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1 Introduction

Perturbative one-loop computations in closed string theory typically require integrating

over the moduli space of conformal structures on the world-sheet torus. Since the latter

is isomorphic to the Poincaré upper half-plane H quotiented by the full modular group

Γ = SL(2; Z), the one-loop amplitude is expressed as an integral
∫
F dµA(τ) of a modular

invariant function over the fundamental domain F = Γ\H. The evaluation of such integrals

is a mandatory step in any attempt to extract quantitative predictions from closed string

models.

The standard approach to evaluating such integrals, known as the orbit method, relies

on representing the integrand function as a (combination of) Poincaré series, i.e. a sum over

SL(2; Z) images. It is important that such series be absolutely convergent, since only in this

case can one trade the infinite sum over images for an integration over a semi-infinite strip,

thus converting a stringy one-loop integral into a conventional field-theoretical Schwinger

integral. The technical task of identifying a suitable Poincaré series is not in general

straightforward and depends on the properties of the automorphic function A(τ).

In string theory compactifications, the automorphic function A(τ) often decomposes

into the product Γ(d,d+k) Φ of the partition function Γ(d,d+k) of a Narain lattice with signa-

ture (d, d+ k), that encodes the dependence of the physical couplings on the compactifica-

tion moduli, times a model-dependent modular form Φ of weight −k/2. In these cases, after

Poisson resummation on the momenta, one may cast the Narain lattice partition function

into a sum of Poincaré series of SL(2; Z) suited for the unfolding of F . Although this

approach has been applied with success in the past [1–3], it suffers from certain drawbacks:

the resulting Poincaré series representation is absolutely convergent throughout the inte-

gration domain only in restricted regions of the Narain moduli space, the decomposition

into SL(2; Z) orbits spoils the manifest T-duality invariance, and the analytic properties

of the physical couplings are obscured.

Recently, we proposed a new approach to evaluating such one-loop integrals that over-

comes the aforementioned problems [4, 5]. The main idea is to represent the function Φ in

terms of an absolutely convergent Poincaré series and use it, rather than the lattice partition

function, for the unfolding procedure. In practice, as shown in [4, 5], for the cases where Φ

is a weak almost holomorphic modular form, one may always obtain such a representation

in terms of absolutely convergent Niebur-Poincaré series [6, 7]. Alternatively, in the case

where Φ is of moderate growth at ∞, one can resort to the Rankin-Selberg method [8–10]

commonly used in Mathematics to extract the analytic properties of L-series. The ad-

vantage of this approach is that it yields a manifestly T-duality invariant representation

of the one-loop amplitude, which is valid throughout the Narain moduli space and whose

singularity structure is transparent. While the occurrence of the Narain partition function

is typical in compactifications on d-dimensional tori, the (almost) holomorphy of Φ usually

holds for amplitudes protected by supersymmetry, such as threshold corrections to gauge

and gravitational couplings in certain superstring vacua [3, 11–13].

In many cases however, including closed-string vacua on orbifolds, the integrand A(τ)

naturally decomposes into a finite sum of contributions, associated to the various orb-
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ifold sectors, which are related by elements in SL(2; Z). Schematically, one faces one-loop

integrals of the form ∫
F

dµAorbifold(τ) =

∫
F

dµ
∑

γ∈ΓN\Γ

AN (γτ) , (1.1)

where ΓN ⊂ Γ is a level-N congruence subgroup, and AN is an automorphic function under

ΓN , represented, in most cases of interest, by the product of a (possibly shifted) Narain

partition function times some modular form ΦN of suitable weight with respect to ΓN . In

these cases, it is advantageous to first unfold F into the fundamental domain FN of ΓN by

using the coset decomposition (1.1), leading to the integral∫
FN

dµAN (τ) , (1.2)

and then apply the orbit method to unfold FN . This approach was first discussed in the

Physics literature in [14] where the non-universality of gauge threshold corrections for het-

erotic orbifold compactifications with non-factorisable tori was shown, and was later applied

to the computation of quartic gauge couplings [15, 16], to freely-acting orbifolds with partial

or total supersymmetry breaking in [17–19], as well as in the context of N = 4 topological

amplitudes [20]. These papers rely on unfolding the fundamental domain FN against the

Narain lattice using the traditional implementation of the orbit method, and thus suffer

from the same drawbacks outlined above. As we proposed in [4, 5], these drawbacks can

be circumvented by representing ΦN in terms of an absolutely convergent Poincaré series

of ΓN , and using it to unfold FN . To this end, in this paper we generalise the construction

of Niebur-Poincaré series to congruence subgroups and use them to represent any weak

almost holomorphic modular form of ΓN . This allows one to evaluate the integral (1.2)

at any point in the Narain moduli space, while keeping T-duality manifest. Similarly, we

shall generalise the Rankin-Selberg method to the case of congruence subgroups, in order

to treat functions of moderate growth.1

In applications to Abelian ZN closed-string orbifolds, the coset decomposition (1.1)

involves the congruence subgroup Γ1(N), defined in section 2. For N prime, the index of

Γ1(N) inside the full modular group is N2−1, which agrees with the number of non-trivial

orbifold sectors. When N is not prime, the decomposition (1.1) involves instead several

independent orbits, each one associated to a congruence subgroup Γ1(d), where d is a divisor

of N . Alternatively, one can generate the full ZN orbifold amplitude by considering orbits

of the full untwisted sector with respect to the Hecke congruence subgroups Γ0(d). However,

in the cases of interest to string theory, it is often possible to generate the full Γ0(d) orbit

by using a single (untwisted) orbifold sector, thus simplifying the implementation of the

orbit method. This happens, in particular, in the study of BPS-saturated contributions

to gauge and gravitational threshold corrections in heterotic vacua, arising from the ZN

orbifold sectors, with N = 2, 3, 4, 6.

In dealing with integrals of the form (1.2) one has to properly address the problem of

infrared (IR) divergences due to massless states propagating in the loop. Whereas in the

1See [21] for an earlier attempt at applying the Rankin-Selberg method to strings on orbifolds.
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original SL(2; Z)-invariant description (1.1) the IR divergence is associated to the unique

boundary (i.e. the cusp at ∞) of the fundamental domain F , after partial unfolding it

gets distributed among the various boundaries of FN . These divergences necessitate an

appropriate regularisation of the integral before unfolding. As in [4, 5, 10], we introduce an

explicit IR cut-off by truncating the SL(2; Z) fundamental domain F to τ2 < T . This cut-

off is then unambiguously extended to the other boundaries of FN after partial unfolding.

The outline of this work is as follows. In section 2 we review the general structure of

closed strings on Abelian orbifolds with emphasis on the coset decompositions with respect

to Hecke congruence subgroups. In section 3 we list the main properties of Γ0(N) and

extend the unfolding procedure to integrals over its truncated fundamental domain. In

section 4, we discuss the Rankin-Selberg method for modular forms of Γ0(N) of moderate

growth at all cusps, and apply it to evaluating integrals over FN . We illustrate the pro-

cedure by explicitly computing integrals of freely acting orbifolds of d-dimensional Narain

lattices, and express the result in terms of level-N generalisations of the constrained Ep-

stein zeta series of [4, 5, 22]. In section 5, we introduce the absolutely convergent Niebur-

Poincaré series associated to the Hecke congruence subgroups, and show how any weak

almost holomorphic modular form can be represented by linear combinations of such se-

ries. We then explicitly compute the integral of a (shifted) Narain lattice times an arbitrary

Niebur-Poincaré series and express the result in terms of a sum of Schwinger-like integrals

associated to BPS-state contributions. In section 6 we illustrate this method by studying a

number of physically relevant examples of gauge and gravitational threshold corrections in

freely-acting orbifolds and the free energy of an exotic class of two-dimensional superstring

vacua. Appendix A collects useful formulæ on the Kloosterman-Selberg zeta function for

Γ0(N) and the associated scattering matrices. Finally, appendix B summarises useful facts

on holomorphic modular forms of Hecke congruence subgroups.

2 Generalities on one-loop amplitudes in closed string orbifolds

In closed string theories compactified on orbifolds, one-loop contributions to certain cou-

plings in the low energy effective action typically take the form of an integral

I =

∫
F

dµA , A =
∑
h,g

A
[
h
g

]
, (2.1)

where dµ = τ−2
2 dτ1 dτ2 is the SL(2; R) invariant measure on the Poincaré hyperbolic upper-

half plane H, F = {τ ∈H | |τ1| ≤ 1
2 , |τ | ≥ 1} is the standard fundamental domain of the

full modular group Γ = SL(2; Z), corresponding to large reparametrisations of the two-

dimensional world-sheet torus with Teichmüller parameter τ , and A is a modular form of

weight 0 under Γ, whose explicit expression depends on the coupling under consideration.

The sum over h labels the various twisted sectors and the sum over g implements the

orbifold projection onto invariant states. For Abelian ZN orbifolds, the case of interest in

this paper, both h, g run over 0, . . . , N − 1. Although the untwisted unprojected sector

of the orbifold A
[

0
0

]
is invariant under the full modular group Γ, this is not the case for
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each non-trivial orbifold block A
[
h
g

]
with (h, g) 6= (0, 0) that is invariant only under a

congruence subgroup Γ
[
h
g

]
⊂ Γ, i.e. a subgroup containing a level-M principal congruence

subgroup

Γ(M) =

{
γ =

(
a b

c d

)
∈ Γ

∣∣∣∣∣ a, d = 1 mod M , b, c = 0 mod M

}
. (2.2)

For N prime, each Γ
[
h
g

]
is conjugate to

Γ1(N) =

{
γ =

(
a b

c d

)
∈ Γ

∣∣∣∣∣ a, d = 1 mod N , c = 0 mod N

}
, (2.3)

which has index N2 − 1 with respect to the full modular group. Indeed, the N2 − 1

non-trivial orbifold blocks A
[
h
g

]
form a single orbit of Γ1(N) ⊂ Γ, transforming as

A
[
h
g

]∣∣∣γ = A
[
cg+dh
ag+bh

]
, (2.4)

where |γ denotes the Petersson slash operator defined in appendix B, and can all be ob-

tained from the block A
[

0
1

]
, invariant under Γ

[
0
1

]
= Γ1(N). As a result, the sum

A =
∑
h,g

A
[
h
g

]
= A

[
0
0

]
+

∑
γ∈Γ1(N)\Γ

A
[

0
1

]
|γ (2.5)

is invariant under the full modular group, as expected. For our purposes, it will be con-

venient to further collect the orbifold blocks into orbits of Γ0(N) ⊂ Γ, where Γ0(N) is the

Hecke congruence subgroup of level N

Γ0(N) =

{(
a b

c d

)
∈ Γ

∣∣∣∣∣ c = 0 mod N

}
, (2.6)

which contains Γ1(N) as a normal subgroup such that Γ0(N)/Γ1(N) = (Z/NZ)∗, and has

index

νN = N
∏
p|N

(1 + p−1) (2.7)

with respect to the full modular group Γ, where p is a prime2 divisor of N .

The decomposition of the amplitude A into orbits of the modular group is in general

complicated, since different sectors may be invariant under different level-Na congruence

subgroups of Γ, where Na divides N . By collecting these contributions into orbits of

Γ0(Na)\Γ one can thus write, in complete generality,

A =
∑
Na|N

∑
γ∈Γ0(Na)\Γ

ANa
∣∣∣γ , (2.8)

2In the following we shall always denote by p a prime number.
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where the untwisted unprojected contribution A
[

0
0

]
is associated with Na = 1 in this sum.

For N prime the coset decomposition clearly simplifies since one single orbit with Na = N

appears in the decomposition (2.8) (aside from the universal Na = 1 orbit) so that

A = A
[

0
0

]
+

∑
γ∈Γ0(N)\Γ

Ã
[

0
1

]∣∣∣γ , with Ã
[

0
1

]
=

N−1∑
g=1

A
[

0
g

]
. (2.9)

In this paper, we shall consider in detail only the cases N prime and N = 4 and

N = 6, since these are the only ones relevant for (half-)BPS-saturated amplitudes that

receive contributions only from the N = 2 supersymmetric sectors, thus linked to the K3

orbifolds T 4/ZN with N = 2, 3, 4, 6. For N = 4, 6 the decomposition (2.8) reads

A = A
[

0
0

]
+

∑
γ∈Γ0(4)\Γ

(A
[

0
1

]
+A

[
0
3

]
)
∣∣∣γ +

∑
γ∈Γ0(2)\Γ

A
[

0
2

]∣∣∣γ , (2.10)

for N = 4, and

A = A
[

0
0

]
+

∑
γ∈Γ0(6)\Γ

(A
[

0
1

]
+A

[
0
5

]
)
∣∣∣γ+

∑
γ∈Γ0(3)\Γ

(A
[

0
2

]
+A

[
0
4

]
)
∣∣∣γ+

∑
γ∈Γ0(2)\Γ

A
[

0
3

]∣∣∣γ , (2.11)

for N = 6.

Having cast the integrand of (2.1) into a finite sum (2.8) of orbits under the Hecke

congruence subgroups Γ0(Na), one may use

F =
⋃

γ∈Γ0(N)\Γ

γ · FN (2.12)

to unfold the integration domain F into the fundamental domain FNa = Γ0(Na)\H of

Γ0(Na), thus obtaining

I =
∑
Na|N

INa , (2.13)

where

IN =

∫
FN

dµAN . (2.14)

The next step consists then in devising methods to completely unfold FN into the usual

strip S = {0 ≤ τ2 < ∞ , 0 ≤ τ1 ≤ 1}, in a way that does not require a specific choice of

Weyl chamber, that clearly spells out possible singularities of the amplitude at points of

symmetry enhancement, and that maintains the perturbative symmetries of the vacuum

manifest. As we shall see, special care is required for the proper definition of the modular

integral and of its unfolding if IR divergences are present. We shall outline the general

procedure in the next section, deferring the discussion of specific classes of integrals to

sections 4 and 5.
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3 The unfolding for Hecke congruence subgroups

The goal of the following sections will be to extend the techniques introduced in [4, 5], in the

case of the full modular group Γ, to compute integrals of the type (2.14). These integrals

typically develop IR singularities due to massless states running in the loop. Technically,

these divergences arise at the boundary of the integration domain. In the case of the full

modular group, the only boundary consists of the cusp at ∞, and a natural (modular

invariant) way to deal with the IR singularity is to cut-off the fundamental domain at

some large τ2. The main complication now is that the fundamental domain FN of the

Hecke congruence subgroup Γ0(N) has several boundaries associated to its inequivalent

cusps, and each of them may give rise to divergences in the integral (2.14). In principle,

there are several options for regulating the integral but, as we shall argue, String Theory

suggests a well-defined prescription. In the following, we shall first review some basic facts3

about Γ0(N) and then we shall introduce the unfolding procedure and renormalisation

prescription in some generality.

3.1 Some properties of Γ0(N) and its Poincaré series

The Hecke congruence subgroup is defined by eq. (2.6). Similarly to the case of the full

modular group, its fundamental domain FN = Γ0(N)\H can be compactified by adding h

inequivalent4 cusps, where

h =
∑
d|N

ϕ((d,N/d)) , (3.1)

ϕ(n) being the Euler totient function. The cusps correspond to the rational points

u

v
with v|N , (u, v) = 1 , u (mod (v,N/v)) . (3.2)

The cusps 1/N and 1, equivalent to ∞ and 0, respectively, always exist, and are the

only cusps for N prime. In figure 1 we have displayed the conventional choice for the

fundamental domains of Γ0(N) with N = 2, 3, 4, 6.

Each cusp a can be obtained from the cusp ∞ by acting with an element τa

τa =

(
u ∗
v ∗

)
∈ Γ0(N)\Γ , (3.3)

so that a = τa∞. Clearly, Γa = τa Γ∞ τ
−1
a stabilises the cusp a since Γ∞ is the stability

group associated to ∞ and thus

τ−1
a Γa τa =

{
±

(
1 bma

0 1

) ∣∣∣ b ∈ Z

}
. (3.4)

3Our discussion here follows [23–25], and the interested reader is referred to these references for more
details.

4Two points z1 and z2 are inequivalent if there is no element γ ∈ Γ0(N) such that z2 = γ · z1.
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Figure 1. Fundamental domains for the Hecke congruence subgroups Γ0(N) with N = 2, 3, 4, 6,
respectively.

The positive integer ma = N/(N, v2) is known as the width of the cusp a, and counts the

number of copies of the fundamental domain of Γ in (2.12) whose boundary is the cusp a.

One thus defines the scaling matrix

σa = τa ρa , ρa =

(√
ma 0

0 1/
√
ma

)
, (3.5)

that reduces the width of each cusp to one. In general, m∞ = 1 and m0 = N and thus

σ∞ =

(
1 0

0 1

)
, σ0 =

(
0 1/

√
N

−
√
N 0

)
. (3.6)

The scaling matrices for the other cusps depend on the level N , and the relevant σa for

N = 4, 6 can be found in appendix A. The scaling matrices σa can always be chosen such

that

σa Γ0(N)σ−1
a = Γ0(N) , (3.7)

a property that we shall exploit extensively for the unfolding procedure.

For any weight-w modular form G(τ) of Γ0(N), one may define its Fourier expansion

at any cusp b as follows: consider the modular form G(τ)
∣∣
w
σb, which is periodic under

τ 7→ τ + 1, and perform its usual Fourier expansion

G(τ)
∣∣∣
w
σb = j−wσb (τ)G(σbτ) =

∑
m∈Z

G̃b(τ2;m) e2πimτ1 , (3.8)

where

jγ(τ) = c τ + d , for γ =

(
a b

c d

)
∈ SL(2; R) . (3.9)

The Poincaré series of Γ0(N) with seed f(τ), periodic under τ 7→ τ + 1, and modular

weight w, attached to the cusp a, is defined by

Fa(τ) =
∑

γ∈Γa\Γ0(N)

f(τ)
∣∣∣
w
σ−1
a γ . (3.10)

– 8 –
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We shall require that the seed f(τ)� τ
1−w/2
2 as τ2 → 0 in order for (3.10) to be absolutely

convergent so that it can be employed to unfold the fundamental domain FN as will be

explained in the following subsection. Moreover, eq. (3.7) allows one to relate modular

forms associated to different cusps, since

Fa(τ) = j−w
σ−1
a
F∞(σ−1

a τ) = F∞(τ)
∣∣
w
σ−1
a . (3.11)

Finally, we denote its Fourier expansion around the cusp b by

Fa(τ)
∣∣∣
w
σb = j−wσb (τ)Fa(σbτ) = δab f(τ) +

∑
m

F̃ab(τ2;m) e2πimτ1 , (3.12)

where, here and henceforth, we isolate the contribution of the seed in the Fourier expansion

of a Poincaré series.

3.2 The unfolding procedure

We are now ready to proceed with the evaluation of the generic integral (2.14), where

the Γ0(N)-invariant integrand AN is assumed to factorise into the product of a weight-w

modular form Fa times another modular form G with opposite weight so that the resulting

integral (2.14) be well defined. We shall assume that Fa be represented by an absolutely

convergent Poincaré series as in (3.10), since it will be used to unfold the fundamental

domain. In our applications to BPS-saturated amplitudes, the role of G will be played by

the (shifted) Narain lattice. Depending on the behaviour of AN at the various cusps, Fa will

be given either by the non-holomorphic Eisenstein series or by the Niebur-Poincaré series.

The latter provide a complete basis of weak almost holomorphic modular forms suitable

for representing the (twisted) elliptic genus. In either case, the unfolding procedure, to be

described below, leads to a rigorous definition of a renormalised integral. The procedure

we shall present can be extended to more general classes of functions, however we shall not

dwell upon these cases here.

Although at the level of the integral (2.14) one has several options to cope with the

potential divergences, String Theory suggests a well-defined regularisation scheme. Indeed,

one-loop closed-string amplitudes arise in the form (2.1), where the integral runs over the

fundamental domain of the full modular group and, thus, the only source of divergence

in the original integral (2.1) is from the cusp at ∞, and corresponds to the usual IR

divergence of massless particles present in the spectrum. As in [4, 5] this divergence can be

regulated, consistently with modular invariance, by introducing a hard IR cut-off τ2 ≤ T ,

thus replacing the SL(2; Z) fundamental domain F by

F(T ) = F − S∞(T ) , (3.13)

where S∞(T ) is the disk tangent to the cusp ∞, defined by S∞(T ) =
{
τ ∈H

∣∣τ2 ≥ T
}

.

– 9 –
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The partial unfolding (2.12) then lifts this regularisation scheme to the integral (2.14),

and hence the fundamental domain FN of Γ0(N) is replaced by

FN (T ) ≡ FN −
⋃
b

τb · S∞(T )

= FN −
⋃
b

τb ρb ρ
−1
b · S∞(T )

= FN −
⋃
b

Sb(T ) ,

(3.14)

where the small disks Sb(T ) ≡ σb · S∞(mbT ) are excised around each cusp. Hence, one is

led to the finite integral

Ia =

∫
FN (T )

dµ G(τ)Fa(τ) . (3.15)

Using the fact that σa preserves Γ0(N) under conjugation (3.7), one may write Fa(τ) =

j−w
σ−1
a

(τ)F∞(σ−1
a τ) and obtain

Ia =

∫
σ−1
a ·FN (T )

dµ G(σaτ) j−w
σ−1
a

(σaτ)F∞(τ)

=

∫
σ−1
a ·FN (T )

dµ G(σaτ) jwσa(τ)F∞(τ) ,

(3.16)

where we have made use of the identity jAB(τ) = jA(Bτ) jB(τ), valid for any pair of

matrices A, B in SL(2; R). The Poincaré series F∞(τ) may now be employed in order to

unfold the fundamental domain σ−1
a · FN (T ), since⋃

γ∈Γ∞\Γ0(N)

γ σ−1
a FN (T ) = S −

⋃
b

⋃
γ∈Γ∞\Γ0(N)

γσ−1
a Sb(T ) , (3.17)

with S = {τ ∈H | − 1
2 ≤ τ1 ≤ 1

2} being the half-infinite strip. As a result,

Ia =

∫
S

dµG(σaτ) jwσa(τ) f(τ)−
∑
b

∫
S∞(mbT )

dµ G̃b(τ2; 0)
[
δabf(τ) + F̃ab(τ2; 0)

]
−
∑
b

∫
S∞(mbT )

dµ G(σbτ) jwσb(τ)
[
Fa(σbτ) j−wσb (τ)− δabf(τ)− F̃ab(τ2; 0)

]
−
∑
b

∫
S∞(mbT )

dµ
[
G(σbτ) jwσb(τ)− G̃b(τ2; 0)

] [
δabf(τ) + F̃ab(τ2; 0)

]
,

(3.18)

where F̃ab(τ2; 0), G̃b(τ2; 0) are the zero-frequency modes of the Fourier expansions of Fa(τ)

and G(τ) at the cusp b, as defined in (3.10), (3.8), and f(τ) is the seed of the Poincaré

series Fa(τ). The advantage of the decomposition (3.18) is that the dependence of Ia on

the cutoff T can be easily identified. Indeed, the integrands in the second and third lines

are exponentially suppressed as τ2 →∞, while the second integral in the first line provides,

in general, the non-trivial cut-off dependence and leads to the following natural definition
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of the renormalised integral

R.N.

∫
FN

dµ G(τ)Fa(τ) ≡ lim
T →∞

[∫
FN (T )

dµ G(τ)Fa(τ)

+
∑
b

∫
S∞(mbT )

dµ G̃b(τ2; 0)
[
δabf(τ) + F̃ab(τ2; 0)

]]
,

(3.19)

so that

R.N.

∫
FN

dµ G(τ)Fa(τ) =

∫
S

dµG(σaτ) jwσa(τ) f(τ) . (3.20)

Eqs. (3.18), (3.19) and (3.20) provide the starting point for the methods that we shall

introduce in the forthcoming sections.

4 The Rankin-Selberg method and orbifolded lattices

In this section we shall restrict our attention to the case where the integrand function

AN is an automorphic function under the Hecke congruence subgroup Γ0(N) with at most

polynomial growth at all cusps. This case can be treated by the Rankin-Selberg method.

Recall that the latter amounts to inserting a non-holomorphic Eisenstein series E(τ, s)

inside the integral, unfolding the integration domain against it for Re (s) � 1, and ana-

lytically continuing the result to s = 1 where E(τ, s) has a first order pole with constant

residue. In section 4.1 we shall give a general discussion on non-holomorphic Eisenstein se-

ries for Γ0(N), and in section 4.2 we shall expose the Rankin-Selberg method for congruence

subgroups.

4.1 Non-holomorphic Eisenstein series for Γ0(N)

The non-holomorphic, completed Eisenstein series associated to the cusp a is defined by

the sum over images

E?a (τ, s) = ζ?(2s)
∑

γ∈Γa\Γ0(N)

τ s2

∣∣∣
0
σ−1
a γ , (4.1)

which is absolutely convergent for Re (s) > 1. Here ζ?(s) = π−s/2Γ (s/2)ζ(s) is the com-

pleted Riemann zeta function, whose introduction simplifies the functional relation below.

For N = 1, the only cusp is ∞ and eq. (4.1) reduces to the usual non-holomorphic Eisen-

stein series for the full modular group Γ.

Since the seed τ s2 is an eigenmode of the hyperbolic Laplacian ∆, the Eisenstein se-

ries (4.1) satisfies [
∆ +

1

2
s(1− s)

]
E?a (τ, s) = 0 (4.2)

for any cusp. The Fourier expansion of E?a at the cusp b is given by

E?a (σbτ, s) = e?ab(τ2) + 2
∑
n6=0

ϕab(n, s) (|n|τ2)1/2Ks−1/2(2π|n|τ2) e2iπnτ1 , (4.3)

– 11 –
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where

e?ab(τ2) = ζ?(2s)

[
δab τ

s
2 + π1/2 Γ (s− 1

2)

Γ(s)
Zab(0, 0; s)τ1−s

2

]
(4.4)

is the zero-frequency mode, and

ϕab(n, s) = ζ(2s) |n|s−1Zab(0, n; s) (4.5)

for non-vanishing frequencies. Here Zab(0, n; s) is the Kloosterman-Selberg zeta function

associated to the pair of cusps ab, defined in (A.1). Selberg proved that E?a (τ, s) has

a meromorphic continuation to the whole s-plane, given by the Fourier expansion (4.3)

itself. Its simple poles are given by the poles of e?ab. In particular, the point s = 1 is a

simple pole with constant residue

Res E?a (τ, s)
∣∣∣
s=1

=
1

2νN
=

vol(F)

2 vol(FN )
, (4.6)

for any cusp a. Moreover, the Eisenstein series satisfy the functional equation

E?a (τ, s) =
∑
b

Φab(s)E
?
b(τ, 1− s) , (4.7)

where the scattering matrix Φ(s), with entries

Φab(s) =
π1/2 Γ (s− 1

2) ζ?(2s)

Γ (s) ζ?(2s− 1)
Zab(0, 0; s) , (4.8)

satisfies Φ(s)Φ(1 − s) = 1. The functional equation (4.7) will play an important role in

evaluating the one-loop modular integrals in the next subsection.

For N a square-free number one finds

Φ(s) =
⊗
p|N

Np(s) , (4.9)

where

Np(s) =
1

p2s − 1

(
p− 1 ps − p1−s

ps − p1−s p− 1

)
. (4.10)

In the more general cases where N is not square-free the general expression is more com-

plicated and the case for N = 4 is given in appendix A.

Notice that

E?a (τ, s) = E?∞(σ−1
a τ, s) , (4.11)

as a result of (3.7), and one can always express the non-holomorphic Eisenstein series of

Γ0(N) as linear combinations of the usual non-holomorphic Eisenstein series E? of Γ with

– 12 –
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suitably rescaled arguments. For instance, for N prime, one may show that

E?∞(τ, s) =
N sE?(Nτ, s)− E?(τ, s)

N2s − 1
, E?0(τ, s) =

N sE?(τ, s)− E?(Nτ, s)
N2s − 1

. (4.12)

These relations allow one to straightforwardly compute the scattering matrix (4.9) using

the functional equation of the SL(2; Z) Eisenstein series, E?(τ, s) = E?(τ, 1− s).
Eq. (4.12) and the first Kronecker limit formula for the standard Eisenstein series allow

one to extract similar limit formulæ for the E?a (τ, s) Eisenstein series. In particular, for N

prime one finds

E?∞(τ, s) =
1

2(N + 1) (s− 1)

− 1

2(N2 − 1)
log

[
(4π)N−1 e(1−N)γ N2N2/(N+1) τN−1

2

∣∣∣∣ [η(Nτ)]N

η(τ)

∣∣∣∣4
]

+ . . . ,

E?0(τ, s) =
1

2(N + 1) (s− 1)

− 1

2(N2 − 1)
log

[
(4π)N−1 e(1−N)γ N (N2−2N−1)/(N+1) τN−1

2

∣∣∣∣ [η(τ)]N

η(Nτ)

∣∣∣∣4
]

+ . . . .

(4.13)

For N = 4, 6 similar expressions can be derived using eqs. (A.9) and (A.15).

4.2 The Rankin-Selberg method for Hecke congruence subgroups

Having defined the Eisenstein series for Γ0(N), we now turn to the evaluation of the

integral (2.14) by following the unfolding procedure outlined in section 3.2 (see also [26]).

As already mentioned, in this case the integrand AN is a (not necessarily holomorphic)

automorphic function of Γ0(N), with at most power-like growth at each cusp5

AN (σa τ) ∼ ψa(τ2) +O(τ−M2 ) , ∀M > 0 , (4.14)

as τ2 →∞, where

ψa(τ2) =
∑
i

ca,i τ
αa,i

2 , ca,i , αa,i ∈ C . (4.15)

To evaluate (2.14), we apply the Rankin-Selberg method and consider, for a generic

cusp a, the integral

IN (s; T ) =

∫
FN (T )

dµAN (τ)E?a (τ, s) , (4.16)

where the Poincaré series Fa of section 3.2 is now replaced by E?a (τ, s), that converges

absolutely for Re (s) > 1, and is thus suited for unfolding.

5The techniques we are going to outline in this section can be actually extended to cases of more general
growth at the cusp (τα2 (log τ2)n). However, we shall limit ourselves to power-like behaviour since this is the
only one of interest in String Theory.
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Using eq. (3.18) adapted to the case at hand, one obtains

R?a(AN , s) =

∫
FN (T )

dµAN (τ)E?a (τ, s)

+
∑
b

∫
S∞(mbT )

dµ [AN (σbτ)E?a (σbτ, s)− ψb(τ2) e?ab(τ2)]

− ζ?(2s)ha(maT , s)− ζ?(2s− 1)
∑
b

Φab(s)hb(mbT , 1− s) ,

(4.17)

where e?ab(τ2) is the zero-mode (4.4),

ha(T , s) =

∫ T
0
dy ys−2 ψa(y) =

∑
i

ca,i
T s+αa,i−1

s+ αa,i − 1
(4.18)

and

R?a(AN , s) = ζ?(2s)

∫ ∞
0

dy ys−2 [aa(y)− ψa(y)] (4.19)

is the Rankin-Selberg transform associated to the cup a, with

aa(τ2) =

∫ 1

0
dτ1AN (σaτ) . (4.20)

Eq. (4.17) defines the meromorphic continuation to the whole complex s-plane of the

Rankin-Selberg transform, since the second integral on the r.h.s. is clearly finite in the

T → ∞ limit and defines an entire function of s, while the remaining terms are meromor-

phic functions of s. As a result, R?a has simple poles6 at s = 0, 1, αa,i, 1−αa,i, and inherits

the functional relation (4.7)

R?a(AN , s) =
∑
b

Φab(s)R?b(AN , 1− s) . (4.21)

The residue of eq. (4.17) at s = 1 is particularly useful, since it allows one to make

contact with the integral (2.14). Indeed, upon defining the renormalised integral

R.N.

∫
FN

dµAN = lim
T →∞

[∫
FN (T )

dµAN −
∑
b

ψ̂b(mbT )

]
, (4.22)

where

ψ̂a(y) =
∑
αa,i 6=1

ca,i
yαa,i−1

αa,i − 1
+
∑
αa,i=1

ca,i log y (4.23)

6The poles are simple as long as αa,i 6= 1, otherwise a double pole develops at s = 1.
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is the anti-derivative of ψa(y) on the hyperbolic plane, one obtains

R.N.

∫
FN

dµAN = 2νN Res

[
R?a(AN , s) + ζ?(2s)ha(maT , s)

+ ζ?(2s− 1)
∑
b

Φab(s)hb(mbT , 1− s)

]
s=1

−
∑
a

ψ̂b(mbT ) .

(4.24)

As a trivial example, taking AN to be the unit function, the Rankin-Selberg transforms

vanish, and one recovers the expected volume 1
3πνN of the fundamental domain of Γ0(N).

4.3 Shifted lattice integrals and Epstein zeta functions

We now have all the necessary ingredients to compute the one-loop integral of shifted Narain

lattices, that arise, for instance, in one-loop threshold corrections to low-energy couplings

of heterotic and type II superstrings, possibly with partial supersymmetry breaking. Let us

consider the case of a ZN freely-acting orbifold of a d-dimensional lattice with background

metric Gij and Kalb-Ramond field Bij . For simplicity, we restrict our analysis to the case

of N prime, though generalisation to the case where N is not prime is straightforward.

The resulting lattice partition function reads

A =
1

N

N−1∑
h,g=0

Γ(d,d)

[
h
g

]
(G,B; τ) , (4.25)

where

Γ(d,d)

[
h
g

]
= τ

d/2
2

∑
~p∈Z2d

e2iπg ~λ·~p eiπτ1(~p+h~λ)2
e−πτ2M

2(h) . (4.26)

Here ~p = (~m , ~n) is a 2d-dimensional integral vector encoding the momentum and winding

quantum numbers, and ~λ = (~λ1 , ~λ2) is a constant 2d-dimensional vector acting as a shift

along the momenta (~λ2) and/or windings (~λ1). Its entries can be taken to be k/N , with

k ∈ ZN , and it must satisfy the constraint

N ~λ · ~λ = 0 mod 2 (4.27)

in order to ensure modular invariance. The scalar product is defined with respect to the

O(d, d)-invariant metric Ω,

~v · ~w ≡ ~vT Ω ~w =
(
~v1 ~v2

)( 0 1

1 0

)(
~w1

~w2

)
, (4.28)

and ~v2 ≡ ~v · ~v. The BPS squared-mass depends on the shift vector

M2(h) = (~p+ h~λ)T M2 (~p+ h~λ) , (4.29)
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and on the background moduli through the matrix

M2 =

(
G−1 G−1B

−BG−1 G−BG−1B

)
. (4.30)

Although (4.25) can be shown to correspond to a (unshifted) Narain lattice partition

function on a different background [27], and can thus be integrated following [4], it will be

instructive to use instead the coset decomposition

1

N

N−1∑
h,g=0

Γ(d,d)

[
h
g

]
=

1

N
Γ(d,d)

[
0
0

]
+

1

N

∑
γ∈Γ0(N)\Γ

N−1∑
g=1

Γ(d,d)

[
0
g

]∣∣∣γ . (4.31)

Therefore, the one-loop modular integral of the orbifolded Narain lattice decomposes

as ∫
F

dµ
1

N

N−1∑
h,g=0

Γ(d,d)

[
h
g

]
=

∫
F

dµ
1

N
Γ(d,d)

[
0
0

]
+

∫
FN

dµ
1

N

N−1∑
g=1

Γ(d,d)

[
0
g

]
, (4.32)

and one can apply the procedure exposed in the previous subsection to compute the latter,

since the lattice Γ(d,d)

[
0
g

]
has at most polynomial growth at the two cusps.7 As a result,

the Rankin-Selberg transforms read

R?∞(Γ(d,d)

[
0
g

]
, s) = ζ?(2s)

∫ ∞
0

dt ts+d/2−2
∑
~p∈Z2d

~p 6=0

e2iπg~λ·~p e−πtM
2(0) δ(~p2)

= E?d
[

0
g

](
G,B; s+

d

2
− 1

) (4.33)

and

R?0(Γ(d,d)

[
0
g

]
, s) = ζ?(2s)Nd/2

∫ ∞
0

dt ts+d/2−2
∑
~p∈Z2d

e−πN tM2(1) δ((~p+ g~λ)2)

= N1−s E?d
[
g
0

](
G,B; s+

d

2
− 1

) (4.34)

where we have defined the completed constrained Epstein zeta function with characteristics

E?d
[
h
g

]
(G,B; s) ≡ π−s Γ (s) ζ?(2s− d+ 2) Ed

[
h
g

]
(G,B; s)

≡ π−s Γ (s) ζ?(2s− d+ 2)
∑
~p∈Z2d

~p 6=0 if h=0

e2iπg~λ·~p [M2(h)]−s δ((~p+ h~λ)2) . (4.35)

Similar expressions clearly hold for N non-prime and can be easily worked out following

the discussion in section 2.

7Actually, for a non-vanishing shift vector ~λ, it has the familiar behaviour τ
d/2
2 as τ2 →∞ whereas it is

exponentially suppressed at 0.
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Combining the results in [4] with those in the previous subsection, the renormalised

one-loop modular integral (4.32) then reads

R.N.

∫
F

dµ
1

N

N−1∑
h,g=0

Γ(d,d)

[
h
g

]
(G,B; τ) =

2

N
Res E?d

[
0
0

](
G,B; s+

d

2
− 1

) ∣∣∣
s=1

+
2(N + 1)

N

N−1∑
g=1

Res E?d
[

0
g

](
G,B; s+

d

2
− 1

) ∣∣∣
s=1

.

(4.36)

Extracting the residue of the completed Epstein zeta functions E?d can be a non-trivial task,

since the simple pole is associated to the Epstein zeta function Ed itself, and its analytic

properties are not always under control. However, similarly to [4], one can make use of

the functional relation (4.21) to simplify the task of extracting the residue, since now the

simple pole is associated to the overall Euler Γ -function, while the Epstein zeta function

is analytic at s = 1. In fact, eq. (4.21) translates into the following functional relation for

the completed Epstein zeta functions with characteristics8

E?d
[

0
g

](
s+

d

2
− 1

)
= Φ∞∞(s) E?d

[
0
g

](d
2
− s
)

+ Φ∞ 0(s)N1−s E?d
[
g
0

](d
2
− s
)
. (4.37)

As a result, one finds

R.N.

∫
F

dµ
1

N

N−1∑
h,g=0

Γ(d,d)

[
h
g

]
(τ) =

π1−d/2 Γ
(
d
2 − 1

)
N

[
Ed
[

0
0

](d
2
− 1

)

+

N−1∑
g=1

(
Ed
[

0
g

](d
2
− 1

)
+ Ed

[
g
0

]
(
d

2
− 1)

)]
,

(4.38)

valid for any dimension d 6= 2, at any point in the Narain moduli space and for any

choice of shift vector ~λ. Special attention is required in the two-dimensional case, since

α∞ = d/2 = 1, and the pole at s = 1 is now double. This case will be discussed in detail

in the next subsection.

Let us conclude this general discussion with a comment on the symmetries of the

Epstein zeta functions with characteristics. Although, upon a suitable redefinition of the

background fields, the orbifolded Narain lattice partition function (4.25) is invariant under

the full T -duality group O(d, d; Z), this is not the case for the individual contributions9

Γ(d,d)

[
h
g

]
, that are invariant only with respect to the subgroup O~λ

(d, d; Z) which fixes the

shift vector ~λ modulo Z2d.

8To lighten the notation, we omit the explicit dependence of the lattice and of the Epstein zeta-functions
on the geometric moduli, unless needed.

9Aside for the contribution (h, g) = (0, 0) that corresponds to the original Narain lattice.
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4.4 Lower-dimensional lattices

To illustrate the procedure, let us study in detail the lower-dimensional cases. For d = 1 the

only possible choice10 of the vector compatible with the constraint (4.27) is ~λ = (0, 1/N).

In this case, corresponding to a momentum shift, it is easier to compute the Rankin-Selberg

transform associated to the cusp at 0, R?0(Γ(1,1)

[
0
g

]
; s) = N1−sE?1

[
g
0

]
(R; s− 1/2), since the

constraint m(n+ g/N) = 0 has the unique solution m = 0. One thus finds

E?1
[
g
0

](
R; s− 1

2

)
= π1/2−sΓ

(
s− 1

2

)
ζ?(2s)R1−2s

[
ζ(2s− 1; g/N) + ζ(2s− 1; 1− g/N)

]
.

(4.39)

We remind here that the Hurwitz zeta function ζ(s; a) has a simple pole at s = 1 whose

residue is independent of a and equals 1. Therefore, computing the residue at s = 1 of

eq. (4.39) yields ∫
FN

dµ
N−1∑
g=1

Γ(1,1)

[
0
g

]
(R; τ) =

π (N2 − 1)

3R
, (4.40)

where again we have restricted our analysis to the case N prime. This result is compatible

with ∫
F

dµ
1

N

N−1∑
h,g=0

Γ(1,1)

[
h
g

]
(R; τ) =

π

3

(
R

N
+
N

R

)
, (4.41)

in accordance with the fact that the ZN momentum-shift orbifold of the one-dimensional

Narain lattice has the net effect of diving by N the radius of the compactification circle,

R→ R/N .

As a further example, let us consider the Z2 shift orbifold of a two-dimensional lattice

with complex structure U and Kähler form T . In this case, the constraint (4.27) admits sev-

eral inequivalent solutions which correspond to different (discrete) marginal deformations of

the lattice. In the following we shall treat explicitly the case ~λ = (0, 0; 1
2 , 0), since the other

choices can be worked out in a similar fashion. In this case, the evaluation of the integral

R.N.

∫
F2

dµΓ(2,2)

[
0
1

]
(U, T ) = 6 Res E?2

[
0
1

]
(U, T ; s)

∣∣∣
s=1

+ log
(

214/3 π e−γ
)

(4.42)

requires special care since, for d = 2, the Rankin-Selberg transform has a double pole at

s = 1 and the functional equation (4.37) is not sufficient to explicitly extract the residue.

However, in this case one can explicitly solve the constraint m1n
1 +m2n

2 = 0 and express

the constrained Epstein zeta function E?2
[

0
1

]
(U, T ; s) in terms of Eisenstein series whose

analytic properties are well-known and can be used to cast the result in terms of known

functions. The set of solutions to the Diophantine equation is{
S1 : (m1,m2;n1, n2) = (m1,m2; 0, 0) , m1,m2 ∈ Z ,

S2 : (m1,m2;n1, n2) = (cm̃1, cm̃2;−dm̃2, dm̃1) , (m̃1, m̃2) = 1 , c ∈ Z , d ≥ 1 ,

(4.43)

10Up to the inversion of the compactification radius.
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and after some algebra one gets

E?2
[

0
1

]
(U, T ; s) = 4

[
E?
(

1

2
T, s

)
E?0(U, s) + E?(T, s)E?∞(U, s)

]
− 2E?(T, s)E?(U, s) ,

(4.44)

where E?(z, s) is the completed SL(2; Z) Eisenstein series, and E?a (z, s) are the completed

Eisenstein series of Γ0(2). Using the Kronecker limit formulæ (4.13) and the duplication

formulæ

ϑ4(τ) =
η2(τ/2)

η(τ)
, ϑ2(τ) =

η2(2τ)

η(τ)
, (4.45)

with ϑα(τ) the Jacobi theta constants, one may readily extract the residue and write

R.N.

∫
F2

dµΓ(2,2)

[
0
1

]
(U, T ) = − log

(
π e−γ

4
U2 T2 |ϑ2(U)ϑ4(T )|4

)
. (4.46)

This result agrees with the fact that this Z2 shift orbifold is equivalent to a (unshifted)

two-dimensional Narain lattice with moduli T/2 and 2U . Notice that, as expected, the

result (4.46) is not invariant under the full O(2, 2; Z) T -duality group, but only under

its subgroup Γ0(2)U × Γ0(2)T n Z2, where Γ0(2) is the congruence subgroup of level 2 of

SL(2; Z) defined by b = 0 mod 2, and Z2 maps T ↔ −1/U .

5 One-loop BPS amplitudes from Niebur-Poincaré series

We now turn to a different class of modular integrals of the form

I(d,d+k) = R.N.

∫
FN

dµ
1

N

N−1∑
g=1

(g,N)=1

Γ(d,d+k)

[
0
g

]
Φ
[

0
g

]
(τ) , (5.1)

of interest in heterotic-string compactifications. Here, Γ(d,d+k)

[
0
g

]
is the Narain partition

function (4.26) associated to an even lattice of signature (d, d+k), parametrised by the usual

torus moduli Gij and Bij and by k Wilson lines Y a
i , invariant under Γ0(N)×O~λ(d, d+k; Z).

The asymmetry in the signature of the lattice implies that Φ
[

0
g

]
(τ) is a modular form of

Γ0(N) with negative weight w = −k/2. Actually, for BPS-saturated amplitudes, that

control the moduli dependence of gauge and gravitational threshold corrections in the

heterotic string, the modular function Φ
[

0
g

]
(τ) is a weak (almost) holomorphic modular

form related to the elliptic genus. Holomorphy is a direct consequence of the fact that

only half-BPS states, characterised by a non-excited right-moving vacuum, contribute to

the amplitude, and this is the case for T 4/ZN orbifolds with N = 2, 3, 4, 6. In these cases,

the sum in (5.1) contains at most two terms with g = 1 and g = N − 1, and, moreover,

Φ
[

0
1

]
= Φ

[
0

N−1

]
≡ Φ(τ) since the two sectors are conjugate to each other,11 thus yielding

11The same also holds for the Narain partition functions Γ(d,d+k)

[
0
g

]
.
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the integral

I(d,d+k) = R.N.

∫
FN

dµ
1

N

N−1∑
g=1

(g,N)=1

Γ(d,d+k)

[
0
g

]
Φ(τ) , (5.2)

which can now be computed using the unfolding procedure outlined in section 3.2. To

preserve manifest invariance under the T-duality group O~λ(d, d+k; Z), one should be able

to represent the negative-weight modular form Φ as an absolutely convergent Poincaré

series. As in our previous work [5], this will be achieved by representing it as a linear

combination of Niebur-Poincaré series.

5.1 Niebur-Poincaré series for Γ0(N)

Generalising the approach in [5], a convenient class of absolutely convergent Poincaré series

of Γ0(N) with negative modular weight w is provided by the Niebur-Poincaré series [6, 7, 28]

attached to the cusp a

Fa(s, κ, w; τ) =
1

2

∑
γ∈Γa\Γ0(N)

Ms,w(−κτ2) e−2πiκτ1
∣∣∣
w
σ−1
a γ . (5.3)

As in [5], Ms,w is expressed in terms of the Whittaker M -function

Ms,w(y) = |4πy|−
w
2 Mw

2
sgn(y),s− 1

2
(4π|y|) , (5.4)

so that the Poincaré series converges absolutely for Re (s) > 1. Fa(s, κ, w) has a pole of

order κ in q at the cusp a, while being regular at all other cusps. All Niebur-Poincaré series

are eigenmodes of the weight-w Laplacian on H,[
∆w +

1

2
s(1− s) +

1

8
w(w + 2)

]
Fa(s, κ, w) = 0 , (5.5)

as a consequence of the specific form of the seed function. Particularly interesting are the

cases s = w
2 and s = 1 − w

2 for which Fa becomes a harmonic Maass form. Notice that

the latter choice will allow us to represent any weak holomorphic modular form of negative

weight w, in terms of absolutely convergent Poincaré series.12

Other values of interest are those where s = 1 − w
2 + n with n integer, since they

are associated to weak almost holomorphic modular forms. These can be reached from

Fa(1− w/2, κ, w) via the action of the ladder operators

Dw =
i

π

(
∂τ −

iw

2τ2

)
, D̄w = −iπ τ2

2 ∂τ̄ , (5.6)

which change the modular weight by units of 2,

Dw · Fa(s, κ, w) = 2κ
(
s+

w

2

)
Fa(s, κ, w + 2) ,

D̄w · Fa(s, κ, w) =
1

8κ

(
s− w

2

)
Fa(s, κ, w − 2) .

(5.7)

12Special care is required for the case w = 0, which can be defined by analytic continuation.
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Recall that the operator D̄w maps a harmonic Maass form of weight w to τ2−w
2 times (the

complex conjugate of) a holomorphic cusp form of weight 2 − w, known as the shadow.

Hence, if the shadow vanishes, the harmonic Maass form is in fact (weakly) holomorphic.

For general s with Re (s) > 1, the Fourier expansion of Fa at the cusp b is given

by [29, 30]

Fa(s, κ, w; τ)
∣∣
w
σb = δabMs,w(−κτ2) e−2πiκτ1 +

∑
m∈Z

F̃ab(s, κ, w; τ2,m) e2πimτ1 , (5.8)

where, for zero frequency

F̃ab(s, κ, w; τ2, 0) =
22−w i−w π1+s−w

2 κs−
w
2 Γ (2s− 1)Zab(0,−κ; s)

Γ (s− w
2 )Γ (s+ w

2 )
τ

1−s−w
2

2 , (5.9)

while for non-vanishing integer frequencies13

F̃ab(s, κ, w; τ2,m) =
4πκ i−w Γ (2s)

Γ (s+ w
2 sgn(m))

∣∣∣m
κ

∣∣∣w2 Zab(m,−κ; s)Ws,w(mτ2) , (5.10)

with Ws,w(y) = |4πy|−
w
2 Ww

2
sgn(y),s− 1

2
(4π|y|), expressed in terms of the Whittaker W -

function. As usual, Zab(m,n; s) is the Kloosterman-Selberg zeta function defined in (A.1).

In particular, Fa(s, κ, w) grows exponentially at the cusp a, but only as a power τ
1−s−w/2
2

at the other cusps.

For w < 0, the special value s = 1−w/2 lies inside the domain of absolute convergence,

and the Fourier expansion (5.8) takes the expected form for a harmonic Maass form of

weight w,

Fa(1−
w

2
, κ, w)

∣∣
w
σb =δab [Γ (2− w) + (1− w)Γ (1− w; 4πκτ2)] q−κ

+
∑
m∈Z

F̃ab

(
1− w

2
, κ, w; τ2,m

)
e2iπmτ1 ,

(5.11)

where

F̃ab

(
1− w

2
, κ, w; τ2,m > 0

)
= 4πκ i−w Γ (2− w)

(m
κ

)w
2 Zab

(
m,−κ; 1− w

2

)
e−2πmτ2 ,

F̃ab

(
1− w

2
, κ, w; τ2,m < 0

)
= 4πκ i−w (1− w)

(
−m
κ

)w
2

Zab

(
m,−κ; 1− w

2

)
× Γ (1− w,−4πmτ2) e−2πmτ2 ,

F̃ab

(
1− w

2
, κ, w; τ2,m = 0

)
=

4π2 κ

(2πiκ)w
Zab

(
0, κ; 1− w

2

)
.

(5.12)

Applying the lowering operator D̄w, one finds that the shadow of this harmonic Maass

form is the holomorphic Poincaré series P (−κ, 2 − w) of Γ0(N) with weight 2 − w. If

the space of cusp forms Sw(N) is trivial, this Poincaré series must vanish and therefore

13Note that F̃−κ<0 does not include the contribution from the first term in (5.8).
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Fa(1− w
2 , κ, w) is an ordinary weak holomorphic modular form of weight w. More generally,

it is straightforward to prove that, the shadow of a linear combination∑
a

∑
−κa≤`<0

ca,`Fa

(
1− w

2
, `, w

)
(5.13)

vanishes whenever
∑
−κa≤`<0 ca,` q

` corresponds to the principal part of a weak holomorphic

modular form Φw of Γ0(N) at the cusp a. In this case, the linear combination (5.13) in

fact coincides with Φw itself. As a result, one can use this property to express a generic

weak holomorphic modular form Φw of weight w with principal part

Φ−w =
∑

−κa≤`<0

ca,` q
` (5.14)

at the cusp a, as the linear combination

Φw =
1

Γ (2− w)

∑
a

∑
−κa≤`<0

ca,`Fa

(
1− w

2
, `, w

)
, (5.15)

of Niebur-Poincaré series at the various cusps. For w = 0, the value s = 1 − w/2 = 1

belongs to the boundary of the convergence domain, and the value of the Kloosterman-

Selberg zeta function Zab(m,n; s) must be defined by analytic continuation. The previous

equality (5.15) holds up to an additive constant.

For s = 1 − w
2 + n, with n a positive integer, the seed of the Niebur-Poincaré series

reads

M1−w
2

+n,w(−κτ2) e−2πiκτ1 = Γ (2n+ 2− w) (4πκτ2)−n

×
[
q−κ L(−1−2n+w)

n (−4πκτ2)− q̄κ L(−1−2n+w)
n−w (4πκτ2)

]
,

(5.16)

where L
(α)
m (x) are the generalised Laguerre polynomials, and thus Fa(1− w

2 + n, κ,w) can

be used to represent weak almost holomorphic modular forms. In fact, if a generic weak

almost holomorphic modular form Ψw of weight w, containing at most n powers of Ê2

factors, has principal part14

Ψ−w =
∑

−κa≤m<0

n∑
`=0

ca,`(m) τ `−n2

qm
(5.17)

near the cusp a, then it can be uniquely decomposed as

Ψw =
∑
a

∑
−κa≤m<0

n∑
p=0

da,p(m)Fa

(
1− w

2
+ p,m,w

)
(5.18)

14By abuse of language, we consider here the bare τ2-factors as independent variables, and we expand
the weak almost holomorphic modular forms in powers of q with τ2-dependent coefficients.
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plus, eventually, a constant in the case w = 0. The coefficients da,p(m) are then determined

recursively in terms of ca,`(m), by comparing the principal parts of both sides of eq. (5.18),

da,n(m) =
ca,0(m)

An,0
,

da,n−p(m) =
ca,p(m)−

∑n
`=n−p+1A`,p da,`(m)

An−p,p
,

(5.19)

where

A`,p =
Γ (2`+ 2− w)Γ (`− w + n− p+ 1)

Γ (`+ 1− w)Γ (n− p+ 1)Γ (p+ `− n+ 1)
(−4πm)p−n . (5.20)

We close this subsection by identifing the Niebur-Poincaré series Fa(s, κ, w) at s =

1−w/2+n in terms of ordinary (almost) holomorphic modular forms defined in appendix B.

In order to avoid confusion, we shall introduce a new label to display the level N of the

congruence subgroup Γ0(N), i.e. F (N)
a will denote the Niebur-Poincaré series of Γ0(N). For

Γ0(2), we find for example

F (2)
∞ (1, 1, 0) = J2 − 8 , F (2)

∞ (1, 2, 0) = J2
2 − 544 , F (2)

∞ (1, 3, 0) = J3
2 − 828J2 + 6112 ,

F (2)
∞ (2, 1,−2) = 2

E6 − 2X2E4

∆
(2)
8

, F (2)
∞ (2, 2,−2) =

X2(7E4 − 31X2
2 )(E4 − 4X2

2 )2

36(∆
(2)
8 )2

,

F (2)
∞ (3, 1,−4) = 40

4X2
2 − E4

∆
(2)
8

, F (2)
∞ (3, 2,−4) = −20

(E4 − 7X2
2 )(E4 − 4X2

2 )2

9(∆
(2)
8 )2

,

F (2)
∞ (2, 1, 0) =

1

2
D ·

[
E6 − 2X2E4

3∆
(2)
8

]
=

(E4 − 4X2
2 )(E4 − 6X2

2 + Ê2X2)

18∆
(2)
8

.

(5.21)

Note that Niebur-Poincaré series with weight w < −4 under Γ0(2) are genuine harmonic

Maass forms. Niebur-Poincaré series associated to the cusp 0 can be obtained using

eq. (3.11) and the modular properties of the almost holomorphic modular forms.

For Γ0(3), we find instead

F (3)
∞ (1, 1, 0) = J3 − 3 , F (3)

∞ (1, 2, 0) = J2
3 − 117 , F (3)

∞ (1, 3, 0) = J3
3 − 162J3 + 243 ,

F (3)
∞ (2, 1,−2) = 3

9X2
3 − 4E4

16∆
(3)
6

,

F (3)
∞ (2, 2,−2) =

256E4E6 − 1053X5
3 + 1368E4X

3
3 − 784E2

4X3

4096(∆
(3)
6 )2

.

(5.22)

Similarly, Niebur-Poincaré series with weight w < −2 under Γ0(3) are genuine harmonic

Maass forms. Also in this case, Niebur-Poincaré series associated to the cusp 0 can be

obtained using eq. (3.11) and the modular properties of the holomorphic modular forms.
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5.2 BPS-state sums

Since any weak almost holomorphic modular form of negative weight can be represented as

a linear combination of Niebur-Poincaré series Fa(s, κ, w), it suffices to consider the basic

integral

Id+k,d(s, κ; a) ≡ R.N.

∫
FN

dµ
1

N

N−1∑
g=1

(g,N)=1

Γ(d,d+k)

[
0
g

]
Fa

(
s, κ,−k

2

)
, (5.23)

where the modular weight w = −k/2 is determined by the signature of the Narain lattice,

and the definition of the renormalised integral follows from eq. (3.19).

Notice that, as in [5], the proper definition of the renormalised integral requires some

care since for special values of s the second integral in the r.h.s. of eq. (3.18) can develop

a simple pole. For instance, the contribution of the cusp ∞ reads

fa∞(s)
T

2d+k
4
−s

s− 2d+k
4

, (5.24)

where fa∞(s) is the τ2 independent part in (5.9). If the lattice-shift ~λ 6= 0 this is actually

the only divergent contribution since the lattice is exponentially suppressed for b 6=∞. If

however the shift is trivial ~λ = 0, then similar contributions may originate also from the

other cusps.

Following the unfolding procedure outlined in section 3.2 one thus finds

Id+k,d(s, κ; a) =
1

N

N−1∑
g=1

(g,N)=1

Id+k,d(s, κ; a)
[

0
g

]

≡ 1

N

N−1∑
g=1

(g,N)=1

∫
S

dµΓ(d,d+k)

[
0
g

]
(σaτ) j−k/2σa (τ)Ms,− k

2
(−κτ2) e−2iπκτ1 .

(5.25)

One can further simplify the result by noting that

j−k/2σa (τ)Γ(d,d+k)

[
0
g

]
(σaτ) = m

k/4
a Γ(d,d+k)

[
v g
u g

]
(maτ) , (5.26)

where ma is the width of the cusp a associated to the rational number u/v ((u, v) = 1),

and we have made use of the modular transformation property (2.4) with γ = τa =

 u ∗
v ∗


applied to the Narain lattice with characteristics. Using the definition (4.26), and the

relations

p2
L(h) + p2

R(h) = 2M2(h) , p2
L(h)− p2

R(h) = 2 (~p+ h~λ)2 , (5.27)
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that can be seen as a definition of the left-moving and right-moving momenta, one finds

Id+k,d(s, κ; a)
[

0
g

]
= m

2d+k
4

a

∑
~p

e2iπug~λ·~p
∫ ∞

0
dτ2 τ

d/2−2
2 e−πmaτ2M2(vg)Ms,− k

2
(−κτ2)

×
∫ 1

0
dτ1 e

2iπτ1(ma
2

(~p+vg~λ)2−κ)

= m
2d+k

4
a (4πκ)1−d/2 Γ

(
s+

2d+ k

4
− 1

)
×
∑
BPS

e2iπug~λ·~p
2F1

(
s− k

4
, s+

2d+ k

4
− 1; 2s;

4κ

map2
L(vg)

) (
map

2
L(vg)

4κ

)1−s− 2d+k
4

,

(5.28)

where now∑
BPS(h)

≡
∑

pL(h),pR(h)

δ(4κ−ma[p
2
L(h)− p2

R(h)]) =
∑

~p∈Z2d+k

δ(4κ− 2ma(~p+ h~λ)2) . (5.29)

Putting things together, the integral (5.25) evaluates to

Id+k,d(s, κ; a) =
1

N

N−1∑
g=1

(g,N)=1

m
2d+k

4
a (4πκ)1−d/2 Γ

(
s+

2d+ k

4
− 1

)

×
∑

BPS(vg)

e2iπug~λ·~p
2F 1

(
s+

2d+ k

4
− 1, s− k

4
; 2s;

4κ

map2
L(vg)

) (
map

2
L(vg)

4κ

)1−s− 2d+k
4

.

(5.30)

The BPS-sum is absolutely convergent for Re (s) sufficiently large, and admits a mero-

morphic continuation to Re (s) > 1 with a simple pole at s = k+2d
4 . In this case, the

renormalised integral is given by the constant term in the Laurent expansion of (5.30) at

this point.

Notice that this expression coincides with the one in [5] obtained in the case of integrals

(and integrands) associated the full modular group, modulo the twist-dependent phase the

appearance of the width ma and an explicit dependence of the left-moving and right-

moving momenta on the twist. Therefore, for integer values of s, the case of main interest

in this paper, the result simplifies in terms of elementary functions, similarly to eqs. (3.28)–

(3.32) in [5]. Moreover, the modular integral can be straightforwardly evaluated even in

the presence of non-trivial (Γ0(N) invariant) insertions of left-moving and right-moving

momenta, similarly to [5].

6 Examples

We close this paper with some examples drawn from heterotic strings compactified on

K3 × T 2 freely-acting orbifolds. In these cases, the original N = 4 supersymmetry is
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spontaneously broken down to N = 2, and the scale of (partial) supersymmetry breaking

is set by the size of the compact dimensions orthogonal to K3. We shall also discuss

a notable example of type II string thermodynamics where our methods can be used to

compute the free energy.

6.1 N = 2 heterotic string vacua

Threshold corrections to gauge and gravitational couplings in heterotic string vacua with

N = 2 supersymmetry in 4 dimensions are given by the one-loop integrals [3, 11–13]

∆G =− i

∫
F

dµ
τ2

2η2
Tr

{
J0 e

iπJ0 qL0− c
24 q̄L̄0− c̄

24

(
Q2 − 1

4πτ2

)}
,

∆grav =− i

∫
F

dµ
τ2

2η2
Tr
{
J0 e

iπJ0 qL0− c
24 q̄L̄0− c̄

24

} Ê2

12
,

(6.1)

where the traces run over the internal (c, c̄) = (9, 22) superconformal field theory, with the

right-movers in the Ramond ground state and J0 being the total U(1) generator of the

c = 9 superconformal algebra. The quantity appearing in braces in the second line is the

modified elliptic genus Z, a modular form of weight (−2, 0). Q denotes one of the Cartan

generators in the gauge group G. These integrals are clearly ill-defined since they suffer

from IR divergences. Although the traditional way to cope with these divergences is to

explicitly subtract the contribution bgrav/G τ2 of the massless states, with bgrav, bG being the

coefficients of the corresponding one-loop beta functions, we shall employ here a different

renormalisation prescription associated to the definition of the renormalised integral (3.19).

We focus on heterotic compactifications on (T 2 × T 2 × T 2)/ZN , where ZN , N =

2, 3, 4, 6, acts as a rotation (z1, z2, z3) 7→ (e2πi/Nz1, e
−2πi/Nz2, z3) on the first two complex

coordinates, times an order N translation on the remaining T 2 and on the internal E8×E8

lattice, parametrised by constant integer vectors γI , γ′I , I = 1 . . . 8, satisfying the level

matching condition γ2 +γ′2−2 = 0 (mod 2N). In the absence of translation along T 2, this

is simply the heterotic string compactified on K3 × T 2. For such freely acting heterotic

orbifolds, and for vanishing Wilson lines, the modified elliptic genus is given by a sum

Z =
τ2

η2
Tr
{
J0 e

iπJ0 qL0− c
24 q̄L̄0− c̄

24

}
=

1

N

∑
h,g∈ZN

Z
[
h
g

]
, (6.2)

where15

Z
[
h
g

]
=

i

η20(τ)
ZK3

[
h
g

]
ZE8×E8

[
h
g

]
Γ(2,2)

[
h
g

]
(6.3)

is a product of the holomorphic orbifold blocks of K3,

ZK3
[
h
g

]
= k

[
h
g

] η2

θ
[ 1

2
+ h
N

1
2

+ g
N

]
θ
[ 1

2
− h
N

1
2
− g
N

] , (6.4)

15For clarity, we will explicitly display between parentheses the level N of the congruence subgroup Γ0(N)
of quantities in question.
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the holomorphic orbifold blocks of the E8 × E8 lattice

ZE8×E8
[
h
g

]
= e−2πihg

∑8
I=1(γ2

I+γ′2I )/N2
ZE8

[
h
g

]
ZE′8

[
h
g

]
, (6.5)

where

ZE8
[
h
g

]
=

1

2

1∑
k,`=0

e−iπh`(
∑8
I=1 γ

I)/N
8∏
I=1

θ

[
k
2 + h

N γ
I

`
2 + g

N γ
I

]
(6.6)

and, finally, the shifted Narain lattice partition function Γ(2,2)

[
h
g

]
, defined in (4.26). The

k
[
h
g

]
’s are numerical constants determined by k

[
0
g

]
= 16 sin4(πg/N) and by modular

invariance.16 In the absence of a shift along the third torus, the lattice is independent of

h, g and one finds, for all models, a unique answer determined by modular invariance

Z = −2i
E4E6

η24
Γ(2,2) . (6.7)

The integrals (6.1) can then be computed using the usual unfolding of the fundamental

domain of SL(2; Z). For freely acting orbifolds, with a non-trivial order-N shift along

the third T 2, the integrals (6.1) are best computed by unfolding the fundamental domain

of Γ1(N), or possibly some larger level N subgroup of SL(2; Z) (see [14] for an early

application of this technique). For the standard embedding, corresponding to

γ = (1,−1, 0, 0, 0, 0, 0, 0), γ′ = (0, 0, 0, 0, 0, 0, 0, 0) , (6.8)

one finds

Z
[

0
1

]
= −2i

E4Φ6

∆
Γ(2,2)

[
0
1

]
, (6.9)

where Φ6 are modular forms of weight 6 under Γ0(N), defined in terms of Jacobi theta

functions by

Φ6 ≡ −4 η6 sin4 π

N

1∑
k,`=0

θ[
k/2
`/2 ]6 θ[ k/2

`/2+1/N
] θ[ k/2

`/2−1/N
]

θ[ 1/2
1/2+1/N

] θ[ 1/2
1/2−1/N

]
, (6.10)

and, explicitly expressed in terms of modular forms of Γ0(N), introduced in appendix B, as

Φ
(2)
6 =

2

3
(E6 − 2X2E4) ,

Φ
(3)
6 =

3

8

(
E6 −

3

2
X3E4

)
,

Φ
(4)
6 =

1

6
(E6 − (X4 + 2X2(2τ))E4) ,

Φ
(6)
6 =

1

24

(
E6 −

(
9

2
X2(3τ) + 2X3(2τ) +

1

2
X6

)
E4

)
.

(6.11)

We have added here an index to keep track of the level N of the associated Hecke congru-

ence subgroup Γ0(N). Therefore, for N = 2, 3 the gravitational threshold corrections are

16Their explicit expressions can be found, for instance, in [31, 32].
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given by

∆grav = −N − 1

12N
R.N.

∫
FN

dµ
Ê2E4 Φ

(N)
6

∆
Γ

(N)
(2,2)

[
0
1

]
, (6.12)

For N = 4, one similarly gets the linear combination

∆grav = −1

6
R.N.

∫
F4

dµ
Ê2E4Φ

(4)
6

∆
Γ

(4)
(2,2)

[
0
1

]
− 1

48
R.N.

∫
F2

dµ
Ê2E4Φ

(2)
6

∆
Γ

(2)
(2,2)

[
0
1

]
, (6.13)

whereas for N = 6 one gets

∆grav =− 1

36
R.N.

∫
F6

dµ
Ê2E4Φ

(6)
6

∆
Γ

(6)
(2,2)

[
0
1

]
− 1

36
R.N.

∫
F3

dµ
Ê2E4Φ

(3)
6

∆
Γ

(3)
(2,2)

[
0
1

]
− 1

72
R.N.

∫
F2

dµ
Ê2E4Φ

(2)
6

∆
Γ

(2)
(2,2)

[
0
1

]
.

(6.14)

The thresholds for the E8 and E7 gauge groups for N = 2, 3 are similarly given by

∆E8 = −N − 1

12N
R.N.

∫
FN

dµ
(Ê2E4 − E6)Φ

(N)
6

∆
Γ

(N)
(2,2)

[
0
1

]
(6.15)

and

∆E7 = −N − 1

12N
R.N.

∫
FN

dµ

[
(Ê2E4 − E6)Φ

(N)
6

∆
− bN

]
Γ

(N)
(2,2)

[
0
1

]
, (6.16)

with b2 = 1152 and b3 = 648, while the thresholds for N = 4, 6 involve similar linear

combinations with b4 = 288 and b6 = 72. It is worth noting that the modular form Φ
(N)
6

drops out from the difference ∆E8 −∆E7 , e.g. for N = 2, 3

∆E8 −∆E7 = −N − 1

12N
bN R.N.

∫
FN

dµΓ
(N)
(2,2)

[
0
1

]
. (6.17)

In all these integrals, the integrand can be represented as a linear combination of Niebur-

Poincaré series. Let us see in some detail how it works in the N = 2 case. Using the

definitions of the holomorphic Eisenstein series and of the X2 modular form of Γ0(2), given

in appendix B, one immediately finds the following behaviour near the cusp ∞

E6Φ
(2)
6

∆

∣∣∣σ∞ =
2

q
− 944 +O(q) . (6.18)

To find the principal part of the Laurent expansion at the cusp 0, we have to consider

E6Φ
(2)
6

∆

∣∣∣σ0 =
2

3

E6(2τ) [E6(2τ) +X2E4(2τ)]

∆(2τ)

= −16

q
− 512 +O(q) .

(6.19)
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As a result, eq. (5.15), together with eqs. (6.18) and (6.19), yields

E6Φ
(2)
6

∆
= 2F (2)

∞ (1, 1, 0)− 16F (2)
0 (1, 1, 0)− 672 . (6.20)

Similarly,

Ê2E4Φ
(2)
6

∆

∣∣∣σ∞ =
2

q

(
1− 3

π τ2

)
+ 544

(
1− 3

π τ2

)
− 48 +O(q) , (6.21)

and

Ê2E4Φ
(2)
6

∆

∣∣∣σ0 =
2

3

Ê2(2τ)E4(2τ) [E6(2τ) +X2E4(2τ)]

∆(2τ)

= −16

q

(
1− 3

π τ2

)
− 512

(
1− 3

π τ2

)
+O(q) ,

(6.22)

so that eqs. (5.18) and (5.19) yield

Ê2E4Φ
(2)
6

∆
= −8F (2)

0 (2, 1, 0)+2F (2)
∞ (2, 1, 0)+32F (2)

0 (1, 1, 0)−10F (2)
∞ (1, 1, 0)−96 . (6.23)

Following a similar procedure, one finds

E6Φ
(3)
6

∆
=

3

2

(
F (3)
∞ (1, 1, 0)− 9F (3)

0 (1, 1, 0)− 3F (3)
0 (1, 2, 0)− 252

)
,

Ê2E4Φ
(3)
6

∆
=

3

8

(
4F (3)
∞ (2, 1, 0)− 8F (3)

0 (2, 2, 0)− 12F (3)
0 (2, 1, 0)− 20F (3)

∞ (1, 1, 0)

+36F (3)
0 (1, 1, 0) + 36F (3)

0 (1, 2, 0)− 144
)
,

(6.24)

for N = 3,

E6Φ
(4)
6

∆
= F (4)

∞ (1, 1, 0)− 8F (4)
0 (1, 1, 0)− 4F (4)

0 (1, 2, 0)− 2F (4)
0 (1, 3, 0)− 168 ,

Ê2E4Φ
(4)
6

∆
= −2F (4)

∞ (1, 1, 0) + F (4)
∞ (2, 1, 0) + 70F (4)

0 (1, 1, 0)− 2F (4)
0 (2, 1, 0)

+ 23F (4)
0 (1, 2, 0)− 2F (4)

0 (2, 2, 0) +
17

2
F (4)

0 (1, 3, 0)− 3

2
F (4)

0 (2, 3, 0) + 336 ,

(6.25)
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for N = 4, and finally

E6Φ
(6)
6

∆
=

1

2

(
F (6)∞(1,1,0)+F (6)

1/3(1, 1, 0)−F (6)
1/2(1, 1, 0)+F (6)

1/2(1, 2, 0)−6F (6)
0 (1, 1, 0)

−4F (6)
0 (1, 2, 0)− 3F (6)

0 (1, 3, 0)− 2F (6)
0 (1, 4, 0)−F (6)

0 (1, 5, 0)− 84
)
,

Ê2E4Φ
(6)
6

∆
=

1

12

(
F (6)
∞ (2, 1, 0)− 30F (6)

∞ (1, 1, 0)− 5F (6)
0 (2, 5, 0)− 8F (6)

0 (2, 4, 0)

− 9F (6)
0 (2, 3, 0)− 8F (6)

0 (2, 2, 0)− 6F (6)
0 (2, 1, 0) + 24F (6)

0 (1, 5, 0)

+ 36F (6)
0 (1, 4, 0) + 36F (6)

0 (1, 3, 0) + 24F (6)
0 (1, 2, 0) + 4F (6)

1/2(2, 2, 0)

− 2F (6)
1/2(2, 1, 0)− 18F (6)

1/2(1, 2, 0) + 6F (6)
1/2(1, 1, 0) + 3F (6)

1/3(2, 1, 0)

−12F (6)
1/3(1, 1, 0)− 72

)
,

(6.26)

for N = 6. The various integrals can then be computed using the results of the previous

section. As an example, from the previous decompositions and from eq. (5.30) we get the

following expressions for the E8 gauge threshold of the Z2 and Z3 orbifolds

∆
(2)
E8

=
∑

p2
L−p

2
R=4

e2πi~λ·~p
[
1 +

p2
R

4
log

(
p2

R

p2
L

)]

− 8
∑

p2
L−p

2
R=2

[
1 +

p2
R

2
log

(
p2

R

p2
L

)]
− 144 Res E(2)?

2

[
0
1

]
(U, T ; s)

∣∣∣
s=1

+ const .

(6.27)

∆
(3)
E8

=
∑

p2
L−p

2
R=4

e2πi~λ·~p
[
1 +

p2
R

4
log

(
p2

R

p2
L

)]
− 9

∑
p2

L−p
2
R=4/3

[
1 +

3p2
R

4
log

(
p2

R

p2
L

)]

− 6
∑

p2
L−p

2
R=8/3

[
1 +

3p2
R

8
log

(
p2

R

p2
L

)]
− 144 Res E(3)?

2

[
0
1

]
(U, T ; s)

∣∣∣
s=1

+ const .

(6.28)

As stressed in the introduction, by unfolding FN against the Niebur-Poincaré series, the

singularity structure of the amplitudes becomes crystal-clear and one may, for example,

prove in a chamber-independent fashion that the above gauge thresholds are regular at any

point of the Narain moduli space, as expected. The evaluation of Γ0(N)-invariant modular

integrals in the presence of Wilson lines and lattice momentum insertions proceeds in a

similar fashion, see [5].

6.2 Thermal type II: a very special example

We shall conclude this section by applying our method to the evaluation of the free energy

of special type II (4, 0) theories in two dimensions. We shall focus our attention on the ‘Hy-

brid’ thermal vacua constructed in [33, 34]. These vacua are free of Hagedorn divergences

and their right-moving supersymmetries are broken spontaneously at the string level and

replaced by a Massive Spectral boson-fermion Degeneracy Symmetry (MSDS) structure,

studied in [35, 36]. This degeneracy symmetry of the spectrum, which manifests itself
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only at special factorised points of the moduli space of string theories compactified to two

dimensions, arises due to the presence of a chiral spectral-flow operator which is responsi-

ble for mapping the bosonic tower of states into the fermionic one, with the exception of

the massless level. The resulting chiral spectrum, encoded in the standard vectorial and

spinorial SO(24) characters, is then Bose-Fermi degenerate at all massive levels.

The free energy density of these theories is given by the modular integral [33]

F =
R

8π

∫
F

dµ
E4 (V̄24 − S̄24)

η12

1

2

1∑
a,b=0

(−)a+b θ4
[a/2
b/2

] ∑
m,n∈Z

e
−πR

2

τ2
|m+τn|2

(−)ma+nb+mn ,

(6.29)

where the temperature is identified with the inverse radius R of the thermal time cycle

and V24, S24 are the standard SO(24) characters associated to the vectorial and spinorial

representations. As shown in [33] the integrand can be cast in a Z2 orbifold description

where the generator involves a momentum shift along the thermal radius accompanied by

(−1)FL . As a result, one obtains

F =
1

8π

∫
F2

dµ
θ4

2 E4 (V̄24 − S̄24)

η12
Γ(1,1)[

0
1](R) . (6.30)

This integral can now be evaluated using eq. (5.30), in view of the remarkable identity V̄24−
S̄24 = 24, which is a direct consequence of the MSDS structure, and of the identification

θ4
2 E4

η12
= F (2)

0 (1, 1, 0) . (6.31)

Therefore, one finds

F =
6

π
I1,1(1, 1; 0)

= 24

(
R+

1

2R
−
∣∣∣∣R− 1

2R

∣∣∣∣ ) .
(6.32)

This expression reproduces the free energy of [33, 34] in a straightforward and chamber-

independent fashion. In particular, the T-duality symmetry R → (2R)−1 is manifest

throughout, and eq. (6.32) clearly displays the conical singularity at R = 1/
√

2, that signals

the onset of a stringy phase transition in the ‘Hybrid’ non-singular toy-model universe [34].
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A Kloosterman-Selberg zeta function for Γ0(N)

The Kloosterman-Selberg zeta function associated to a pair of cusps ab of the Hecke con-

gruence subgroup Γ0(N) is defined for Re(s) > 1 by the absolutely convergent sum

Zab(m,n; s) =
∑

(
a ∗
c d

)
∈Γ∞\σ−1

a Γ0(N)σb/Γ∞

e2iπ(m d
c

+na
c

)×


1

2c
√
|mn|

J2s−1

(
4π
c

√
mn
)

if mn > 0 ,

1

2c
√
|mn|

I2s−1

(
4π
c

√
−mn

)
if mn < 0 ,

1
c2s

if mn = 0 .

(A.1)

The sum runs over 2 × 2 real matrices
(
a ∗
c d

)
in the double cosets Γ∞\σ−1

a Γ0(N)σb/Γ∞,

where σa is the scaling matrix associated to the cusp a, and is defined in (3.5). In this

appendix, we provide a more explicit expression for the general Kloosterman-Selberg zeta

function Zab(m,n; s), and evaluate it in terms of the Riemann zeta function in the special

case where mn = 0.

A.1 Γ0(N) with N prime

For N prime, using (3.6), σ−1
a Γ0(N)σb can be parameterised by

σ−1
∞ λσ∞ =

(
a b

c d

)
=

(
α β

Nγ δ

)
,

σ−1
0 λσ0 =

(
a b

c d

)
=

(
α β

Nγ δ

)
,

σ−1
∞ λσ0 =

(
a b

c d

)
=

(√
Nα β/

√
N√

Nγ
√
Nδ

)
,

(A.2)

where λ =
(
α β

Nγ δ

)
∈ Γ0(N). Using this parameterisation, one may rewrite for instance

eq. (A.1) as

Z∞∞(m,n; s) =
∑
c>0

c=0 modN

∑
d∈(Z/cZ)∗

exp

[
2πi

c
(md+ nd−1)

]
×


1
2c

√
1
|mn|J2s−1

(
4π
c

√
mn
)

1
2c

√
1
|mn|I2s−1

(
4π
c

√
−mn

)
,

1
c2s

(A.3)
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and

Z0∞(m,n; s) =
∑
c>0

∑
0≤d<c

(c,Nd)=1

exp

[
2πi

c
(md+ n(Nd)−1)

]
×


1

2c
√
N |mn|

J2s−1

(
4π
c

√
mn
N

)
1

2c
√
N |mn|

I2s−1

(
4π
c

√
−mn
N

)
.

1
Ns c2s

(A.4)

For mn = 0, the Kloosterman-Selberg zeta function Zab(m,n; s) can be evaluated in

terms of the Riemann zeta function. For N prime one finds

Z∞∞(0, 0; s) =
N − 1

N2s − 1

ζ(2s− 1)

ζ(2s)
,

Z∞0(0, 0; s) =
N2s−1 − 1

N s−1(N2s − 1)

ζ(2s− 1)

ζ(2s)
,

(A.5)

and, for m 6= 0

Z∞∞(0,±m; s) =
Nσ1−2s(m/N)− σ1−2s(m)

(N2s − 1)ζ(2s)
,

Z∞0(0,±m; s) =
N2s−1σ1−2s(m)− σ1−2s(m/N)

N s−1(N2s − 1)ζ(2s)
,

(A.6)

where σt(n) is the divisor function, and it is understood that σ1−2s(m/N) vanishes unless

N divides m. These expressions can be derived either by direct evaluation of eqs. (A.3)

and (A.4), or by using the relation (4.5) between non-holomorphic Eisenstein series of

Γ0(N) and non-holomorphic Eisenstein series of the full modular group Γ, since their

Fourier coefficients (4.3) and (4.4) are related to the Kloosterman-Selberg zeta functions

with mn = 0.

A.2 Γ0(4)

For N = 4, aside from the cusps at 0 and ∞ with scaling matrices (3.6), there is an

additional cusp at the rational point 1
2 with width m1/2 = 1, and scaling matrix

σ1/2 = τ1/2 =

(
1 0

2 1

)
. (A.7)

The double-cosets entering the definition of the Kloosterman-Selberg zeta function can be

obtained by conjugating a generic element of Γ0(4) by these matrices and those in eq. (3.6).

For instance, if λ =
(
α β

4γ δ

)
∈ Γ0(4) then

σ−1
∞ λσ1/2 =

(
a b

c d

)
=

(
α+ 2β β

4γ + 2δ δ

)
, (A.8)

and similarly for the other combinations of cusps.

In order to compute the Kloosterman-Selberg zeta functions formn = 0, we use the fact

that the non-holomorphic Eisenstein series (4.1) can be expressed as linear combinations
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of Eisenstein series under the full modular group

E(4)?
∞ (τ, s) =

E?(4τ, s)− 2−sE?(2τ, s)

4s − 1
,

E
(4)?
0 (τ, s) =

E?(τ, s)− 2−sE?(2τ, s)

4s − 1
,

E
(4)?
1/2 (τ, s) =

(2s + 2−s)E?(2τ, s)− E?(τ, s)− E?(4τ, s)
4s − 1

.

(A.9)

Using the functional equation for the Eisenstein series for the full modular group, we find,

in the same basis,

Φ(s) =
1

22s − 1

 21−2s 1− 21−2s 1− 21−2s

1− 21−2s 21−2s 1− 21−2s

1− 21−2s 1− 21−2s 21−2s

 . (A.10)

It follows that the Kloosterman-Selberg zeta function for m = n = 0 is given by

Z(4)
∞∞(0, 0; s) =

21−2s

22s − 1

ζ(2s− 1)

ζ(2s)
,

Z(4)
∞0(0, 0; s) =

1− 21−2s

22s − 1

ζ(2s− 1)

ζ(2s)
,

Z(4)

∞ 1
2

(0, 0; s) =
1− 21−2s

22s − 1

ζ(2s− 1)

ζ(2s)
.

(A.11)

For n = 0 and m 6= 0, we have instead

Z(4)
∞∞(0,±m; s) =

4σ1−2s(m/4)− 2σ1−2s(m/2)

22s(22s − 1)ζ(2s)
,

Z(4)
∞0(0,±m; s) =

σ1−2s(m)− 21−2sσ1−2s(m/2)

(22s − 1)ζ(2s)
,

Z(4)

∞ 1
2

(0,±m; s) =
2(1 + 2−2s)σ1−2s(n/2)− σ1−2s(n)− 22−2sσ1−2s(n/4)

(22s − 1)ζ(2s)
.

(A.12)

As before, it is understood that σ1−2s(m/M) vanishes unless M divides m. The remaining

Kloosterman-Selberg zeta functions (with mn = 0) can be obtained by symmetry and/or

by use of the relations (3.11).

A.3 Γ0(6)

For N = 6, aside from the cusps at 0 and ∞ with scaling matrices (3.6), there are two

additional (inequivalent) cusps at the rational points 1
2 and 1

3 , of width 3 and 2, respectively.

The associated τ and σ matrices can be chosen to be

τ1/2 =

(
1 −2

2 −3

)
, m1/2 = 3 , σ1/2 =

( √
3 −2/

√
3

2
√

3 −
√

3

)
,

τ1/3 =

(
1 −1

3 −2

)
, m1/3 = 2 , σ1/3 =

( √
2 −1/

√
2

3
√

2 −
√

2

)
.

(A.13)
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The double-cosets entering the definition of the Kloosterman-Selberg zeta function can be

obtained by conjugating a generic element of Γ0(6) by these matrices and those in eq. (3.6).

For instance, if λ =
(
α β

6γ δ

)
∈ Γ0(6) then

σ−1
∞ λσ1/2 =

(
a b

c d

)
=

(√
3(α+ 2β) −(2α+ 3β)/

√
3

2
√

3(3γ + δ) −
√

3(4γ + δ)

)
,

σ−1
∞ λσ1/3 =

(
a b

c d

)
=

(√
2(α+ 3β) −(α+ 2β)/

√
2

3
√

2(2γ + δ) −
√

2(3γ + δ)

)
,

(A.14)

and similarly for the other combinations of cusps.

The non-holomorphic Eisenstein series of Γ0(6) have the following decomposition in

terms of linear combinations of Eisenstein series of the full modular group

E(6)?
∞ (s, τ) =

6sE?(s, 6τ)− 3sE?(s, 3τ)− 2sE?(s, 2τ) + E?(s, τ)

(1− 4s)(1− 9s)
,

E
(6)?
0 (τ, s) =

6sE?(τ, s)− 3sE?(2τ, s)− 2sE?(3τ, s) + E?(6τ, s)

(1− 4s)(1− 9s)
,

E
(6)?
1/3 (τ, s) =

6sE?(3τ, s)− 3sE?(6τ, s)− 2sE?(τ, s) + E?(2τ, s)

(1− 4s)(1− 9s)
,

E
(6)?
1/2 (τ, s) =

6sE?(2τ, s)− 3sE?(τ, s)− 2sE?(6τ, s) + E?(3τ, s)

(1− 4s)(1− 9s)
.

(A.15)

Using the functional equation for the Eisenstein series for the full modular group and the

decomposition (A.15), or explicitly eqs. (4.9) and (4.10), we find, in the same basis,

Φ(s) =
1

(4s − 1)(9s − 1)


2 α2 α3 2α2 α3

α2 α3 2 α3 2α2

2α2 α3 2 α2 α3

α3 2α2 α2 α3 2

 , (A.16)

where αp = ps − p1−s. The Kloosterman-Selberg zeta functions for m = n = 0 are easily

read off from Φ(s),

Z(6)
∞∞(0, 0; s) =

2

(22s − 1)(32s − 1)

ζ(2s− 1)

ζ(2s)
,

Z(6)
∞0(0, 0; s) =

61−s(22s−1 − 1)(32s−1 − 1)

(22s − 1)(32s − 1)

ζ(2s− 1)

ζ(2s)
,

Z(6)

∞ 1
3

(0, 0; s) =
21+s − 22−s

(22s − 1)(32s − 1)

ζ(2s− 1)

ζ(2s)
,

Z(6)

∞ 1
2

(0, 0; s) =
3s − 31−s

(22s − 1)(32s − 1)

ζ(2s− 1)

ζ(2s)
.

(A.17)
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For m 6= 0, we have instead

Z(6)
∞∞(0,±m; s) =

6σ1−2s(m/6)−2σ1−2s(m/2)−3σ1−2s(m/3)+σ1−2s(m)

(22s−1)(32s−1) ζ(2s)
,

Z(6)
∞0(0,±m; s) =

6s σ1−2s(m)−2s31−s σ1−2s(m/3)−3s21−s σ1−2s(m/2)+61−s σ1−2s(m/6)

(22s−1)(32s−1) ζ(2s)
,

Z(6)

∞ 1
3

(0,±m; s) =
6s31−s σ1−2s(m/3)−3s61−s σ1−2s(m/6)−2s σ1−2s(m)+21−s σ1−2s(m/2)

(22s−1)(32s−1) ζ(2s)
,

Z(6)

∞ 1
2

(0,±m; s) =
6s21−sσ1−2s(m/2)−3sσ1−2s(m)−2s61−sσ1−2s(m/6)+31−sσ1−2s(m/3)

(22s−1)(32s−1)ζ(2s)
.

(A.18)

As before, it is understood that σ1−2s(m/M) vanishes unless M divides m. The remaining

Kloosterman-Selberg zeta functions (with mn = 0) can be obtained by symmetry and/or

by use of the relations (3.11).

B A compendium on modular forms for Γ0(N)

In this appendix we collect some standard facts about holomorphic modular forms under

the congruence subgroups Γ0(N), with special focus on the values N = 2, 3, 4, 6 relevant

for orbifold string compactifications. Most of these facts can be found in [23–25, 37–45].

B.1 Generalities

For any integer N and even17 integer w, we denote by Mw(N) the space of holomorphic

modular forms of weight w under the Hecke congruence subgroup Γ0(N). Those are defined

by the condition of covariance under Γ0(N),

f(τ)
∣∣
w
γ = f(τ) , for any γ =

(
a b

c d

)
∈ Γ0(N) , (B.1)

together with the condition of holomorphy in H, in particular at each of the cusps of

Γ0(N). In (B.1) the Petersson slash operator is defined by:

f(τ)
∣∣
w
γ ≡ j−wγ (τ) f(γτ) , jγ(τ) = c τ + d . (B.2)

Since each cusp a can be mapped to ∞ by a scaling matrix σa, holomorphy is tantamount

to requiring that the Fourier expansion of f at each cusp a takes the form

f(τ)
∣∣
w
σa =

∞∑
n=0

f̃a(n) qn , q ≡ e2iπτ , (B.3)

so that f(τ)
∣∣σa is finite at q = 0. The space of holomorphic cusp forms Sw(N) ⊂Mw(N)

is defined by the stronger condition f̃a(0) = 0 at all cusps. The space of weak holomorphic

17We restrict attention to the case of even weight in order to simplify the presentation. More general
cases require the introduction of suitable multiplier systems [23–25].
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modular formsM!
w(N) is defined by the weaker condition of meromorphy in H, with poles

only at the cusps. In pratice, it means that f(τ) has a Fourier expansion at the cusp a of

the form

f(τ)
∣∣
w
σa =

∞∑
n=−κa

f̃a(n) qn , (B.4)

for some positive integer κa.

The direct sum M?(N) =
⊕

w≥0Mw(N) forms a graded algebra under the usual

product, and so does S?(N), while M!
?(N) is a graded field. Since modular forms for the

full modular group are also modular under Γ0(N), M?(N) is a module over M?(1). The

latter is well-known to be a polynomial ring generated by the Eisenstein series E4 and E6,

where

Ew(τ) = 1 +
2

ζ(1− w)

∞∑
n=1

σw−1(n) qn . (B.5)

In particular, ∆ = 1
1728 (E3

4−E2
6) is the lowest weight cusp form for the full modular group.

For values of N such that the modular curve Γ0(N)\(H∪Q∪{∞}) has genus zero (which

is the case for all N ≤ 10, including the cases N = 1, 2, 3, 4, 6 of interest in this work),

M?(N) is a free module overM?(1) generated by νN generators, where νN is the index of

Γ0(N) inside SL(2; Z) [37]. Under the same condition, M!
0(N) is isomorphic to the field

of rational functions in one variable JN , defined uniquely up to Möbius transformations.

The unique choice such that JN (τ) = 1/q + O(q) at the cusp at infinity is known as the

Hauptmodul. Modular curves of genus 0 are famously related to monstrous moonshine,

with the Hauptmodul being interpreted as a McKay-Thomson series associated to a certain

conjugacy class of the Monster group [46].

An important class of modular forms for Γ0(N) arises from modular forms fd of Γ0(d)

for any divisor d of N , via fN (τ) = fd(Nτ/d). In particular, if f(τ) is a modular form for

the full modular group, f(Nτ) is a modular form for Γ0(N). In particular, even though

E2(τ) defined by (B.5) is not a modular form under SL(2; Z),

XN (τ) ≡ E2 −N E2(Nτ) = Ê2 −N Ê2(Nτ) (B.6)

is a holomorphic modular form of Γ0(N) of weight 2. Indeed, its covariance under Γ0(N)

follows from the covariance of Ê2 ≡ E2 − 3
πτ2

under SL(2; Z). In (B.6) and elsewhere,

an Eisenstein series Ew (or any other modular form) without explicit argument denotes

Ew ≡ Ew(τ).

Just as for the full modular group, we define the space of weakly almost holomorphic

modular forms M×w(N) to be the weight w subspace of the algebra of polynomials in

Ê2 with coefficients in M!
?(N). This algebra admits an action of the modular derivative

operator D defined in (5.6), which mapsM×w(N) toM×w+2(N). Its action on the (almost)

holomorphic Eisenstein series is given by

D Ê2 =
1

6
(E4 − Ê2

2) , D E4 =
2

3
(E6 − Ê2E4) , D E6 = E2

4 − Ê2E6 , (B.7)
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from which it easily follows that

DXN =
1

6

(
E4 −N2E4(Nτ) +X2

N

)
− 1

3
Ê2XN . (B.8)

Having recalled these general facts, we now discuss the cases N = 2, 3, 4, 6 relevant for

this work in some more detail.

B.2 Γ0(2)

The congruence subgroup Γ0(2) has index 3 in SL(2; Z) and 2 cusps at ∞ and 0. Its

fundamental domain can be chosen as F2 = {1, S, ST}F . The dimensions d
(2)
w of Mw(2)

are given by the generating function

∑
k≥0

d
(2)
2k x

2k =
1 + x2 + x4

(1− x4)(1− x6)
= 1 + x2 + 2x4 + 2x6 + 3x8 + 3x10 + . . . (B.9)

The ring of holomorphic modular forms is generated by the two elements X2(τ) and E4(2τ).

In accordance with (B.9), any element of M?(2) can be decomposed uniquely as

φ = A+BX2 + C X2
2 (B.10)

where A,B,C are modular forms of SL(2; Z). For instance,

E4(2τ) =
1

4
(5X2

2 − E4) , X3
2 =

1

4
(3X2E4 − E6) . (B.11)

The first cusp form occurs at weight 8 and is given by

∆
(2)
8 = [η(τ)η(2τ)]8 = − 1

144
X4

2 +
5

576
X2

2 E4 −
1

576
E2

4

= q − 8 q2 + 12 q3 + 64 q4 − 210 q5 +O(q6) .
(B.12)

To derive the behaviour near the cusp 0, it suffices to determine the action of the scaling

matrix σ0 on the generators:

X2

∣∣σ0 = −X2 , E4

∣∣σ0 = 4E4(2τ) , Ê2

∣∣σ0 = Ê2 −X2 . (B.13)

In particular, the cusp form ∆
(2)
8 is even under the action of σ0.

The Hauptmodul for Γ0(2) is the McKay-Thompson series associated to the conjugacy

class 2B of the Monster,

J2 =
∆(τ)

∆(2τ)
+ 24 =

48X2
2

X2
2 − E4(2τ)

− 40 = q−1 + 276 q− 2048 q2 + 11202 q3 +O(q4) . (B.14)

It has a simple pole at the cusp ∞ and is regular at the other cusp 0,

J2

∣∣σ0 =
4096

J2 − 24
+ 24 = 24 + 4096 q + 98304 q2 + 1228800 q3 +O(q4) . (B.15)
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The Hauptmodul of SL(2; Z) can be expressed in terms of J2 as

J = J2 +
196608

J2 − 24
+

16777216

(J2 − 24)2
. (B.16)

Modular derivatives act as

DX2 =− 1

3
X2 Ê2 +

1

3
X2

2 −
4

3
E4(2τ) ,

DE4(2τ) =− 2

3
Ê2E4(2τ)− 4

3
X2E4(2τ)−X3

2 ,

D[1/∆
(2)
8 ] =(4 Ê2 − 2X2)/(3∆

(2)
8 ) .

(B.17)

B.3 Γ0(3)

The congruence subgroup Γ0(3) has index 4 in SL(2; Z) and 2 cusps at ∞ and 0. Its

fundamental domain can be chosen as F3 = {1, S, ST, ST 2}F . The dimensions d
(3)
w of

Mw(3) are given by the generating function

∑
k≥0

d
(3)
2k x

2k =
1 + x2 + x4 + x6

(1− x4)(1− x6)
= 1 + x2 + 2x4 + 3x6 + 3x8 + 4x10 + . . . (B.18)

and the ring of holomorphic modular forms is generated by X3(τ), E4(3τ) and by the

unique cusp form of weight 6

∆
(3)
6 =[η(τ)η(3τ)]6 =

1

384
X3

3 −
7

864
X3E4 +

1

216
E6

=q − 6 q2 + 9 q3 + 4 q4 + 6 q5 − 54 q6 +O(q7) .
(B.19)

In accordance with (B.18), any element of M?(3) can be decomposed uniquely as

φ = A+BX3 + C X2
3 +DX3

3 , (B.20)

where A,B,C,D are holomorphic modular forms of SL(2; Z), for instance

E4(3τ) = −1

9
E4 +

5

18
X2

3 ,

E6(3τ) = − 1

27
E6 +

7

54
X3E4 −

35

216
X3

3 ,

X4
3 (τ) =

16

27
E2

4 −
64

27
E6X3 +

8

3
E4X

2
3 .

(B.21)

To derive the behaviour near the cusp 0 it suffices to determine the action of the scaling

matrix σ0 on the generators:

X3

∣∣σ0 = −X3 , E4(3τ)
∣∣σ0 =

5

18
X2

3 − E4(3τ) , Ê2

∣∣σ0 = Ê2 −X3 . (B.22)

In particular the cusp form ∆
(3)
6 is odd under σ0.
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The Hauptmodul of Γ0(3) is the McKay-Thompson series associated to the conjugacy

class 3B of the Monster

J3 =

(
η(τ)

η(3τ)

)12

+ 12 =
X3

3 − 36X3E4(3τ)− 960∆
(3)
6

64∆
(3)
6

=q−1 + 54 q − 76 q2 − 243 q3 + 1188 q4 +O(q5) .

(B.23)

It has a simple pole at the cusp ∞ and is regular at the other cusp,

J3

∣∣σ0 =
729

J3 − 12
+ 12 = 12 + 729 q + 8748 q2 + 65610 q3 +O(q4) (B.24)

The Hauptmodul of SL(2; Z) can be expressed in terms of J3 as

J = J3 +
196830

J3 − 12
+

19131876

(J3 − 12)2
+

387420489

(J3 − 12)3
. (B.25)

Modular derivatives act as

DX3 =− 1

3
X3 Ê2 − 3E4(3τ)− 7

12
X2

3 ,

DE4(3τ) =− 2

3
E4(3τ) Ê2 −

1

2
X3E4(3τ)− 131

216
X3

3 − 16∆
(3)
6 ,

D[1/∆
(3)
6 ] =

Ê2 − 1
2 X3

∆
(3)
6

.

(B.26)

B.4 Γ0(4)

The congruence subgroup Γ0(4) has index 6 in SL(2; Z) and 3 cusps at ∞, 0 and 1/2. It

is isomorphic to the principal subgroup Γ(2) under τ → 2τ . Its fundamental domain can

be chosen as F4 = {1, S, ST, ST 2, ST 3, ST 2S}F . The dimensions d
(4)
w of Mw(4) are given

by the generating function

∑
k≥0

d
(4)
2k x

2k =
1 + 2x2 + 2x4 + x6

(1− x4)(1− x6)
=

1

(1− x2)2
= 1 + 2x2 + 3x4 + 4x6 + 5x8 + . . . . (B.27)

The ring of holomorphic modular forms is generated by the weight 2 elements

V1 = X2(2τ) , V2 = −2

3
[X4 − 3X2(2τ)] . (B.28)

In accordance with (B.27), any element of Mk(4) can be decomposed uniquely as

φ = A+B1 V1 +B2 V2 + C1 V
2

1 + C2 V
2

2 +DV 3
1 , (B.29)

where A,Bi, Ci, D are holomorphic modular forms of SL(2; Z). We note the relations

θ4
2(2τ) = V2 , θ4

3(2τ) =
1

2
V2 − V1 , θ4

4(2τ) = −1

2
V2 − V1 ,

X2(τ) = V1 −
3

2
V2 .

(B.30)

– 40 –



J
H
E
P
0
7
(
2
0
1
3
)
1
8
1

The first cusp form occurs at weight 6 and is given by

∆
(4)
6 =η12(2τ) =

1

16
V 2

1 V2 −
1

64
V 3

2

=q − 12 q3 + 54 q5 − 88 q7 − 99 q9 +O(q10) .
(B.31)

The scaling matrices σ0 and σ1/2 associated to the cusps 0 and 1/2 act on the generators as

V1

∣∣σ0 = 3
4 V2 − 1

2 V1 , V1

∣∣σ1/2 = −3
4 V2 − 1

2 V1 ,

V2

∣∣σ0 = 1
2 V2 + V1 , V2

∣∣σ1/2 = 1
2 V2 − V1 ,

Ê2

∣∣σ0 = Ê2 + 3
2 V2 − 3V1 , Ê2

∣∣σ1/2 = Ê2 .

(B.32)

As a result, the weight-6 cusp form is odd under both σ0 and σ1/2.

The Hauptmodul for Γ0(4) is the McKay-Thompson series associated to the conjugacy

class 4C of the Monster,

J4 =

(
η(τ)

η(4τ)

)8

+ 8 =
V1 V

2
2 − 4V 3

1

4∆
(4)
6

= q−1 + 20 q − 62 q3 + 216 q5 +O(q6) . (B.33)

It has a simple pole at the cusp ∞ and is regular at the cups 0 and 1/2,

J4

∣∣σ0 =
256

J4 − 8
+ 8 = 8 + 256 q + 2048 q2 + 11264 q3 + 49152 q4 +O(q5) ,

J4

∣∣σ1/2 =− 256

J4 + 8
+ 8 = 8− 256 q + 2048 q2 − 11264 q3 + 49152 q4 +O(q5) .

(B.34)

The Hauptmodul of SL(2; Z) and Γ0(2) can be expressed in terms of J4 as

J =
J6

4−24 J5
4 +196992J4

4 +16770048J3
4 +377573376 J2

4 +3220733952J4+9396289536

(J4−8)4 (J4+8)
,

(B.35)

and

J2 = J4 +
256

J4 + 8
. (B.36)

Modular derivatives act as

DV1 =− 1

3
V1 Ê2 +

1

2
V 2

2 −
1

3
V 2

1 −
1

2
V1 V2 ,

D V2 =− 1

3
V2 Ê2 −

1

2
V 2

2 +
5

3
V1 V2 ,

D [1/∆
(4)
6 ] =

Ê2 − V1 + 3
2 V2

∆
(4)
6

.

(B.37)

B.5 Γ0(6)

The congruence subgroup Γ0(6) has index 12 in SL(2; Z) and 4 cusps at at∞ , 0 , 1/2 and

1/3. Its fundamental domain can be chosen as

F6 = {1, S, ST, ST 2, ST 3, ST 4, ST 5, ST 2S, ST 2ST, ST 2ST 2, ST 3S, ST 3ST}F . (B.38)
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The dimensions d
(6)
w of Mw(6) are given by the generating function

∑
k≥0

d
(6)
2k x

2k =
1 + 3x2 + 4x4 + 3x6 + x8

(1− x4)(1− x6)
= 1 + 3x2 + 5x4 + 7x6 + 9x8 + . . . . (B.39)

The ring of holomorphic modular forms under is generated by

U1 = X6(τ) , U2 = X2(3τ) and U3 = X3(2τ) . (B.40)

In accordance with (B.39), any element of Mk(6) can be decomposed uniquely as

φ =A+B1 U1 +B2 U2 +B3 U3 + C1 U
2
1 + C2 U

2
2 + C3 U

2
3 + C4 U1 U2

+D1 U
3
1 +D2 U

3
2 +D3 U

3
3 + E U4

1 ,
(B.41)

where A,Bi, Ci, Di, E are holomorphic modular forms of SL(2; Z). The first cusp form

occurs at weight 4 and is given by

∆
(6)
4 = η2(τ)η2(2τ)η2(3τ)η2(6τ)

=
1

96

(
−9U2

2 − 4U2
3 + 6U3 U1 − U2

1 + 2U2 (U1 − 5U3)
)

= q − 2 q2 − 3 q3 + 4 q4 + 6 q5 + 6 q6 − 16 q7 +O(q8) .

(B.42)

The scaling matrices σ0, σ1/2 and σ1/3 associated to the cusps cusps 0, 1/2 and 1/3 act on

the generators as

U1

∣∣σ0 = −U1 , U1

∣∣σ1/2 = 3U2 − 2U3 , U1

∣∣σ1/3 = 2U3 − 3U2 ,

U2

∣∣σ0 = 1
3(2U3 − U1) , U2

∣∣σ1/2 = 1
3 (U1 − 2U3) , U2

∣∣σ1/3 = −U2 ,

U3

∣∣σ0 = 1
2(3U2 − U1) , U3

∣∣σ1/2 = −U3 , U3

∣∣σ1/3 = 1
2 (U1 − 3U2) ,

Ê2

∣∣σ0 = Ê2 − U1 , Ê2

∣∣σ1/2 = Ê2 − U3 , Ê2

∣∣σ1/3 = Ê2 − U2 .

(B.43)

In particular the weight-4 cusp form (B.42) is even under both σ1/2 and σ1/3.

The Hauptmodul for Γ0(6) is the McKay-Thompson series associated to the conjugacy

class 6E of the Monster,

J6 =

(
η(2τ)η3(3τ)

η(τ)η3(6τ)

)3

− 3

=
9U2

2 + 34U2 U3 − 4U2
3 − 14U2 U1 + 16U3 U1 − 3U2

1

96∆
(6)
4

=q−1 + 6 q + 4 q2 − 3 q3 − 12 q4 +O(q5)

(B.44)

and has a simple pole at the cup at ∞. The behaviour near 0, 1/2 and 1/3 is instead
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given by

J6

∣∣σ0 =
72

J6 − 5
+ 5 = 5 + 72 q + 360 q2 + 1368 q3 + 4392 q4 +O(q5) ,

J6

∣∣σ1/2 =
9

J6 + 4
− 4 = −4 + 9 q − 36 q2 + 90 q3 − 180 q4 +O(q5) ,

J6

∣∣σ1/3 =
−8

J6 + 3
− 3 = −3− 8 q + 24 q2 − 24 q3 − 40 q4 +O(q5) .

(B.45)

The Hauptmoduln of SL(2; Z), Γ0(2) and Γ0(3) can be expressed in terms of J6 as

J2 = J6 +
270

J6 + 4
− 972

(J6 + 4)2
+

729

(J6 + 4)3
,

J3 = J6 +
48

J6 + 3
+

64

(J6 + 3)2
,

J = J2 + J3 − 2J6 + 432

[
455

J6 − 5
+

47484

(J6 − 5)2
+

1517184

(J6 − 5)3

+
21088512

(J6 − 5)4
+

134369280

(J6 − 5)5
+

322486272

(J6 − 5)6

]
.

(B.46)

Modular derivatives act as

DU1 =− 1

3
U1 Ê2 +

1

12

(
−45U2

2 − 30U2 U1 + 7U2
1

)
,

D U2 =− 1

3
U2 Ê2 +

1

24

(
9U2

2 − 2U2 (4U3 + U1)− 4U2
3 + U2

1

)
,

D U3 =− 1

3
U3 Ê2 +

1

48

(
−99U2

2 − 6U2 (4U3 + 3U1) + 5
(
4U2

3 + U2
1

))
,

D [1/∆
(6)
4 ] =

2
3 Ê2 + 1

6 (3U2 + 2U3 − 3U1)

∆
(6)
4

.

(B.47)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.

References

[1] K. O’Brien and C. Tan, Modular Invariance of Thermopartition Function and Global Phase

Structure of Heterotic String, Phys. Rev. D 36 (1987) 1184 [INSPIRE].

[2] B. McClain and B.D.B. Roth, Modular invariance for interacting bosonic strings at finite

temperature, Commun. Math. Phys. 111 (1987) 539 [INSPIRE].

[3] L.J. Dixon, V. Kaplunovsky and J. Louis, Moduli dependence of string loop corrections to

gauge coupling constants, Nucl. Phys. B 355 (1991) 649 [INSPIRE].

[4] C. Angelantonj, I. Florakis and B. Pioline, A new look at one-loop integrals in string theory,

Commun. Num. Theor. Phys. 6 (2012) 159 [arXiv:1110.5318] [INSPIRE].

– 43 –

http://dx.doi.org/10.1103/PhysRevD.36.1184
http://inspirehep.net/search?p=find+J+Phys.Rev.,D36,1184
http://dx.doi.org/10.1007/BF01219073
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,111,539
http://dx.doi.org/10.1016/0550-3213(91)90490-O
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B355,649
http://arxiv.org/abs/1110.5318
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.5318


J
H
E
P
0
7
(
2
0
1
3
)
1
8
1

[5] C. Angelantonj, I. Florakis and B. Pioline, One-Loop BPS amplitudes as BPS-state sums,

JHEP 06 (2012) 070 [arXiv:1203.0566] [INSPIRE].

[6] D. Niebur, A class of nonanalytic automorphic functions, Nagoya Math. J. 52 (1973) 133.

[7] D.A. Hejhal, The Selberg trace formula for PSL(2,R), vol. 2, Springer (1983).

[8] R. Rankin, Contributions to the theory of Ramanujan’s function τ(n) and similar

arithmetical functions. I. The zeros of the function
∑∞
n=1

τ(n)
n8 on the line <(s) = 13

2 , Proc.

Camb. Philos. Soc. 35 (1939) 351.

[9] A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der

Modulformen nahe verbunden ist, Arch. Math. Naturvid. B 43 (1940) 1.

[10] D. Zagier, The Rankin-Selberg method for automorphic functions which are not of rapid

decay, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981) 415.

[11] I. Antoniadis, E. Gava and K. Narain, Moduli corrections to gauge and gravitational couplings

in four-dimensional superstrings, Nucl. Phys. B 383 (1992) 93 [hep-th/9204030] [INSPIRE].

[12] J.A. Harvey and G.W. Moore, Algebras, BPS states and strings, Nucl. Phys. B 463 (1996)

315 [hep-th/9510182] [INSPIRE].

[13] J.A. Harvey and G.W. Moore, On the algebras of BPS states, Commun. Math. Phys. 197

(1998) 489 [hep-th/9609017] [INSPIRE].

[14] P. Mayr and S. Stieberger, Threshold corrections to gauge couplings in orbifold

compactifications, Nucl. Phys. B 407 (1993) 725 [hep-th/9303017] [INSPIRE].

[15] W. Lerche and S. Stieberger, Prepotential, mirror map and F-theory on K3, Adv. Theor.

Math. Phys. 2 (1998) 1105 [Erratum ibid. 3 (1999) 1199] [hep-th/9804176] [INSPIRE].

[16] W. Lerche, S. Stieberger and N. Warner, Quartic gauge couplings from K3 geometry, Adv.

Theor. Math. Phys. 3 (1999) 1575 [hep-th/9811228] [INSPIRE].

[17] C. Angelantonj, M. Cardella and N. Irges, An Alternative for Moduli Stabilisation, Phys.

Lett. B 641 (2006) 474 [hep-th/0608022] [INSPIRE].

[18] E. Kiritsis and C. Kounnas, Perturbative and nonperturbative partial supersymmetry

breaking: N = 4→ N = 2→ N = 1, Nucl. Phys. B 503 (1997) 117 [hep-th/9703059]

[INSPIRE].

[19] M. Trapletti, On the unfolding of the fundamental region in integrals of modular invariant

amplitudes, JHEP 02 (2003) 012 [hep-th/0211281] [INSPIRE].

[20] S. Hohenegger and D. Persson, Enhanced Gauge Groups in N = 4 Topological Amplitudes

and Lorentzian Borcherds Algebras, Phys. Rev. D 84 (2011) 106007 [arXiv:1107.2301]

[INSPIRE].

[21] M. Cardella, A Novel method for computing torus amplitudes for Z(N) orbifolds without the

unfolding technique, JHEP 05 (2009) 010 [arXiv:0812.1549] [INSPIRE].

[22] N. Obers and B. Pioline, Eisenstein series and string thresholds, Commun. Math. Phys. 209

(2000) 275 [hep-th/9903113] [INSPIRE].

[23] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton

University Press, Princeton, U.S.A. (1971)

[24] H. Iwaniec, Topics in Classical Automorphic Forms, American Mathematical Society (2002).

[25] H. Iwaniec, Spectral Methods of Automorphic Forms, American Mathematical Society (1997).

– 44 –

http://dx.doi.org/10.1007/JHEP06(2012)070
http://arxiv.org/abs/1203.0566
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.0566
http://dx.doi.org/10.1016/0550-3213(92)90672-X
http://arxiv.org/abs/hep-th/9204030
http://inspirehep.net/search?p=find+EPRINT+hep-th/9204030
http://dx.doi.org/10.1016/0550-3213(95)00605-2
http://dx.doi.org/10.1016/0550-3213(95)00605-2
http://arxiv.org/abs/hep-th/9510182
http://inspirehep.net/search?p=find+EPRINT+hep-th/9510182
http://dx.doi.org/10.1007/s002200050461
http://dx.doi.org/10.1007/s002200050461
http://arxiv.org/abs/hep-th/9609017
http://inspirehep.net/search?p=find+EPRINT+hep-th/9609017
http://dx.doi.org/10.1016/0550-3213(93)90096-8
http://arxiv.org/abs/hep-th/9303017
http://inspirehep.net/search?p=find+EPRINT+hep-th/9303017
http://arxiv.org/abs/hep-th/9804176
http://inspirehep.net/search?p=find+EPRINT+hep-th/9804176
http://arxiv.org/abs/hep-th/9811228
http://inspirehep.net/search?p=find+EPRINT+hep-th/9811228
http://dx.doi.org/10.1016/j.physletb.2006.08.072
http://dx.doi.org/10.1016/j.physletb.2006.08.072
http://arxiv.org/abs/hep-th/0608022
http://inspirehep.net/search?p=find+EPRINT+hep-th/0608022
http://dx.doi.org/10.1016/S0550-3213(97)00430-6
http://arxiv.org/abs/hep-th/9703059
http://inspirehep.net/search?p=find+EPRINT+hep-th/9703059
http://dx.doi.org/10.1088/1126-6708/2003/02/012
http://arxiv.org/abs/hep-th/0211281
http://inspirehep.net/search?p=find+EPRINT+hep-th/0211281
http://dx.doi.org/10.1103/PhysRevD.84.106007
http://arxiv.org/abs/1107.2301
http://inspirehep.net/search?p=find+J+Phys.Rev.,D84,106007
http://dx.doi.org/10.1088/1126-6708/2009/05/010
http://arxiv.org/abs/0812.1549
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.1549
http://dx.doi.org/10.1007/s002200050022
http://dx.doi.org/10.1007/s002200050022
http://arxiv.org/abs/hep-th/9903113
http://inspirehep.net/search?p=find+EPRINT+hep-th/9903113


J
H
E
P
0
7
(
2
0
1
3
)
1
8
1

[26] S.D. Gupta, On the Rankin-Selberg method for functions not of rapid decay on congruence

subgroups, J. Number Theory 62 (1997) 115.

[27] A. Gregori, E. Kiritsis, C. Kounnas, N. Obers, P. Petropoulos and B. Pioline, R2 corrections

and nonperturbative dualities of N = 4 string ground states, Nucl. Phys. B 510 (1998) 423

[hep-th/9708062] [INSPIRE].

[28] J.H. Bruinier, Borcherds products on O(2, l) and Chern classes of Heegner divisors, Springer

(2002).

[29] K. Bringmann and K. Ono, Arithmetic properties of coefficients of half-integral weight
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