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1 Introduction

The LHC experiments finally found [1, 2] the long sought-for elementary particle that was

able to complete the Standard Model, the Higgs boson. They have also shown that the

scale of any new physics beyond the Standard Model must be pretty much higher than the

electro-weak scale. We are now more and more seriously interested in why the Standard

Model is as it is: why is the top quark so heavy? Why is the lepton-flavor mixing so large?

And in the first place, why are there three generations of quarks and leptons?

In the past 30 years after the discovery of superstring theories, an enormous amount of

knowledge on elementary particles has been accumulated. Requirements, or expectations,

for realistic string-phenomenology models have become more and more demanding. Indeed,

the top quark was finally found [3, 4] in 1995 at Tevatron, and the mass turned out to be

about 105 times heavier than the up quark. In 1998, the zenith angle dependence of

the muon atmospheric neutrino was discovered at SuperKamiokande [5], where the θ23
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Figure 1. The E7/(SU(5) × U(1)3) model. The next larger square than the shaded “SU(5)”

represents SO(10), the next to next is E6, and the whole square is E7. Exactly three sets of SU(5)

multiplets for quarks and leptons perfectly fit (except one 5) in the coset. The E7/(SU(5)×SU(3)×
U(1)) model consists of only the non-singlets.

lepton flavor mixing angle was revealed to be almost maximal, ∼ 45◦. Later neutrino

experiments [6, 7] also confirmed that another mixing angle θ12 was large, and θ13 was also

nonzero [8–11]—all these undeniable experimental data point to a single fact: The three

flavors are not on equal footing.

Superstring theory, however, has developed almost independently of these experimen-

tal discoveries. To say the least, even though it could contrive to achieve such hierarchical

structures (which should be different between the quark and lepton sectors, and also be-

tween the up and down types) by more or less ad-hoc assumptions and/or fine tunings, it

has never been able to explain them. Of course, it would be easy to close our eyes to all

these facts and dismiss everything as an accident; this is not our attitude in this paper.

There have been numerous efforts to understand the hierarchical family structure of

quarks and leptons. Particularly interesting among them is the idea of family unification.

Family unification is the idea that the quarks and leptons are the fermionic partners of

the scalars of some coset supersymmetric nonlinear sigma model [12–25]. A remarkable

observation made by Kugo and Yanagida was that [18] the supersymmetric sigma model

based on E7/(SU(5)×SU(3)×U(1)) had precisely three sets of 10⊕ 5̄ of SU(5), in addition

to a single 5,1 as its target space. What is special here is that the three generations are

asymmetrically embedded into E7 as SU(5) multiplets. Indeed, the two 5̄’s, identified

as the second and third generations of the SU(5) GUT multiplets [27, 28] containing the

down-type quarks, come with the “symmetry breaking” from E7 to E6, whereas the last

5̄ arises when E6 “breaks” to SO(10). In contrast, a 10 representation arises at each step

when the rank of the “symmetry group” is reduced by one (figure 1).2 This was called the

“unparallel” family structure by Yanagida [29, 30].

1And hence it is anomalous both as a gauge theory and as a nonlinear sigma model. It was pointed

out [26] that these anomalies were removed by introducing matter chiral-multiplets. This issue is further

discussed in section 5.
2If one considers E7/(SU(5) × U(1)3) instead, then one has (with an appropriate choice of the complex

structure) three sets of 10 ⊕ 5̄ ⊕ 1 and one 5. The fact that the coset E7/SU(5) accommodates three
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Therefore, a natural question to ask is: can one get such a coset family structure in

string theory? So far, very few attempts have been made to obtain Kugo-Yanagida-type

models in string theory, and the few have met with only partial success [31, 32].

In this paper, we take a modest step towards realizing this unparallel family structure

in string theory. We will show that such a structure can in fact naturally arise in string

theory, in the framework of local F-theory. The study of phenomenological applications of

F-theory [33, 34] has been of much interest in the past several years [35–64], but in this

paper we will bring a slightly different perspective. We show that a certain local 7-brane

system in F-theory can realize, already at the level of six dimensions, the same quantum

numbers as that of the SUSY nonlinear sigma model considered in family unification.

Our key observation is that the representations of the charged matter hypermultiplets

arising at the singularity are precisely (as far as the enhanced singularity is of the split

type [65]) the ones consisting of a homogeneous Kähler manifold of the corresponding

painted Dynkin diagram. In particular, if one starts from the E7 singularity, one obtains

a set of six-dimensional massless matter which have the same quantum numbers as those

of the E7/(SU(5)×U(1)3) Kugo-Yanagida model.

We should note that our mechanism itself does not yet ensure three generations of 10⊕5̄

in a four -dimensional F-theory compactification as it is still a six-dimensional analysis. The

most modern and common way of achieving a chiral spectrum is to turn on so-called G-

fluxes [35]. Alternatively, however, a practical approach to get a four-dimensional chiral

theory is to compactify two of the the six dimensions on a two-torus and project out half

of the spectrum by taking an orbifold. This is discussed in section 5. We also note that the

requisite quantum numbers are already obtained in six dimensions, and there is no need

for contrived assumptions to get the desired spectrum here.

Although these rules themselves must have been known for some time, the relation to

homogeneous Kähler spaces or nonlinear sigma models seems to have never been discussed

in the literature. 3 Indeed, as of writing this article, there is only one paper [68] in the

INSPIRE database that cites both Katz-Vafa [69] and Kugo-Yanagida [18], and in [68] such

a connection was not mentioned.

We are interested in some local geometric structure that can realize precisely three

unparallel families. This is because if the realization of the SM were a consequence of the

global details of the entire compactification space, it would be very hard, if not impossible,

to find any reason or explanation for what we observe now.

The plan of the rest of this paper is as follows: in section 2, we give a brief review of the

basic idea of coset space family unification. In section 3, we first recall the known results of

generations of quarks and leptons was already noted in [12, 13], but the U(1) factors (relevant to the Kähler

structure) in the denominator group were not specified. The E7 coset model was also mentioned in [15].

The importance of the coset E7/(SU(5) × U(1)3) as well as E7/(SU(5) × SU(3) × U(1)) was emphasized

in [26], where the issue of anomaly cancellation in these models was also addressed. In this paper, we also

call the E7/(SU(5) × U(1)3) (as well as E7/(SU(5) × SU(3) × U(1))) model the Kugo-Yanagida model as it

is obvious that the former differs from the latter only by some singlets.
3The coset structure of chiral matter was already implied in [35, 42], but the relevance of string junctions

to matter generation or the possible application to family unification was not discussed. The relevance of

string junctions for the chiral matter generation was first emphasized in [66], and also more recently in [67].
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F-theory/heterotic duality in six dimensions, and then explain Tani’s argument of how the

chiral matter at the extra zeroes of the discriminant can be understood in terms of string

junctions. We are naturally led to the coset structure of the chiral matter, and propose

the 7-brane configuration for the E7/(SU(5) × U(1)3) model. In section 4, we prove that

the 7-brane configuration can preserve SUSY. Section 5 is devoted to a brief discussion on

how we can derive a four-dimensional model from the six-dimensional one obtained from

the configuration. It is also pointed out that in our setup there is a possibility for the

anomalies of the original model to cancel due to the anomaly inflows. In section 6, we

present the explicit local expression for the curve of the brane configuration. Finally, we

conclude in section 7 with a summary and discussion. Appendix A contains the explicit

result of the recursion relation in section 4, whereas appendix B is a brief explanation of

how the monodromy is read off by tracing the value of the J function.

2 Coset space family unification

We begin with a review of the basic idea of coset space family unification, which is what

we want to achieve in string theory. We will be brief, and for more detailed discussion we

refer the reader to [24, 25], and also [70].

As we already mentioned in Introduction, family unification is the idea that the quarks

and leptons can be understood as quasi-Nambu-Goldstone fermions [14] of a supersymmet-

ric coset nonlinear sigma model [12, 13, 16–22, 24, 25]. This means that the target space

of the sigma model is some homogeneous space G/H associated with a Lie group G and its

closed subgroup H. The idea of identifying all the three families as being a part of some

group is an old one [71–83], going back before the superstring theories were found, but it

is important to note that being a coset is essential for the chiral nature of the spectrum,

which is in contrast to the models in the earlier literature.

Originally, such a nonlinear sigma model was thought of as arising from a spontaneous

supersymmetry breaking of some global symmetry caused by a strong gauge dynamics of

the underlying “preon” theory [12, 13]. Later, we will show an alternative, geometric origin

of these sigma models in F-theory.

To characterize D = 4, N = 1 supersymmetric sigma models the following two facts

are essential: the first fact is that, in order to have D = 4, N = 1 SUSY, the scalar

manifold must be Kähler [84, 85], which is well-known. The second is a classic result

due to Borel [86]: let G and H be a semi-simple Lie group and its closed subgroup, then

the coset space G/H is Kähler if and only if H is the group consisting of all elements

that commute with some U(1)n subgroup of G. Thus it follows that every element in

G/H has a nonzero charge for some U(1) subgroup, since otherwise such an element must

belong to H by construction. Borel’s theorem also states that the set of all G-invariant

complex structures correspond one-to-one to that of all Weyl chambers of the Lie algebra.

This statement can be translated into a useful way of distinguishing different complex

structures as follows [24, 25]: suppose that we have chosen some U(1) generator Y 4 which

4Note that, despite its notation, “Y -charge” here is not the weak hypercharge of the SM. We use this

term following [24, 25].
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SU(5) representation U(1)1 charge(= Q1) U(1)2 charge(= Q2) U(1)3 charge(= Q3)

101 0 0 4

102 0 3 −1

103 2 −1 −1

5̄1 0 3 3

5̄2 2 −1 3

5̄3 2 2 −2

11 0 3 −5

12 2 −1 −5

13 2 −4 0

5 2 2 2

Table 1. U(1) charges of the SU(5) multiplets in E7/(SU(5)×U(1)3) [30].

commutes with any generator of H. We can decompose the Lie algebra of G into a direct

sum of eigenspaces of adY , that is, into a sum of spaces of “states” with different U(1)

“Y -charges”. Then G/H consists of the spaces with negative Y -charges. If the charge

vector of Y is varied so that it passes across into the next Weyl chamber, then one of the

signs of the Y -charges flips, and this corresponds to the change of the complex structure.

Let us illustrate the above with an example, which is the main focus of the subsequent

discussion. The Lie algebra E7 is decomposed into a sum of irreducible representations of

SU(5)× SU(3) as:

133 = (24,1)0 ⊕ (1,8)0 ⊕ (1,1)0 ⊕ (5, 3̄)4 ⊕ (5̄,3)−4

⊕(5,1)−6 ⊕ (5̄,1)6 ⊕ (10, 3̄)−2 ⊕ (10,3)2. (2.1)

The U(1) subgroup that commutes with SU(5) × SU(3) is uniquely determined, and its

charges are indicated as subscripts. Collecting only the representations that have negative

charges, we find that the homogeneous space E7/(SU(5)× SU(3)×U(1)) consists of

(5̄,3)−4 ⊕ (10, 3̄)−2 ⊕ (5,1)−6 (2.2)

as advocated. On the other hand, for E7/(SU(5)×U(1)3) the SU(3) multiplets in (2.2) are

further decomposed, and besides, three more singlets emerges from the SU(3)/U(1)2 piece.

Their U(1) charges are summarized in table 1 [30], where the three U(1)’s are such that

E7 ⊃ E6×U(1)1, E6 ⊃ SO(10)×U(1)2 and SO(10) ⊃ SU(5)×U(1)3. Let Qi be the U(1)i
charge for i = 1, 2, 3, then the U(1) Y -charge (determining the complex structure) in the

previous E7/(SU(5)× SU(3)×U(1)) case is given by the linear combination

YE7/(SU(5)×SU(3)×U(1)) = −1

6
(10Q1 + 5Q2 + 3Q3) . (2.3)

In the present E7/(SU(5) × U(1)3) case, the Y -charge can be a linear combination of the

form

YE7/(SU(5)×U(1)3) = sQ1 + t(2Q1 +Q2) + u(10Q1 + 5Q2 + 3Q3) (2.4)

for any negative s, t and u.
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Figure 2. Painted Dynkin diagrams. Left: E7/(SU(5)×SU(3)×U(1)), right: E7/(SU(5)×U(1)3).

As we said, the target space of a coset supersymmetric nonlinear sigma model is a

homogeneous Kähler manifold. There is available a useful representation of homogeneous

Kähler manifolds in terms of painted Dynkin diagrams [70]; their “cook-book recipe” states

that [70] one first draws the Dynkin diagram for the numerator Lie group, paints a subset of

the vertices (note that the roles of the black (painted) and white nodes are traded here) for

the denominator U(1) subgroups so that the remaining white Dynkin diagrams correspond

to the semi-simple part of the denominator group. In this way all homogeneous Kähler

manifolds are classified [70]. The corresponding painted Dynkin diagrams for E7/(SU(5)×
SU(3)×U(1)) and E7/(SU(5)×U(1)3) are shown in figure 2.

Basically, this kind of family unification models utilize the Froggatt-Nielsen mecha-

nism [87] to account for the origin of the hierarchical family structure. The E7/(SU(5) ×
SU(3)×U(1)) or E7/(SU(5)×U(1)3) model has been investigated by many authors from

various points of view [88–99].5

3 F-theory/heterotic duality, string junctions and the correspondence to

homogeneous Kähler manifolds

3.1 Review of F-theory/heterotic duality in six dimensions

In this section we recall the beautiful results on F-theory/heterotic duality in six dimen-

sions. Although this has already been well known for some time, it is useful to review the

original discussion because thereby its connection to homogeneous Kähler manifolds can

be uncovered.

The proposal of [100, 101] was that the K3 compactification of the E8 × E8 heterotic

string with instanton numbers (12 − n, 12 + n) is dual to F-theory compactified on an

elliptic Calabi-Yau three-fold over the base space being the Hirzeburch surface Fn. More

precisely, the dual Calabi-Yau manifold was given in the Weierstrass form as [100–102]

y2 = x3 + x

8∑
i=0

zif8+(4−i)n(w) +

12∑
j=0

zjg12+(6−j)n(w), (3.1)

where z is the coordinate for the P1 fiber of Fn, and w is the one for the P1 base of

Fn. fk(w), gk(w) are k-th order polynomials of w. Intuitively, this six-dimensional duality

is understood as the fiber-wise duality in eight dimensions [33] further compactified and

fibered over P1.

5Also related is the idea of “E6 unification” [71, 135–151], where the origin of the difference between the

flavor structures of quarks and leptons is attributed to the asymmetry between the 10 and 5̄ representations

in a 27 multiplet of E6.
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This proposed duality was examined in detail in [65]. In particular, the dimensions of

the neutral hypermultiplet moduli spaces were compared between the two, and a perfect

match was found in various cases of unbroken gauge symmetries. It was also found there [65]

that the charged matter arose at “extra zeroes” of the discriminant of the curve (3.1) at

particular values of w, where the singularities of the coinciding gauge 7-branes were (more)

enhanced.

For example, let us consider

y2 = x3 + z3f8+n(w)x+ z5g12+n(w). (3.2)

The discriminant is

∆ = 108z9(f3
8+n + g2

12+nz). (3.3)

There is (generically) an E7 singularity at z = 0 since ord(∆) = 9, ord(coefficient of x1) = 3

and ord(coefficient of x0) = 5. Here ord(· · · ) denotes the order of · · · as a polynomial of

z. (3.2) is the curve for the F-theory dual to heterotic on K3 with unbroken E7 gauge

symmetry with 12 + n instantons embedded in SU(2).

On the heterotic side, the number of neutral hypermultiplets is 2n + 21 [102, 103],

whereas on the F-theory side, it is determined by the dimensions of the complex structure

moduli. The latter is the number of coefficients of the polynomials up to an overall rescaling:

(9 + n) + (13 + n)− 1, which indeed coincides with the heterotic computation.

On the other hand, charged matter in this heterotic compactification is found to

be [102, 103] 8 + n half-hypermultiplets in 56 of E7. Since 8 + n is the number of ze-

roes f8+n(w), these “extra” zeroes in the discriminant implied the appearance of charged

matter in F-theory. Indeed, this was confirmed in [65] in various patterns of gauge symme-

try breaking. Their results are summarized6 in the first three columns of table 2 (together

with the corresponding set of coalesced 7-branes and associated homogeneous Kähler man-

ifolds, which are explained shortly).

Note that at 8 + n zero loci of f8+n(w), the discriminant of the first term vanishes,

becoming a tenth-order polynomial in z. Again, this means that the singularity is enhanced

from E7 to E8 at these “extra zeroes”.

Another example is the dual curve with an E6 unbroken gauge symmetry:

y2 = x3 + z3f8+n(w)x+ z4g12+2n(w) + z5g12+n(w). (3.4)

The difference from (3.2) is that it contains a z4 term, and also g12+2n(w) must be in the

split form [65], that is

g12+2n(w) = q6+n(w)2 (3.5)

for some q6+n(w). Then the discriminant becomes

∆ = 27z8q4
6+n + z9(4f3

8+n + 54g12+nq
2
6+n), (3.6)

6We only consider the split case [65] here.
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Gauge group Neutral hypers Charged matter 7-branes
Homogeneous

Kähler manifold

E7 2n+ 21 n+8
2

56 A+ A6BCC E8/(E7 × U(1))

E6 3n+ 28 (n+ 6)27 A+ A5BCC E7/(E6 × U(1))

(n+ 4)16 A5BC+ C E6/(SO(10) × U(1))

SO(10) 4n+ 33

(n+ 6)10 A+ A5BC SO(12)/(SO(10) × U(1))

SO(8) 6n+ 44

(n+ 4)8c
(n+ 4)8s

A4BC+ C
E5/(SO(8) × U(1))

(= SO(10)/(SO(8) × U(1)))

(n+ 4)8v A+ A4BC SO(10)/(SO(8) × U(1))

(4n+ 16)4 A3BC+ C
E4/(SO(6) × U(1))

(= SU(5)/(SU(4) × U(1)))

SU(4) 8n+ 51

(n+ 2)6 A+ A3BC SO(8)/(SO(6) × U(1))

(4n+ 16)((1,2)

+(2,1))
A2BC+ C

E3/(SO(4) × U(1))

(= SU(3)/(SU(2) × U(1)))

SO(4) 10n+ 54

n(2,2) A+ A2BC SO(6)/(SO(4) × U(1))

SU(3) 12n+ 66 (6n+ 18)3 A+ A3 SU(4)/(SU(3) × U(1))

r
2
32 + n+4−r

2
32′ A6BC+C E7/(SO(12) × U(1))

SO(12) 2n+ 18

(n+ 8)12 A+ A6BC SO(14)/(SO(12) × U(1))

r
2
20 A6 +X[2,−1]+C E6/(SU(6) × U(1))

SU(6) 3n− r + 21 (2n+ 16 + r)6 A+ A6 SU(7)/(SU(6) × U(1))

(n+ 2 − r)15 A6 +B+C SO(12)/(SU(6) × U(1))

(3n+ 16)5 A+ A5 SU(6)/(SU(5) × U(1))

SU(5) 5n+ 36

(n+ 2)10 A5 +B+C SO(10)/(SU(5) × U(1))

Table 2. Summary of matter fields in F-theory/heterotic duality in six dimensions. Only the cases

for the split type with rank≥ 2 are listed, where n is ±(the number of instantons −12) in one of

E8’s on the heterotic side, and r specifies how they are distributed when the commutant group is a

direct product [65]. In addition to the data shown in [65], the corresponding 7-brane configurations

as well as the homogeneous Kähler manifolds are also displayed.
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showing that there is an E6 singularity at z = 0. The neutral moduli counting is

n+ 7 + n+ 9 + n+ 13− 1 = 3n+ 28, (3.7)

which again agrees with the heterotic result. Also the heterotic prediction of the charge

matter is n+ 6 hypermultiplets in 27, which is certainly implied by the extra zeroes of the

discriminant (3.6).

At this point, looking at the charged matter contents in the two examples, we notice

an interesting fact: they are precisely the ones found in the homogeneous Kähler manifolds

E8/(E7 × U(1)) and E7/(E6 × U(1)), respectively. In fact, as shown in table 2, they

all correspond to a homogeneous Kähler manifold of the relevant type. As explained in

subsequent sections, the latter are classified and labeled by “painted” Dynkin diagrams [70].

The corresponding diagrams are also shown together in table 2.

Why does such a relationship exist? A geometric explanation has been given [69] on

how the charged matter arises at the extra singularities by utilizing the Cartan defor-

mation of the singularity. There is, however, another alternative argument using string

junctions [66, 67] that is more convenient to establish the connection between the charged

matter spectrum at an extra zero and a homogeneous Kähler manifold. This is the main

theme of the next section.

3.2 Matter from string junctions — Tani’s argument

We will now explain how the chiral matter spectrum is determined by investigating string

junctions near the enhanced singularity, following [66] (see also [67] for a more recent

discussion) . In F-theory, singularity enhancement occurs associated with a singularity

of an elliptic manifold on which F-theory is compactified [33]. Singularities of elliptic

fibrations were classified according to their types investigated by Kodaira [104]. Technology

was developed [105] to describe these Kodaira singularities in terms of coalesced [p, q] 7-

branes and string junctions stretched between them (see [106–115] for more works on

string junctions in F theory). We will first briefly summarize the salient features of their

description, referring to [105] for more detail.

One of the characteristic features of F-theory is that 7-branes are allowed to change

their types (=(p, q) SL(2,Z) charges) as they wander about among themselves. More

precisely, a 7-brane background is only single-valued up to SL(2,Z) transformations [116].

Such a path-dependent transformation is called monodromy. For instance, as we will see in

section 4, in the single D7-brane solution the type IIB scalar τ behaves like ∼ 1
2πi log z near

the brane locus on the complex z plane. So if one traces the value of τ as one moves around

the locus, τ gets transformed to τ + 1. Thus the monodromy in this case is a fractional

linear transformation specified by

(
1 1

0 1

)
≡ T. (3.8)
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Fiber type Singularity type 7-branes Brane type

In An−1 An An−1

II A0 AC H0

III A1 A2C H1

IV A2 A3C H2

I∗0 D4 A4BC D4

I∗n Dn+4 An+4BC Dn+4

II∗ E8 A7BC2 E8

III∗ E7 A6BC2 E7

IV ∗ E6 A5BC2 E6

Table 3. Collapsible set of 7-branes and Kodaira’s classification [105].

More generally, taking the convention that a [1, 0]-brane means a D-brane, the mon-

odromy matrix for a [p, q] brane is given by a similarity transformation of T as(
p r

q s

)(
1 1

0 1

)(
p r

q s

)−1

=

(
1− pq p2

−q2 pq + 1

)
≡ X[p,q], (3.9)

where p, q, r, s are all integers satisfying ps− qr = 1. X[p,q] does not depend on the choice

of r or s.

What has been shown in [105] is that Kodaira’s classification of singularities of elliptic

fibrations can be expressed by the joining/parting of several 7-branes, each of which is of

the simplest (I1) singularity type with a (relative) monodromy of either7

A = X[1,0] = T, B = X[1,−1] =

(
2 1

−1 0

)
or C = X[1,1] =

(
0 1

−1 2

)
. (3.10)

The correspondence is summarized in table 3 [105].

String junctions are basically the (p, q) analogues of open strings. As before, let [1, 0]

7-brane be an ordinary D-brane, and let us now define (1, 0) string to be the fundamental

open string. Then one can say that a (1, 0) string can end on a [1, 0] 7-brane. Likewise,

by the SL(2,Z) S-duality, a (p, q) string can end only on a [p, q] 7-brane. However, as we

remarked at the beginning of this section, a (p, q) string undergoes in general a monodromy

transformation after circling around the locus of another 7-brane. In that case the string

is not of the (p, q) type any more but becomes a different (p′, q′) string. If (p′, q′) is

proportional to (p, q), the string can still end on [p, q] brane, but it creates a different state

than that of the string directly connected between the two [p, q] branes. For example, if a

7In this paper we identify the labels of the branes (such as A) with its monodromy matrices. Also X[p,q]

is = K−1
[p,q] in [105]. Since the ordering of A,B, . . . is reversed for KA,KB , . . ., this is consistent. We should

also note that the choice of A, B and C branes does not reproduce the most general (or natural) set of

vanishing cycles from the point of view of a deformed geometry.
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A ACB

A ACB

Figure 3. A string junction.

fundamental (= (1, 0)) string circles around a C-brane and a B-brane, then

BC

(
1

0

)
=

(
2 1

−1 0

)(
0 1

−1 2

)(
1

0

)
=

(
−1

0

)
, (3.11)

so it turns into a (−1, 0) string. This can still end on another A brane but its sign of the

charge is inverted. A pair of B and C branes are necessary elements to constitute a D-type

singularity, identified as an orientifold plane [34]. As shown in figure 3, there are branch

cuts extending from the B and C branes, and the string that experiences the monodromy

cuts across them. But if the path of the string is deformed so that the 7-branes pass across

the string, then the path runs in the region where there are no cuts, so in order for the

charge conservation to be satisfied, some new strings with appropriate charges need to

emerge out of the 7-branes (the Hanany-Witten effect) (figure 3). Such a multi-pronged

string is called a string junction. In this example, a (1, 1) string is coming into the C brane,

and a (1,−1) string into the B brane. The original (1, 0) string then turns into a (−1, 0)

string, and the charge conservation at each junction point is satisfied.

String junctions are conveniently represented in the “divisor-like” form [105]; if n (p, q)

strings come into a [p, q] 7-brane for a given multi-pronged string, then one associates them

with the monomial nx[p,q]. Summing up these monomials over all the prongs, one obtains

the expression for the string junction as a formal sum of monomials with integer coefficients.

For the example of figure 3, this is

−a2 + b + c− a1, (3.12)

where a = x[1,0], b = x[1,−1] and c = x[1,1]. On the other hand, an ordinary fundamental

string directly connecting the two D(=A)-branes is represented as

a2 − a1. (3.13)
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Generator String junction

EIJ (I, J = 1, . . . , 8) aI − aJ
EIJK (1 ≤ I < J < K ≤ 8) aI + aJ + aK − x[2,−1] − c

E∗IJK (1 ≤ I < J < K ≤ 8) −(aI + aJ + aK − x[2,−1] − c)

E9
J (J = 1, . . . , 8) −

∑8
K=1 aK − aJ + 3(x[2,−1] + c)

EI9 (I = 1, . . . , 8) −
(
−
∑8

K=1 aK − aI + 3(x[2,−1] + c)
)

EIJ9 (1 ≤ I < J ≤ 8) −
∑8

K=1 aK + aI + aJ + 2(x[2,−1] + c)

E∗IJ9 (1 ≤ I < J ≤ 8) −
(
−
∑8

K=1 aK + aI + aJ + 2(x[2,−1] + c)
)

Table 4. String junctions for the E8 roots corresponding to generators in Freudenthal’s realization.

In [105], it was proved that the 7-brane configuration

EN = AN−1BC2 (3.14)

for the EN algebra for N ≥ 2 is equivalent to

ẼN = ANX[2,−1]C (3.15)

since they are made identical by the use of monodromy transformations and an SL(2,Z)

conjugation. In fact, the string junctions representing the E8 roots are most conveniently

described in terms of Freudenthal’s realization of E8 [117–119]; the exceptional Lie algebra

E8 is known to be generated by traceless EI J (I, J = 1, . . . , 9; I 6= J) and antisymmetric

tensors EIJK and E∗IJK (1 ≤ I 6= J 6= K 6= I ≤ 9) with the commutation relations

[EIJ , EKL] = δKJ E
I
L − δILEKJ ,

[EIJ , EKLM ] = 3δ
[M
I EKL]I ,

[EIJ , E∗KLM ] = −3δI[ME
∗
KL]J ,

[EIJK , ELMN ] = − 1

3!

9∑
P,Q,R=1

εIJKLMNPQRE∗PQR,

[E∗IJK , E∗LMN ] = +
1

3!

9∑
P,Q,R=1

εIJKLMNPQRE
PQR,

[EIJK , E∗LMN ] = 6δJ[Mδ
K
NE

I
L] (if I 6= L,M,N),

[EIJK , E∗IJK ] = EII + EJJ + EKK −
1

3

9∑
L=1

ELL, (3.16)

where ε123456789 = ε123456789 = +1. The string junctions for the E8 roots corresponding to

these generators are summarized in table 4.

The fact that the Kodaira singularities are described by coinciding 7-branes, and the

existence of varieties of string junctions which correspond to the roots of the exceptional

group, offer a natural explanation [106] for the origin of the exceptional group gauge sym-

metry in F-theory. When N D-branes come on top of each other, one gets U(N) gauge
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Figure 4. Extra zeroes and bending branes. Left: the E7 singularity is enhanced to E8 at the

extra zero. Right: similarly the E6 is enhanced to E7.

symmetry [120]. In this case the relevant massless “W-bosons” are supplemented by the

excitations of light open strings ending on different D-branes. Likewise, the extra massless

fields needed for the gauge symmetry enhancement to an exceptional group can be thought

of as coming from the string junctions connecting the collapsing 7-branes nontrivially [106].

Having reviewed the 7-brane technology, we are now in a position to explain the argu-

ment by Tani on the emergence of matter at the extra zeroes in terms of string junctions.

As we saw before, the singularity of elliptic fibers is more enhanced at an extra zero than

elsewhere around the point. In the 7-brane picture, this means that another 7-brane comes

into join the bunch of coincident 7-branes to meet at that point. This is illustrated in

figure 4.

The string junctions at the extra zero are divided into two different classes. The

junctions which do not have an end on the bending brane can move apart from the extra

zero without any loss of energy, and hence create a massless gauge multiplet similarly to

the above. Let h be the Lie algebra of this gauge multiplet. On the other hand, those

which do have an end on the bending brane cannot move away from there but localized

near that point. Let g be the Lie algebra of the enhanced singularity at the extra zero,

then they correspond to the elements of g that do not belong to h⊕U(1). They consist of

a pair of representations of h that are complex conjugate to each other, so the states they

create must be hypermultiplets. But since a half of the supersymmetries are broken, these

states do not necessarily have the same mass but it is possible that only a half of them

remains massless. (The condition for half of the SUSY to be preserved will be discussed in

detail in section 4.) In the intersecting D-brane systems, where the explicit quantization
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Figure 5. The 7-brane configuration for the E7/(SU(5)×U(1)3) model.

is possible, this is a familiar phenomenon [121]. So if one assumes that this is also true in

the general case when the singularity contains not only D-branes but other [p, q] branes,

then one can get a perfectly consistent picture of the chiral matter generation [66]. The

relevant set of coalesced 7-branes and and the extra brane(s) coming to join are shown in

table 2 for each case of unbroken gauge symmetry.

3.3 The correspondence to homogeneous Kähler manifolds and the E7/(SU(5)×
U(1)3) model

In particular, it can readily explain why the coset structure arises at the extra zeroes.

For example, on the left of figure 4, the string junctions localized at the intersection span

E8, and among them only those corresponding to E7 can freely move along the bunch of

coalesced branes. Thus the states created by the junctions with an end on the bending

A brane are in E8 but not in the E7 subalgebra of it. Taking either of the complex

conjugate pair, one gets E8/(E7 × U(1)) and hence a 56 of E7. Similarly, on the right of

figure 4, the junctions at the intersection point give E7, and those do not have a leg on the

C brane are the E6 part of it. Taking a half of the rest, one obtains E7/(E6 ×U(1)), that

is, a 27 of E6.

At this point it is now obvious what 7-brane configuration would yield the spectrum

of the Kugo-Yanagida E7/(SU(5)×U(1)3) model. All we need is a set of six A branes, one

B brane and two C branes, such that at a generic position along some complex dimension

(w) only five of the A branes are collapsed while all the other branes are apart, but at

a certain juncture point they all join together (figure 5). If such a brane configuration

exists and preserves half of the supersymmetries, then the string junctions that have an

end on the bending A brane will produce six-dimensional hypermultiplets transforming
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in 10 ⊕ 5 ⊕ 5̄ ⊕ 5̄ ⊕ 1 ⊕ 1 of SU(5) from 27 of E6, the junctions with an end on one

of the C branes (but not on the A brane bending away from the juncture) will create

10⊕ 5̄⊕ 1 from 16 of SO(10), and those ending on the remaining B and C branes (not

connected to the A and C branes above) will yield 10 of SU(5). They have exactly

the same quantum numbers as those of the E7/(SU(5) × U(1)3) model, except that they

are still six-dimensional supermultiplets. So in order to get the four-dimensional N = 1

family unification model we will need to further compactify two of the spatial dimensions,

reduce the number of supersymmetries and project out one half of the four-dimensional

chiral multiplets with either of the chiralities. But before we discuss how to do that we

would like to consider the more fundamental question: can the 7-brane configuration as

described above preserve SUSY? This is because, if not, our proposal of how to achieve

supersymmetric family unification in F-theory would break down. Fortunately, however,

we can prove that it indeed can, as we show in the next section.

4 Holomorphic deformation of 7-branes

4.1 The stringy-cosmic-string solution

Let us first recall the 7-brane solution of type IIB supergravity on P1 obtained long time

ago by Greene et al. [116]. Although this is also a well-known material, we will take a

different route to it, examining the SUSY conditions; our approach is more convenient and

can be directly extended to the deformed case discussed in the next section.

The metric ansatz is

ds2 = −dt2 + eϕ(z,z̄)dzdz̄ + (dxi)2 (i = 1, . . . , 7). (4.1)

The type IIB complex scalar field τ = C0 + ie−φ, where C0 and φ are the RR scalar and

the dilaton, respectively, is assumed to be a holomorphic function depending only on z:

τ = τ(z). (4.2)

The other supergravity fields are set to zero. In this case the supersymmetry variations of

the gravitino and the dilatino are [122, 123]

δψµ =
1

κ

(
∂µ −

1

4
ωµαβγ

αβ − i

2
Qµ

)
ε, (4.3)

δλ =
i

κ
Pµγ

µε∗, (4.4)

where Pµ and Qµ are well-known SU(1, 1)-invariant connections given by

Pµ = − ∂µτ

τ − τ̄
, (4.5)

Qµ = − i
2

∂µ(τ + τ̄)

τ − τ̄
. (4.6)

Since we have assumed that τ is holomorphic, we have

Pz̄ = 0. (4.7)
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Let z, z̄ be complex linear combinations of real coordinate x8̇ and x9̇: 8

z = x8̇ + ix9̇, z̄ = x8̇ − ix9̇ (4.8)

and take the two-dimensional gamma matrices

γ8 = σ1, γ9 = σ2, (4.9)

where each component is understood to act on spinors in the eight-dimensional space-time.

Then

δλ ∝ Pzγ
zε∗

=

(
0 ∗
0 0

)
ε∗, (4.10)

so δλ vanishes for ε of the form ( ∗0 ).

On the other hand, the gravitino variation δψµ depends on the spin connections and

Qµ. The only nontrivial components of the spin connection are

ωz89 =
i

2
∂zϕ = − ωz98, (4.11)

ωz̄89 = − i
2
∂z̄ϕ = − ωz̄98, (4.12)

while

Qz = − i
2

∂zτ

τ − τ̄
= − i

2

∂z(τ − τ̄)

τ − τ̄
,

Qz̄ = − i
2

∂z̄ τ̄

τ − τ̄
= +

i

2

∂z̄(τ − τ̄)

τ − τ̄
(4.13)

since τ is assumed to be holomorphic. Let

ε =

(
ε̃

0

)
, (4.14)

then (
∂z −

1

4
ωzαβγ

αβ − i

2
Qz

)
ε =

(
∂z ε̃+ 1

4∂z(ϕ− log(τ − τ̄)) · ε̃
0

)
,

(
∂z̄ −

1

4
ωz̄αβγ

αβ − i

2
Qz̄

)
ε =

(
∂z̄ ε̃− 1

4∂z̄(ϕ− log(τ − τ̄)) · ε̃
0

)
. (4.15)

Therefore, if ϕ = log τ−τ̄
2i , a Killing spinor (which is constant in this case) exists and half

the supersymmetries are preserved. More generally, if

ϕ = log
τ − τ̄

2i
+ F (z) + F̄ (z̄) (4.16)

8The dots indicate that those indices are curved ones.
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for some holomorphic function F (z), then ε with

ε̃ = e
1
4

(F−F̄ ) × const. (4.17)

is a Killing spinor. F (z) is chosen to be [116]

F (z) = 2 log η(τ(z)) + f(z). (4.18)

The first term is for the modular (or S-duality) invariance, while f(z) is some function of z

to compensate the zeroes at the 7-brane loci. For instance, for a single D7-brane at z = 0

we have locally [116]

τ ∼ 1

2πi
log z, f(z) ∼ − 1

12
log z. (4.19)

4.2 A supersymmetric deformation of 7-branes

In the previous section we have reviewed the 7-brane solutions in eight dimensions — in

modern terminology this is a codimension-one singularity. We now turn to a codimension-

two singularity, that is, we deform τ so that it also varies over another holomorphic coor-

dinate w = x6̇ + ix7̇:

τ = τ(z, w). (4.20)

Note that we do not specify any particular global geometry. We will show that, for any

such holomorphic deformation9 of the modulus function τ , there exists, at least locally,

some Kähler metric such that it preserves a quarter of supersymmetries.

We focus on the four-dimensional part of the ten-dimensional metric, which we assume

to be hermitian:

ds2
4 = eΦdzdz̄ + eΨ(dw + ξdz)(dw̄ + ξ̄dz̄). (4.21)

Any hermitian metric can be written in this form with two real functions Φ, Ψ and a

complex function ξ. The vierbein of this subspace is block diagonal:

e α
µ =

(
e a
i 0

0 e ā
ī

)
, (4.22)

where µ = i, ī; i = z, w; ī = z̄, w̄; α = a, ā; a = 1, 2; ā = 1̄, 2̄ with

e a
i ≡

(
e 8
i + ie 9

i e 6
i + ie 7

i

)
=

(
e

Φ
2 e

Ψ
2 ξ

0 e
Ψ
2

)
,

e ā
ī ≡

(
e 8
ī
− ie 9

ī
e 6
ī
− ie 7

ī

)
=

(
e

Φ
2 e

Ψ
2 ξ̄

0 e
Ψ
2

)
. (4.23)

In our convention the flat metric is

ηαβ =

(
1
2 I

1
2 I

)
, I =

(
1 0

0 1

)
, (4.24)

9Up to some 7-brane loci where τ diverges logarithmically.
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so that

gµν = e α
µ ηαβe

β
ν , ds4 = gµνdx

µdxν . (4.25)

We take

γ8 = σ1 ⊗ I, γ9 = σ2 ⊗ I
γ6 = σ3 ⊗ σ1, γ7 = σ3 ⊗ σ2, (4.26)

so that

γ1 ≡ γ8 + iγ9 =

(
2

0

)
⊗ I =


2

2

0

0

,

γ1̄ ≡ γ8 − iγ9 =

(
0

2

)
⊗ I =


0

0

2

2

,

γ2 ≡ γ6 + iγ7 = σ3 ⊗

(
2

0

)
=


2

0

−2

0

,

γ2̄ ≡ γ6 − iγ7 = σ3 ⊗

(
0

2

)
=


0

2

0

−2

. (4.27)

Due to the holomorphic assumption (4.20), we have, again,

Pī = 0 (̄i = z̄, w̄). (4.28)

The dilatino variation thus reads

δλ ∝ Pie
i
a γ

aε∗. (4.29)

Since the leftmost columns of γa (a = 1, 2) are zero as displayed in (4.27), δλ vanishes for

a SUSY variation parameter of the form

ε =


ε̃

0

0

0

. (4.30)

We will now examine under what conditions the gravitino variation δψµ also vanishes

for ε (4.30). Since the nonzero component is only the first one, we are only concerned with
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the first columns of ωγαβγ
αβ:

ω1αβγ
αβ =


−e−

Φ
2 (∂wξ − ξ∂wΦ + ∂zΦ) ∗ ∗ ∗

0 ∗ ∗ ∗
0 ∗ ∗ ∗

2e−Φ−Ψ
2

(
eΨ(ξ̄∂w̄ξ − ∂z̄ξ) + eΦ∂w̄Φ

)
∗ ∗ ∗

 ,

ω2αβγ
αβ =


e−

Ψ
2

(
eΨ−Φ(ξ∂wξ̄ − ∂z ξ̄)− ∂wΨ

)
∗ ∗ ∗

0 ∗ ∗ ∗
0 ∗ ∗ ∗

2e−
Φ
2 (∂w̄ξ̄ + ξ̄∂w̄Ψ− ∂z̄Ψ) ∗ ∗ ∗

 ,

ω1̄αβγ
αβ =


−((1, 1) component of ω1αβγ

αβ) ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 ,

ω2̄αβγ
αβ =


−((1, 1) component of ω2αβγ

αβ) ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 . (4.31)

Since the “Bismut-like” connection (4.3) contains, besides the spin (=Levi-Civita) con-

nection, only Qµ which is U(1), the gravitino variations vanish only if the off-diagonal

components (of the first columns) do. Taking their complex conjugates, the conditions are

eΨ(ξ∂wξ̄ − ∂z ξ̄) + eΦ∂wΦ = 0 and (4.32)

∂wξ + ξ∂wΨ− ∂zΨ = 0. (4.33)

It is easy to see that they are equivalent to

∂w(eΨξξ̄ + eΦ) = ∂z(e
Ψξ̄) and (4.34)

∂w(eΨξ) = ∂ze
Ψ, (4.35)

or

∂igjī = ∂jgīi, ∂īgj̄i = ∂j̄gīi, (4.36)

which are satisfied if the metric is Kähler. Conversely, if the conditions (4.32), (4.33) are

satisfied, then the spin connection turns out to be a U(2) connection and hence the metric

is Kähler.

Suppose that we have a solution to the conditions (4.32), (4.33). Such a solution exists,

at least locally, as we will show in a moment. Then using them in (4.31), we find

ωiαβγ
αβ =


−∂i(Φ + Ψ) ∗ ∗ ∗

0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 , ωīαβγ
αβ =


+∂ī(Φ + Ψ) ∗ ∗ ∗

0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 . (4.37)
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On the other hand, Qµ’s are given by

Qi = − i
2
∂i log(τ − τ̄),

Qī = +
i

2
∂ī log(τ − τ̄). (4.38)

Therefore, similarly to the previous section, we have a Killing spinor if

Φ + Ψ = log
τ − τ̄

2i
+ F (zi) + F̄ (z̄ ī) (4.39)

for some holomorphic function F of zi = z, w. Again, we can set F (z) similarly to (4.18)

for some f(z) which compensates the zeroes of the brane loci, then the metric is positive

and modular invariant.

Now what remains to be done is to show the existence of Φ, Ψ and ξ that sat-

isfy (4.32), (4.33) with the constraint (4.39) for a given τ(zi). First we note that, if τ

is only a function of z and does not depend on w, then the problem reduces to that dis-

cussed in the previous section with

Φ = ϕ, Ψ = ξ = 0, (4.40)

which obviously satisfy (4.32), (4.33) and (4.39). So for given

τ(z, w) =

∞∑
n,n̄=0

τ(n,n̄)(z)w
nw̄n̄

F (z, w) =
∞∑

n,n̄=0

F(n,n̄)(z)w
nw̄n̄, (4.41)

we determine

Φ(z, w) =

∞∑
n,n̄=0

Φ(n,n̄)(z)w
nw̄n̄

= Φ(0,0)(z) + Φ(1,0)(z)w + Φ(0,1)(z)w̄ + Φ(1,1)(z)ww̄ + · · · ,

Ψ(z, w) =

∞∑
n,n̄=0

Ψ(n,n̄)(z)w
nw̄n̄

= Ψ(0,0)(z) + Ψ(1,0)(z)w + Ψ(0,1)(z)w̄ + Ψ(1,1)(z)ww̄ + · · · ,

ξ(z, w) =
∞∑

n,n̄=0

ξ(n,n̄)(z)w
nw̄n̄

= ξ(0,0)(z) + ξ(1,0)(z)w + ξ(0,1)(z)w̄ + ξ(1,1)(z)ww̄ + · · · , (4.42)

with

Ψ(0,0)(z) = ξ(0,0)(z) = 0. (4.43)

To do this it is more convenient to write

eΨ = A, eΨξ = B, eΨξ̄ = B̄. (4.44)
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A is a real, while B is a complex function of z, w, z̄ and w̄. Then

eΨξξ̄ + eΦ = e−Ψ(BB̄ + eΦ+Ψ)

= A−1(BB̄ +
τ − τ̄

2i
eF+F̄ ), (4.45)

where we have used (4.39) in the last line. Let us also set

τ − τ̄
2i

eF+F̄ = h(z, w, z̄, w̄), (4.46)

where the real function h(z, w, z̄, w̄) is determined by the given holomorphic functions τ

and F . The system of equations is now

∂wB = ∂zA, (4.47)

∂w(A−1(BB̄ + h)) = ∂zB̄, (4.48)

which can be solved by iteration. We expand

A =

∞∑
n,n̄=0

wnw̄n̄A(n,n̄)(z, z̄), (4.49)

h =

∞∑
n,n̄=0

wnw̄n̄h(n,n̄)(z, z̄), (4.50)

B =
∞∑

n, n̄ = 0

(n, n̄) 6= (0, 0)

wnw̄n̄B(n,n̄)(z, z̄), (4.51)

B̄ =
∞∑

n, n̄ = 0

(n, n̄) 6= (0, 0)

wnw̄n̄B̄(n,n̄)(z, z̄). (4.52)

Since A is real, we have

A(n,n̄) = A(n̄,n), (4.53)

whereas

B(n,n̄) = B̄(n̄,n). (4.54)

Plugging the expansions in (4.47) and (4.48), we find

nB(n,n̄) = ∂zA(n−1,n̄), (4.55)

n
(
A−1(BB̄ + h)

)
(n,n̄)

= ∂zB̄(n−1,n̄), (4.56)

where, as obviously,
(
A−1(BB̄ + h)

)
(n,n̄)

is the coefficient of wnw̄n̄ in the expansion of

A−1(BB̄ + h). Using (4.54), (4.55) and (4.53), (4.56) is further written as

nn̄
(
A−1(BB̄ + h)

)
(n,n̄)

= ∂z∂z̄A(n−1,n̄−1). (4.57)
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Using (4.55) and (4.56) with the initial conditions

A(0,0) = 1, B(0,0) = B̄(0,0) = 0 (4.58)

and arbitrary functions B(0,n̄) (n̄ = 1, 2, . . .), A(n,n̄) and B(n,n̄) (and hence B̄(n,n̄)) can be

determined iteratively. Thus we have shown that the equations (4.32) and (4.33) with (4.39)

have a solution, at least locally near z = w = 0. This completes the proof of the existence of

a local supersymmetric solution for any given holomorphic complex scalar function τ(z, w).

The explicit forms of A(n,n̄) obtained as a result of the iteration are given in appendix

A up to n+ n̄ ≤ 3.

Finally, since the J function is also holomorphic, holomorphic deformations of the

coefficient functions in the Weierstrass form lead to a local supersymmetric solution of

type IIB supergravity.

5 Orbifolds and anomalies

Thus the 7-branes described in 3.3 (the ones like a bunch of raw spaghetti) preserve SUSY.

So if we compactify two more dimensions to reduce the SUSY to N = 1 and drop one

half of the chiral supermultiplets with a definite chirality, then we end up with precisely

the E7/(SU(5)×U(1)3) supersymmetric family unification model. This could be done in a

variety of ways. The most modern way to do this is to turn on (after compactifying to four

dimensions) “G-fluxes” or some appropriate vortex Higgs field [35]. Then depending on the

sign of the charge, similarly to the Y -charge explained in section 2, a half of the solutions of

the Dirac equation would become nonnormalizable and one is left with a chiral spectrum.

Alternatively, one could simply compactify two of the six dimensions on a two torus T 2,

wrap the 7-branes around it and take an orbifold (see e.g. [124, 125] and references therein)

to reduce the SUSY, thereby imposing a boundary condition such that the massless fields

with, say, positive Y -charges are projected out. This would lead to the same effect as

turning on a Higgs field, and hence is an effective and efficient way. It will be a bit ad hoc,

but we emphasize that the necessary set of fields with correct gauge quantum numbers are

already fixed before the projection; there is no need to adjust anything but is only need

to eliminate a half to get them. More concrete discussion on this part of the construction

will be given elsewhere.

There is one more thing to be discussed at this point: the E7/(SU(5) × H) models

are anomalous, in the senses of both the gauge anomaly and the sigma-model anomaly.

This problem has been for a long time [26]: the E7/(SU(5)×H) model includes a single 5

representation, and there is nothing else in the sigma model itself to cancel its anomaly.

In six dimensions there is no problem; the six-dimensional heterotic spectrum on K3 is

of course anomaly-free, and so is it for F-theory. If one focuses on a particular extra zero

point, then the anomaly balance will be lost, but upon compactification to four dimensions,

they become non-chiral and hence have no anomaly. Therefore, this is the issue only after

the chiral projection.

There are at least two ways out of this problem. One is the idea that there arises

some extra matter from the orbifold. This idea has already been pointed out by several
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authors. Another, more interesting possibility is that extra anomalous contribution to the

effective action on the brane might come in from the bulk, known as the anomaly inflow

mechanism [126–128], [31, 67, 129, 130]. This is an interesting possibility, but if this is

true, then it would lead to a non-trivial prediction in the Higgs sector, since it is not the

quantum effect of some 5̄ field, but some other effective contribution induced from the

bulk, that cancels the anomaly of the 5 field of the model. We postpone a more concrete

analysis to future work.

6 The explicit expression for the curve of the brane configuration

Going back to the brane configuration in section 3.3, we present in this section the ex-

plicit local expression for the curve that represents the brane configuration as shown in

figure 5 discussed at the end of section 3, which is to realize (after the compactification

and projection) the E7/(SU(5)×U(1)3) model. As we have shown in the last section, there

exists a local supersymmetric solution for a holomorphically varying scalar function τ(z, w).

Therefore, since the J function is holomorphic, we have only to consider the Weierstrass

form

y2 = x3 + f(z, w)x+ g(z, w) (6.1)

for holomorphic functions f(z, w), g(z, w) such that they develop an E7 singularity at

z = w = 0, and vary over w according to Tate’s algorithm [131] so that the singularity is

relaxed to A4. The result is10

f(z, w) = −3z4 + z3 + (aε− 3b2)z2 + 6bε2z − 3ε4, (6.2)

g(z, w) = 2z6 +

(
a2

12
+ 3ε2 + b

)
z4 + (−2b3 + aεb− ε2)z3

+(6b2ε2 − aε3)z2 − 6bε4z + 2ε6, (6.3)

where a = a(w), b = b(w) and ε = ε(w) are smooth functions only of w such that

a(0) = b(0) = ε(0) = 0. (6.4)

If one resorts to the general argument [105, 106] on the 7-brane realization of the

Kodaira singularities, it may easily be guessed what types of 7-branes are separating from

the rest of coalesced branes. We can, however, directly see this by tracing the value of the

J function (see appendix B). This technology was developed by Tani [66]. For the purpose

of illustration let us consider some special cases:

Case I: a(w) = b(w) = ε(w) = 0, unbroken E7. In this case (6.2) and (6.3) become

simply

f(z, w) = −3z4 + z3, (6.5)

g(z, w) = 2z6. (6.6)

10Note that this is not the most general equation for the curve. For instance f(z, w) may contain a z5

term but here it is set to zero for simplicity. Also the coefficient of the z3 term needs not be 1.
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E7 loci

Monodromy around the origin
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Figure 6. E7 loci (a = b = ε = 0). The monodromy is computed along a circle of radius= 0.01

around the origin with the angle varying from 0 to 2π − π
6 (and not to full 2π, so that we may

distinguish clockwise or anti-clockwise). This is anti-clockwise.

The discriminant is

∆ = 4z9 − 36z10 + 108z11, (6.7)

indicating that the curve has an E7 singularity at z = 0 for arbitrary w. This is a coalesced

7-brane configuration realizing unbroken E7 gauge symmetry. The monodromy around

these collapsed branes can be found by trancing the value of the J function. The plot on

the left of figure 6 shows the locations of the roots of the discriminant ∆ (6.7), and the

plot on the right shows the contour of the value of the J function when z moves around

the origin along the circle of radius = 0.002. The latter shows that the value of J moves

three times around J = 1 anti-clockwise, so the monodromy is

S−3 = S, (6.8)

where

S ≡

(
0 −1

1 0

)
(6.9)

and T (3.8) are the fundamental generators of the SL(2,Z) group (see appendix B). On

the other hand,

A6BC2 = A2(A4BC2A2)A−2, (6.10)

A4BC2A2 = S, (6.11)

which agrees with the monodromy read off from the behavior of the J function.
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Case II: b(w) = ε(w) = 0 and a(w) 6= 0, E7/(E6 × U(1)). In this case the equa-

tions (6.2), (6.3) read

f(z, w) = −3z4 + z3, (6.12)

g(z, w) = 2z6 +
a(w)2

12
z4, (6.13)

which gives an E6 singularity at z = 0 for generic w but it is enhanced to E7 at w = 0

since a(0) = 0 as we assumed. The discriminant in this case is

∆ = 108z11 + 9
(
a(w)2 − 4

)
z10 + 4z9 +

3a(w)4z8

16
, (6.14)

whose roots are

z = 0(multiplicity eight),

(
1

6
± i

6
√

3

)
+

(
− 1

24
± i

8
√

3

)
a2 +O(a4),−3a4

64
+O(a8). (6.15)

The second to last complex conjugate pair is the loci of the 7-branes which were already

separated from the coalesced branes in Case I, while the last one is the position of the

7-brane bending into the transverse space. They are depicted in the left plot of figure 7 for

a = 1, b = ε = 0.

The monodromies around the origin and the locus of the separated brane are shown in

the right plots. From these we can see that the former is T−1S as an SL(2,Z) conjugacy

class, and the latter is T . Thus the separating brane is an A brane, and the monodromy

around the origin agrees with the fact that

A3BC2A2 = T−1S. (6.16)

Case III: ε(w) = 0 and a(w)b(w) 6= 0, E7/(SO(10)× U(1)2). If we also allow b to take

nonzero value, then we have

f(z, w) = −3z4 + z3 − 3b2z2, (6.17)

g(z, w) = 2z6 +

(
a2

12
+ b

)
z4 − 2b3z3. (6.18)

The discriminant takes the form

∆ = 108u11 + 9
(
a2 − 36b2 + 12b− 4

)
u10 +

(
−216b3 + 216b2 + 4

)
u9

+

(
3a4

16
+

9ba2

2
− 9

(
36b4 + b2

))
u8 − 9a2b3u7. (6.19)

The new discriminant locus is

48b3

a2
+ higher order in b, (6.20)

which is shown in the plot on the left of figure 8 as a blue circle near the origin (a = 1,

b = 0.1).
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Monodromy around the origin

Monodromy around the new discriminant locus
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Figure 7. E6 loci (a = 1, b = ε = 0). The radius of the circle around each point is 0.01. The

range of the angle is from 0 to 2π − π
6 .

The monodromies around the origin and the locus (6.20) are shown in the plots on the

right. They tell us that both are T . However, we note that there is a locus of g(z) (the

yellow diamond) between the two discriminant loci (blue circles), as shown in the enlarged

figure. So if the reference point of the monodromy is taken near the origin, then to circle

around the discriminant locus away from the origin one first needs to pass by the locus

of g(z) beforehand. Since the total monodromy around a locus of g(z) is S−2 = −1, one

gets S−1 through a half rotation (anti-clockwise). Thus the actual monodromy around

the discriminant locus is the one obtained by the similarity transformation of the above:

STS−1, which is equal to T−1S−1T−1. Multiplying the monodromy around the origin T ,
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Figure 8. D5 loci (a = 1, b = 0.1, ε = 0). The radius is taken to be 0.002 for both points. The

angle for the origin is the same as before, and that for the new locus is taken from −π to π − π
6 .

we have

T−1S−1T−1 · T = T−1S−1, (6.21)

which is the same thing as T−1S in PSL(2,Z) and hence is consistent with Case II. On the

other hand,

A5BC ∼ A−1(A5BC)A

= −T (6.22)

which is equal to T in PSL(2,Z), whereas

A−1CA = STS−1, (6.23)
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Figure 9. A4 loci (a = 1, b = 0.1, ε = 0.007). The radius is 0.0002, and the angle is from −π to

π − π
60 .

so the separating brane is indeed identified as the C brane.

Case IV: a(w)b(w)ε(w) 6= 0, E7/(SU(5) × U(1)3). The final case is when any of a(w),

b(w) or ε(w) does not vanish. The functions f and g are given by (6.2) and (6.3), respec-

tively, and the discriminant is

∆ = 108u11 + 9
(
a2 + 12εa+ 4

(
−9b2 + 3b+ 9ε2 − 1

))
u10

+4
(
−54b3 + 54b2 + 27ε(a+ 6ε)b− 27ε2 − 18aε+ 1

)
u9

+

(
3a4

16
+

9

2

(
b− 5ε2

)
a2 − 12ε

(
−18b2 + 9ε2 − 1

)
a

− 9
(
36b4 +

(
1− 72ε2

)
b2 + 30ε2b+ 9ε4

))
u8

+
3

2

(
3bεa3 +

(
5ε2 − 6b3

)
a2 − 12bε

(
15ε2 + b

)
a+ 12ε2

(
54b3 − 36ε2b+ b+ 3ε2

))
u7

+

(
9
(
−108b2 + 24ε2 − 1

)
ε4 − a3ε3

2
+ 18a2b2ε2 + 18a

(
3ε5 + 2bε3

))
u6

−9ε4
(
ba2 + 2εa− 36bε2

)
u5, (6.24)
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which is of order 5 as arranged for an A4 singularity. There appear two new nonzero

discriminant loci; their positions are ε2

b for both to leading order in ε, but different in

their higher order terms. The monodromy around the origin is T 5 as shown in figure 9,

indicating the existence of five collapsed A branes. On the other hand, the monodromy

around each discriminant locus is T for both. Again, as shown in figure 9, there is a locus

of g between the origin and the closer locus, and there are two loci of f and another locus

of g between the origin and the farther one. Therefore we must do the corresponding

similarity transformations. It can be shown that the monodromy is S−1 for the former,

and T 2S−1TST−2 for the latter. Thus the monodromy matrix for the closer locus is

STS−1 = A−1CA, (6.25)

and that for the farther locus is

(T 2S−1TST−2)−1T (T 2S−1TST−2) = TS−1T−3

= A−1(C−1BC)A. (6.26)

Changing their positions with each other in such a way that the farther brane passes

through the branch cut of the closer brane, their monodromies become A−1BA and

A−1CA, so they are a B and a C brane, respectively, as expected.

7 Summary and discussion

Using Tani’s argument to account for the chiral matter generation at extra zeroes, we have

proposed a natural geometric mechanism for realizing the coset family structure in F-theory.

Tani’s argument uses string junctions connecting the various gathering 7-branes meeting

at that point and is a direct generalization of [121] for the intersecting D-brane systems.

It offers a perfectly consistent picture of the chiral matter generation in six dimensions for

the split-type singularities, and we have pointed out that their relations to homogeneous

Kähler manifolds are readily explained in this picture. Note that these rules are not just

a kind of “trick” as has been known in the literature, but can be deduced by the concrete

entities responsible for the symmetry enhancement: the string junctions.

In particular, we have proposed a local 7-brane system as shown in figure 5 which

would yield the set of supermultiplets in six dimensions with exactly the same gauge quan-

tum numbers as those in the three-generation E7/(SU(5)×U(1)3) coset family unification

model. We have proved that for a given holomorphically varying type IIB scalar field con-

figuration in six dimensions, there exists at least locally a Kähler metric such that a half

of the supersymmetries are preserved. We have further discussed how this local model is

compactified to four dimensions and half of the spectrum is projected out on orbifolds, and

also suggested how the anomalies of the original models can be canceled. The last point is

still incomplete and we leave this issue to future work.

One of the nice features of our mechanism is that such a gathering brane system is a

local one and could emerge independently of the every global detail of the ambient space.

Meanwhile, given the experimental data, several authors have recently pointed out the
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possible existence of the “desert”, the absence of new physics between the electro-weak

and string scales [132–134]. If this is true, and if string theory is really the theory beyond

the Standard Model, then it must have a mechanism to realize close to what we observe

now already at the string scale. Our proposal fits with this requirement.

It is interesting to speculate how this configuration might come to exist: suppose that

there were, perhaps in the very early universe, some set of 7-branes, and assume some

attractive force to be somehow generated between them. Then such 7-branes might have

become closer and closer until they collide with each other. This can happen only if they are

a collapsable set of 7-branes which must be one of the types of the Kodaira classification.

If these branes were the ones that could constitute the E7 singularity, then just after they

made a collision and at the last minute before they were completely separated, they would

have looked like figure 5. This story is of course just a speculation at this moment, but it

would be an interesting scenario to study.
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A The explicit forms of A(n,n̄) up to n + n̄ ≤ 3

The result of solving the recursion relations (4.55), (4.56) is as follows:

A(0,1) =
h(0,1)

h(0,0)
,

A(0,2) =
2h(0,2) −B

(0,1)
(0,1)

2h(0,0)
,

A(1,1) =
B(0,1)B(0,1) + h(1,1)

h(0,0)
,

A(0,3) =
1

6(h(0,0))3

(
− 2B

(0,1)
(0,2)(h(0,0))

2 − 3B
(0,1)
(0,1)h(0,1)h(0,0) + 3B(0,1)h

(0,1)
(0,1)h(0,0)

−3B(0,1)h(0,1)h
(0,1)
(0,0) + 6h(1,0)(h(0,0))

2

)
,

A(1,2) =
1

2(h(0,0))4

(
2B(0,2)(h(0,0))

3B(0,1)

−(h(0,0))
2
(
B

(0,1)
(0,1)h(1,0) − 2B(0,1)h

(0,1)
(1,0) + h

(1,1)
(0,1)

)
+h(0,0)

(
−2B(0,1)h(1,0)h

(0,1)
(0,0) + h

(1,0)
(0,1)h

(0,1)
(0,0) + h

(0,1)
(0,1)h

(1,0)
(0,0) + h(0,1)h

(1,1)
(0,0)

)
+2h(1,2)(h(0,0))

3 − 2h(0,1)h
(0,1)
(0,0)h

(1,0)
(0,0)

)
.
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Figure 10. A trajectory of J(τ) under the T transformation (τ0 = 1.1i).
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Figure 11. A trajectory of J(τ) under the S transformation (τ0 = 1.1i).

h
(p,q)
(n,n̄) ≡ ∂pz∂

q
z̄h(n,n̄). B(0,n̄)’s are arbitrary functions of z and z̄, and B

(p,q)
(0,n̄) ≡ ∂pz∂

q
z̄B(0,n̄).

A(n̄,n) is equal to the complex conjugate of A(n,n̄). Once A(n,n̄)’s are determined, then so

are B(n,n̄)’s by the equation (4.55).

B J-function and monodromy

Klein’s J-function is a modular invariant holomorphic function from the upper-half plane

H to the complex plane C, and maps one-to-one the fundamental region of the modular

group to the complex plane. The definition in terms of theta functions is

J(τ) =
(ϑ2(τ)8 + ϑ3(τ)8 + ϑ4(τ)8)3

54ϑ2(τ)8ϑ3(τ)8ϑ4(τ)8
,

so that

J(e
2πi
3 ) = 0, J(i) = 1.

Suppose that τ ∈ H changes its value from some τ0 in the standard fundamental region

to τ0 + 1, which belongs to another fundamental region next to it. Then the trajectory of

J(τ) circles clockwise around 1 and 0 (figure 10). On the other hand, if τ ∈ H changes

from τ0 to − 1
τ0

, then J(τ) only circles around 1, counter-clockwise (figure 11).

Note that since J(τ) has a triple zero at τ = e
2πi
3 , J(τ) moves three times around 0

when τ moves along a small circle around e
2πi
3 and back to the original fundamental region.
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Likewise J(τ) − 1 has a double zero at τ = i, so J(τ) goes twice around 1 when τ does

once around i.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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