entropy [19]. An important question is in what situations data provided by
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expectation values of local CFT operators O(x, t) is not sufficient to reconstruct the bulk

and these other CFT quantities must be invoked. In situations when local operators O(x, t)

are insufficient to exactly probe bulk locality, we would like to understand if the O(x, t)’s

are at least sufficient to probe the bulk fields coarse-grained over some scale.

3.2 Bulk reconstruction near the boundary

Our goal is to study bulk reconstructability for general bulk spaces that asymptote to

pure AdS space near the timelike boundary. Let’s first consider the case of reconstructing

the bulk field at locations close to the boundary. There, the metric is approximated by

that of pure AdS space, so we should be able to make universal statements concerning the

reconstruction. The mode solutions on a general asymptotic AdS space can be classified

into propagating and evanescent, depending on whether the bulk radial momentum-like

quantum number is real or imaginary. If the bulk supports only propagating modes such

as in pure AdS space, one can show that φ(x, t, z) can be reconstructed exactly. On the

other hand, if somewhere in the bulk there is a significant change in the geometry, then

evanescent modes may become permissible.

In this section, in situations where evanescent modes are present, we will show that

(1) if we completely ignore boundary data from the evanescent modes, the bulk can not

be reconstructed anywhere or on any scale, and (2) if we include boundary data from

the evanescent modes, but not to exponential precision, we are able to reconstruct the

bulk, but only on AdS-size scales and not shorter; viz. we can reconstruct φσ(x, t, z) for

σproper > LAdS.

AdS smearing function. Let’s first work out the explicit functional form of the smear-

ing function. Consider the massive scalar wave equation

1
√
g
∂µ(
√
ggµν∂νφ)−m2φ = 0, (3.3)

in the Poincaré patch of (d+ 1)-dimensional AdS space:3

ds2 =
−dt2 + dx2 + dz2

z2
. (3.4)

The modes are

φω,kx = 2νΓ(ν + 1)q−ν zd/2 e−ikx·x−iωt Jν(qz), (3.5)

where q =
√
ω2 − k2

x is like a bulk radial momentum and ν2 = m2 + (d/2)2. In (3.5),

we normalized the modes so that they approach plane waves of unit amplitude near the

boundary:

z−∆φω,kx → e−ikx·x−iωt as z → 0 . (3.6)

We would like to express the bulk field φ(x, t, z) in terms of the conformal boundary

data φ0(x, t) at the z = 0 hypersurface b,

φ(x, t, z) =

∫
b
dx′dt′ K(x, t, z|x′, t′) φ0(x′, t′) . (3.7)

3Hereafter, we shall suppress the AdS scale LAdS, and reinstate it in some of the final expressions.
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Figure 2. The bulk profile of the modes is found from solving the Schrödinger equation in

the above effective potential V (z). Modes with ω2 > k2
x are propagating, whereas those with

ω2 < k2
x are evanescent. In pure AdS space, evanescent modes are forbidden due to their exponential

divergence at large z. However, evanescent modes become permitted if there is a change in the

effective potential in the large z interior so as to cause the potential to dip below k2
x.

This equation is essentially identical to the one used in the context of reconstruction in

Minkowski space (2.5). The only difference is that since in AdS space all modes universally

die off near the boundary, on the right of (3.7) we used the conformal data of the field

φ0(x′, t′) ≡ limz→0z
−∆φ(x′, t′, z). We construct the smearing function K in the same

way as in section 2.1: a Fourier transform of the hyperbolic boundary b allows us to

extract from φ0(x, t) the Fourier coefficients of all modes. This yields the smearing function

K(x, t, z|x′, t′) given by

K(x, t, z|x′, t′) =

∫ ∞
−∞

dω Kω(x, z|x′)e−iω(t−t′), (3.8)

where

Kω(x, z|x′) = 2νΓ(ν + 1)

∫ ∞
−∞

dkx e
−ikx·(x−x′)zd/2 q−νJν(qz) . (3.9)

We reemphasize that (3.9) is the counterpart of (2.9), except that AdS modes have different

behavior in the radial z-direction (3.5) as compared to Minkowski modes. The smearing

function (3.9) accounts for this difference.

Propagating modes. Let’s analyze in what circumstances the smearing function is well-

defined. We will find that, as in the Minkowski space analysis of section 2, the AdS smearing

function (3.9) is well-defined if there are only propagating modes. From (3.3), we see that

the z-component of the AdS modes, φωkx = u(z)z
d−1

2 e−ikx·x−iωt, satisfies

− d2u(z)

dz2
+ V (z)u(z) = ω2u(z), (3.10)

where

V (z) = k2
x +

ν2 − 1/4

z2
. (3.11)

The effective potential is plotted in figure 2. Toward the z = 0 boundary, the potential

is confining. Toward z → ∞, the potential becomes flat and we recover the behavior of

– 12 –



J
H
E
P
0
7
(
2
0
1
4
)
0
5
0

Minkowski modes. Indeed, in (3.5), the Bessel function asymptotes for qz � ν to a plane

wave:

Jν(qz) ∼ 1
√
qz
eiqz. (3.12)

It now remains to understand when the radial z-component of the momentum, q, is real-

valued. In pure AdS space, the effective potential is bounded from below V (z) ≥ k2
x, so the

frequency is bounded by ω2 ≥ k2
x. This translates into the statement that q2 = ω2−k2

x ≥ 0.

We find that, as for homogeneous Minkowski space, pure AdS space has only propagating

modes. If the bulk space deviates from the AdS space, so long as the effective potential

V (z) > k2
x for all z, there can only exist propagating modes. With propagating modes

only, the integrals that define the smearing function (3.9) and (2.10) are convergent and

the reconstruction is perfect. We conclude the the simple criteria for exact reconstruction

of the bulk near the boundary is that there are only propagating modes.

At this point, we point out the need to exercise caution. While the reconstruction for

the near-boundary region appears independent of the geometry deep in the bulk, this is

actually incorrect. For instance, as we will see below, the presence of a black hole deep in

the bulk drastically modifies our ability to reconstruct the field anywhere in the bulk. This

is a consequence of the black hole changing the boundary conditions deep in the bulk and

permitting evanescent modes to appear.

Evanescent modes. Let us now assume that there is a change in the geometry deep

inside the bulk such that the effective potential dips to V (z) < k2
x and evanescent modes

can occur. For instance, if there is a black brane in the bulk of the Poincaré patch AdS

space, then the effective potential V (z) will vanish at the horizon and a continuum of

evanescent modes will be present just outside the black brane horizon. We will discuss

in section 3.3 if there are other geometries for which evanescent modes can occur. For

now, we simply assume that evanescent modes are present and study their impact on the

reconstruction.

Choosing |kx| > ω leads the z-component of the modes (3.5) to become

Jν(qz) = Jν(iκzz) = eiνπ/2Iν(κzz), (3.13)

where κz ≡
√

k2
x − ω2. For large κzz,

Iν(κzz) ∼ eκzz, (3.14)

and so this solution is precisely an evanescent mode. It is clear that the monochromatic

smearing function (3.9) is divergent if evanescent modes are included, and we can no longer

exactly reconstruct the field. This situation is completely analogous to what happened in

the context of Minkowski space in section 2.3.

The reader may find it confusing that we can not reconstruct a local field even close

to the boundary, where the bulk asymptotes to pure AdS space. Indeed, the AdS/CFT

dictionary (3.1) tells us that knowledge of the local CFT operator O(x, t) should give the

local bulk field φ(x, t, z) at the boundary z → 0. If we were to regulate this expression at

z = ε so as to say thatO(x, t) = ε−∆φ(x, t, ε), then we would appear to have a contradiction.
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The resolution is that the proximity to the boundary, in the sense of the z-location at which

modes encounter the confining barrier of the AdS space, depends on the momentum of the

mode. We see from (3.12) that the mode at z � νq−1 behaves as if it is in flat space, while

the mode at z . νq−1 experiences the AdS confining barrier and decays as z∆. It is the

latter region for which (3.1) applies. In other words, the ε for which (3.1) starts to become

applicable is momentum-dependent.

AdS locality. If the evanescent modes are present, the spectral integral for the smearing

function (3.9) is divergent and we can not reconstruct φ(x, t, z). The best we can hope for

is to reconstruct a coarse-grained bulk field. As in the Minkowski case, we would like to

reconstruct the field coarse-grained in the x-direction with resolution scale σ (2.12). Thus,

we should compute the σ-grained smearing function

Kσ
ω(x, z|x′) =

∫
b
dx̄ e−(x−x̄)2/σ2

Kω(x̄, z|x′) , (3.15)

where Kω appearing in the integrand is given by (3.9). Hence,

Kσ
ω(x, z|x′) = 2νΓ(ν + 1)

∫ ∞
−∞

dkx e
−ikx·(x−x′) zd/2q−νJν

(√
ω2 − k2

x z
)
e−k

2
xσ

2
. (3.16)

In the evanescent regime (|kx| > ω) and at bulk radial position z & ν/
√

k2
x − ω2, the

Bessel function undergoes exponential growth (3.14). Since ν is assumed to be of order

1, evaluating (3.16) leads to the same behavior as in the analogous expression for the

Minkowski case (2.18). Thus, we conclude that we can only reconstruct the σ-grained field

in the bulk to the depth

σ & z . (3.17)

Going to a bulk coordinate distance z deeper than σ would require exponential precision

in the measurements of φ0(x, t) at the timelike boundary hypersurface (z = 0).

So far, the conclusions are qualitatively the same as for the Minkowski space problem.

In AdS space, we need to go one step further and express the resolution bounds in proper

distances. The distance σ in which we have coarse-grained in the x-direction is a coordi-

nate distance, natural from the viewpoint of boundary data of the dual CFT. The proper

distance between two points (z1,x1, t1) and (z2,x2, t2) in AdS space is given by

(∆s)2 =
1

z1z2
[(z1 − z2)2 + (x1 − x2)2 − (t1 − t2)2] . (3.18)

So, converting the coordinate distance resolution |∆x| ≥ σ to the proper one, we have the

proper coarse-graining scale at bulk location z

σproper(z) = σ
LAdS

z
. (3.19)

Thus, (3.17) translates at radial depth z to a proper resolution bound:

σproper(z) & LAdS. (3.20)
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This is one of our main results: with our assumptions, in an asymptotically AdS space

which gives rise to evanescent modes, we can not reconstruct the bulk field any better

than the AdS scale. Moreover, the right-hand side of (3.20) being independent of z, we

are able to reconstruct the AdS bulk without limits on the depth, at least for the near-

boundary region.4

We derived the proper resolution bound (3.20) from analysis of the near-boundary

region of the bulk. For regions deeper in, the bound may be further modified. For instance,

for AdS black holes, the bound could also depend on the black hole horizon scale RBH as

well as the bulk depth z. On general grounds, we expect that the resolution bound takes

the form

σproper(z) & LAdS [1 + ε(z,RBH)] , (3.21)

where ε is background-specific correction factor at the bulk depth z. In the next section,

we shall extract this correction for a large AdS black hole.

Once again, we have a clear analogy with Scanning Tunneling Microscopy (STM). The

invention of STM revolutionized microscopy: by placing a needle at a distance σ from a

sample, some of the evanescent modes could be captured, allowing resolution on a scale

σ. Remarkably, in AdS space, the resolution in the bulk is set by the AdS scale and the

reconstruction can be done to arbitrary bulk depth.

3.3 Bulk reconstruction deeper in

In this section, we evolve deeper into the bulk. Specifically, we take an AdS-Schwarzschild

background and classify the types of modes present, and identify criteria for the presence

of evanescent modes in other backgrounds. We also find the correction ε in (3.21) that the

resolution bound (3.20) receives at locations deeper in the bulk.

Effective potential for modes. Consider a scalar field φ in a general spherically sym-

metric background that asymptotes to AdS space,

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

d−1. (3.22)

The field φ satisfies the wave equation (3.3). Separating φ as

φ(r, t,Ω) = ϕ(r)Y (Ω)e−iωt (3.23)

gives for the radial field ϕ(r),

ω2

f
ϕ+

1

rd−1
∂r(f r

d−1∂rϕ)− l(l + d− 2)

r2
ϕ−m2ϕ = 0. (3.24)

Letting ϕ(r) = u(r)/r
d−1

2 and changing variables to the tortoise coordinate dr∗ = f−1dr

turns (3.24) into a Schrödinger-like equation

d2u

dr2
∗

+ (ω2 − V (r))u = 0, (3.25)

4The result (3.20) was anticipated in [10] in the context of AdS-Rindler.
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Figure 3. (a) The effective potential (3.26) for a small AdS black hole. The boundary of AdS

space is at tortoise coordinate r∗ = π/2, while the horizon is at r∗ = −∞. Evanescent modes arise

if the potential ever drops below the value at the local minimum present in the pure AdS space

(∼ l2). Here, this occurs because the potential approaches zero at the horizon. (b) The effective

potential for pure global AdS space.

with the effective potential

V (r) = f

[
(d− 1)

2

f ′

r
+

(d− 1)(d− 3)

4

f

r2
+
l(l + d− 2)

r2
+m2

]
. (3.26)

Small AdS-Schwarzschild black hole. The AdS- Schwarzschild black hole metric is

given by:

ds2 = −
(

1 + r2 −
(r0

r

)d−2
)
dt2 +

dr2

1 + r2 −
(
r0
r

)d−2
+ r2dΩ2

d−1. (3.27)

Here, we will be interested in a small black hole, so r0 � LAdS and r0 ≈ 2M . In figure 3(a),

we plotted the effective potential (3.26) for a small black hole. There are four kinds of

modes,5 and can be classified depending on the ratio of ω to l. We characterize the modes

going from high ω to low ω.

1. ω & l
r0

. These modes are higher than the angular momentum barrier and propagate

into the black hole. They correspond to throwing φ particles into the black hole.

2. l . ω . l
r0

. These modes are directly related to the modes in the pure AdS space

(plotted in figure 3 (b)). They correspond to the particles having sufficient angular

momentum so that they stay far away from the black hole and do not notice its

presence. They do differ from the pure AdS modes in that they have exponentially

suppressed tails which are propagating near the black hole.

5One should note that we are solving for the normal modes since we want a complete basis of solutions

to the wave equation. The only boundary conditions we are imposing are that the normal modes be

normalizable. In particular, we are not imposing infalling boundary conditions at the horizon (we are not

solving for quasinormal modes).
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3. l . ω . l
r0

. This is the same regime as type 2 modes, but these modes are the ones

that have most of their support close to the black hole and only an exponentially

small amplitude in the asymptotic region. We will call these modes trapped modes.

4. ω . l. These are the evanescent modes. All possible evanescent modes, with any

ω for any value of l, are present as a result of the potential dropping to zero at the

horizon.

As discussed in section 3.2, it is only the evanescent modes which inhibit reconstruction

of the region near the boundary. The trapped modes inhibit reconstruction of the field,

but only for regions close to the black hole (r < 3r0/2). Recall that we normalize all the

modes so that their boundary limit is φωlr
∆ → 1. The trapped modes are propagating in

most of the AdS bulk. Only when they encounter r ∼ 3r0/2, and have to pass under the

centrifugal barrier, do these modes begin to undergo exponential growth. Neither modes

of type (1) or (2) are problematic for reconstruction as they never undergo exponential

growth as compared to their boundary value.

We should emphasize that the difficulties with reconstruction in a black hole back-

ground are not due to the presence of the horizon, per se. One might suppose there should

be difficulties with reconstruction because there are now things which fall into the black

hole and so can’t be seen from the boundary (in other words, that modes of type (1) cause

difficulties). However, the case of pure Poincaré Patch provides a counter-example. There,

everything falls into the Poincaré horizon, yet as we showed in section 3.2, there are no

difficulties with bulk reconstruction. The only necessary criterion the modes need to sat-

isfy for the bulk reconstruction is that their magnitude at the bulk point of interest is not

exponentially larger than their boundary value.

It is interesting to ask in which backgrounds, aside from the AdS black hole, the

trapped modes (type 3) are present. For a static, spherically symmetric spacetime,

ds2 = −f(r)dt2 +
dr2

g(r)
+ r2dΩ2, (3.28)

one could write down an effective potential (similar to (3.26)) and see if it has a barrier

(a local maximum). For the question of reconstruction, we are most interested in modes

with large l: if there are trapped/evanescent modes it is these that will be hardest to

reconstruct. So, we can simplify the analysis by taking the large l limit of the effective

potential. For any given r, in the large l limit, the effective potential simplifies to

V = f
l2

r2
, (3.29)

and the criterion for having trapped modes is that

d

dr

(
f

r2

)
> 0 (3.30)

for some value of r. In [11], it was shown that (3.30) implies that there is no smearing

function for some region in the bulk. The condition (3.30) can be achieved by having a

sufficiently dense planet so that its radius is less than 3M .
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Figure 4. The effective potential for a large black as a function of the tortoise coordinate. Note

that, with tortoise coordinates, the region near the boundary (large r) gets compressed near π/2.

Thus, the top corner of the plot is the only portion of the potential that is similar to a portion of

the pure AdS effective potential (figure 3(b)). Here, the modes are mostly those of type (1) that

propagate into the black hole horizon, and type (4) that have low energy and hence are evanescent.

It is also interesting to ask in which backgrounds, aside from the AdS black hole, are

the evanescent modes (type 4) present. The criterion for having evanescent modes is that

the effective potential has a new global minimum, different from the one present in pure

AdS space which has the value ∼ l2. From (3.29), this means that

f

r2
< 1 (3.31)

for some value of r. Outside the planet, r > R, the metric takes the form (3.27). Letting

rh denote the would-be horizon of the planet, (3.31) translates into the following condition

on the radius R of the planet:

R− rh <
rh
d− 2

(
rh
LAdS

)2

. (3.32)

Since rh/LAdS � 1 by assumption, it is nontrivial for physical matter to be so dense. In

particular, if one assumes the density is nonnegative and a monotone decreasing function,

then a general argument [20] asserts that one must have R − rh > rh/8 (for 4 spacetime

dimensions).

Large AdS-Schwarzschild black hole. We would like to find corrections to the re-

construction resolution bound σproper > LAdS for locations deeper in the bulk, where the

geometry is no longer pure AdS space. To find this, we need to solve for the radial profile

of the evanescent modes. The evanescent modes will grow exponentially as one moves from

the boundary into the bulk. The distance into the bulk that we can evolve is set by the

rate of the growth: when the coefficient in the exponential becomes of order one, we are

unable to evolve deeper in.

We focus on a large AdS black hole, which is similar to a black brane. In the limit

that the black hole is large, r0 � 1, the metric (3.27) can be simplified by dropping the 1
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as it is small relative to r2, so that f(r) = r2 − (r0/r)
d−2. If in addition to this we also

zoom in on a small portion of the solid angle, this yields the black brane metric,

ds2 = −
(
r2 −

(r0

r

)d−2
)

dt2 +
dr2

r2 −
(
r0
r

)d−2
+ r2dx2. (3.33)

The horizon location, rh, and temperature, T , are given by

rdh = rd−2
0 , T =

d rh
4π

. (3.34)

The equation for the effective potential satisfied by the radial modes is given by (3.26) with

l(l + d− 2) replaced by k2
x,

V = f

[
d2 − 1

4
+m2 +

(d− 1)2

4

rd−2
0

rd
+
k2
x

r2

]
. (3.35)

To solve for the radial profile of the modes, we use the WKB approximation, only keeping

the exponential factor

u(r) = exp

(∫ ∞
r

dr′

f(r′)

√
V (r′)− ω2

)
. (3.36)

We are interested in the mode which is the most evanescent, and this is the one with ω = 0.

Thus, for (3.36), we have

u(r) = exp

∫ ∞
r

dr′√
r′2 − rdh/r′d−2

√
ν̄2 +

k2
x

r′2
+

(d− 1)2

4

(rh
r′

)d , (3.37)

where we defined ν̄2 = m2 +(d2−1)/4. Since rh/r < 1 and ν̄ is of order 1, we can drop the

last term in (3.37). Converting to the z-coordinate, z = 1/r, and setting σ ≡ k−1, (3.37)

becomes

u(z) = exp

(∫ z

0

dz′√
1− (z′/zh)d

√
1

σ2
+
ν̄2

z′2

)
. (3.38)

In the case of pure AdS space, we have (3.38) but with zh = ∞. In that case, we argued

that for small z (such that z � σ), we can drop the 1/σ2 term in the square-root and find

that u(z) has power-law behavior consistent with the conformal scaling, z∆, of the field

near the boundary. For z & σ, we instead drop the ν̄2/z2 term in the square root, leading

to the behavior

u(z) = exp
( z
σ

)
. (3.39)

With an AdS black hole present, this behavior receives only minor corrections. Since

1√
1− (z/zh)d

> 1 , (3.40)
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u(z) has a faster growth in an AdS black hole background than in pure AdS space. We

can find the field at z = zh and in the limit σ � zh. This gives,6

u(zh) = exp

(
1

σ

∫ zh

σ

dz√
1− (z/zh)d

)
. (3.41)

Evaluating the integral gives

u(zh) = exp
(
α
zh
σ

)
, (3.42)

where α is the scaling exponent

α =

√
π Γ[1 + 1/d]

Γ[2 + 1/d]
. (3.43)

The value of the scaling exponent α is larger than 1: for instance, in d = 4, α ≈ 1.3,

only slightly larger than 1. This fits with our expectation since, if we had been in pure

AdS space, then we would have had u(z) = exp(z/σ). The scaling exponent α is universal

in that it depends only on d but not on other details of the AdS black hole; it can be

considered a nontrivial prediction for a strongly coupled CFT at finite temperature.

Comparing with (3.21), we now obtain the correction factor ε to the resolution bound

at the horizon:

ε(zh) = α− 1 =

√
π Γ[1 + 1/d]

Γ[2 + 1/d]
− 1 ≤ 0.7 · · · . (3.44)

In the next section, we will find physical interpretation of the correction factor ε at the

horizon as a nonperturbative effect in the thermal Green’s functions in the CFT dual.

4 Evanescence in CFT dual

In this section, we turn to the CFT dual of the AdS space and pose the question: how

do evanescent modes manifest themselves in the CFT? The first question is whether the

evanescent modes are part of the CFT spectrum. To be specific, consider the large AdS

black hole we studied in the last section. The black hole is the holographic dual of the

CFT at a high temperature T that equals the black hole’s Hawking temperature. The

T = 0 vacuum is now changed to the T > 0 ground state (this ground state is created out

of the vacuum by a micro-canonical operator OBH). Now, the T > 0 spectrum includes

the continuous, evanescent spectrum in addition to the discrete spectrum. In effect, the

continuous spectrum increases the dimension of the Hilbert space.

One might object that the evanescent states do not propagate to the AdS boundary and

need not be included. However, they do contribute to CFT correlators at finite temperature

and should be included. For instance, consider the 4-point CFT correlator G4, as computed

holographically in a large AdS black hole background:

G4(1, 2, 3, 4) ≡
〈
T
∣∣∣O1O2O3O4

∣∣∣T〉
CFT

=

∫∫
B

dxdy GBb(1, x)GBb(2, x)K2(x, y)GBb(3, y)GBb(4, y) . (4.1)

6Here, we set the lower limit of integration to be σ since this is around where the approximation of

dropping the ν̄2/z2 term becomes invalid. For z . σ, one should instead drop the 1/σ2 term. However,

since by assumption σ/zh � 1, one can just as well set the lower limit of integration to 0.
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The point is that the integrals over the bulk x and y in the region close to the black

hole horizon contain contributions from the evanescent modes. This is because the evanes-

cent modes are genuine propagating modes in this region and the bulk-to-bulk propagator

K2(x, y) contains these modes. More generally, propagating modes from or to the AdS

boundary would couple to the evanescent modes whose wave function is localized near the

black hole horizon. This implies that, in the dual CFT, we should expect a new class of

3-point correlators that involve two local CFT operators O1,O2 and one effective micro-

canonical operator ET associated with the heat bath:

〈O1O2ET 〉 ∼ 〈T |O1O2|T 〉. (4.2)

To see (4.2) explicitly, we compute the CFT 2-point function in the evanescent regime

by computing a bulk 2-point function and taking its boundary limit. Let us canonically

quantize the bulk scalar field φ(x, t, z) and expand in terms of modes φω,k ,

φ =

∫∫
dωdk

(
φω,k aωk + φ∗ωk a

†
ωk

)
, (4.3)

where the creation operators satisfy the usual commutation relation. Here, we normalize

the modes differently from section 3 and use the bulk Klein-Gordon normalization, which

is more natural in the present context.7

The bulk 2-point function can thus be written as:8

〈φ(x2, t2, z2)φ(x1, t1, z1)〉 =

∫
dω dk φωk(x2, t2, z2) φ∗ωk(x1, t1, z1) (4.4)

Writing the modes as

φωk(x, t, z) = fωk(z)e−ik·x+iωt , (4.5)

and using the AdS/CFT dictionary (3.1), we get〈
T
∣∣∣O(x2, t2)O(x1, t1)

∣∣∣T〉 = limz→0

∫∫
dω dk z−2∆|fωk(z)|2e−ik·(x2−x1)+iω(t2−t1). (4.6)

Let us focus on the portion of the 2-point function (4.6) coming from the evanescent regime

ω � k. Since the Klein-Gordon normalization roughly corresponds to having the mode of

order 1 at the horizon, to find the z → 0 limit of |fωk(z)|2, we just need the WKB factor

giving the relative suppression at the boundary. This factor was computed in (3.42). We

thus find that, in the regime ω � |k| and |k| � T , the bulk 2-point function has the

behavior (ignoring pre-factors),

G(ω,k) ' e−α̃
|k|
T where α̃ =

d

2π
α . (4.7)

7 In section 3, for instance in (3.5), we normalized the modes so that, when rescaled by z−∆, their z-

component approaches 1 at the boundary. This was a natural normalization in that context since we needed

to use the boundary limit of the field to do a Fourier transform over space and time on the boundary and

extract the spectral coefficients of each modes. Here, we normalize with respect to the bulk Klein-Gordon

norm so that (4.4) takes a simple form.
8Note that we are taking the bulk state to be the Hartle-Hawking vacuum.
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Here, α̃ is a constant factor proportional to the scaling exponent α we previously encoun-

tered in (3.43).9 The result (4.7) is not surprising. At zero temperature, there is no evanes-

cent mode with ω < |k| and so such a correction should vanish. So, at finite temperature,

the evanescent modes must generate an equilibrium thermodynamic contribution which

vanishes in the zero temperature limit. This explains the Boltzmann distribution (4.7) of

the evanescent mode contribution.

In the previous sections, we argued that a black hole in the bulk changes the boundary

conditions so as to permit evanescent modes and that a small error in determining their

coefficient will get exponentially amplified when reconstructing the bulk. Here, we have

just taken the ground state for the large black hole background and found the boundary

imprint of the evanescent modes through CFT 2-point correlators at finite temperature. If

the bulk state is a slight deviation from this ground state, then to determine it near the

horizon one must make a boundary measurement precise enough to detect something as

small as (4.7). Of course, we can have an excited state in the black hole background that

has a much larger coefficient for an evanescent mode.

5 Discussion

The AdS resolution bound we have found in this paper has important impacts on the dual

CFT. The first question concerns the boundary CFT data. We showed that, in an AdS

black hole background, bulk fields have evanescent modes. These modes are exponentially

suppressed near the boundary. Translated into the CFT description, this means that we

are unable to reconstruct the bulk on sub-AdS scales if we only have local CFT data, 〈O〉,
and do not have it to exponential precision.

The second question is what CFT data naturally encodes the evanescent modes. Much

in the same way as the evanescent modes trapped to a material are regarded as “part” of

the material, the evanescent modes in an AdS black hole background are naturally part of

the semiclassical black hole. Thus, a speculative possibility is that there exists a theory

which describes the near-horizon atmosphere of a black hole and, as a subsector of the

CFT, the theory can be thought of as living on the black hole horizon.10

An extremal Reissner-Norstrom AdS black hole is a particularly concrete setting in

which to explore this possibility, as the near horizon limit is AdS2 × Sd−1. From the

perspective of the AdS2, the evanescent modes of the underlying AdS black hole are prop-

agating modes of AdS2. Furthermore, AdS2 × Sd−1 should be dual to multiple copies of a

CFT1. We would therefore conjecture that the bulk of the AdS extremal black hole could

be reconstructed by a combination of local operator data coming from both the boundary

CFTd and the tower of horizon CFT1’s.11

9 In [21], the imaginary part of the retarded Green’s function was studied in the evanescent regime by

an alternate method. Their result for d = 4 agrees with our (4.7).
10Note that the black hole horizon would be used as a holographic screen to describe the black hole

atmosphere; we are not discussing anything about the black hole interior.
11AdS2 × Sd−1 has been argued to be problematic [22, 23]. This would not be a problem for us, as we do

not fully take the near horizon limit. The complete near horizon limit would correspond to keeping only

the ω = 0 modes, while we are interested in small but finite ω modes. Alternatively, one could consider our
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Figure 5. The effective potential for the wave equation in a medium that undergoes a jump in

its index of refraction.
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A Evanescent optics

In this appendix, we summarize some central principles of optics that make use of evanes-

cent modes.

Total internal reflection. To see how evanescent waves can be generated if homogeneity

is broken, consider the wave equation in a background which has a z-dependent speed

of light, (
− 1

c(z)2
∂2
t + ∂2

x + ∂2
z

)
φ = 0. (A.1)

The modes are

φ(x, t, z) = e−iωt−ikxx uω,k(z), (A.2)

where u(z) satisfies a Schrödinger-like equation

− u′′ + V (z)u = 0 (A.3)

with an effective potential

V (z) = k2
x −

ω2

c2(z)
. (A.4)

construction for a black brane for which the quoted issues are absent.
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Figure 6. Light is shined from the source (z1), interacts with the sample (z0), and is received at

z = 0.

As a simple scenario which generates evanescent modes, we take

c(z) =

{
c1 z > z1

c0 z ≤ z1.
(A.5)

The potential (A.4) for this choice of c(z) is shown in figure 5. We see that modes with

ω2

c2
1

< k2
x <

ω2

c2
0

are evanescent for z < z1. Indeed, the lower limit kx = ω/c1 is precisely the well-known

critical angle for total internal refraction: sin θc = n1. Here, θc is the angle between the

incoming wave at z > z1 and the normal in the z direction and n1 is the index of refraction

of the material, n1 = c0/c1.

Microscopes. Another context in which evanescent modes appear is in the use of a

microscope. The microscope is trying to resolve the spatial features of a sample which is

thin and located at z0 (see figure 6). The sample is projected with monochromatic light

of frequency ω coming from a source at z1 > z0. The sample has some space-dependent

transmission coefficient T (x), which then determines the wave profile that is received at

the detector at z = 0. As long as the sample has spatial features on scales smaller than

ω−1, evanescent wave which are trapped near the sample will be generated.

The field consists of a monochromatic wave with frequency ω, φω(x, z), which we will

simply denote by E(x, z). We wish to relate the field at the source to the field received at

the detector, and see how the transmission coefficient enters this expression.

The field at the source is denoted by Esource(x, z1), and the generated wave propagates

freely from z1 to z0,

Esource(qx, z0) = Esource(qx, z1)e−iqz(z1−z0), (A.6)

where qz =
√
ω2 − q2

x. The effect of the sample is to modify the wave at z = z0 by the

transmission coefficient. After passing through the sample, the field becomes

Esample(x, z0) = T (x)Esource(x, z0), (A.7)
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In Fourier space, (A.7) becomes the convolution

Esample(kx, z0) =

∫
dqx T (kx − qx) Esource(qx, z0). (A.8)

From the sample, the wave propagates freely to the detector at z = 0,

Edetector(kx, 0) = Esample(kz, z0) e−ikzz0 . (A.9)

Combining (A.6), (A.8), and (A.9) yields

Edetector(x, 0) =

∫∫
dkx dqx Esource(qx, z1)e−iqz(z1−z0) T (kx − qx) e−ikzz0 e−ikxx. (A.10)

The result (A.10) is the relation we had been seeking between the emitted field at the

source, Esource at z = z1, and the received field at the detector, Edetector at z = 0.

From (A.10), we see that the sample serves to convert the waves impinging on it with x

momentum qx to those with momentum kx, with the conversion amplitude given by T (px)

where px ≡ (kx−qx). The incident waves on the sample are propagating; thus |qx| < ω. For

the converted waves to be propagating, they need |kx| < ω. Thus, unless the sample has

no features on any spatial scale smaller than ω−1 (so that T (px) vanishes for all |px| > ω),

there will be evanescent modes at z < z0. Indeed, to generate evanescent modes, one only

need to choose a sample which is a reflecting metal sheet with a hole. In this case, T (x)

has a compact support, requiring T (px) to be nonzero at arbitrarily large px.

Scanning tunneling optical microscope. We have found that the frequency ω of the

wave shined on the sample sets the limit of the scale on which the sample can be resolved:

modes with kx > ω are evanescent and too suppressed at the detector location to be

measurable. For a long time this was believed to set a fundamental limit on the best

achievable resolution of a material [24].12

The way to non-invasively resolve the structure on scales shorter than ω−1 would

be to detect the evanescent modes. Since their magnitude is exponentially small at the

location of the detector, one must instead detect them close to the sample or, equivalently,

convert them into propagating waves. This can be achieved by placing some object near

the material so as to change the index of refraction. A sketch is shown in figure 7. The

near-field detection of evanescent waves is the basis of how an STM functions. In an STM,

a pointer is brought close to the sample and some of the evanescent waves hitting it are

converted into propagating waves, which are then able to reach the detector.

Suppose we wish to resolve the sample on a scale σ � ω−1. This requires detecting

evanescent modes with kx ∼ σ−1, and corresponding kz =
√
ω2 − k2

x ≈ −ikx. Since the

evanescent modes decay exponentially (2.11), the pointer tip must be placed no further than

a distance ∆z ∼ σ from the sample. Thus, STM allows resolution of features on arbitrarily

short scales σ, regardless of ω. However, the new limitation is set by the distance of the

pointer tip from the sample. To resolve on a scale σ requires placing the tip no more than

a distance σ away from the sample so as to capture the evanescent modes.

12It may appear this hindrance can be overcome by simply using waves of arbitrarily high frequency.

However, sufficiently high frequency waves damage the sample (via the photoelectric effect).
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Figure 7. The evanescent modes can be converted into propagating modes by placing, for example,

a piece of glass near them.
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