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2.2 Coupling to an off-shell vector multiplet 6

2.3 Elimination of auxiliary fields 7

3 An alternative off-shell formulation 9

4 Inclusion of the RµνabR
µνab invariant 13

4.1 Construction of the RµνabR
µνab invariant 13

4.2 The total gauged R+R2 supergravity lagrangian 16

5 Vacuum solutions 18

5.1 Bosonic field equations 18

5.2 Vacuum solutions without fluxes 21

5.3 Vacuum solutions with 2-form flux 22

5.4 Vacuum solutions with 3-form flux 23

5.5 Spectrum in Minkowski spacetime 24

6 Conclusions 25

1 Introduction

Higher-order curvature terms in supergravity theories are of considerable importance for

different reasons. They can be considered as higher-order correction terms (in α′) to an

effective supergravity Lagrangian of a (compactified) string theory (see, e.g., [1]). These

Lagrangians are supersymmetric only order by order in the perturbation parameter α′. On

the other hand off-shell formulations for different curvature squared invariants in 4, 5 and

6 dimensions have been constructed in [2–7]. These invariants, added to a pure off-shell

supergravity theory, are exactly supersymmetric and can be considered in their own right.

The off-shell nature of these theories implies that they contain auxiliary fields. It is well-

known that, when adding higher derivative terms to the Lagrangian, the auxiliary fields

become propagating. Hence, the elimination of these auxiliary fields becomes much harder

since their field equations are not algebraic anymore. Assuming that the dimensionful

parameter in front of the higher derivative part of the Lagrangian is very small, one can

solve the auxiliary field equations perturbatively and eliminate these fields order by order

in the small parameter. It remains an open question if and how the on-shell Lagrangian
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obtained in this way is related to the compactified string Lagrangian, which does not

contain any auxiliary fields to begin with.1

Theories containing higher-order curvature terms can provide corrections to black

hole entropies [9–11] and can source higher-order effects in the AdS/CFT correspon-

dence [12, 13]. When considering these theories as toy models on their own they can

be compactified to lower dimensions. A particular case to consider is the compactification

to three dimensions [8]. A particular feature of three dimensions is that D = 3 gravitons

are non-propagating when only considering 2-derivative Lagrangians. Instead, the addition

of higher-derivative terms can turn these non-propagating modes into propagating massive

graviton modes, see, e.g., [14] and references therein. These theories can then be regarded

as simple toy models to study quantum gravity.

In this paper we study higher-order corrections to a six-dimensional (1, 0) supersym-

metric U(1)R gauged Einstein-Maxwell supergravity theory, usually referred to as the

Salam-Sezgin model [15], which is a special case of a Sp(n)×Sp(1)R gauged matter-coupled

supergravity theory that was first obtained in [16]. We shall refer to this more general case

as 6D chiral gauged supergravity as well. An intriguing feature of the Salam-Sezgin model

is that it allows a compactification over S2 to a four-dimensional Minkowski spacetime

while retaining half of the supersymmetry [15]. One of the purposes of this work is to

investigate whether this feature survives after the addition of higher-order derivative cor-

rections. To facilitate the addition of such higher-order corrections to the model we will

first construct its off-shell formulation. It turns out that this is only possible for the dual

formulation of the model where the 2-form potential B̃ has been replaced by a dual 2-form

potential B [17, 18]. This has the effect that the curvature of the original 2-form potential

no longer contains a Maxwell-Chern-Simons term, but that instead a term of the form

B ∧ F ∧ F , where F is the Maxwell field strength, appears in the Lagrangian.

To construct the off-shell formulation we will make use of the superconformal tensor

calculus. As a first step we will review the construction of off-shell minimal D = 6 super-

gravity [19, 20]. In this construction one makes use of the dilaton Weyl multiplet (obtained

by coupling the regular Weyl multiplet to a tensor multiplet) coupled to a linear multiplet

as compensator. After fixing the conformal symmetries, this theory still has a remaining

U(1) R-symmetry which is gauged by an auxiliary vector Vµ. We will couple this ‘pure’

theory to an Abelian vector multiplet and show that after solving for the auxiliary Vµ, the

gauging proceeds via the vector Wµ of the Abelian vector multiplet.

After constructing the off-shell formulation of the gauged (1, 0) supergravity theory, we

investigate its deformation by an off-shell curvature squared invariant [2, 3]. To construct

this invariant it is essential to make use of the dilaton Weyl multiplet. We review the

construction of this higher-derivative term and add it to the off-shell (1, 0) supergravity

theory. Next, we study the gauging procedure in the presence of the Riemann tensor

squared invariant.

1The elimination of auxiliary fields in higher derivative theories has been discussed in [4]. A conjec-

tured duality between a supergravity Lagrangian with the auxiliary fields eliminated perturbatively and a

compactified string Lagrangian, without auxiliary fields, can be found in section 5 of [8].
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As a first step towards understanding the properties of the higher-derivative extension

of the model we perform a systematic search for vacuum solutions. We construct both su-

persymmetric as well as non-supersymmetric solutions. For one particular supersymmet-

ric solution, namely six-dimensional Minkowski spacetime, we calculate the fluctuations

around this background and show how these fluctuations fit into supermultiplets.

This paper is organized as follows. In section 2 we review the off-shell version of the

(1, 0) supergravity model [19, 20] and describe its gauging. In section 3, we introduce

an alternative off-shell formulation of the model in view of the fact that it is best suited

for the addition of the Riemann tensor squared invariant [2]. In section 4 we discuss the

construction of the Riemann tensor squared invariant and arrive at the total Lagrangian

for the higher-derivative extended 6D chiral gauged supergravity theory. In section 5, we

investigate the vacuum solutions of this model. We summarize and comment further on

our results and on some interesting open problems in the Conclusions section. Throughout

the paper we follow the notation given in appendix A of [20].

2 Off-shell gauged (1, 0) supergravity

In this section we present an off-shell version of the dual formulation [17, 18] of the Salam-

Sezgin model [15, 16]. In the first subsection we give the off-shell Lagrangian of pure

supergravity plus a tensor multiplet as constructed in [19, 20]. In the next subsection we

couple a vector multiplet to this theory and show that the resulting Einstein-Maxwell model

leads to a non-trivial U(1) gauge symmetry that is not gauged by an auxiliary vector field.

In the last subsection we show that after eliminating the auxiliary fields one ends up with a

Lagrangian in which the U(1) gauge symmetry is effectively gauged by the physical vector

of the vector multiplet. We furthermore show that, after dualizing the 2-form potential

into a dual 2-form potential, this Einstein-Maxwell model is nothing else than the original

Salam-Sezgin model.

2.1 Off-shell Poincaré action

The off-shell (1, 0) supergravity action has been constructed by means of a superconformal

tensor calculus in which the off-shell so-called dilaton Weyl multiplet with independent

fields

{ eµa , ψi
µ, Bµν ,V ij

µ , bµ , ψ
i , σ } (2.1)

and Weyl weights (−1,−1/2, 0, 0, 0, 5/2, 2), respectively, is coupled to an off-shell linear

multiplet consisting of the fields

{Eµνρσ , L
ij , ϕi } , (2.2)

with Weyl weights (0, 4, 9/2), respectively. The fields (ψi
µ, ψ

i, ϕi) are symplectic Majorana-

Weyl spinors labelled by a Sp(1)R doublet index, the fields B and E are two- and four-forms

with tensor gauge symmetries, respectively, bµ is the dilatation gauge field and Lij are three

real scalars. An appropriate set of gauge choices for obtaining off-shell supergravity with
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the Einstein-Hilbert term, namely L = eR+ · · · , is given by

Lij =
1√
2
δij , ϕi = 0 , bµ = 0 (2.3)

which fixes the dilatations, conformal boost and special supersymmetry transformations.

Moreover, the first of the gauge choices in (2.3) breaks Sp(1)R down to U(1)R. This set of

gauge choices leads to an off-shell multiplet containing 48+48 degrees of freedom described

by the fields [19] (see table 5 of [20])

eµ
a (15) , V ′

µ
ij (12) , Vµ (5) , Bµν (10) , σ (1) , Eµνρσ (5) ; ψµ

i (40) , ψi (8) . (2.4)

The field Vµ is the gauge field of the surviving U(1)R gauge symmetry. It arises in the

decomposition

V ij
µ = V ′ij

µ +
1

2
δijVµ , V ′ij

µ δij = 0 , (2.5)

where the traceless part V ′ij
µ has no gauge symmetry. A superconformal tensor calculus

method was employed in [19] where the bosonic action was given, and a procedure for

obtaining the full action was provided. This full action, including the quartic terms, was

constructed in [20]. The Lagrangian up to quartic fermion terms is given by [19, 20] 2

e−1LR

∣∣
L=1

=
1

2
R− 1

2
σ−2∂µσ∂

µσ − 1

24
σ−2Fµνρ(B)Fµνρ(B) + V ′

µijV ′µij

−1

4
EµEµ +

1√
2
EµVµ − 1

4
√
2
Eρψ̄

i
µγ

ρµνψj
νδij

−1

2
ψ̄µγ

µνρDν(ω)ψρ − 2σ−2ψ̄γµD′
µ(ω)ψ + σ−2ψ̄νγ

µγνψ ∂µσ (2.6)

− 1

48
σ−1Fµνρ(B)

(
ψ̄λγ[λγ

µνργτ ]ψ
τ + 4σ−1ψ̄λγ

µνργλψ − 4σ−2ψ̄γµνρψ
)
.

The indication L = 1 in the left-hand side indicates all the gauge choices (2.3). Here we

have defined the field strength for the 2-form potential and the dual of the field strength

for the 4-form potentials as follows3

Fµνρ(B) = 3∂[µBνρ] , (2.7)

Eµ =
1

24
e−1εµν1···ν5∂[ν1Eν2···ν5] . (2.8)

The U(1)R covariant derivatives Dµ(ω) and the full SU(2) covariant derivatives D′
µ(ω) are

given by

Dµ(ω)ψ
i
ν =

(
∂µ +

1

4
ωµ

abγab

)
ψi
ν −

1

2
Vµδ

ijψνj , (2.9)

D′
µ(ω)ψ

i =

(
∂µ +

1

4
ωµ

abγab

)
ψi − 1

2
Vµδ

ijψj + Vµ
′i
jψ

j , (2.10)

2We use the conventions of [20]. In particular, the spacetime signature is (− + + + ++), γa1···a6
=

εa1···a6
γ∗, γ∗ǫ = ǫ, ψ̄iψj = −ψ̄jψi and ψ̄iγµψj = ψ̄jγµψi. These conventions differ from those in [19] in

using signature (− + . . .+) rather than the Pauli convention (+ + . . .+), in rescaling Vi
µj by a factor of

−1/2, and the minus sign in the definition of the Ricci tensor. The signature change merely results in

rescaling εµ1...µ6 by a factor of i.
3Note that the definition of Eµ here is purely bosonic, and it differs from the definition used in [19, 20],

where it is a superconformal covariant expression with fermionic bilinear terms.
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where ωµab is the standard torsion-free connection. Note that the symmetric traceless

field V ′
µ
ij , occurring in the decomposition (2.5), is absent in the covariant derivative of the

gravitino [20]. This is a consequence of having broken the SU(2) symmetry present in the

dilaton Weyl multiplet by the gauge choices (2.3). In the above formula, and throughout the

paper the spin connection ωµab is the standard one associated with the Christoffel symbol,

and as such, it does not depend on fermionic or bosonic torsion. The supersymmetry

transformations, up to cubic fermion terms, are obtained from section 2 of [20]:

δeµ
a =

1

2
ǭγaψµ ,

δψi
µ = Dµ(ω)ǫ

i +
1

48
σ−1γ · F (B)γµǫ

i − V ′ij
µ ǫj + γµη

i ,

δBµν = −σǭγ[µψν] − ǭγµνψ ,

δψi =
1

48
γ · F (B)ǫi +

1

4
/∂σǫi − σηi ,

δσ = ǭψ , (2.11)

δEµνρσ = 2
√
2ψ̄[µ

iγνρσ]ǫ
jδij ,

δV ij
µ =

1

2
ǭ(iγνRµν

j)(Q) +
1

8
σ−1ǭ(iγν

(
F[µ

ab(B)γabψ
j)
ν]

)
+

1

24
σ−1ǭ(iγ · F (B)ψj)

µ

+
1

2
σ−1ǭ(iγµ /D

′
(ω)ψj) − 1

8
σ−1ǭ(iγµγ

ρ/∂σψρ
j) − 1

48
σ−2ǭ(iγµγ · F (B)ψj) + 2η̄(iψj)

µ ,

where Dµ(ω)ǫ
i is defined as in (2.9), Rµν

i(Q) is the gravitino curvature and ηi is the

effective contribution from the S-supersymmetry in the superconformal algebra:

Dµ(ω)ǫ
i =

(
∂µ +

1

4
ωµ

abγab

)
ǫi − 1

2
Vµδ

ijǫj ,

Rµν
i(Q) = 2D[µ(ω)ψ

i
ν] − 2V ′ ij

[µ ψν]j , (2.12)

ηk =
1

4

(
γµVµ

′(i
lδ

j)lǫj −
1

2
√
2
Eµγ

µǫi
)
δik . (2.13)

The latter equation gives the compensating special supersymmetry transformation param-

eter in the gauge ϕi = 0, as can be read off from eq. (3.37) of [19]. Note that the U(1)R
part of V ij

µ has dropped out in this expression. The surviving U(1)R symmetry of the

Lagrangian LR is gauged by the auxiliary gauge field Vµ, which acts as follows4

δ(λ)Vµ = ∂µλ , δ(λ)ψµ
i =

1

2
δijλψµj , δ(λ)ψi =

1

2
δijλψj , (2.14)

with λ being the parameter of the gauged symmetry.

4The U(1)R is the subgroup of the full SU(2), under which the gravitino transforms as

δψµ
i = −λi

jψµ
j =

(

λ′ij +
1

2
λδij

)

ψµj ,

where λ′ij is traceless. A similar formula holds for ψi.
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2.2 Coupling to an off-shell vector multiplet

We now wish to introduce a gauge multiplet, whose vector is not auxiliary, to gauge the

U(1) R-symmetry. The present gauging by Vµ, discussed in the previous subsection, is

undesirable since Vµ has no standard kinetic term. In fact, we will show in subsection 2.3

that the gauge symmetry becomes trivial after solving the 4-form potential in terms of a

scalar field.

To obtain this non-trivial gauging we follow [19] and add to LR the kinetic terms for

an abelian vector multiplet LV. The multiplet consists of the fields (Wµ, Yij ,Ωi), being a

physical gauge field, an auxiliary SU(2) triplet, and a physical fermion. They transform

under dilatations with Weyl weights (0, 2, 3/2), respectively. We add the coupling gLVL

of the vector multiplet to the compensating linear multiplet. Prior to fixing any of the

conformal symmetries, these Lagrangians, up to quartic fermion terms, are given by [19]

e−1LV = σ
(
−1

4
Fµν(W )Fµν(W )− 2Ω̄γµD′

µ(ω)Ω + Y ijYij

)

− 1

16
e−1εµνρσλτBµνFρσ(W )Fλτ (W )− 4Ω̄iψjYij

+
1

2

(
σΩ̄γµγ · F (W )ψµ + 2Ω̄γ · F (W )ψ

)
+

1

12
Ω̄γ · F (B)Ω , (2.15)

e−1LVL = YijL
ij + 2Ω̄ϕ− Lijψ̄µiγ

µΩj +
1

2
WµE

µ , (2.16)

where D′
µ(ω)Ω

i is defined as in (2.10). This action has the full SU(2) symmetry.

The coupling of the vector multiplet to supergravity is then achieved by considering

the Lagrangian

L1 =
(
LR + LV + gLV L

)∣∣∣
L=1

, (2.17)

where as before ‘L = 1’ refers to the set of gauges given in (2.3). This formula, up to

quartic fermion terms, yields the result

e−1L1 =
1

2
R− 1

2
σ−2∂µσ∂

µσ +
1√
2
gδijYij −

1

24
σ−2Fµνρ(B)Fµνρ(B)

+V ′
µ
ijV ′µ

ij −
1

4
EµEµ +

1√
2
Eµ

(
Vµ +

1√
2
gWµ

)

+σY ijYij −
1

4
σFµν(W )Fµν(W )− 1

16
e−1εµνρσλτBµνFρσ(W )Fλτ (W )

−1

2
ψ̄ργ

µνρDµ(ω)ψν − 2σ−2ψ̄γµD′
µ(ω)ψ + σ−2ψ̄νγ

µγνψ∂µσ

− 1

48
σ−1Fµνρ(B)

(
ψ̄λγ[λγ

µνργτ ]ψ
τ + 4σ−1ψ̄λγ

µνργλψ − 4σ−2ψ̄γµνρψ
)

− 1

4
√
2
Eρψ

i
µγ

ρµνψj
νδij −

1√
2
gδijΩ̄iγ

µψµj − 2σΩ̄γµD′
µ(ω)Ω− 4Y ijΩ̄iψj

+
1

2
Fµν(W )

(
σΩ̄γλγµνψλ + 2Ω̄γµνψ

)
+

1

12
Fµνρ(B)Ω̄γµνρΩ . (2.18)

The action corresponding to the Lagrangian L1 is invariant under the supersymmetry trans-

formations (2.11) supplemented by the supersymmetry transformations of the components

– 6 –



J
H
E
P
0
7
(
2
0
1
2
)
0
1
1

of the off-shell vector multiplet. The transformations of the latter are given up to cubic

fermion terms by [19]

δWµ = −ǭγµΩ ,

δΩi =
1

8
γ · F (W )ǫi − 1

2
Y ijǫj ,

δY ij = −1

2
ǭiγµ

(
D′

µ(ω)Ω
j − 1

8
γ · F (W )ψj

µ +
1

2
Y jkψµk

)
+ η̄iΩj + (i↔ j) , (2.19)

where η is as defined in (2.13). The Lagrangian L1 also has a manifest U(1)R × U(1)

symmetry with transformations parametrized by λ and η

δVµ = ∂µλ , δWµ = ∂µη,

δψi
µ =

1

2
λδijψµj , δψi =

1

2
λδijψµj , δΩi =

1

2
λδijΩj , (2.20)

where (λ , η) are the parameters of the
(
U(1)R ,U(1)

)
symmetry, respectively.

2.3 Elimination of auxiliary fields

We consider Lagrangian L1 given in (2.18), and begin by writing down the field equations

for the auxiliary fields Yij ,V ′ij
µ ,Vµ, Eµνρσ:

0 = σYij +
1

2
√
2
gδij − 2Ω̄(iψj) , (2.21)

0 = V ′ij
µ +

(
σ−2ψ̄iγµψ

j + σΩ̄iγµΩ
j − trace

)
, (2.22)

0 = Eµ +
√
2δij

(
1

4
ψ̄νiγ

µνρψρj − σ−2ψ̄iγ
µψj − σΩ̄iγ

µΩj

)
, (2.23)

0 = ελτρσµν∂µ

(
Eν −

√
2Vν − gWν +

1

2
√
2
ψ̄αiγναβψ

βjδij

)
. (2.24)

The elimination of Yij in (2.18) by means of (2.21) gives a positive definite potential 1
4g

2σ−1

and the elimination of V ′ij
µ by means of (2.22) gives only quartic fermion terms in the action.

Next, (2.24) implies that locally we can write

Eµ −
√
2Vµ − gWµ +

1

2
√
2
ψ̄νiγµνρψ

ρjδij = ∂µφ , (2.25)

for some scalar field φ transforming under the U(1)R ×U(1) transformations (2.20) as

δφ = −gη −
√
2λ . (2.26)

The terms in (2.25) can be rearranged to write

Eµ = Dµφ− 1

2
√
2
ψ̄νiγµνρψ

ρj δij , (2.27)

with the covariant derivative of the scalar field defined as

Dµφ = ∂µφ+
√
2Vµ + gWµ . (2.28)
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Using (2.27) to eliminate Eµ in the Lagrangian (2.18) amounts to dualization of the 4-form

potential Eµνρσ related to Eµ as in (2.8).5

The shift symmetry (2.26) can be used to eliminate the scalar field φ, by setting it to

a constant φ0. This in turn implies a compensating λ = −gη/
√
2 transformation, leading

to an unbroken U(1) symmetry. Eliminating φ in this way, (2.23) and (2.25) imply

Vµ +
1√
2
gWµ =

(
σ−2ψ̄iγµψ

j + σΩ̄iγµΩ
j
)
δij , (2.29)

Using this equation and (2.23) in the terms involving Eµ in the action gives rise to only

quartic fermion terms. The use of (2.25) in the fermionic kinetic terms, however, has the

effect of replacing Vµ by −gWµ/
√
2, up to quartic fermion terms in the action. Thus,

altogether, the elimination of all the auxiliary fields yields, up to quartic fermion terms,

the following Lagrangian:

e−1LNS =
1

2
R− 1

2
σ−2∂µσ∂

µσ − 1

4
g2σ−1 − 1

24
σ−2Fµνρ(B)Fµνρ(B)

−1

4
σFµν(W )Fµν(W ) +

1

24
e−1εµνρσλτFµνρ(B)Fλτ (W )Wσ

−1

2
ψ̄ργ

µνρDµψν − 2σ−2ψ̄γµDµψ − 2σΩ̄γµDµΩ

+σ−2ψ̄νγ
µγνψ∂µσ +

g

2
√
2
δij
(
ψ̄µiγ

µΩj + 4σ−1Ω̄iψj

)

+
1

2
Fµν(W )

(
σΩ̄γργµνψρ + 2Ω̄γµνψ

)
+

1

12
Fµνρ(B)Ω̄γµνρΩ (2.30)

− 1

48
σ−1Fµνρ(B)

(
ψ̄λγ[λγ

µνργτ ]ψ
τ + 4σ−1ψ̄λγ

µνργλψ − 4σ−2ψ̄γµνρψ
)
,

where

Dµψ
i
ν =

(
∂µ +

1

4
ωµ

abγab

)
ψi
ν +

1

2
√
2
gWµδ

ijψνj ,

Dµψ
i =

(
∂µ +

1

4
ωµ

abγab

)
ψi +

1

2
√
2
gWµδ

ijψj ,

DµΩ
i =

(
∂µ +

1

4
ωµ

abγab

)
Ωi +

1

2
√
2
gWµδ

ijΩj . (2.31)

This Lagrangian has the on-shell supersymmetry given, up to cubic fermion terms, by the

transformation rules for (eaµ, ψ
i
µ, Bµν , ψi, σ) in (2.11), and for (Wµ,Ω

i) in (2.19), with the

replacements

Y ij → − 1

2
√
2
gσ−1δij , Vµ → − 1√

2
gWµ , V ′ij

µ → 0 , ηi → 0 . (2.32)

The last substitution is due to the fact that the elimination of V ′ij
µ and Eµ in (2.13) gives rise

to quadratic fermion terms only. These results agree with the Lagrangian obtained in [17]

5The same result is obtained by adding a total derivative Lagrange multiplier term eEµ∂µφ to the

Lagrangian (2.18) and integrating over Eµ.
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by direct application of the Noether procedure based on the on-shell closed supersymmetry

transformations.

A dual formulation in which the field equation and Bianchi identity for the 2-form

potential are interchanged is easily obtained by adding a Lagrange multiplier term

∆L =
1

24
εµνρσλτFµνρ(B)∂σB̃λτ . (2.33)

Treating Fµνρ(B) as an independent field in L + ∆L, its field equation can be used back

in the action, yielding

e−1LSS =
1

2
R− 1

2
σ−2∂aσ∂

aσ − 1

4
g2σ−1 − 1

24
σ2GµνρG

µνρ − 1

4
σFµν(W )Fµν(W )

−1

2
ψ̄ργ

µνρDµψν − 2σ−2ψ̄γµDµψ − 2σΩ̄γµDµΩ

+σ−2ψ̄νγ
µγνψ∂µσ +

g

2
√
2
δij
(
ψ̄µiγ

µΩj + 4σ−1Ω̄iψj

)

+
1

2
Fµν(W )

(
σΩ̄γργµνψρ + 2Ω̄γµνψ

)
− 1

2
σ2GµνρΩ̄γ

µνρΩ

+
1

8
σGµνρ

(
ψ̄λγ[λγ

µνργτ ]ψ
τ − 4σ−1ψ̄λγ

µνργλψ − 4σ−2ψ̄γµνρψ
)
, (2.34)

where

Gµνρ = 3∂[µB̃νρ] + 3F[µν(W )Wρ] . (2.35)

This Lagrangian has the on-shell supersymmetry given, up to cubic fermion terms, by the

transformation rules for (eaµ, ψ
i
µ, B̃µν , ψi, σ) in (2.11), and for (Wµ,Ω

i) in (2.19), with the

replacements

Y ij → − 1

2
√
2
gσ−1δij , Vµ → − 1√

2
gWµ , V ′ij

µ → 0 ,

Bµν → B̃µν , Fµνρ(B) → 1

3!
σ2eεµνρσλτG

σλτ , ηi → 0 . (2.36)

These results agree with [15–17], after taking into account the fact that some of the fermions

are to be redefined by scaling them with a suitable power of the scalar field σ.

3 An alternative off-shell formulation

Starting from a superconformal coupling of the dilaton Weyl multiplet to the compensating

linear multiplet, we made the set of gauge choices (2.3) which led to an off-shell Poincaré

supergravity with field content (2.4). If we do not insist on the canonical Einstein-Hilbert

term in the action, there exists a natural alternative set of gauge choices given by

σ = 1 , Lij =
1√
2
δijL , ψi = 0 , bµ = 0 (3.1)

which fix the dilatations, conformal boost and special supersymmetry, and lead to an

alternative off-shell Poincaré multiplet consisting of the fields

eµ
a (15) , V ′

µ
ij (12) , Vµ (5) , Bµν (10) , L (1) , Eµνρσ (5) ; ψµ

i (40) , ϕi (8) . (3.2)
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Compared to the previous multiplet given in (2.4) σ and ψi are replaced by L and ϕi, and

therefore this multiplet again has 48+48 off-shell degrees of freedom. It turns out that this

formulation of the off-shell Poincaré multiplet is very convenient in the construction of the

only known off-shell higher derivative invariant in D = 6, which is a supersymmetric com-

pletion of the Riemann tensor squared [2]. What makes the gauge choice (3.1) very useful

in this construction is that it furnishes a map between the off-shell supersymmetry trans-

formations of the Yang-Mills and Poincaré multiplets. We shall review this construction

in the next section. Here we shall focus on coupling a vector multiplet to this alternative

Poincaré supermultiplet. This amounts to seeking an expression for L = LR +LV + gLV L

in the gauge (3.1).

Starting from (2.15) and (2.16), it is straightforward to obtain LV and gLV L in the

gauge (3.1). To construct the Einstein-Hilbert Lagrangian in this gauge, on the other

hand, we first restore superconformal invariance6 by performing suitable field redefinitions

in (2.6). This is achieved by replacing the fields that transform under dilatations and

special supersymmetry by

ẽµ
a = L1/4eµ

a ,

ψ̃i
µ = L1/8

(
ψi
µ − 1

2
√
2
L−1δijγµϕj

)
,

Ṽµ
ij = Vµ

ij − 1√
2
L−1δk(iϕ̄kψµ

j) +
1

8
L−2δliδjkϕ̄lγµϕk ,

σ̃ = L−1/2σ ,

ψ̃i = L−5/8

(
ψi +

1

2
√
2
L−1σδijϕj

)
,

Ẽa = L−5/4Ea ,

ǫ̃i = L1/8ǫi , (3.3)

which are invariant under dilatations and special supersymmetry, as can be checked by

using the transformation rules given in [19]. Next, we impose the gauge choices (3.1).

Thus, we construct the Lagrangian

L2 =
(
LR + LV + gLV L

)∣∣∣
σ=1

, (3.4)

where LR is the Lagrangian given in (2.6) with the field redefinitions (3.3) performed, such

that the superconformal invariance is restored, and σ = 1 refers to all the gauge choices

of (3.1). A summary of the different gauge conditions and what parts of the superconformal

Lagrangian they affect can be found in table 1.

6To be precise, we restore superconformal invariance partially since we do not restore the K-symmetry.
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Gauge choices LR (L,ϕ, σ, ψ) LR2 (σ, ψ) LV (σ, ψ) LVL (L,ϕ)

L = 1, ϕi = 0 breaks SC SC SC breaks SC

σ = 1, ψi = 0 breaks SC breaks SC breaks SC SC

Table 1. This table shows which gauge conditions leave which parts of the total Lagrangian

superconformal (SC) invariant and which parts not. In the top row we have indicated on which

fields the different parts of the superconformal Lagrangian depend.

Formula (3.4), up to quartic fermion terms, gives rise to the following expression:

e−1L2 =
1

2
LR+

1

2
L−1∂µL∂

µL+
1√
2
gLδijYij −

1

24
LFµνρ(B)Fµνρ(B)

+LV ′
µ
ijV ′µ

ij −
1

4
L−1EµEµ +

1√
2
Eµ

(
Vµ +

1√
2
gWµ

)

+Y ijYij −
1

4
Fµν(W )Fµν(W )− 1

16
e−1εµνρσλτBµνFρσ(W )Fλτ (W )

−1

2
Lψ̄ργ

µνρDµ(ω)ψν −
√
2ϕ̄iγ

µνDµ(ω)ψνjδ
ij + L−1ϕ̄ /D

′
(ω)ϕ− 2Ω̄ /D

′
(ω)Ω

−1

2

(
Lψ̄µγνψν +

√
2δijψ̄

i
νγ

µγνϕj
)
L−1∂µL− 1√

2
gLΩ̄iγ

µψµjδ
ij

+2gΩ̄ϕ+
1

2
Ω̄γµγ · F (W )ψµ +

1

12
Ω̄γ · F (B)Ω +

1

24
L−1ϕ̄γ · F (B)ϕ

− 1

48
LFµνρ(B)

(
ψ̄λγ[λγ

µνργτ ]ψ
τ + 2

√
2L−1ψ̄λiγ

λµνρϕjδ
ij
)

− 1

4
√
2
Eρ

(
ψ̄i
µγ

ρµνψj
νδij − 2

√
2L−1ψ̄σγ

ργσϕ+ 2L−2ϕ̄iγ
ρϕjδ

ij
)

+
1

2
V ′µij

(
2
√
2ϕ̄kψµiδjk − 3L−1ϕ̄iγµϕj

)
, (3.5)

where Eµ is not an independent field but rather the dual of the field strength for the four-

form potential, see (2.8), the derivative Dµ(ω)ψν is U(1) covariant as in (2.9), and the

derivatives D′
µ(ω)ϕ and D′

µ(ω)Ω are SU(2) covariant as in (2.10).

The off-shell supersymmetry transformations for this Lagrangian are to be obtained

from those of the dilaton Weyl multiplet upon fixing the gauges (3.1). It is important to

note that the field redefinitions (3.3) are not to be performed in this process since these

transformations are independent of the linear multiplet fields that were used to impose the

gauge choices (2.3). In obtaining these transformations, the compensating transformations

required to maintain the gauge (3.1) must also be incorporated. These are a compensating

special supersymmetry transformation and a compensating (traceless) SU(2) transforma-

tion with parameters given by (up to cubic fermion terms)

ηi =
1

48
γ · F (B)ǫi ,

λ′ij = − 1√
2L

(
S′k(iδj)lǫkl

)
, (3.6)
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where7

S′ij ≡ ε̄(iϕj) − 1

2
δij ε̄kϕℓδkℓ (3.7)

is the supersymmetry transformation of the traceless part of Lij . Note that the prime

stands for ‘traceless’, i.e. S′ijδij = 0. These compensating transformations can be obtained

from the transformation rules for ψi and Lij given in [19].

Thus, using the supersymmetry transformation rules for the dilaton Weyl multiplet

provided in [19, 20], the gauge conditions (3.1) and the compensating transformations with

parameters given in (3.6), we find that the supersymmetry transformations of the off-shell

Poincaré multiplet, up to cubic fermion terms, take the form

δeµ
a =

1

2
ǭγaψµ ,

δψµ
i = (∂µ +

1

4
ωµabγ

ab)ǫi + Vµ
i
jǫ

j +
1

8
Fµνρ(B)γνρǫi ,

δBµν = −ǭγ[µψν] ,

δϕi =
1

2
√
2
γµδij∂µLǫj −

1

4
γµEµǫ

i +
1√
2
γµV ′(i

µ kδ
j)kLǫj −

1

12
√
2
Lδijγ · F (B)ǫj ,

δL =
1√
2
ǭiϕjδij ,

δEµνρσ = Lǭiγ[µνρψ
j
σ]δij −

1

2
√
2
ǭγµνρσϕ ,

δVµ =
1

2
ǭiγνR̂µν

j(Q)δij +
1

12
ǭiγ · F (B)ψµ

jδij − 2λ′ikV ′
µ
jkδij ,

δV ′
µ
ij =

1

2
ǭ(iγνR̂µν

j)(Q) +
1

12
ǭ(iγ · F (B)ψµ

j) − 1

4
ǭkγνR̂µν

ℓ(Q)δkℓδ
ij

− 1

24
ǭkγ · F (B)ψµ

ℓδkℓδ
ij + ∂µλ

′ij − λ′(ikδ
j)kVµ , (3.8)

where

R̂µν
i(Q) = 2D[µ(ω)ψ

i
ν] − 2V ′ ij

[µ ψν]j +
1

4
γabψ[νFµ]ab . (3.9)

The supersymmetry transformations of the off-shell vector multiplet are (up to cubic

fermion terms)

δWµ = −ǭγµΩ ,

δΩi =
1

8
γµνFµνǫ

i − 1

2
Y ijǫj ,

δY ij = −ǭ(iγµD′
µ(ω)Ω

j) +
1

8
ǭ(iγµγ · F (B)ψj)

µ − 1

24
ǭ(iγ · F (B)Ωj)

−1

2
Y k(iǭj)γµψµk − 2λ′(ikY

j)k . (3.10)

To keep the notation relatively simple we did not use the explicit expression for λ′ij in the

above transformation rules. Remember that it is given in (3.6).

7It is instructive to write out the λ′ parameter in components:

λ′11 = −λ′22 =
1√
2L

S′21 , λ′12 = − 1√
2L

S′11 .
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Considering the Lagrangian (3.5) by itself, that is, without any higher derivative exten-

sion, all the auxiliary fields, namely (V ij
µ , Eµνρσ, Y

ij) can be eliminated, thereby arriving at

the on-shell formulation. Computations similar to those described in detail in section 2.3

imply that the on-shell Lagrangian, up to quartic fermion terms, is obtained from (3.5) by

the following substitutions:

Y ij → − 1

2
√
2
gδijL , Vµ → − 1√

2
gWµ , V ′ij

µ → 0 , Eµ → 0 . (3.11)

The on-shell supersymmetry transformations, up to cubic fermion terms, are obtained

from (3.8) and (3.10) by making these substitutions, and dropping the transformation

rules for the auxiliary fields (Eµνρσ,V ij
µ , Y ij).

4 Inclusion of the RµνabR
µνab invariant

In this section we add an off-shell supersymmetric Riemann tensor squared term to the

Lagrangian L2, defined in (3.4), which we constructed in the gauge (3.1). This gauge gave

rise to an alternative off-shell formulation of the Poincaré multiplet. In the first subsection

we begin with a review of the construction of the Riemann squared invariant [2]. In

the second subsection we consider the total Lagrangian and briefly discuss the gauging

procedure and the elimination of auxiliary fields.

4.1 Construction of the RµνabR
µνab invariant

To begin with, we shall review a map between the Yang-Mills supermultiplet and a set of

fields in the alternative Poincaré multiplet discussed in the previous section. We follow the

discussion in [3]. This map can be used, together with an expression for the superconformal

action for the Yang-Mills multiplet given in [19], to write down a supersymmetric Riemann

tensor squared action. We will describe this in detail below.

In establishing the map between the Yang-Mills and Poincaré multiplets, it is important

to consider the full supersymmetry transformations, including the cubic fermion terms

which have been omitted so far. In particular, this means that we need to keep track of the

complete spin connection, containing the fermionic torsion terms. This is due to the fact

that, while the fermionic torsion gave rise to only quartic fermion terms in the Lagrangians

considered above, in the case of the Riemann tensor square invariant under consideration

in this section, the same fermionic torsion will contribute to terms that are bilinear in

the fermion terms. We shall show this explicitly below. In the following, we shall need

the (full) supersymmetry transformation rules only for the fields (eaµ, ψµ,V ij
µ , Bµν), and the

Yang-Mills multiplet fields (W I
µ ,Ω

I , Y ijI), where I labels the adjoint representation of the

Yang-Mills gauge group.

We begin with the supersymmetry transformation rules of (eaµ, ψµ,V ij
µ , Bµν) in the

gauge (3.1). Up to cubic fermions the transformation rules are already given in (3.8).

In this section we will, however, keep the complete SU(2) symmetry, i.e. we do not im-

pose Lij = 1√
2
Lδij . In this way we do not need to accommodate for the compensating
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SU(2) transformations proportional to λ′ in (3.8).8 The full version of the supersymmetry

transformations is given by [2]

δeµ
a =

1

2
ǭγaψµ ,

δψµ
i = ∂µǫ

i +
1

4
ω̂+µ

abγabǫ
i + Vµ

i
jǫ

j ≡ Dµ(ω̂+)ǫ
i + V ′ i

µ jǫ
j ,

δVµ
ij = −1

2
ǭ(iγλR̂λµ

j)(Q) +
1

12
ǭ(iγ · F̂ (B)ψµ

j) ,

δBµν = −ǭγ[µψν] , (4.1)

where the fermionic torsion and the different supercovariant objects are defined as

ω̂µ±
ab = ω̂µ

ab ± 1

2
F̂µ

ab(B) ,

ω̂µ
ab = 2eν[a∂[µeν]

b] − eρ[aeb]σeµ
c∂ρeσc +Kµ

ab ,

Kµ
ab =

1

4

(
2ψ̄µγ

[aψb] + ψ̄aγµψ
b
)
,

F̂µνρ(B) = 3∂[µBνρ] +
3

2
ψ̄[µγνψρ] ,

R̂µν
i(Q) = 2

(
∂[µ +

1

4
ω̂+[µ

abγab

)
ψν]

i + 2V[µ
i
jψν]

j . (4.2)

Next, we consider the following transformations [3]

δω̂−µ
ab = −1

2
ǭγµR̂

ab(Q) ,

δR̂abi(Q) =
1

4
γcdǫiR̂cd

ab(ω̂−)− F̂ abij(V)ǫj ,

δF̂ abij(V) = −1

2
ǭ(iγµD̂µR̂

abj)(Q) +
1

48
ǭ(iγ · F̂ (B)R̂abj)(Q) , (4.3)

where F̂µν
ij(V) and R̂µν

ab(ω̂−) are the supercovariant curvatures of Vµ
ij and ω̂−µ

ab, re-

spectively:

F̂µν
ij(V) = Fµν

ij(V)− ψ̄[µ
(iγρR̂ν]ρ

j)(Q)− 1

12
ψ̄[µ

(iγ · F̂ (B)ψν]
j) ,

R̂µν
ab(ω̂−) = Rµν

ab(ω̂−) + ψ̄[µγν]R̂
ab(Q) ,

D̂µR̂
abi(Q) = ∂µR̂

abi(Q) +
1

4
ω̂µ

cdγcdR̂
abi(Q) + Vµ

i
jR̂

abj(Q)

−1

4
γcdψµ

iR̂cd
ab(ω̂−) + F̂ abij(V)ψµj + 2ω̂−µ

[acR̂c
b]i(Q) . (4.4)

8In this section we only want to establish a map between the Poincaré multiplet and the Yang-Mills

multiplet and propose an R2-invariant based on the action for the Yang-Mills multiplet. Both actions are

invariant under the SU(2) R-symmetry. To prove the validity of this map, we need the full nonlinear SUSY

transformation rules. After we construct the action we can still impose the gauge Lij = 1√
2
Lδij . This will

not affect the R2-invariant. It modifies the supersymmetry transformation rules with SU(2) compensating

transformations, which leave the action separately invariant. The resulting transformations are those given

already in (3.8).
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We now compare the above transformation rules with those of the N = (1, 0), D = 6 vector

multiplet [19]

δWµ
I = −ǭγµΩI ,

δΩIi =
1

8
γ · F̂ I(W )ǫi − 1

2
Y Iijǫj ,

δY Iij = −ǭ(iγµD̂µΩ
j)I +

1

24
ǭ(iγ · F̂ (B)Ωj)I , (4.5)

where

F̂µν
I(W ) = Fµν

I(W ) + 2ψ̄[µγν]Ω
I ,

D̂µΩ
Ii = ∂µΩ

Ii +
1

4
ω̂µ

abγabΩ
Ii + Vµ

i
jΩ

Ij

−1

8
γ · F̂ I(W )ψµ

i +
1

2
Y I ijψµj − fKL

IWµ
KΩLi . (4.6)

We observe that the transformation rules (4.3) and (4.5) become identical by making the

following identifications:

(
−2ω̂−µ

ab,−R̂abi(Q),−2F̂ abij(V)
)
−→

(
Wµ

I ,ΩIi, Y Iij
)
. (4.7)

Using this observation we can now easily write down a supersymmetric R2-action using

the superconformal invariant exact action formula for the Yang-Mills multiplet constructed

in [19]. In the gauge (3.1) and up to quartic fermions, the Lagrangian becomes

e−1LYM

∣∣
σ=1

= −1

4
Fµν

I(W )FµνI(W )− 2Ω̄IγµD′
µ(ω)Ω

I + Y IijY I
ij +

1

12
Fµνρ(B)Ω̄IγµνρΩI

− 1

16
e−1εµνρσλτBµνF

I
ρσ(W )F I

λτ (W ) +
1

2
Fνρ

IΩ̄Iγµγνρψµ . (4.8)

Using the map (4.7) in this formula produces the result for the supersymmetrized Riemann

tensor squared action. In presenting the results up to quartic fermion terms, it is useful to

note the following simplification in the torsionful spin connection

ω̂µ−
ab = ωµ+

ab +
1

2
ψ̄aγµψ

b ,

ωµ±
ab ≡ ωµ

ab ± 1

2
Fµ

ab(B) , (4.9)

where ωµ
ab is the standard torsion-free connection. The map (4.7) applied to the action
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formula (4.8) then yields, up to quartic fermion terms, the result9

e−1LR2

∣∣
σ=1

= Rµν
ab(ω−)R

µν
ab(ω−)− 2F ab(V)Fab(V)− 4F ′abij(V)F ′

abij(V)

+
1

4
e−1εµνρσλτBµνRρσ

ab(ω−)Rλτ ab(ω−)

+2R̄+ab(Q)γµDµ(ω, ω−)R
ab
+ (Q)−Rνρ

ab(ω−)R̄+ab(Q)γµγνρψµ

−8F ′
µν

ij(V)
(
ψ̄µ
i γλR

λν
+j(Q) +

1

6
ψ̄µ
i γ · F (B)ψν

j

)

− 1

12
R̄ab

+ (Q)γ · F (B)R+ab(Q)

−1

2

[
Dµ(ω−,Γ+)R

µρab(ω−)− 2Fµν
ρ(B)Rµνab(ω−)

]
ψ̄aγρψb , (4.10)

where

Dµ(ω, ω−)R
abi
+ (Q) =

(
∂µ +

1

4
ωµ

cdγcd

)
Rabi

+ (Q)− 2ωµ−
c[aR+c

b]i(Q) + Vµ
i
jR

ab j
+ (Q) ,

R+µν
i(Q) = 2D[µ(ω+)ψ

i
ν] − 2V ′

[µ
ijψν]j , (4.11)

and the torsionful modification of the Christoffel symbol Γρ
µν± is defined as

Γρ
µν± ≡ Γρ

µν ±
1

2
Fµν

ρ(B) . (4.12)

This completes the construction of the supersymmetric R2-invariant.

4.2 The total gauged R+R2 supergravity lagrangian

We now want to discuss what the influence is of these R2-terms on the gauging procedure

described in section 2.2. The Lagrangian we consider is the following

Ltotal = L2 −
1

8M2
LR2

∣∣∣∣
σ=1

, (4.13)

with L2 given in (3.5) and LR2 given in (4.10) and with M an arbitrary mass parameter.

Recall that L2 has been obtained as a sum of off-shell supersymmetric Lagrangians LR,LV

and LV L and that LR2 is off-shell supersymmetric as well. Thus all four parts of the total

Lagrangian we consider are completely off-shell supersymmetric. So their sum, the total

Lagrangian, is still off-shell supersymmetric. In particular, the bosonic part of this total

Lagrangian, which will be the starting point of the next section, takes the form

e−1Ltot
bos =

1

2
LR+

1√
2
gLδijYij + Y ijYij +

1

2
L−1∂µL∂

µL− 1

24
LFµνρ(B)Fµνρ(B)

+2LZµZ
∗µ − 1

4
L−1EµE

µ +
1√
2
Eµ

(
Vµ +

1√
2
gWµ

)

−1

4
Fµν(W )Fµν(W )− 1

16
e−1εµνρσλτBµνFρσ(W )Fλτ (W )

− 1

8M2

[
Rµν

ab(ω−)R
µν

ab(ω−)− 2Fµν(V)Fµν(V)− 8Fµν(Z)F ∗
µν(Z)

+
1

4
e−1εµνρσλτBµνRρσ

ab(ω−)Rλτ ab(ω−)
]
, (4.14)

9To obtain (4.10) we used −LV. Note also that Fµν
ij(V) = 1

2
Fµν(V)δij + F ′

µν
ij(V) where Fµν(V) =

2∂[µVν] + 2V ′
µ
i
kV ′

ν
jk δij and F ′

µν
ij(V) = 2∂[µV ′

ν]
ij − 2δk(i V[µV ′ j)

ν] k
.
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where we have defined the complex vector fields

Zµ ≡ V ′11
µ + iV ′12

µ , Z∗
µ = V ′

µ11 − iV ′
µ12 = −V ′11

µ + iV ′12
µ , (4.15)

and field strengths

Fµν(V) = 2∂[µVν] − 4iZ[µZ
∗
ν] , Fµν(Z) = 2∂[µZν] − 2iV[µZν] . (4.16)

The part of the total Lagrangian containing the fermions is given in (3.5) and (4.10). None

of the auxiliary fields have been eliminated so far, and the Lagrangian still possesses the

U(1)R × U(1) symmetry. The field equations for the auxiliary fields Zµ and Vµ are not

algebraic anymore and therefore they become propagating. The auxiliary fields (Yij , Eµνρσ),

on the other hand, still have algebraic field equations. Their elimination, as well as the

breaking of U(1)R ×U(1) down to a single U(1) will be discussed in the next section.

At this point one may pursue two different lines of thought. The first is to consider

the theory as a toy model in its own right and consider M2 as an arbitrary (not necessarily

large) parameter of the theory. The other is to think of |M2| as being large compared

to a cut-off Λ in the momentum squared. In that case the theory is to be treated as an

effective field theory that describes phenomena with external momenta not exceeding
√
Λ.

Furthermore, the curvature-squared term is a correction term of order Λ/|M2|.10 In this

case we can compare the theory with an effective (up to curvature squared terms) string

theory Lagrangian compactified to 6 dimensions. In the next section we will only focus on

the first line of thought. Let us however briefly comment on the elimination of the Zµ and

Vµ. For Λ/|M2| ≪ 1, one particular consequence of eliminating the auxiliary fields up to

order Λ/|M2| is that

Vµ = − 1√
2

(
gWµ +

L−1

M2
∇ν

(
Fµν(V) + · · ·

)
= 0 , (4.17)

which, upon substitution back into the Lagrangian (4.14), and trivial elimination of the

other auxiliary fields, gives

e−1Ltot
bos =

1

2
LR− 1

4
g2L2 +

1

2
L−1∂µL∂

µL− 1

24
LFµνρ(B)Fµνρ(B)

−1

4

(
1− g2

2M2

)
Fµν(W )Fµν(W )− 1

16
e−1εµνρσλτBµνFρσ(W )Fλτ (W )

− 1

8M2

[
Rµν

ab(ω−)R
µν

ab(ω−) +
1

4
e−1εµνρσλτBµνRρσ

ab(ω−)Rλτ ab(ω−)
]
. (4.18)

We observe that g2 = 2M2 is a critical coupling at which the Maxwell kinetic term drops

out. However, this is a regime for large coupling constant, and as such it falls outside the

regime of perturbative validity. We shall nonetheless examine further what happens for

this coupling in the next section where we study the field equations in more detail. Another

property of this Lagrangian is that the dualization of the 2-form potential by adding the

10In this case, the ghosts expected to arise in the spectrum will have masses of order |M | ≫ Λ which can

be ignored in the effective theory valid up to the energy scale Λ.
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Lagrange multiplier term (2.33) and integrating over F (B), gives a dualized field strength

of the form (2.35) which now contains also a Lorentz Chern-Simons term.

In the Lagrangian (4.14) presented above, the Einstein-Hilbert term is not in a canon-

ical frame. The metric can be rescaled appropriately to obtain the canonical Einstein-

Hilbert action, still remaining in the formulation in terms of the off-shell Poincaré super-

multiplet displayed in (3.2). Alternatively, we can employ the off-shell Poincaré multiplet

that results from the gauge choices (2.3) by following the following procedure. Since the

Lagrangian L1 given in (2.18) is already formulated in the desired supermultiplet formula-

tion, we need to only construct LR2 in the same gauge. This can be done as follows. Firstly,

we restore the superconformal invariance (again modulo the conformal boosts which do not

affect the final result) in (4.10) by going over to hatted fields defined by

êµ
a = σ1/2eµ

a ,

ψ̂µ
i = σ1/4ψµ

i + σ−3/4γµψ
i ,

V̂µ
ij = Vµ

ij − 4σ−1ψ̄(iψµ
j) − 4σ−2ψ̄(iγµψ

j) ,

L̂ = σ−2L ,

ϕ̂i = σ−9/4
(
ϕi − 2

√
2σ−1Lδijψj

)
,

Ŷij = σ−1

(
Yij +

1

3
ψ̄µ
(iγµΩj)

)
,

Ω̂i = σ−3/4Ωi ,

ǫ̂i = σ1/4ǫi . (4.19)

Next, we impose the gauge conditions listed in (2.3) and add the result to (2.18) to obtain

the full R+R2 theory in this gauge. This straightforward computation will not be carried

out here since we shall be working in the gauge (3.1) which leads to the result (4.13) for

the total Lagrangian.

5 Vacuum solutions

The purpose of this section is to investigate the different supersymmetric and non-super-

symmetric vacuum solutions of the R2-extended Salam-Sezgin model discussed in the pre-

vious section. In the first subsection we present the bosonic field equations of this model.

In the following three subsections we investigate vacuum solutions with no fluxes, 2-form

fluxes and 3-form fluxes, respectively. In the last subsection we compute the spectrum of

the theory around six dimensional Minkowski spacetime.

5.1 Bosonic field equations

For the purpose of finding the vacuum solutions, it is convenient to eliminate the auxiliary

fields as much as possible. Prior to adding the Riemann tensor squared invariant, we

saw that the auxiliary fields (Eµνρσ,V ′ij
µ ,Vµ, Y

ij) can all be eliminated by using their field

equations. However, upon the addition of the Riemann tensor squared invariant, while we

can still eliminate (Y ij , Eµνρσ), we can no longer eliminate (V ′ij
µ ,Vµ) since they acquire
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kinetic terms. Thus, we shall proceed with the elimination of (Y ij , Eµνρσ) only. The

relation

Y ij = − 1

2
√
2
gLδij , (5.1)

readily follows from (3.5), while the Eµνρσ field equation gives

ελτρσµν∂µ

(
L−1Eν −

√
2Vν − gWν

)
= 0 . (5.2)

This implies that we can locally write

L−1Eµ −
√
2Vµ − gWµ = ∂µφ , (5.3)

for some scalar φ, which inherits the shift gauge symmetry transformations (2.26). This

symmetry is readily fixed by setting φ equal to a constant, thereby arriving at the field

equation

Eµ =
√
2L

(
Vµ +

1√
2
gWµ

)
. (5.4)

Taking into account (5.1) and (5.4), we find the following bosonic field equations for the

propagating fields in the theory (4.14):

LRµν = ∇µ∇νL− L−1∂µL∂νL+
1

4
g2gµνL

2 +
1

4
LFµρσ(B)Fν

ρσ(B)

−4LZ(µZ
∗
ν) −

1

2
L−1EµEν + Fµρ(W )Fν

ρ(W )

−1

4
gµνFρσ(W )F ρσ(W )− 1

8M2
Sµν , (5.5)

R = g2L+ 2L−1
�L− L−2∂µL∂

µL+
1

12
Fµνρ(B)Fµνρ(B)

−4ZµZ
∗µ − 1

2
L−2EµE

µ , (5.6)

∇ρ (LF
ρµν(B)) =

1

4
e−1εµνρσλτ

(
Fρσ(W )Fλτ (W ) +

1

2M2
R̃αβ

ρσR̃αβλτ

)

+
3

M2
∇α∇̃βR̃

[µνα]β +
3

M2
∇α

(
F− ρσ[α(B)R̃µν]

ρσ

)
, (5.7)

0 = ∇µF
µν(W ) +

1

2
gEν +

1

2
F̃ νρσ(B)Fρσ(W ) , (5.8)

0 = ∇νF
µν(V) + [2iFµν(Z)Z∗

ν + h.c.] +
1√
2
M2Eµ , (5.9)

0 = (∂µ − iVµ)F
µν(Z)− iF νρ(V)Zρ −M2LZν , (5.10)

where Eµ is the U(1) invariant vector field determined in terms of the vector fields Wµ

and Vµ as in (5.4). The fact that Eµ is divergence free follows from (5.8), and separately

from (5.9). We have also defined

Sµν ≡ 8Fµρ(V)Fν
ρ(V)− 2gµνFρσ(V)F ρσ(V)− 32Fρ(µ(Z)F

∗
ν)

ρ(Z)− 8gµνFρσ(Z)F
∗ρσ(Z)

−4R̃λτ
µρR̃λτν

ρ + gµνR̃λτρσR̃
λτρσ + 8∇α∇̃βR̃α(µν)β + 8∇α

(
R̃α(µ

ρσF−
ν)ρσ(B)

)

+4Fα
λ(µ(B)∇̃βR̃λ

ν)αβ − 4R̃λ(µ
αβFν)

λτ (B)F−
ταβ(B) , (5.11)
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where F±(B) = (F (B) ± F̃ (B))/2 with F̃µνρ = −1
6e

−1εµνρσλτFσλτ . We have simplified

the Einstein equation by using (5.4) and the L field equation (5.6). We have also used the

definitions

R̃α
βµν = ∂µΓ̃

α
νβ + · · · , Γ̃ρ

µν ≡ Γρ
+µν = Γρ

µν +
1

2
F ρ

µν(B) . (5.12)

Thus, we have

R̃αβ
µν = Rαβ

µν −∇[µFν]
αβ(B)− 1

2
Fα

λ[µ(B)F βλ
ν](B) . (5.13)

Given the vielbein postulate

∂µe
a
ν + ωµ±

abeνb − Γρ
∓µν e

a
ρ = 0 (5.14)

with ωµ±
ab and Γρ

±µν defined in (4.9) and (4.12), respectively, it follows that

Rµν
ab(ω−)e

λ
aeτb = Rλ

τµν(Γ+) ≡ R̃λ
τµν . (5.15)

The occurrence of covariant derivatives with and without bosonic torsion in the quantity

Sµν is due to the following manipulation:

δ

∫
eRµνab(ω−)R

µνab(ω−) = 4

∫
Rµν

ab(ω−)Dµ(ω−)δων−
ab + a term ∼ δ(egµρgνσ)

= 4

∫
Rµν

ab(ω−)

[
Dµ(ω−,Γ+)δων−

ab +
1

2
Fµν

ρ(B)δωρ−
ab

]
+ a term ∼ δ(egµρgνσ) .

(5.16)

A partial integration in the first term is then responsible for the occurrence of ∇̃ in the

expression for Sµν . Another useful variational formula takes the form

δ

∫
εµνρσλτBµνRρσ

ab(ω−)Rλτab(ω−) (5.17)

= εµνρσλτ
(∫

(δBµν)Rρσ
ab(ω−)Rλτab(ω−) + 4Bµν∂ρ

[
Rλτab(ω−)δωσ−

ab
])

.

The field equations for the abelian vector fields Wµ and Vµ have an intricate structure.

Suitable combinations of these fields describe a gauge field Xµ and a gauge invariant Proca

field Yµ given by

Xµ ≡ Vµ +
√
2g−1M2Wµ , Yµ ≡ Vµ +

g√
2
Wµ . (5.18)

The field equations (5.8) and (5.9) can then be written as

∇µX
µν =

M2

g2 − 2M2
F̃ νρσ(B)(Xρσ − Yρσ) , (5.19)

∇µY
µν +

1

2
(g2 − 2M2)LY ν =

g2

2(g2 − 2M2)
F̃ νρσ(B)(Xρσ − Yρσ) , (5.20)
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Spacetime n1 n2 n3

Mink4 × S2 0 1 1

dS4 × T 2 1 0 1/6

dS4 × S2 6/7 1/7 1/7

Mink3 × S3 0 1 1/3

dS3 × T 3 1 0 1/3

dS3 × S3 1/2 1/2 1/6

Table 2. Solutions of the form M1 ×M2 in the absence of fluxes. The numbers (n1, n2, n3) are

defined in (5.22).

for 2M2 − g2 6= 0, and Xµν , Yµν given by

Xµν = ∂µXν − ∂νXµ , Yµν = ∂µYν − ∂νYµ . (5.21)

In the special case thatM2 = g2/2, the left hand side of the field equations (5.19) and (5.20)

can no longer be diagonalized. As we saw earlier, this is a critical point at which the

coefficient of the kinetic term for the Maxwell vector field vanishes to lowest order in 1/M2

when the auxiliary vector field Vµ is eliminated to the same order.

5.2 Vacuum solutions without fluxes

If g 6= 0, the field equations do not admit a single constant curvature 6D spacetime solution

for any value of the constant curvature, with or without supersymmetry. In particular,

Minkowski spacetime is not a solution as can be readily seen from the equation R = g2L0,

where L = L0 is a non-vanishing constant and all other fields are set equal to zero. If

g2 = 0, on the other hand, setting L equal to a constant and all the other fields equal to

zero yields Minkowski6 as a supersymmetric solution.

Next, let the six dimensional spacetime be a direct product of constant curvature

spaces M1 ×M2, with dimensions d1 and d2. We find that solutions exist with

Rµνρσ =
n1

d1(d1 − 1)
g2L0 (gµρgνσ − gµσgνρ) , Rpqrs =

n2
d2(d2 − 1)

g2L0(gprgqs − gpsgqr) ,

L = L0 , M2 =
1

2
n3g

2 , (5.22)

with all the other fields vanishing. Here L0 is an arbitrary non-vanishing positive con-

stant, and the numbers (n1, n2, n3) are given in table 2. Note that here we are using the

coordinates (xµ, yr).

There are also solutions involving a product of three 2-dimensional constant curvature

spaces, whose curvature constants, allowed to vanish as well, are chosen properly. In all

these solutions, and those tabulated above, M2 is fixed in terms of g2, and all solutions are

non-supersymmetric.
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5.3 Vacuum solutions with 2-form flux

Next, let us consider a spacetime M4 × M2, which is a direct product of two constant

curvature spaces and turn on the fluxes produced by F (W ) and F (V) on M2. We set

L equal to a positive non-vanishing constant and the remaining fields equal to zero. In

particular, from (5.4) it follows that Vµ = −gWµ/
√
2. Using this information, we can make

the following Ansatz for the non-vanishing fields:

Rµν = 3a gµν , Rrs = b grs , L = L0 ,

Frs(W ) = c
√
g2 εrs , Frs(V) = − g√

2
c
√
g2 εrs , (5.23)

where a, b, c, L0 are constants, g2 = det grs, we have used the coordinates (xµ, yr) and

ε12 = ε12 = 1. Using this ansatz we find the following solutions. One of them is a direct

product of 4D Minkowski spacetime with a 2-sphere, given by

Mink4 × S2 : a = 0 , b =
1

2
g2L0 , c = ±gL0√

2
. (5.24)

Remarkably, this is precisely the supersymmetric Salam-Sezgin solution for any value of

M2! For this solution, the integrability condition for the Killing spinor equation δǫψµ̂ = 0 is
[
Rµ̂ν̂âb̂Γ

âb̂εij − 2Fµ̂ν̂(V)δij
]
ǫj = 0 , (5.25)

where µ̂, â = 0, 1, . . . , 5. For the solution (5.24) this gives11

i (σ3)A
B δikε

kj ǫBj = ∓ǫAi . (5.26)

The vanishing of δǫϕ
i follows trivially, and, using (5.24) and (5.26), it follows that δǫΩ

i = 0

as well. So the only independent condition on the Killing spinor is given by (5.26). It

implies N = 1 supersymmetry in Minkowski4. Indeed, using the Majorana spinors η1 and

η2 defined in footnote 11, the condition (5.26) turns into iγ∗η1 = ±η2.
The other solutions are given by

a = M2L0 , b =
1

2
(g2 − 12M2)L0 ,

c = ±L0

√
(g2 − 12M2)(g2 − 14M2)

2(g2 − 2M2)
, M2 6= 1

2
g2 , (5.27)

and therefore they describe the following spaces:

AdS4 × S2 : M2 < 0 , (5.28)

dS4 × S2 :
1

14
g2 > M2 > 0 , (5.29)

dS4 ×H2 :
1

2
g2 > M2 >

1

12
g2 , (5.30)

11We decompose the 6D Dirac matrices as Γµ = γµ⊗1,Γ4 = γ∗⊗σ1 and Γ5 = γ∗⊗σ2. Then Γ∗ = γ∗⊗σ3.

This defines 4-dimensional spinors ǫAi = γ∗(σ3)A
BǫBi, where the 4-dimensional spinor index is suppressed

and A,B = 1, 2 labels the 2-dimensional spinors on S2. The combinations η1 = ǫ11+iǫ22 and η2 = ǫ12− iǫ21
are 4-dimensional Majorana spinors.
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where H2 is a 2-hyperboloid. For the special case of M2 = g2/2, there exists the following

solution

Mink4 × S2 : a = 0 , b =
1

2
g2L0 , M2 =

1

2
g2 , (5.31)

for any value of c, which contains as a special case the solution (5.24) for c = ±gL0/
√
2,

and the first entry in table 2 for c = 0. Of all the solutions with the 2-flux turned on, the

only supersymmetric one is the one given in (5.24).

5.4 Vacuum solutions with 3-form flux

We shall take the 6D spacetime to be a direct product of two three-dimensional constant

curvature spaces M1 ×M2 with coordinates (xµ, yr), set L = L0, turn on the 3-form flux

and set the remaining fields equal to zero. Thus we have

Rµν
ρσ = 2a δρ[µδ

σ
ν], Rpq

rs = 2b δr[pδ
s
q], L = L0 ,

Fµνρ(B) = 2c1
√−g1εµνρ , Frst(B) = 2c2

√
g2εrst , (5.32)

where g1 = det gµν and g2 = det grs. From (5.13) we get

R̃µν
ρσ = 2(a+ c21) δ

ρ
[µδ

σ
ν] , R̃pq

rs = 2(b− c22) δ
r
[pδ

s
q] . (5.33)

If we set g2 = 0, then all the terms that depend on M2 vanish since the curvatures

defined above vanish due to the non-vanishing (parallelizing) torsion. This gives the known

AdS3 × S3 solution

AdS3 × S3 : c21 = c22 = −a = b . (5.34)

This solution preserves full supersymmetry. Indeed the integrability condition for the

existence of Killing spinors requires that the torsionful curvatures vanish, and this is the

case with the 3-form fluxes as given in (5.34). As a consequence, all the contributions of

the Riemann tensor squared invariant to the field equations vanish in this case.

Next, we seek solutions with g2 6= 0 and nonvanishing 3-form flux. To bring the field

equations to a manageable form, we shall supplement the Ansatz (5.32) with a further

condition and introduce some notation

c1 = −c2 ≡ c . (5.35)

Finding the most general such solution yields rather complicated relations among the pa-

rameters. However, we have managed to find the following relatively simple and intriguing

solutions:

a =
1

6
(−6c2 + g2L0) , b = c2 , M2 =

g2

6
, (5.36)

for arbitrary c2 > 0. This solution corresponds to dS3 × S3 for 0 < c2 < g2L0

6 and to

AdS3 × S3 for c2 > g2L0

6 . Another solution is given by

a± =
1

24

(
5g2L0 − 24L0M

2 ∓
√
3
√
L2
0(g

4 − 12g2M2 + 48M4)
)
,

b± =
1

24

(
−g2L0 + 24L0M

2 ±
√
3
√
L2
0(g

4 − 12g2M2 + 48M4)
)
,

c2± =
1

24

(
g2L0 ∓

√
3
√
L2
0(g

4 − 12g2M2 + 48M4)
)
, (5.37)
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where the + solution corresponds to dS3 × S3 for g2

12 < M2 < g2

6 and the − solution

corresponds to AdS3 × S3 for M2 > 11g2

36 and to dS3 ×H3 for M2 < g2

12 . These solutions

are non-supersymmetric.

5.5 Spectrum in Minkowski spacetime

Setting g2 = 0, and expanding around 6D Minkowski spacetime, we define the linearized

fluctuations

gµν = ηµν + hµν , L = L0 + φ . (5.38)

Since all the other background fields are vanishing, we find that the linearized Einstein and

L field equations take the form

0 = L0

(
�hµν + ∂µ∂νh− 2∂(µ∂

αhν)α
)
+ 2∂µ∂νφ

− 1

M2

(
��hµν − 2�∂(µ∂

αhν)α + ∂µ∂ν∂
α∂βhαβ

)
, (5.39)

0 = L0 (�h− ∂µ∂νhµν) + 2�φ . (5.40)

Note that we have not imposed any gauge conditions yet. Using (5.40) in the trace of (5.39),

we find

�
(
�−M2L0

)
φ = 0 . (5.41)

To simplify Einstein’s equation, however, it is convenient to impose the gauge condition

∂µhµν =
1

2
∂νh . (5.42)

In this gauge, the trace of Einstein’s equation and (5.40) give

�
(
�−M2L0

)
h = 0 , (5.43)

�h = −4L−1
0 �φ . (5.44)

We shall assume that M2 6= 0. Then it follows from (5.41) that either (� −M2L0)φ = 0

or �φ = 0. In the first case, defining χ ≡ �φ, it follows from (5.41), (5.43) and (5.44)

that there is one massive scalar obeying (� −M2L0)χ = 0. In the latter case, �φ = 0

and it follows from (5.44) that �h = 0 as well. However, the solution of �h = 0 can be

gauged away by the residual general coordinate transformations that preserve the gauge

condition (5.42). Thus, we are left with a massless scalar described by �φ = 0.

Turning to Einstein’s equation, using the gauge condition (5.42), and the field equations

obeyed by h and φ, it becomes

(
�−M2L0

)
�hµν = −2L−1

0

(
�−M2L0

)
∂µ∂νφ . (5.45)

This equation, when (� −M2L0)φ = 0, reduces to
(
�−M2L0

)
�hµν = 0, describing a

massless graviton and a massive graviton with mass M
√
L0, one of which, depending on

the overall sign in the action, has the wrong sign kinetic term. If �φ = 0, then we have(
�−M2L0

)
�hµν = −2M2∂µ∂νφ. In this case, the solution of �φ = 0 is to be substituted

to the right hand side of this equation and treated as a given external source. Note that
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the gravitational field does not appear as a source in the field equation for the scalar φ,

and there is no diagonalization problem here. Thus, the equation (5.45) again describes a

massless and ghost massive graviton of mass M
√
L0.

The remaining field equations in the usual Lorentz gauges take the form

�aµ = 0 ,
(
�−M2L0

)
(
vµ
zµ

)
= 0 , �(�−M2L0)bµν = 0 , (5.46)

where the notation for the fluctuations is self explanatory. These equations describe a

massless vector and 2-form potential, a massive ghostly 2-form potential and three massive

ghostly vectors.

Next, we examine the linearized fermion field equations. Imposing the gauge condition

γµψµ = 0, and defining12 ψi ≡ ∂µψi
µ, a straightforward manipulation of the fermion field

equations gives

/∂(�−M2L0)ψ
′
µ = 0 , /∂Ω = 0 , (5.47)

�ψi =
√
2M2/∂ϕjδij , ψi =

√
2L−1

0
/∂ϕjδij , (5.48)

where ψ′
µ ≡ ψµ−�

−1∂µ∂νψ
ν , i.e. ∂µψ′

µ = 0. From (5.48), it follows that /∂
(
�−M2L0

)
ϕ =

0. Therefore, altogether we have a massless gravitino, tensorino ϕ and gaugino together

with a massive gravitino and tensorino, both with mass M
√
L0.

In summary, the full spectrum consists of the massless Maxwell multiplet with

fields (aµ, Ω), the (reducible) massless 16 + 16 supergravity multiplet with fields

(hµν , bµν , φ, ψµ, ϕ) and a massive 40 + 40 supergravity multiplet of ghosts with fields

(hµν , bµν , zµ, vµ, φ, ψµ, ϕ), all with the same mass, M
√
L0, as expected.

6 Conclusions

Our main goal in this paper has been the study of the R-symmetry gauging in the pres-

ence of higher derivative corrections to Poincaré supergravity and its consequences for the

vacuum solutions. To this end, we first studied the gauging of the U(1) R-symmetry of

N = (1, 0), D = 6 supergravity in the off-shell formulation. The off-shell Poincaré su-

pergravity theory already has a local U(1)R symmetry but it is gauged by an auxiliary

vector field which is not dynamical. We performed the gauging that employs a dynamical

gauge field by coupling the model to an off-shell vector multiplet equipped with its own

U(1) symmetry. Then, we showed that this model has a shift symmetry which can be fixed,

thereby breaking U(1)R×U(1) down to a diagonal U(1)
diag
R . As a result the auxiliary vector

gets related to the vector coming from the Maxwell multiplet, and the on-shell model ob-

tained in this manner agrees with the dual formulation [16] of the gauged Einstein-Maxwell

supergravity constructed long ago [15, 16].

Next, we added a curvature squared supersymmetric invariant, with the Riemann

tensor squared as its leading term, to the off-shell model and studied its influence on the

gauging procedure. This invariant causes the auxiliary fields to become ‘propagating’ and

12This ψi is unrelated to the ψi introduced in (2.1), which was eliminated by (3.1).
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to mix with the physical fields. A particular combination of the physical vector and the

auxiliary vector gauges the symmetry and another combination describes a massive vector

field inert under U(1). We can, however, put a small parameter in front of the curvature

squared part of the Lagrangian and consider it as a higher-order correction term. Then

the auxiliary fields can be eliminated order by order and the gauging proceeds again via

the vector field residing in the Maxwell multiplet. Treating the higher derivative extension

either way, we have seen that the positive definite potential that arises in the minimal

model does not get modified.

Chiral gauged supergravity in six dimensions is known to admit a (supersymmet-

ric) chiral Minkowski4 × S2 compactification, while it does not admit a six-dimensional

Minkowski or (anti) de Sitter spacetime as a solution, regardless of supersymmetry [15].

We have shown that the inclusion of the Riemann tensor squared invariant remarkably

leaves the supersymmetric Minkowski4 × S2 solution intact. We have also found new

solutions in which the spacetime and the internal spaces may have positive or negative cur-

vature constants. It is noteworthy that de Sitter spacetime solutions exist, avoiding a no

go theorem that exists for ten dimensional supergravities13 [21, 22]. While the spectrum in

the 2-sphere compactification remains to be determined, we have found that the spectrum

of the ungauged theory in six dimensional Minkowski spacetime, not surprisingly, has a

ghostly massive spin two multiplet in addition to a massless supergravity and a Maxwell

vector multiplet.

Given that the (1, 0) supergravity theory in six dimensions is the most supersymmetric

and highest-dimensional supergravity model that admits an off-shell formulation, and that

it admits an exactly supersymmetric higher derivative extension, it is worthwhile to study

this model further. The coupling of Yang-Mills and hypermultiplets would be useful. In

particular, a possible modification of the quaternionic Kähler geometry, and consequences

for the compactification would be interesting to determine. The model without such cou-

plings harbors many anomalies. It is important to study the gravitational, gauge and

mixed anomalies in the matter-coupled version of the higher derivative extended theory.

The Green-Schwarz anomaly counterterm that involves the gravitational Chern-Simons

term arises as part of the Riemann tensor squared invariant. However, the presence of the

Riemann tensor squared term raises the question with regard to the presence of ghosts in the

spectrum, defined in the presence of a suitable vacuum solution. Indeed, dealing with the

ghost problem is of great importance for this model to have applications to model building,

and it remains to be investigated. In particular, the consequences of the higher derivative

extension for the braneworld scenarios put forward in [23] where 3-branes are inserted at

singular points of the 2-dimensional internal space, would be worthwhile to explore.

Various properties of the model we have studied here would naturally be affected by the

presence of an additional higher-derivative supersymmetric invariant. In five dimensions,

for example, it is known that a Weyl tensor squared invariant exists, in addition to the

Riemann tensor squared invariant, which can be obtained from a circle reduction of the one

13Note that a possible string theory embedding does not contradict the avoidance of the 10D no go

theorem since this theorem no longer holds when higher derivative corrections are included.
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studied here. However, whether the Weyl tensor squared or another combination of the

curvature squared terms can be supersymmetrized in six dimensions is an open problem.

If such invariants exist, not only would they be useful in avoiding the ghost problem,

they would also play a significant role in a possible embedding of these theories, albeit in

the ungauged setting, to the string theory low energy effective action. For a preliminary

discussion of this problem, in the context of the Riemann tensor squared model we already

have, see [8].

The embedding of the higher-derivative extended model to string theory might also pro-

vide new grounds for testing the conjectured connection between microscopic and macro-

scopic black hole entropy. The use of off-shell supersymmetric Riemann tensor squared

extended N = 2, D = 4 supergravity in this respect has been illustrated in [24]. The

existence of static, rotationally symmetric black hole solutions that are N = 2 supersym-

metric and that approach Minkowski spacetime at spatial infinity and Bertotti-Robinson

spacetime at the horizon play a significant role in the work of [24]. It is notoriously diffi-

cult to find exact black hole solutions of higher-derivative gravities. Black hole solutions

of the ungauged (1, 0) 6D supergravity have been found in [25] and there exists an exact

string solution of the theory we have studied in this paper [26]. Nevertheless, black hole

solutions in the presence of gauging and/or a higher-derivative extension remains an open

and challenging problem.
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