
J
H
E
P
0
7
(
2
0
1
2
)
1
5
1

Published for SISSA by Springer

Received: May 11, 2012

Accepted: June 28, 2012

Published: July 25, 2012

QCD coherence and the top quark asymmetry

Peter Skands,a Bryan Webberb and Jan Wintera

aCERN PH-TH, Geneva 23, CH-1211 Switzerland
bCavendish Laboratory, University of Cambridge,

JJ Thomson Avenue, Cambridge, U.K.

E-mail: peter.skands@cern.ch, webber@hep.phy.cam.ac.uk,

jwinter@cern.ch

Abstract: Coherent QCD radiation in the hadroproduction of top quark pairs leads

to a forward-backward asymmetry that grows more negative with increasing transverse

momentum of the pair. This feature is present in Monte Carlo event generators with

coherent parton showering, even though the production process is treated at leading order

and has no intrinsic asymmetry before showering. In addition, depending on the treatment

of recoils, showering can produce a positive contribution to the inclusive asymmetry. We

explain the origin of these features, compare them in fixed-order calculations and the

HERWIG++, PYTHIA and SHERPA event generators, and discuss their implications.

Keywords: QCD Phenomenology, Hadronic Colliders

ArXiv ePrint: 1205.1466

Open Access doi:10.1007/JHEP07(2012)151

mailto:peter.skands@cern.ch
mailto:webber@hep.phy.cam.ac.uk
mailto:jwinter@cern.ch
http://arxiv.org/abs/1205.1466
http://dx.doi.org/10.1007/JHEP07(2012)151


J
H
E
P
0
7
(
2
0
1
2
)
1
5
1

Contents

1 Introduction 1

2 Comparison with fixed order 3

2.1 One gluon emission 3

2.2 Soft gluon limit 4

2.3 Beyond the soft approximation 6

3 Generation of an inclusive asymmetry 8

4 Comparison between parton-shower models 10

4.1 Inclusive asymmetry 11

4.2 Asymmetry as a function of top quark observables 12

4.2.1 Dependence on recoil effects: SHERPA’s CSSHOWER 16

4.2.2 Dependence on shower model: PYTHIA 19

5 Summary and implications 20

A Additional SHERPA CSSHOWER studies 22

1 Introduction

The observation of a substantial forward-backward asymmetry in the production of top

quark pairs at the Tevatron [1–5] has prompted renewed theoretical study of Standard

Model predictions for this quantity: see refs. [6–15] and references therein. Quantities of

particular interest are the distributions of the asymmetry with respect to some observable,

generally denoted by O:

AFB(O) =

dσ

dO

⌋
∆y>0

− dσ

dO

⌋
∆y<0

dσ

dO

⌋
∆y>0

+
dσ

dO

⌋
∆y<0

, (1.1)

where the rapidity difference is defined as ∆y = yt − yt̄. Examples of possible observables

O are the invariant mass mtt̄ and transverse momentum pT,tt̄ of the pair. For the former,

QCD predicts an asymmetry that increases with mtt̄ [6, 9]. For the latter, the prediction

changes sign as pT,tt̄ increases, since the NLO loop contribution is positive at pT,tt̄ = 0 while

the real-emission contribution at pT,tt̄ > 0 is negative. After matching to parton showers

using the MC@NLO prescription [16, 17], the predicted cross-over is around pT,tt̄ ≈ 25 GeV:

see figure 1.
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Figure 1. Top quark forward-backward asymmetry at the Tevatron, as a function of the transverse

momentum of the pair: results from MC@NLO and PYTHIA. Figure from ref. [4].

A surprising fact, also shown in figure 1, is that a leading-order parton shower event

generator such as PYTHIA, with appropriate settings, displays a qualitatively similar pT -

dependent asymmetry, even though the LO production processes have no asymmetry. As

we shall see, the same is true of the HERWIG++ and SHERPA event generators, although

their quantitative predictions differ.1

The explanation is a nice illustration of the QCD coherence of parton showering. It is

true that the inclusive asymmetry built into the LO generators is zero. However, in the hard

process qq̄ → tt̄ the colour flows from the incoming quark to the top quark and from the

antiquark to the antitop lead to a more violent acceleration of colour, and consequently

more QCD radiation, when the top is produced backwards in the qq̄ frame than when

it goes forwards, as illustrated in figure 2. The additional radiation when the top goes

backwards pushes the recoiling pair to higher transverse momentum. Correspondingly,

events with forward-moving tops are left at lower transverse momentum, leading to the

behaviour seen in figure 1. The effect vanishes at threshold and becomes more and more

marked as the invariant mass of the pair increases, due to the increasing amount and scale

of QCD radiation.

Event generators with coherent parton showers, implemented through dipole showering

in SHERPA and angular ordering in HERWIG++, take account of these effects. (PYTHIA uses

a hybrid between the two.) A full NLO treatment, included in MC@NLO but not in the

stand-alone generators, adds a finite positive virtual contribution. Nonetheless, as we

shall demonstrate in section 4, even LO shower models can also generate a net inclusive

asymmetry AFB, if the shower kinematics allow for migration between positive and negative

∆y regions.

1For a recent review of Monte Carlo event generators, see [18].
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Figure 2. Colour flow and QCD radiation in (a) forward and (b) backward tt̄ production.

In the following section we examine in more detail the approximations made in event

generators, in comparison to the fixed-order perturbative treatment. Then in section 3 we

explain in general terms how they can produce a positive inclusive asymmetry while only

containing the LO production process. In section 4 we present results from the HERWIG++,

PYTHIA and SHERPA generators for the inclusive asymmetry and various differential asym-

metry distributions. In section 5 we summarize our findings and comment on their impli-

cations.

2 Comparison with fixed order

To establish notation we first consider the lowest-order process,

q(p1) + q̄(p2) → Q(p3) + Q̄(p4) , (2.1)

for which the leading-order spin-averaged matrix element squared is∑∣∣M(qq̄ → QQ̄)
∣∣2 = g4 CF

N

(
t̄ 2 + ū2

s̄2
+

2m2

s̄

)
(2.2)

where m is the heavy quark mass and

s̄ = 2 p1 · p2 , t̄ = −2 p1 · p3 , ū = −2 p1 · p4 . (2.3)

The corresponding differential cross section,

dσ̂B
dt̄

=
1

16π s̄2

∑∣∣M(qq̄ → QQ̄)
∣∣2 , (2.4)

is used for the primary hard subprocess in the event generators. Clearly, it does not

exhibit any forward-backward asymmetry. Thus for an asymmetry to be produced by a

leading-order generator, some parton showering must occur.

2.1 One gluon emission

The leading-order shower contribution is the one-gluon emission process,

q(p1) + q̄(p2) → Q(p3) + Q̄(p4) + g(k) . (2.5)
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For the asymmetry we require the difference between this and the process

q(p1) + q̄(p2) → Q̄(p3) +Q(p4) + g(k) . (2.6)

The difference between the spin-averaged matrix elements squared is [19–21]

MA ≡
∑∣∣M(qq̄ → QQ̄g)

∣∣2 −∑∣∣M(qq̄ → Q̄Qg)
∣∣2

= g6 CF (N2 − 4)

N2

[(
t21 + t22 + u2

1 + u2
2

s1s2
+

2m2

s1
+

2m2

s2

)

×
(
W13 +W24 −W14 −W23

)
− 8m2

s1s2

(
t1 − u2

v2
+
t2 − u1

v1

)]
(2.7)

where

s1 = (p1 + p2)2 , t1 = −2 p1 · p3 , u1 = −2 p1 · p4 , v1 = 2 p3 · k ,
s2 = (p3 + p4)2 , t2 = −2 p2 · p4 , u2 = −2 p2 · p3 , v2 = 2 p4 · k , (2.8)

and Wij is the dipole radiation function

Wij = −
(

pi
pi · k

− pj
pj · k

)2

. (2.9)

The asymmetries for the processes gq → QQ̄q and gq̄ → QQ̄q̄ are obtained from the same

expression after crossing. They are very small and will be neglected in the following.

We see from eq. (2.7) that the asymmetry vanishes for N = 2. This must be the case

to all orders, because the fundamental representation of SU(2) is pseudoreal and so in that

case qq̄ → QQ̄X is the same as qq → QQX.

In the event generators the gluon radiation is represented as coherent emission from the

external lines of the Born process and so the new colour factor (N2−4)/N is approximated

by 2CF = (N2 − 1)/N . Thus we expect them to overestimate the asymmetry at non-zero

pT ≡ pT,QQ̄ by around 60% in lowest order. They also neglect the second term in the square

bracket in eq. (2.7), which is less singular at small k, and approximate the remaining terms

by the Born term times dipole-like factors. Thus they effectively treat the asymmetry

in the soft gluon limit. They treat the gluon radiation more accurately in the collinear

regions, but those regions are not dominant in the asymmetry.

2.2 Soft gluon limit

As explained above, we expect the event generators to reproduce the soft gluon limit of

the asymmetry, apart from the colour factor mentioned earlier. In the limit of small k we

have s1, s2 → s̄ etc. and eq. (2.7) takes the simple form

MA = g6 (N2 − 1)(N2 − 4)

N3

(
t̄ 2 + ū2

s̄2
+

2m2

s̄

)
×
(
W13 +W24 −W14 −W23

)
. (2.10)
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In the soft gluon limit we can write the differential cross section for emission of a gluon

with energy ω as
d2σ̂

dt̄ dω
=

ω

(4π)4 s̄2

∫ ∑∣∣M(qq̄ → QQ̄g)
∣∣2 dΩ , (2.11)

where Ω is the solid angle for soft gluon emission, and we can use the fact that [22]∫
Wij dΩ =

4π

ω2

[
1

vij
log

(
1 + vij
1− vij

)
− 2

]
≡ 4π

ω2
Fij , (2.12)

where vij is the relative velocity of i and j:

vij =

√
1−

(
mimj

pi · pj

)2

. (2.13)

Now we define the asymmetry cross section dσ̂A = dσ̂ − dσ̂ (3↔ 4):

d2σ̂A
dt̄ dω

=
α3

S

s̄2ω

(N2 − 1)(N2 − 4)

N3

(
t̄ 2 + ū2

s̄2
+

2m2

s̄

)(
F13 + F24 − F14 − F23

)
=

2αS

πω

(N2 − 4)

N

(
F13 + F24 − F14 − F23

) dσ̂B
dt̄

. (2.14)

The radiation functions Fij appearing in eq. (2.14) have collinear divergences along the

beam directions, which cancel in the full expression. Regulating them with a small light

quark mass µ, we have in the limit µ→ 0:

Fij → 2 log

(
2 pi · pj
µm

)
− 2 , (2.15)

so that
d2σ̂A
dt̄ dω

=
4α3

S

s̄2ω

(N2 − 1)(N2 − 4)

N3

(
t̄ 2 + ū2

s̄2
+

2m2

s̄

)
log

(
t̄

ū

)
. (2.16)

In lowest order the QQ̄ pair recoils against the emitted gluon, so the transverse mo-

mentum of the pair is pT = −kT where dkT /kT = dω/ω. We can also express eq. (2.16) in

terms of the qq̄ → QQ̄ scattering angle θ̂ since

t̄ = −s̄− ū = −1

2
s̄ (1− β cos θ̂) , (2.17)

where β =
√

1− 4m2/s̄ is the heavy quark c.m. velocity in the Born process. Thus

d2σ̂A

dpT d cos θ̂
=

α3
S β

s̄ pT

(N2 − 1)(N2 − 4)

N3

(
2− β2 sin2 θ̂

)
log

(
1− β cos θ̂

1 + β cos θ̂

)
. (2.18)

Finally, we can integrate this expression to find the recoil distribution of the asymmetry

in the soft limit. It is convenient to normalize this to the qq̄ → QQ̄ Born cross section,2

obtained by integrating eq. (2.4):

σ̂B =
πα2

S

24m2

(N2 − 1)

N2
β (1− β2) (3− β2) . (2.19)

2At the Tevatron, the gluon fusion contribution to the tt̄ production cross section is small, less than 10%

(at LO, we find 6.7% using CTEQ6L1 PDFs [23] and scales evaluated via the top quark transverse mass).
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Figure 3. The function F (β, 0) in eq. (2.21): the full expression (solid) and the first four terms of

its power series expansion (dashed).

Then we can write in general

pT
σ̂B

dσ̂A
dpT

=
αS

π

(N2 − 4)

N
F (β, pT ) , (2.20)

where the coupling- and colour-stripped asymmetry function F (β, pT ) is given in the soft

limit, pT � pmax
T = β2

√
s̄/2, by

F (β, 0) =
6

(3− β2)

∫ 1

0

(
2− β2 + β2z2

)
log

(
1− βz
1 + βz

)
dz

=
2

β (3− β2)

[
(1− β) (7 + β − 2β2) log

(
1 + β

1− β

)
− 2 (7− 3β2) log(1 + β)− β2

]
= −4β − β3 − 22

45
β5 − 103

378
β7 +O(β9) . (2.21)

Thus we expect the asymmetry in the event generators to become more negative with

increasing top pair invariant mass
√
s̄, growing linearly with c.m. velocity β near threshold.

The function F (β, 0) is shown in figure 3. It tends to an asymptotic value of −8 log 2−1 =

−6.545 as β → 1. We note that the four-term power series expansion eq. (2.21) gives a

good approximation over a wide range of β.

2.3 Beyond the soft approximation

The coupling- and colour-stripped asymmetry function F (β, pT ) remains negative away

from the soft region but decreases in magnitude as pT increases, vanishing at the phase-

space boundary, as shown in figure 4. Here, as before, β is defined as
√

1− 4m2/s1 , i.e. in

terms of the overall centre-of-mass energy squared s1 = s̄, rather than the invariant mass

squared of the QQ̄ pair, s2.

– 6 –
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Figure 4. The function F (β, pT ), relative to its value at pT = 0. Note that pmax
T = β2

√
s̄/2.

To go from this function to the pT -dependence of the asymmetry, AFB(pT ), as defined

in eq. (1.1), we have to include the strong coupling and colour factors and normalize to the

differential cross section at the same pT . A full leading-order calculation of the asymmetry

using MCFM [24] (computing tt̄ production at NLO) yields the results shown in figure 5.

For this calculation, the next-to-leading order parton distribution functions of ref. [25] were

used, with scale equal to the top mass (mt = 172.5 GeV), but the results for the asymmetry

are rather insensitive to these choices.

The real-emission asymmetry cross section in the numerator of eq. (1.1) diverges as

pT → 0, due to the soft divergence discussed in the previous section. However, the denom-

inator, shown on the left in figure 5, diverges faster, as it has initial-state collinear singu-

larities that cancel in the numerator, so that AFB(pT ) is driven towards zero as pT → 0.

In the fully inclusive asymmetry, the divergence of the real emission contribution is

cancelled by the singular virtual correction at pT = 0, and we have

1

σ̂B

∫ m

0

dσ̂A
dpT

dpT =
αS

π

(N2 − 4)

N
f(β) , (2.22)

where f(β) is finite. If we limit the integration to pT < qT � m, we therefore find

σ̂A(pT < qT )

σ̂B
=

1

σ̂B

(∫ m

0

dσ̂A
dpT

dpT −
∫ m

qT

dσ̂A

dpT
dpT

)
∼ αS

π

(N2 − 4)

N

[
F (β, 0) log

(qT
m

)
+ G(β, qT /m)

]
(2.23)

where F (β, 0) is given by eq. (2.21) and G(β, qT /m) is regular at qT = 0. Since F (β, 0) ∼
−4β is negative, a cut on pT < qT adds a positive contribution to the inclusive asymmetry,

– 7 –
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Figure 5. Leading-order QCD predictions for the transverse-momentum distribution of the top

quark pair, ptt̄T (left), and for the forward-backward asymmetry as a function of ptt̄T (right).

which grows logarithmically as qT is reduced. This effect can be quite significant. For exam-

ple, in top pair production at a pair invariant mass of 450 GeV (mt = 172 GeV, β = 0.645),

a cut on pT < 20 GeV gives a contribution of 3.33αS ∼ 35% from the logarithmic term.

In a combined NLO plus parton shower treatment such as MC@NLO, the positive

singular virtual contribution at pT = 0 is spread out over a finite region of pT , the so-called

Sudakov region. This leads to a cross-over in the asymmetry from positive values at low

pT to negative values at higher pT , as depicted in figure 1. In MC@NLO, the finite part of

the virtual contribution, absent from the event generators, is also included and can affect

the position of the cross-over.

Monte Carlo event generators with QCD coherence will not have the correct form for

the function G in eq. (2.23), due to the inexact treatment of hard, non-collinear emissions,

but they should reproduce the logarithmic term, apart from the overestimate of the colour

factor by 60% mentioned earlier. They will also display the spreading of the positive

asymmetry over the Sudakov region at low pT .

3 Generation of an inclusive asymmetry

Despite the coherence effect elaborated upon in the previous section, the naive expectation

is that the asymmetry should still sum to zero when integrated over all of phase space.3 This

expectation is based on the simple fact that showers are unitary (meaning real-radiation

corrections cancel exactly against virtual-Sudakov ones), so even though they can move

things around in phase space, they do not generate any corrections to total cross sections.

3Or, if using MC@NLO or POWHEG [26, 27], that the integrated forward-backward asymmetry should sum

to its NLO inclusive value.

– 8 –
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At the most inclusive level, this is reflected in the fact that the total integrated tt̄ cross

section is the same before and after showering.

However, the asymmetry is defined in terms of two separate cross sections, one com-

puted for ∆y > 0 and the other for ∆y < 0. If the shower kinematics allow any migration

between these two regions, then unitarity no longer guarantees complete cancellation in

each of the regions separately, leading to the possible generation of a net inclusive asym-

metry. Formally, we can write the cross section difference that generates the integrated

asymmetry as

∆σ+− =

∫
dσLO

⌋
∆y>0

[
∆+ + (1−∆+)(P++ − P+−)

]
−
∫
dσLO

⌋
∆y<0

[
∆− + (1−∆−)(P−− − P−+)

]
, (3.1)

where the first line represents events that start (at the matrix-element level, before show-

ering) with a positive value of ∆y and the second line represents events that start with a

negative one. The terms in parentheses represent the action of the parton shower. The

probability for no branchings to occur is represented by the Sudakov factor, ∆, with sub-

script ± reflecting that the probability to radiate can be different between an event with

positive ∆y and one with negative ∆y. Indeed, as shown in the preceding section, events

with positive ∆y have less phase space for emission and so are less likely to radiate. There-

fore, in general, we have

∆+ > ∆− . (3.2)

This, however, is not by itself enough to generate an inclusive asymmetry. The second

terms in the square brackets in eq. (3.1) represent those events that do experience one

or more branchings. For these events, the final top momenta, and hence possibly their

final rapidity difference, will depend on whether and how the top momenta are modified

by the branchings. In the present context, we do not care about the details of how this

occurs, merely about whether it is at all possible for an event with positive ∆y at the Born

level to migrate to negative ∆y after showering, and vice versa. This is represented by the

probabilities P+− and P−+ in eq. (3.1). If the shower model preserves the rapidity ordering

of the tops, then

P++ = P−− = 1 and P+− = P−+ = 0 , (3.3)

and so the integrated asymmetry remains zero, despite the two Sudakov factors being

different. If, on the other hand, the shower model sometimes changes the relative rapidity

ordering of the tops, for instance as a consequence of longitudinal recoil effects (as will

be studied in more detail in the next section), then a total inclusive asymmetry can be

generated. In the context of unitarity, this can be interpreted as due to the fact that

unitarity involves an integral over the entire phase space, and hence the exact cancellation

that occurs in the total inclusive cross section is here broken by the splitting-up of the real-

radiation phase space into two regions that enter with different signs in the asymmetry.

From unitarity of the shower, we have

P++ = 1− P+− and P−− = 1− P−+ , (3.4)

– 9 –
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so that eq. (3.1) can be written as

∆σ+− = − 2

∫
dσLO

⌋
∆y>0

(1−∆+)P+− + 2

∫
dσLO

⌋
∆y<0

(1−∆−)P−+ , (3.5)

where we have used ∫
dσLO

⌋
∆y>0

=

∫
dσLO

⌋
∆y<0

. (3.6)

Because 1 > ∆+ > ∆−, we expect the second term on the right-hand side of eq. (3.5) to

dominate, giving a positive inclusive asymmetry, unless there is a compensating excess of

P+− over P−+. However, on rather general grounds one would not expect such an excess,

because there is less radiation when ∆y > 0 and hence a smaller probability of recoil effects

changing the sign of ∆y. Indeed we shall see below that the treatment of recoils in shower

generators normally leads to P−+ > P+−, enhancing the positive inclusive asymmetry due

to the unequal Sudakov factors.

Considering eq. (3.5) from the viewpoint of perturbation theory, we observe that the

factors of (1 − ∆±) in the integrands are O(α1
S), while P±∓ are O(α0

S), being the con-

ditional probabilities that gluon emission will switch the sign of ∆y, given that at least

one emission has occurred. Thus the recoil effect in showering generates an approximate

inclusive asymmetry that starts at O(αS), like the full perturbative calculation. The fac-

tors of (1 −∆±) provide information about the virtual contribution and the probabilities

P±∓ specify what fraction remains after real-virtual cancellation. Since these probabilities

depend on the strategy for treating recoils in the shower, getting the best agreement with

the full asymmetry at O(αS) could be a good way to optimize this strategy.

4 Comparison between parton-shower models

In this section, we study the asymmetries produced by the following general-purpose event

generators:4 HERWIG++ [28] (using angular-ordered parton showers [29]), PYTHIA 6 [30]

(using both its Q2- and p⊥-ordered parton-shower models [31, 32], represented by tunes

D6T and Perugia 0, respectively), PYTHIA 8 [33] (using p⊥-ordered parton showers [34]),

and SHERPA [35] (using p⊥-ordered dipole showers [36]). Of these, HERWIG++ and SHERPA

have QCD coherence built in and PYTHIA 6 has options with varying amounts of coherence,

while the first ISR (initial-state radiation) emission is not subjected to coherence constraints

in this version of PYTHIA 8. For both PYTHIA 6 and SHERPA, we include some additional

illustrations of specific shower model variations.

A custom-made RIVET [37] analysis was used to process the events of all generators,

ensuring uniformity of the analysis. Between 1 and 4 million events (at least) were gen-

erated for each model. All the generators include the leading-order qq̄ → tt̄ and gg → tt̄

production processes, which are showered with default settings,5 unless otherwise specified.

4Specifically, we use HERWIG++ 2.5.2, PYTHIA 6.426, PYTHIA 8.162, and SHERPA 1.4.0.
5The choice of PDF set only gives small effects (. 10%) on the asymmetry, mostly via the relative fraction

of gluon-initiated vs. quark-initiated tt̄ production. For completeness, HERWIG++ uses the MRSTMCal

PDF set (i.e. the LO fit from the MRST2002 family) [38], PYTHIA 6 with Perugia 0 uses CTEQ5L [39], and

PYTHIA 6 with D6T, PYTHIA 8, and SHERPA all use CTEQ6L1 PDFs [23]. There is also a slight dependence

on the choice of renormalization scale, see appendix A.
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Model Version Inclusive mtt̄/GeV pT,tt̄/GeV

[tune] < 450 > 450 < 50 > 50

HERWIG++ 2.5.2 [def] 3.9 2.7 6.0 5.8 −14.3

PYTHIA 6 6.426 [def] −0.1 −0.8 1.2 2.5 −42.5

PYTHIA 6 6.426 [D6T] −0.2 −1.1 1.2 3.2 −43.4

PYTHIA 6 6.426 [P0] 0.8 0.7 1.1 1.8 −8.6

PYTHIA 8 8.163 [def] 2.5 2.4 2.8 2.4 4.8

SHERPA 1.4.0 [def] 5.5 3.5 9.2 8.7 −15.4

SHERPA 1.3.1 [def] 6.3 3.3 12.1 9.6 −15.8

QCD LO 6.0 4.1 9.3 7.0 −11.1

Table 1. The forward-backward asymmetry A
(cut)
FB (in %) in each shower model, and to leading

non-trivial order. A
(cut)
FB is defined in eq. (4.1). The PYTHIA tunes are discussed in section 4.2.2, and

the shower model used in SHERPA is the CSSHOWER one. The brackets after the generator version

number denote the parameter set (tune) used, with [def] for default parameters. The fixed-order

predictions are from MCFM [24] used to compute tt̄ production at NLO.

Note that we do not study the effects of matrix-element plus parton-shower matching in

this paper.

4.1 Inclusive asymmetry

The inclusive asymmetry and the asymmetries with an invariant mass or transverse-

momentum cut,

A
(cut)
FB =

σ(cut)
⌋

∆y>0
− σ(cut)

⌋
∆y<0

σ(cut)
, (4.1)

produced by each model are given in table 1. Of these, SHERPA’s CSSHOWER produces the

largest inclusive asymmetry. We interpret this as a consequence of its initial-final dipole

kinematics [36, 40, 41]; part of the longitudinal momentum of the first emitted gluon has to

come from the recoiling top quark, changing its rapidity and allowing ∆y to change sign.

Later on, we will illustrate and discuss recoil effects in somewhat more detail, in a small

CSSHOWER case study, see section 4.2.1 and appendix A.

In HERWIG++, coherence is implemented by angular-ordered parton branching rather

than dipole showering. Parton showers associated with each incoming or outgoing hard

parton are generated independently in angular regions defined by the colour structure of the

hard subprocess. The showers are then combined according to a kinematic reconstruction

algorithm [28] that again reflects the colour structure of the subprocess. In the case of

qq̄ → tt̄, there are two initial-final colour-connected systems, qt and q̄t̄, as illustrated in

figure 2. The resulting treatment of recoils is similar to that in dipole showering of these

systems, with a particular prescription for sharing recoil momentum within each. The

separate recoils of the top quark and antiquark again imply that ∆y may change sign.

In contrast, the approach to initial-final dipoles in PYTHIA, for both p⊥- and Q-ordered

showers [31, 32], is to use the other incoming parton for momentum conservation, rather
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than the recoiling top. The relative rapidity ordering of the top and the antitop is normally

preserved by this strategy, resulting in very little net asymmetry being generated.

Overall, the asymmetries in HERWIG++ and SHERPA are comparable to the LO per-

turbative results6 shown in table 1, suggesting that their similar recoil strategies are not

far from optimal.

4.2 Asymmetry as a function of top quark observables

We now show differential spectra dσ/dO for four key observables and their related forward-

backward asymmetry distributions AFB(O), as defined in eq. (1.1). The observables pre-

sented here are the azimuthal angle ∆φ between the transverse momenta of the top and

antitop quarks, the |∆y| distribution itself, and the transverse-momentum and invariant

mass distributions of the tt̄ pair. We take a subset of the shower versions listed in table 1

(neglecting the PYTHIA 6 default and SHERPA 1.3.1 versions) and compare their predictions

with each other.

In figure 6 we show the |∆y| and ∆φ distributions. The dσ/d|∆y| predictions are very

similar in shape; they differ in normalization because of the spread of the total inclusive

cross sections evaluated at LO and different scales in the various event generators. The

asymmetry rises for larger absolute rapidity differences of the top quark rapidities. The

large |∆y| configurations emerge more easily in scatterings with small angle to the beam (or

the qq̄ axis). This produces a positive asymmetry since the associated initial-final qt and q̄t̄

dipoles tend to emit softer gluons, with higher rate, in forward direction. The mechanism

is also explained more fully in section 4.2.1. All PYTHIA predictions increase rather mildly,

while those of HERWIG++ and SHERPA show a steeper (approximately linear) slope, which

is slightly flatter, but qualitatively comparable with the recent MCFM results given for

the acceptance corrected case, see ref. [15].

The ∆φ variable is a typical example of an observable separating the hard-emission

domain from the Sudakov region, here located around large ∆φ ≈ π. We depict the dσ/d∆φ

spectra in figure 6 reflecting the different levels of hardness produced by the different

generators with PYTHIA 8 giving the highest levels. Because of the strong correlation with

the pT,tt̄ observable, ∆φ displays a qualitatively similar behaviour of the related asymmetry

functions. As can be seen from the plot to the bottom right in figure 6, the more violent

radiation emerging from the colour dipoles spanned with backward-moving top quarks leads

to a negative asymmetry over a wide range of angles, except for very large angles where

the asymmetry turns positive as a result of the Sudakov effect. While for most predictions

the cross-over occurs at ∆φ ≈ 3, two results deviate considerably from the fairly constant

behaviour of the asymmetry (AFB ∼ −0.1) for ∆φ < 2. The PYTHIA 6 tune D6T and

PYTHIA 8 mark these two very different ends of the low-∆φ asymmetry spectrum (with

values of −70% and +20%, respectively). For the former, soft colour coherence effects

are overestimated whereas, for the latter, coherence effects have not been implemented, in

particular the initial-final qt and q̄t̄ dipoles are not yet treated as such.

6NLO calculations of the forward-backward asymmetry in tt̄ + 1-jet production [7, 12] give values some

6% above the LO result in table 1, e.g. in ref. [7] a value of −3.05% is reported for pjet
T > 50 GeV.
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Figure 6. Differential cross section (in pb) and top quark forward-backward asymmetry AFB as

a function of the modulus of the rapidity difference ∆y (upper row) and the azimuthal angle ∆φ

(lower row) between the top and antitop quarks. Predictions are shown as obtained from various

Monte Carlo event generators; errors are statistical only.

Figure 7 displays the dependence of the differential cross section and asymmetry on the

mass mtt̄ and transverse momentum pT,tt̄ of the tt̄ system. As for |∆y|, the Sudakov region

generating positive asymmetry contributions due to soft colour coherence (∆+ > ∆−)

applies over the entire range of the pair mass. We can use the following equation to better

understand this behaviour and the pair mass dependence of AFB:

m2
tt̄ = m2

t +m2
t̄ + 2ET,tET,t̄ cosh ∆y − 2 pT,tpT,t̄ cos ∆φ (4.2)

where E2
T = m2 +p2

T and ∆φ is the azimuthal angle between ~pT,t and ~pT,t̄. It is sufficient to

focus on the cosh ∆y and cos ∆φ dependence of m2
tt̄. The cosh ∆y term is forward-backward

symmetric and the squared mass increases with larger absolute rapidity differences. The
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Figure 7. Differential cross section (in pb/GeV) and top quark forward-backward asymmetry AFB

as a function of the mass mtt̄ (upper row, in GeV) and transverse momentum pT,tt̄ (lower row, in

GeV) of the top-antitop pair. Various event generator predictions are compared with each other,

and all errors shown are statistical only.

cos ∆φ term in eq. (4.2) may however reduce m2
tt̄, but in the hard region only. Consequently,

the cosh ∆y dependence of AFB directly translates into a similar mass dependence. Ne-

glecting this for a moment, we also notice that for given ∆y, it is cheaper to shift the

masses to larger values. This is because of the enhancement of soft emissions (∆φ ≈ π)

causing an overall plus sign in the cos ∆φ term. The imbalance in the soft-emission rate

generated by soft colour coherence between the forward and backward region thus produces

harder mass spectra in the forward region. Taken together with the |∆y| dependence of

the asymmetry, we conclude that the cos ∆φ term induces an additional growth of the

asymmetry with increasing pair mass and a small suppression in the low mass region. In
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cases where the |∆y| dependence of the asymmetry is almost zero, the same mechanism

may generate slightly negative asymmetries at low mass.

Looking at the different generator results displayed in figure 7, the dσ/dmtt̄ spectra

can be seen to differ less than the pT,tt̄ spectra. Again, PYTHIA 8 gives the hardest distri-

butions. As expected, we find that the tt̄ mass dependence of the asymmetry is determined

predominantly by the asymmetric behaviour present in |∆y|. The pattern shown on the

upper right of figure 6 repeats itself here. We also observe that small negative asymmetries

are possible for low pair masses, e.g. as shown for the PYTHIA 6 tune D6T.

Finally, on the lower right of figure 7 one finds the results obtained by the different

generators for the asymmetry plotted as a function of pT,tt̄. We already discussed the

characteristics of AFB(pT,tt̄) throughout preceding sections; thus, recalling the discussion

of the ∆φ case, the pT,tt̄ results are as expected and their interpretation is straightforward.

Exhibiting the asymmetry in terms of pT,tt̄ naturally allows for a better discrimination in

the hard region. We thus observe that HERWIG++, PYTHIA 6 P0 and SHERPA differ in their

description of the high-pT tail of the asymmetry, even though they sufficiently agree in

the low-∆φ region. SHERPA predicts a slope change around 50 GeV indicating a possible

return in AFB(pT,tt̄) to zero for large pT , as seen in LO (figures 4 and 5). In contrast,

HERWIG++ and PYTHIA 6 P0 maintain their trend towards more negative asymmetries.

At the other end of the pT spectrum, the rise of the asymmetry towards lower pT is not

shown by PYTHIA 6 D6T and PYTHIA 8, which is compatible with the findings for ∆φ ≈ π
in figure 6.

We have studied more observables than we are able to present here, so for a more

comprehensive comparison we refer the interested reader to the corresponding “Top quark

(MC)” web-pages available under mcplots.cern.ch [42]. Among other things one can

find, for example, the distributions and forward-backward asymmetries of the transverse

momentum of the top quark, pT,t, or the rapidity ytt̄ of the tt̄ pair; in addition many

observables are shown separately for the high and low pair mass or transverse-momentum

region obtained by cutting on mtt̄ at 450 GeV or pT,tt̄ at 50 GeV, respectively.

Summary. We can say that the HERWIG++ and SHERPA predictions agree fairly well

with each other, and compare quite nicely — on a qualitative level — to the AFB(mtt̄)

and AFB(|∆y|) results given in ref. [9]. Both models incorporate soft colour coherence on

a compatible level, which consequently may be interpreted as the source of the agreement;

the differences lie in details such as the treatment of recoils, the shower variables and

the form of the splitting functions used. These differences cause deviations in the high-

pT asymmetry spectra. The dependence on recoil effects in SHERPA is studied in more

detail in section 4.2.1 below. In PYTHIA, soft colour coherence is accounted for on a more

approximate level. Although the P0 tune of PYTHIA 6 is similar to HERWIG++ in the hard-

emission domain, it differs in the description of the Sudakov region, yielding a milder mass

and |∆y| dependence of the asymmetry. The PYTHIA 6 D6T tune and PYTHIA 8 exhibit

larger differences. The dependence on the shower modelling in PYTHIA 6 is studied in more

detail in section 4.2.2 below.
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4.2.1 Dependence on recoil effects: SHERPA’s CSSHOWER

We have argued that recoil effects play an important role in producing the asymmetries

generated in coherent parton or dipole showering. To illuminate the mechanism further,

we have conducted a small case study based on results obtained with SHERPA’s CSSHOWER.

Some of the details have been postponed to appendix A in order to maintain the flow of

the main part.

Asymmetry enhancing longitudinal recoil effects. We have identified the unequal

Sudakov form factors in forward and backward top production as a major source of asym-

metry. The Sudakov imbalance (∆+ > ∆−) emerges as a result of soft colour coher-

ence. In addition, based on eq. (3.5) we have seen that any net migration of the type

P−+ > P+− ≥ 0, from the backward to the forward ∆y phase space, leads to a positive

inclusive asymmetry and an amplification of the Sudakov or coherence effect. We now want

to trace the origin of the migration process.

In a simple dipole picture where a gluon emission stretches (further opens the initial

angle of) the starting initial-final qt or q̄t̄ dipole, one can easily account for ∆y = ∆ỹ + ε

on average.7 Here we denote the top quark rapidity difference before the emission (or at

the LO generation level) by ∆ỹ, and ε > 0 expresses a small positive shift. Using a simple

generation cut on ∆ỹ, we can test this hypothesis by counting and analyzing the events

that end up in the backward/forward region after exclusively showering tt̄ events produced

at LO under the constraint ±∆ỹ > 0.

Figure 8 shows the main results of this migration test; more details are compiled in

appendix A. We have plotted the outcomes of tt̄ production at leading, fixed order (labelled

“before shower”) and of several CSSHOWER runs (all labelled “after . . . ”) grouped according

to unconstrained, ∆ỹ > 0 (“fwd”) and ∆ỹ < 0 (“bwd”) LO phase-space generation: we

distinguish between completely showered runs and runs where showering was terminated

after just one emission. For the latter, we only show the results obtained with the restricted

LO phase space. Focusing on ∆y distributions, we make a number of observations, broadly

confirming the physics of the simple dipole picture suggested above:

• showering generates a positive asymmetry, which is growing with larger |∆y| (compare

“before” and “after shower” results).

• migrations are small, happen locally but yet across the entire ∆y phase space; the

− → + direction and, therefore, − → + cross-overs are favoured: (1) the “bwd”

generated results extend into the ∆y > 0 domain filling the deficit close to the

transition region left by “fwd” generated events that now populate larger ∆y, and

(2) the migration processes in the opposite direction are largely suppressed.

• the largest effect already originates from the first emission, the gluon emission of

the initial-final qt and q̄t̄ dipoles (compare dashed with solid lines).8 This does not

7In figure 2 (a) and (b), this corresponds to a reduction of the scattering angle, i.e. a kick of the (anti)top

quark in the incoming (anti)quark direction, thereby mitigating the acceleration of colour charges.
8This is also reflected by finding comparable AFB when running the CSSHOWER in one-emission mode

(4.1%, 2.7%, 6.6%, 6.9% and −17.1%, to be compared to the SHERPA 1.4.0 entries of table 1, in this order).
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pT,tt̄ > 50 GeV

after shower

after 1 em/ fwd

after 1 em/ bwd

after/ fwd

after/ bwd

0

0.05

0.1

0.15

0.2

0.25

0.3

Top quark rapidity difference

d
σ
/
d

∆
y
[p
b
]

-3 -2 -1 0 1 2 3

0.6
0.7
0.8
0.9
1.0
1.1
1.2

∆y = yt − yt̄

R
a
ti
o

Figure 8. The ∆y distributions for different LO generation and shower modes as predicted by

SHERPA’s CSSHOWER. Dashed lines correspond to results taken from one-emission (“1 em”) showers,

while solid lines depict those after complete showering, except for the black curve, which depicts

the fixed LO parton-level prediction in the upper subfigure. Blue [green] lines show the outcomes

when the LO tt̄ phase-space generation is constrained to the forward (“fwd”, ∆ỹ > 0) [backward]

region. Each lower part contains a ratio plot using the respective list’s first prediction as reference.

necessarily mean that the corrections from multiple emissions are negligible; they

easily give 10-20% effects, as can be seen in both figures 8 and 9.

This pattern carries over to the high-pT region, pT,tt̄ > 50 GeV, except for the fact that the

total asymmetry now turns negative, cf. the lower panel of figure 8. The migration is more
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Figure 9. The forward-backward asymmetries versus |∆y| (upper panel) and pT,tt̄ (lower panel) for

the two different recoil strategies available for the CSSHOWER implementation in SHERPA. Results

gained by the corresponding one(two)-emission(s) showers are depicted as well. Each subfigure is

supplemented by a ratio plot using the default CSSHOWER prediction for reference.

severe, but cannot overcome the overall negative trend, caused by the more violently radi-

ating “bwd” generated initial dipole configurations: the radiation imbalance predominates

over the migration effect.

Comparison of recoil strategies. SHERPA’s CSSHOWER implementation provides two

recoil schemes, the default one, see refs. [40, 43] and the original CS scheme as advocated
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in refs. [36, 44, 45]. They differ mainly in their treatment of the transverse recoils. The

distribution of the longitudinal recoil momenta effectively is the same in both schemes, as

documented in the top panel of figure 9 where we show AFB as a function of |∆y| (exhibit-

ing all of the characteristics described earlier).9 We see again, the bulk of the asymmetry is

already produced by the one(two)-emission(s) showers, similarly for AFB(pT,tt̄) displayed in

the lower panel of figure 9. The pT -dependent asymmetry function is the prototype of dis-

tributions discriminating clearly between the two recoil strategies: the original CS scheme

is more like that in the Catani-Seymour NLO calculational scheme [44]: the (transverse)

recoil from a gluon emitted off a qt configuration (and likewise off a q̄t̄ one) is compensated

by the top quark, regardless of its role in the emission process (emitter or spectator). The

prediction given by the original scheme therefore remains flat at about −15% for high pT,tt̄
while the default prediction levels off close to zero from below. In the default scheme, the

gluon recoil is rather divided over the entire set of final-state partons. This requires an

additional transverse boost combined with a rotation that in turn washes out the radiation

imbalance between the forward and backward regions for very large pT,tt̄.

4.2.2 Dependence on shower model: PYTHIA

For processes like tt̄ production, which do not contain any QCD jets at the Born level, both

PYTHIA 6 and PYTHIA 8 use so-called “power showers” [46] to populate the tt̄j phase space.

Since the LL splitting kernels generally represent an overestimate in the region of very hard

jets, a factor that suppresses such emissions has been introduced in the p⊥-ordered showers

in both PYTHIA 6 and PYTHIA 8, similar in spirit to a matrix-element correction [47] but

with a much simpler analytical structure. In PYTHIA 8, the suppression factor is derived

from universal t-channel arguments [34] and does not depend on the colour structure of the

event, wherefore it does not contribute to the generation of any tt̄ asymmetry. In PYTHIA 6,

the suppression factor is [48]

Paccept = min

{
1, P67

sD
4 p2

T evol

}
, (4.3)

where P67 corresponds to the parameter PARP(67) in the code, pT evol is the evolution scale

for the branching, and sD is the invariant mass squared of the radiating parton with its

colour partner, with all momenta crossed into the final state (i.e. it is ŝ for annihilation-

type colour flows and −t̂ for an initial-final connection). This is motivated partly from

studies of similar factors in the context of “smooth ordering”, introduced in [49]. Finally,

in the Q2-ordered shower model in PYTHIA 6 [30], a veto on the emission angle is placed,

which depends explicitly on the direction of the colour partner.

To illustrate the effect of these choices on the asymmetry, we show the dependence of

the asymmetry on pT,tt̄ for five PYTHIA 6 tunes in figure 10.

The Q2-ordered D6T tune includes the explicit angular cut on the emission angle

mentioned above, which a priori should produce an effect qualitatively similar to that of

9The AFB(mtt̄) are also broadly unaffected by the scheme change; similarly the A
(cut)
FB deviate only

marginally from the default SHERPA 1.4.0 numbers stated in table 1: 5.4%, 3.1%, 9.7%, 8.3% and −17.8%,

to be compared in this order.
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Figure 10. Transverse-momentum distribution dσ/dpT,tt̄ (in pb/GeV) of the top quark pair (left)

and the related top quark forward-backward asymmetry (right) in five different tunes of PYTHIA 6.

the angular-ordered showers in HERWIG++. However, in PYTHIA’s Q2-ordered shower, the

effect is amplified, as follows. When an initially massless ISR parton evolves to become a

massive jet, its virtuality is generated by reducing its momentum while keeping its energy

unchanged. The momentum of whatever the ISR parton is recoiling against (here the tt̄

system) is then also reduced to ensure momentum conservation. Thus, to get a tt̄ pair

with a certain pT , the Q2-ordered shower must first radiate a massless ISR parton with

an initially much larger value of pT , which is then reduced when that parton acquires a

virtuality. The fact that this compresses the pT spectrum is well-known from the Drell-

Yan case (cf. e.g. [42]) and can be counteracted by choosing a low renormalization scale

for αS (as has been done in D6T, which uses µR = 0.45 pT ), thus bringing the pT spectrum

itself back into rough agreement with other models, as illustrated in the left-hand panel

of figure 10. The asymmetry spectrum, however, remains compressed, as shown in the

right-hand panel.

Among the four p⊥-ordered tunes, the Perugia 0 (P0), Perugia HARD (PHARD), and

Perugia SOFT (PSOFT) ones [48] use the suppression factor defined by eq. (4.3), while

Z1 does not apply any suppression. The central Perugia 0 (P0) tune uses P67 = 1. This

generates an asymmetry that begins to turn on at roughly pT = mt/2. The HARD and

SOFT variations use P67 = 4 and P67 = 1/4, respectively, which modifies the turn-on

point. Neither the HARD nor the Z1 tunes exhibit any significant asymmetries in the

region plotted here, similarly to the case in PYTHIA 8.

5 Summary and implications

The studies presented above arose from the initially surprising observation that Monte

Carlo event generators can produce non-zero forward-backward asymmetries in top pair
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production, even when treating the relevant subprocess qq̄ → tt̄ at leading order, which

has no such asymmetry. Our studies show that these asymmetries arise from valid physics

built into generators with coherent parton or dipole showering. While not quantitatively

correct in every detail, the coherent showering approximation captures essential features of

the physics not hitherto well understood, which may serve as a guide to the contributions

of higher orders.

The generated asymmetries are of two kinds. First, in the differential cross section

at non-zero transverse momentum of the top pair, a negative asymmetry results from the

extra QCD radiation emitted when the top quark is produced backwards in the rest frame

of the pair. This effect is manifest in the qq̄ → tt̄g matrix element and is present in the

generators in the soft approximation, with a colour coefficient that is exact in the large-N

limit but 60% too large at N = 3.

In fixed-order perturbation theory, the asymmetry at non-zero pT of the pair tends to

zero from below as pT → 0. However, precisely at pT = 0 there are singular virtual con-

tributions that lead to a positive overall inclusive asymmetry which grows with increasing

invariant mass of the pair. The event generators perform an approximate all-order re-

summation of perturbation theory, which smears out the singular contributions at pT = 0

over a finite Sudakov region, and so the asymmetry changes sign at some point and be-

comes positive at small pT . The precise switching point is sensitive to finite terms and

higher-order corrections not included in the generators, but the change of sign is a striking

general prediction that should be investigated experimentally.10 It is also worth noting

that, because of this switch, a bias towards low pT , or against extra jet production, in

the method used to reconstruct the tops could lead to a significant upward shift in the

measured inclusive asymmetry.

The other type of generated asymmetry is an overall inclusive one, positive and growing

in value with increasing invariant mass of the pair. In fixed-order perturbation theory, such

an asymmetry appears at order αS relative to the Born process and is due to a positive

asymmetry in the virtual correction, which dominates over the negative contribution of real

emission discussed above. The event generators implicitly contain virtual corrections, in the

form of the Sudakov factors that drive the showers and produce pT smearing. These factors

are a reflection of unitarity, which implies that showering cannot change the inclusive cross

section from the value established by the primary subprocess. One might therefore think

that the inclusive asymmetry also could not change from zero when the primary process is

symmetric. However, that is not the case, because the asymmetry is not an inclusive cross

section and so is not protected by unitarity.

In fact, the same effect that generates a negative asymmetry at non-zero pT , namely

the extra radiation in backward top production, tends to produce a positive inclusive

asymmetry. As expressed by eq. (3.5), it arises from the difference between the Sudakov

factors for forward and backward top production and the migration of recoiling top quarks

between hemispheres. Thus it is a combination of real and virtual effects, which is of relative

10For a related quantity, the asymmetry when there is an extra jet with pT > 20 GeV, a negative value

has indeed been reported [4].
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order αS, because the difference of Sudakov factors is of that order while the forward and

backward migration probabilities are pure numbers, modulo higher-order corrections, with

magnitudes that depend on how the event generator treats recoils. The fact that recoil

strategies based on colour flow produce inclusive asymmetries, similar to the full fixed-order

one, suggests that the asymmetry can be regarded as arising in this way. Such a viewpoint

could serve as a guide towards the more correct treatment of recoils, and conversely as an

indication of the possible effects of higher orders beyond the range of explicit calculations.11

We believe that these findings have important implications for the interpretation of the

experimental data. At the very least, one needs to be aware that the available event gen-

erators can produce significant asymmetries where none were previously expected. Monte

Carlo estimates of corrections to asymmetries could be affected by this, particularly cor-

rections to “parton level”. Moreover, these corrections will likely be model-dependent as

documented by the detailed parton-shower comparison presented here. The results de-

pend on the way colour coherence is implemented in the various codes, which we have

summarized at the end section 4.2.

On a more theoretical level, the fact that these asymmetries are due to recoils points

to the importance of recoil effects, which are often neglected in estimates of higher orders

based on soft gluon resummation.

There are clearly many directions in which the studies presented here could be ex-

tended. The effects of asymmetries produced or enhanced by parton showering in gen-

erators that match to an NLO calculation, such as MC@NLO and POWHEG, need to be

assessed. Similarly for schemes that match to LO multi-parton matrix elements. Analo-

gous effects will also be present in the tt̄ charge asymmetry, currently being investigated

at the LHC, and in other processes where the colour flow of the primary process affects

parton showering.
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A Additional SHERPA CSSHOWER studies

Migration tests. In the left part of figure 11 the radiation imbalance between “fwd” and

“bwd” initial dipole configurations, seen in figure 8, is clearly documented by the respective

predictions for the pT distribution of the tt̄ pair. The LO configurations emerging from the

11Progress has been reported in the literature, see for example [7, 12, 50].
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Figure 11. (Left) SHERPA CSSHOWER predictions for the pT,tt̄ distribution using different LO

generation and shower modes. Dashed lines correspond to results taken from one-emission (“1 em”)

showers, while solid lines depict those after complete showering. Blue and green lines show the

outcomes under constrained LO tt̄ phase-space generation, to the forward (“fwd”, ∆ỹ > 0) and

backward region, respectively. (Right) SHERPA CSSHOWER results for AFB(pT,tt̄) obtained under

scale choice variations (m⊥,t-like, i.e. default versus mt) combined with simultaneous variation of

µR and µF, which was also applied to the parton showering.

Generated ∆ỹ Inclusive pT,tt̄/GeV < 50 pT,tt̄/GeV > 50

phase space rfwd [%] ε(cut) [%] r
(cut)
fwd [%] r

(cut)
fwd [%]

< 0 5.9 83.6 3.7 16.7

[−0.4, 0] 14.7 87.8 10.2 46.8

[−∞,∞] 52.7 88.0 54.1 42.7

[0, 0.4] 98.2 90.6 98.5 95.2

> 0 99.2 92.4 99.3 97.7

Table 2. Forward (∆y > 0) cross section percentages, r
(cut)
fwd , according to SHERPA’s CSSHOWER,

where r
(cut)
fwd = σ(cut)

⌋
∆y>0

/
σ(cut). The LO cross section σ is 4.94 pb, dropping to 0.955 pb under

the influence of the rapidity-difference generation cuts 0 ≤ ±∆ỹ ≤ 0.4 applied to LO tt̄ hadropro-

duction. For the low-pT region, pT,tt̄ < 50 GeV, the cut efficiencies are stated explicitly.

“fwd” (∆ỹ > 0) phase space generate a more steeply falling pT spectrum with respect to

that produced by the “bwd” (∆ỹ < 0) generated dipoles. The turn-over already appears

at pT,tt̄ ∼ 10 GeV, slightly below the turn-over found in AFB(pT,tt̄), cf. figures 9 (bottom)

and 11 (right). The upward shift is a result of the migration in ∆y.

Another way to express the results of figure 8 uses the after-showering, forward (∆y >

0) cross section fractions, which we define as r
(cut)
fwd = σ(cut)

⌋
∆y>0

/
σ(cut). Table 2 shows

them for different before-showering, tt̄ rapidity-difference regions, listed in ascending order

of rfwd. This is to summarize, on a more quantitative level, all earlier findings: consider-

ably larger migration in − → + than opposite direction (rows 1, 2 versus 4, 5); a factor
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∼ 3 increased migration in both directions for harder emissions (pT,tt̄ > 50 GeV); milder

migration in the low-pT with respect to the high-pT region. The increasing pT -veto effi-

ciencies reflect once more the radiation imbalance between forward and backward phase

spaces.12 Focusing on the near-transition regions (rows 2 and 4), we observe an enhanced

migration activity with respect to that found for both hemispheres (rows 1 and 5). This

nicely confirms the locality assumption, ∆y = ∆ỹ + ε.

Scale variations. We have checked the scale dependence of the SHERPA CSSHOWER pre-

dictions, which we illustrate for AFB(pT,tt̄) in the right panel of figure 11. The impact of

using the default, m⊥,t-like scale choice (m2
⊥,t = m2

t + p2
T,t) versus a fixed mt scale, and

varying the renormalization and factorization scales simultaneously in each case by factors

of 2, is seen to be of the order of ±20% at intermediate pT,tt̄. This order of magnitude is

consistent with that expected for a leading-order quantity, from variation of the scales and

PDFs in the matrix element and parton showers, and is generally less than the variation

due to different ways of treating recoils, or assessing the pT,tt̄ distributions themselves.
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[40] S. Höche, S. Schumann and F. Siegert, Hard photon production and matrix-element

parton-shower merging, Phys. Rev. D 81 (2010) 034026 [arXiv:0912.3501] [INSPIRE].
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