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1 Introduction

During the last few years there has been a renewed interest in the theory of massive gravity.

One of the reasons is that there is a version of the massive gravity potential term which

evades the generic Boulware-Deser ghost [1–9], associated with massive gravity theories [10]

and other higher-order derivative theories [11]. Besides, it has been found that the massive

gravity theories possess the Vainshtein mechanism [12–21] (see for a review [22]), therefore

the additional degree(s) of freedom may be hidden effectively to pass local gravity tests.

Some issues in massive gravity are debated in [23–28], see also the recent review on massive

gravity [29], where these points are addressed.

The first black hole solutions in a generic nonlinear massive gravity were presented long

time ago [30, 31]. In the de Rham-Gabadadze-Tolley (dRGT) model of massive gravity

(with one fixed Minkowski metric), a class of non-bidiagonal Schwarzschild-de-Sitter solu-

tions was presented in [20, 21]. For a specific choice of the parameters of the massive gravity

theory the Reissner-Nordström-de Sitter solution in dRGT model was found in [32]. For

the same choice of parameters another solution describing (uncharged and also charged)

spherically symmetric black hole has been found in [33]. In the case of bi-metric massive

gravity (when the second metric is also dynamical), the spherically symmetric uncharged

black hole solutions were found in [34, 35]. See recent reviews on black holes in massive

gravity [36–38].

Black holes in massive gravity have stability properties different from those in General

Relativity (GR), even though all the analytic solutions in massive gravity are related to the

GR solutions. This happens because massive gravity possesses extra degrees of freedom. In

particular, the bidiagonal Schwarzschild solutions in massive gravity turn out to be unstable

to radial perturbations [39, 40], even though the rate of instability is extremely slow. On

the contrary, the non-bidiagonal solutions in massive gravity are stable with respect to this

type of perturbations [41]. The stability of the black hole solutions of ref. [33] has been

studied in [42] and it was found that the perturbations are identical to those of GR. This

means, in particular, that the dangerous radial mode is absent. The absence of the radial

mode is connected to a specific choice of the parameters of the Lagrangian [41].
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In this paper we present a new class of charged black hole solutions in (bi)massive

gravity, including the dRGT model and also the case with two dynamical metrics. To

find these solutions we write the ansatz of both metrics in the Eddington-Finkelstein form

(biEF coordinates)— a ‘trick’ we used previously in [41] to study perturbations of non-

bidiagonal uncharged black hole solutions. The use of the biEF coordinates makes the

analysis extremely simple and allows us to immediately write down the solutions. We also

discuss a special choice of the parameters of the Lagrangian, for which some solutions were

already considered in the literature. We show that in this case the space of solutions is

richer, and as special cases we recover previously found solutions.

2 Charged black holes in bigravity

We consider the bi-gravity extension of the dRGT model of massive gravity [1–4] with two

dynamical metrics g and f plus standard electromagnetic field coupled to the g-metric,

S = M2
P

∫

d4x
√−g

(

R[g]

2
+m2U [g, f ]−m2Λg

)

− 1

4

∫

d4x
√−gFµνF

µν

+
κM2

P

2

∫

d4x
√

−f
(

R[f ]−m2Λf

)

(2.1)

where R[g] and R[f ] are the Ricci scalars for the g- and f-metric correspondingly, Λg

and Λf are the (dimensionless) bare cosmological constants, m is the mass parameter

(related to the graviton mass), κ is a number parametrising the difference in the Planck

masses for the metrics, U [g, f ] is the potential mass term and Fµν = ∂µAν − ∂νAµ is

the standard electromagnetic tensor with Aµ being the electromagnetic potential. The

interaction potential U [g, f ] can be expressed in terms of the matrix Kµ
ν = δµν − γµν , where

γµν =
√
gµαfαν . The potential U contains three terms,

U ≡ U2 + α3U3 + α4U4,

where α3 and α4 are parameters of the theory, and each of the pieces reads

U2 =
1

2!

(

[K]2 − [K2]
)

,

U3 =
1

3!

(

[K]3 − 3[K][K2] + 2[K3]
)

,

U4 = det(K),

(2.2)

where [K] ≡ Kρ
ρ and [Kn] ≡ (Kn)ρρ.

The variation of the action with respect to the metrics g and f gives the modified

Einstein-Maxwell equations,

Gµ
ν = m2

(

Tµ
ν − Λgδ

µ
ν

)

+
1

M2
P

(

FµαFνα − 1

4
δµνF

2

)

, (2.3)

Gµ
ν = m2

(√−g√
−f

T µ
ν

κ
− Λfδ

µ
ν

)

, (2.4)
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where Gµ
ν and Gµ

ν are the corresponding Einstein tensors for the metrics g and f , and the

mass energy-momentum tensors are given by

Tµ
ν ≡ Uδµν − 2gµα

δU
δgνα

, T µ
ν = −Tµ

ν + Uδµν . (2.5)

We shall write down the ansatz for both metrics in the bi-advanced Eddington-

Finkelstein form (similar to ref. [41], where we described by a similar ansatz the uncharged

non-bidiagonal black holes),

ds2g = −
(

1− rg
r

+
r2Q
r2

− r2

l2g

)

dv2 + 2dvdr + r2dΩ2, (2.6)

ds2f = C2

[

−
(

1− rf
r

− r2

l2f

)

dv2 + 2dvdr + r2dΩ2

]

, (2.7)

where rg and rf are the Schwarzschild radii for the g- and f-metrics correspondingly, lg
and lf are the “cosmological” radii, C is a constant (conformal factor) and rQ is the length

associated with the charge. We also take the vector potential in the following form,

Aµ =

{

Q

r
, 0, 0, 0

}

(2.8)

where Q is the charge of the g-black hole. With the ansatz (2.6), (2.7) the Einstein tensors

read,

Gµ
ν = − 3

l2g
δµν +

r2Q
r4

diag {−1, −1, 1, 1} , Gµ
ν = − 3

C2l2f
δµν . (2.9)

The energy-momentum tensor of the electromagnetic field entering (2.3) is given by

Fµ
αF

α
ν − 1

4
δµνF

2 =
Q2

2r4
diag {−1, −1, 1, 1} . (2.10)

The mass energy-momentum tensor (2.5) for (2.6), (2.7) gives

Tµ
ν =













Λ
(g)
m 0 0 0

T r
v Λ

(g)
m 0 0

0 0 Λ
(g)
m 0

0 0 0 Λ
(g)
m













, (2.11)

where

Λ(g)
m = −(C − 1)

((

β(C − 1)2 − 3α(C − 1) + 3
))

(2.12)

is the effective cosmological constant and

T r
v = −C

2

(

β(C − 1)2 − 2α(C − 1) + 1
)

(

rg − rf
r

−
r2Q
r2

+
r2

l2g
− r2

l2f

)

(2.13)

is the only non-diagonal term. In the above we introduced the definitions,

α ≡ 1 + α3, β ≡ α3 + α4. (2.14)

– 3 –
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The mass energy-momentum for the metric f can be easily found then from (2.11) and (2.5).

Now, from (2.9), (2.10), (2.11), (2.12) and (2.13) it is not difficult to see that the

Einstein equations (2.3) and (2.4) are satisfied when,

β(C − 1)2 − 2α(C − 1) + 1 = 0,

√
2MP rQ = Q,

(C − 1)
((

β(C − 1)2 − 3α(C − 1) + 3
))

+ Λg =
3

m2l2g
,

− 1

κC3

(

C3(1− α+ β)− 3C2β + 3C(α+ β)− 2α− β − 1
)

+ Λf =
3

C2m2l2f
.

(2.15)

In particular, from (2.15) one can find the parameters of the metrics (2.6), (2.7) in terms

of the parameters of the action (2.1).

The above results apply for the case of bi-gravity, i.e. when both metrics are dynamical.

It is, however, not difficult to formulate the results for the case of one dynamical metric,

in particular, for the original dRGT theory of massive gravity, when the metric f is flat.

In this case the last two pieces in (2.1) are absent, i.e. the Einstein-Hilbert term for the

f -metric and the bare cosmological constant Λf . Since there is no dynamics for the f

metric, we can keep it in the form (2.7), it defines the non-dynamical fiducial background

for the theory. The metric g, on the other hand, is also given by the same ansatz, eq. (2.6),

with the first three conditions of (2.15), the last condition of (2.15) being absent in the

case of one dynamical metric.

3 The case β = α2

There is a special combination of parameters of the action, namely β = α2, for which

the space of solutions is much wider than for the general case. Indeed, instead of the

ansatz (2.6) and (2.7), consider now the following very general ansatz,

ds2g = −gvvdv
2 + 2gvrdvdr + grrdr

2 + r2dΩ2, (3.1)

ds2f = C2
[

−fvvdv
2 + 2fvrdvdr + frrdr

2 + r2dΩ2
]

, (3.2)

where gvv, gvr, grr, fvv, fvr, frr are functions of both v and r. With the ansatz (3.1)

and (3.2) the matrix γµν has the following form,

γµν =











γvv γvr 0 0

γrv γrr 0 0

0 0 C 0

0 0 0 C











, (3.3)

where the elements of the matrix γ can be straightforwardly expressed in terms of gµν and

fµν . One can calculate explicitly Tµ
ν in terms of the components of (3.3). Remarkably,

applying the conditions

β = α2, C = 1 +
1

α
, (3.4)

– 4 –
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the mass energy-momentum tensors take very simple forms,

Tµ
ν = − 1

α
δµν , T µ

ν =
1

1 + α

√
−f√−g

δµν . (3.5)

In the general case, the expressions for the mass energy-momentum tensors are very com-

plicated and we do not write them explicitly here. Note that the second condition of (3.4)

is the same as the first condition in (2.15), under the assumption β = α2.

We note further that if the Einstein tensors Gµ
ν and Gµ

ν are still given by the same

expressions (2.9) then the Einstein equations (2.3) and (2.4) are satisfied provided that

√
2MP rQ = Q,

1

α
+ Λg =

3

m2l2g
,

− 1

1 + α
+ Λf =

3α2

(1 + α)2m2l2f
.

(3.6)

Now, in order for the Einstein tensors to have the desired form (2.9), the metric g should be

the Reissner-Nordström-de Sitter solution, however not necessarily written in the standard

form (2.6). In fact, the ansatz (3.1) allows us to make in (2.6) an arbitrary non-singular

coordinate change of the form

v → v(v, r), r → r(v, r). (3.7)

The same is true for the metric f : we can take the metric (2.7) and make (in general

different) coordinate change (3.7).

Such a change of coordinates is something trivial in the framework of General Rela-

tivity. However, it is not so in the case of massive gravity. Indeed, because one of the

diffeomorphisms (in the case of two dynamical metrics) is broken, the action (2.1) is in-

variant under change of coordinates, when the two metrics transform simultaneously. For

example, for general choice of α and β, eqs. (2.6) and (2.7) form a solution provided

that (2.15) are satisfied. One can make an arbitrary change of coordinates (in particular,

as in (3.7)), to bring (2.6) in a different form, however, at the same time one must apply

the same coordinate change in (2.7) also. Only in this case the transformed metrics g

and f remain a solution. Thus, similar to GR, one should treat all the solutions obtained

from (2.6), (2.7) by the simultaneous transformation of both metrics as the same solution,

written in a different gauge.

The case β = α2, on the other hand, is very different. One still can do the gauge

transformation, common for both metrics, as in the general case. Apart from this, however,

one can also do independent coordinate change of the form (3.7) for each metric and the

resulting expressions for the metrics will be again a solution. Thus this case contains a

much richer family of solutions than for the generic choice of α and β described in the

previous section. It seems that the solution for β = α2 has an extra symmetry, which is

absent in the general case. The special role of the parameters β = α2 has been also noticed

in [35].

– 5 –



J
H
E
P
0
7
(
2
0
1
4
)
0
1
6

The case of one dynamical metric can be easily found from the above consideration.

Indeed, the solution for the g-metric is given by (3.1), where gvv, gvr and grr are obtained

by a coordinate change (3.7) from the metric (2.6). The parameters of the metric ansatz

should satisfy the first two conditions of (3.6). The metric f is given by (3.2) with arbitrary

fvv, fvr and frr. In the case of black holes in dRGT gravity (with one dynamical metric),

the fact that there is an extra freedom in the solution has been discussed in [42].

Having the general solution at hand, for β = α2, it is interesting to relate it to other

solutions presented in the literature before. In ref. [33] the Reissner-Nordström-de Sitter

solution in dRGT gravity has been found. In their solution, when the f -metric has the

canonical form df2 = −dt2+dr2+ r2dΩ2, the g-metric is the Reissner-Nordström-de Sitter

solution in the Gullstrand-Painlevé coordinates, up to the rescaling of the radial coordinate.

It is not difficult to see that imposing (3.4) and choosing fvv = frr = 1/C2, fvr = 0 and also

the g-metric (3.1) to be the Reissner-Nordström-de Sitter solution written in Gullstrand-

Painlevé coordinates, namely,

ds2 = −dt2 +



dr + dt

√

rg
r

−
r2Q
r2

+
r2

l2g





2

+ r2dΩ2,

one recovers the charged black hole solution found in [33].

Another example of the general solution (3.1) and (3.2) for α2 = β has been found

in [32]. In [32] a bi-diagonal solution has been presented, with f non-dynamical and having

the canonical form, and the g-metric reads

ds2 = −
(

1− rg
a1r

+
r2Q
a21r

2
− a21r

2

l2g

)

dt2 +
a21dr

2

1− rg
a1r

+
r2
Q

a2
1
r2

− a2
1
r2

l2g

+ a21r
2dΩ2,

where a1 is connected to the parameters of the action as a1 = α
1+α

in our notations. It is

not difficult to see that by the coordinate change r → r/a1 one brings this solution to the

form (3.1), (3.2), with (3.4) and g being the canonical Reissner-Nordström-de Sitter form.

4 Conclusions

In this paper we presented a new class of charged black hole solutions in massive (bi-)gravity

theory. To find the solution for the general parameters of the action we have written both

metrics in the advanced Eddington-Finkelstein coordinates (2.6) and (2.7). This simple

form allows to easily establish that the given ansatz for the metrics is indeed a solution

once the conditions (2.15) of the parameters of the ansatz are satisfied. In the case of one

dynamical metric (in particular, when f is Minkowski), the solution is also valid, the only

difference is that in this case the last condition of (2.15) does not exist.

We also separately considered the special case of the action parameters β = α2, where

α and β are given in terms of the parameters of the Lagrangian by (2.14). In this case,

provided that C = 1 + 1
α
, any choice of the metrics of the form (3.1) and (3.2) satisfying

Einstein-Maxwell and Einstein equations with a cosmological constant is a solution. As

particular cases we recovered the solutions found in [32] and [33].

– 6 –
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