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1 Introduction

Recently there has been quite some interest in the possibility that there exist hidden sector
particles with masses below a TeV but very weak couplings to Standard Model matter.
They are a common feature of extensions of the standard model based on supergravity or
superstrings. Extra U(1) gauge bosons, so-called hidden photons are a prime candidate for
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such particles. At low energies, their interactions with the visible sector occur primarily via
kinetic mixing [1, 2] (studied in string theory in [3–13]) with the electromagnetic1,2 U(1),

L ⊃ −1
4
F (vis)
µν Fµν(vis) −

1
4
F (hid)
µν Fµν(hid) +

χ

2
F (vis)
µν F (hid)µν +m2

γ′A
(hid)
µ A(hid)µ +A(vis)

µ jµ, (1.1)

where χ is the kinetic mixing parameter and mγ′ the mass of the hidden U(1), which may
arise via a hidden Higgs or a Stückelberg mechanism. In addition jµ is the current caused
by charged Standard Model matter such as electrons and protons.

There are two mass regimes that are of particular phenomenological interest: the meV
range and the GeV range, marked “hCMB” and “Dark Forces” in figure 1, respectively.
The characteristic behaviour of these two regimes is best understood in slightly differ-
ent pictures.

At very low masses the most prominent implication of kinetic mixing is that, similar
to neutrino mixing, the propagation and the interaction eigenstates are misaligned. As
a result one expects photon ↔ hidden photon oscillations [1]. These oscillations could
lead to a variety of interesting phenomena. In the early universe they convert thermal
photons into hidden photons, generating a “hidden CMB” (hCMB) [14]. Its signature is
an increase in the effective number of relativistic degrees of freedom contributing to the
cosmic radiation density in the era between big bang nucleosynthesis and recombination
beyond the value accounting for the photon and the three standard neutrino species. In-
triguingly, some global cosmological analyses that take into account precision cosmological
data of the cosmic microwave background and of the large scale structure of the universe
appear to require some extra radiation density. The case for this was strengthened by the
recently released WMAP 7 year data whose global analysis points to the requirement of
an equivalent of ∆N eff

ν = 1.3± 0.9 (68% C.L.) neutrinos [15].
Luckily, hidden photons in the meV range can be nicely searched for in purely lab-

oratory based laser-light-shining-through-a-wall experiments [16, 17], such as ALPS [18],
BMV [19], GammeV, LIPSS [20], and OSQAR (cf. the bounds marked “LSW” in fig-
ure 1), with great discovery potential in the near future [21] and even the possibility of
long distance communication through matter [22]. The discovery potential is also shared
by upcoming microwave cavity experiments [23–25], which are currently in the pioneering
phase [26, 27]. In addition, dedicated helioscope searches, e.g. such as SHIPS at the Ham-
burg Observatory, for hidden photons produced in the sun could also sensitively explore
this region [28].

At larger masses &MeV a convenient choice of basis is such that charged Standard
Model matter acquires a small charge under the extra hidden U(1) leading to a “Dark
Forces” interaction. This type of interactions can be used to explain a variety of puzzling

1Of course, the mixing is originally with the hypercharge U(1) but after electroweak symmetry breaking

this mixing is inherited by the electromagnetic U(1).
2A massive hidden photon behaves very similar to a Z′. However, a hidden photon is more specific in the

sense that its coupling to Standard Model particles is proportional the ordinary electric charge of a particle

and the kinetic mixing parameter χ which is usually small. As the coupling to Standard Model matter

is naturally quite small hidden photons can often be quite light without being in conflict with existing

experiments or observations.
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Figure 1. Constraints on the kinetic mixing parameter χ vs. hidden photon mass mγ′ from
astrophysics, cosmology and laboratory experiments. Phenomenologically interesting regions are
marked in yellow. Compilation from [29].

observations connected to dark matter and astrophysics, such as the results of DAMA,
CoGeNT and PAMELA [30–35]. Moreover, they provide an interesting explanation for
the deviation (g − 2)µ from the Standard Model prediction [36]. These higher masses,
too can be sensitively probed in laboratory experiments. A tool of choice are fixed target
experiments [37] where a high current beam of electrons or protons impacts on a block of
material. A significant number of such experiments are in planning or in trial phases: DESY
(HIPS [38]), MAMI [39] and Jefferson Lab (APEX [40], HPS [41] and DarkLight [42]).

Given this great phenomenological interest and the huge discovery potential for hidden
photons, it is timely to ask whether there are interesting classes of string compactifications
which will lead to kinetic mixing and masses in the ranges described above.

We shall argue that this is indeed the case in a variety of string models based on type
IIB flux compactifications on Calabi-Yau orientifolds with D3/D7-branes and O3/O7-
planes [8, 10], unlike for example the heterotic case [3, 11] where there is no natural way
to suppress the mixing and masses. The hidden photon can be realised as an excitation
of a space-time filling D3 or a D7-brane wrapping an even 4-cycle in the extra dimension
separated from the locus of the D-brane hosting the hypercharge U(1) by distances greater
than a string length. This ensures that there are no light states with masses . Ms charged
under both the Standard Model and the hidden gauge groups, ensuring that the extra U(1)
is indeed “hidden”.

In the D3-brane case the kinetic mixing cannot be much smaller than χ ' 10−3, while
if a D7-brane wraps a large 4-cycle τhid, giving rise to a tiny gauge coupling g−2 ' τhid,
the physical mixing parameter can be significantly suppressed. Therefore we shall focus on
hidden photons living on these “milliweak” or “hyperweak” D7-branes. The hidden photon
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becomes massive via the Green-Schwarz mechanism by turning on a non-zero world-volume
flux. Some Kähler moduli get charged under the hidden U(1) and a particular combination
of the corresponding axions get eaten up by the hidden photon. We stress that this is a truly
stringy mechanism that leads to robust predictions unlike the case of a Higgs mechanism
which depends more heavily on the details of the particular brane construction.3

The turning on of gauge fluxes also generates a moduli-dependent Fayet-Iliopoulos
term whose effect on moduli stabilisation has to be taken into account. One of the most
promising ways to fix the geometric moduli in a controlled manner is given by the type IIB
LARGE Volume Scenario [43, 44]. We shall embed our models into this moduli stabilisation
framework since it does not require fine-tuning of the background fluxes and can generate
exponentially large extra dimensions with the subsequent possibility to lower the string
scale, χ and mγ′ .

Ref. [10] studied the properties of hidden photons within the original formulation of
the LARGE Volume Scenario where the compactification is isotropic in that the largest
two-cycle tbig is of the order of the cube root of the volume: tbig ' V1/3, but without
analysing the rôle played by D-terms in moduli stabilisation. In this paper we show that
D-terms for the hyperweak brane are in general dangerous since they give rise to a run-
away for the volume mode. We propose then a solution where D-terms do not cause
any decompactification but dynamically reduce more complicated topologies to the ones
studied in [10].

The isotropic case leads to nice predictions which however fail to reach the interesting
regions of parameter space corresponding to either hidden CMB or dark forces. However,
once we consider more involved compactification manifolds with a fibration structure as
in [44], the desired masses and mixings can be easily accommodated due to the anisotropic
shape of the extra dimensions. In fact, we show that the moduli can be fixed with a
single two-cycle that scales as entire volume: tbig ' V. This is complementary to some
work in progress [45], which shows how maximally anisotropic extra dimensions can be
stabilised. In this case, closed strings propagating along this cycle would be extremely
diluted, and would allow vastly smaller masses for U(1) fields that they couple to. In this
way, the relationship between kinetic mixing and U(1) masses changes dramatically giving
rise to a very interesting phenomenology in the case of “milliweak” D7-branes where we
find two scenarios:

• “Dark force scenario”: the Kähler moduli are stabilised without fine-tuning leading
to hidden photons with mγ′ ' 1 GeV and χ ' 10−6. The string scale turns out to be
intermediate and the Calabi-Yau geometry is slightly anisotropic;

• “Hidden CMB scenario”: fine-tuning the underlying parameters, the stabilisation of
the Kähler moduli leads to hidden photons with mγ′ ' 1 meV and χ ' 10−6. This
corresponds to the extreme case of TeV-scale strings and very anisotropic compact-

3Moreover, if we aim to generate masses of O(meV) with a sizeable mixing χ ∼ 10−6, the very stringent

constraints on millicharged particles would require an extremely steep hidden Higgs potential in order that

their masses would be above a MeV.
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ification manifolds. Furthermore, Kaluza-Klein replicas of the hidden gauge bosons
turn out to be in the dark force mass regime.

This paper is organised as follows: section 2 provides the essential background in-
formation on the properties of D-brane U(1)s in IIB compactifications, and establishes
our notations; additional description and derivations are presented in the appendix A. In
section 3 we describe how anisotropy in IIB compactifications can lead to interesting phe-
nomenology. In section 4 we show how to stabilise the moduli. Section 5 presents our main
results; the predictions for scenarios with stable moduli. It is relatively self-contained so
a reader interested only in the predictions testable in experiments can skip the interim
sections. Finally we conclude in section 6.

2 Abelian gauge bosons in IIB compactifications

In this section we shall summarise the formulae pertaining to Abelian gauge bosons on
D-branes in IIB compactifications that we shall require later. While the material here is
not new, we hope that the novel presentation will facilitate their use in model building,
specifically for models with stabilised moduli. We present additional explanations and
derivations for readers unfamiliar with the material in appendix A.

Such models are compactified on a Calabi-Yau threefold M6 which supports a basis
of (1,1)-forms D̂i, with Kähler form expanded in terms of these forms J = tiD̂i, intersec-
tion numbers

kijk =
∫
M6

D̂i ∧ D̂j ∧ D̂k, (2.1)

and thus the volume of the manifold is V = 1
6

∫
J ∧ J ∧ J = 1

6kijkt
itjtk. Gauge and matter

fields are supported on D7 branes wrapping divisors (four-cycles) on the compact space.
There is a canonical basis of four-cycles where the Poincaré dual two-form is a {D̂i}; these
have volume τi = 1

2kijkt
jtk where (neglecting cycles odd under the orientifold) the τi are

the real part of the good Kähler coordinates for the field theory. A stack of N branes
on such a cycle supports a U(N) gauge theory if it is not pointwise invariant under the
orientifold projection; if it is then the gauge group is either Sp(N) or SO(N) (depending
upon whether the orientifold plane wrapped by the brane is of O+ or O− type). For a
U(1) ⊂ U(N) the gauge coupling on a brane wrapping such a cycle is given by

2π
g2
i

= τi. (2.2)

Importantly if the volume of the four cycle is large the gauge coupling can be weak or even
hyperweak [46].

The theory has a classical Kähler potential given by

K0 ≡ −2 logV, (2.3)

which will be modified in the later sections to include corrections due to finite string length
and coupling. The above may also be augmented by contributions from collapsed cycles of
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volume τ0 ≈ 0 of the form ∆K = c (τ0)2

V . However, derived from the above is the classical
Kähler metric for the moduli, given by derivatives with respect to the Kähler coordinates

(K0)ij ≡
∂2

∂τi∂τj
K0. (2.4)

2.1 Stückelberg masses

We shall consider only U(1)s supported on D7 branes (rather than R-R U(1)s [11, 47])
since these are generically present in the theory, have the possibility of mixing kinetically
with the hypercharge (which must itself be supported on a D7 brane in such models) and
crucially may obtain Stückelberg masses. The Stückelberg mass matrix for the U(1)s a, b
that do not couple to any cycles odd under the orientifold are given by [10, 48–50]4

m2
ab =gagb

M2
P

4π2
qaα(K0)αβqbβ, (2.5)

where MP = 2.4× 1018 GeV is the reduced Planck mass, and where we have defined qij

qij =
∫
Di

D̂j ∧
F

2π
= fki kijk. (2.6)

which correspond to the “charges” of the R-R four-forms under the U(1) supported on
brane i with two-form (gauge) flux F

2π = fki D̂k for (half5) integers fki . Here we are being
somewhat cavalier: the above notation somewhat obscures the possibility that a brane may
support several U(1) factors.

Crucially the above depends only upon global quantities, i.e. forms and cycles that are
defined in the (co)homology of the whole Calabi-Yau, rather than on the branes. In general
there will be cycles supported on the branes which are trivial globally, and we should be
careful about the correspondence between the global forms and those defining the flux on
the branes.

Throughout the text we shall calculate the masses not using the above master formula,
but rather using the canonically normalised two-forms to expose where the contributions
to the masses come from. As described in the appendix, we define diagonalisation matrices

(K−1
0 )ijCja = Ciaλa, with (Ct)iaCib = λ−1

a δab. (2.7)

which leads to an interaction Lagrangian with canonically normalised fields (A.21)

L = − 1
12
HjµνρH

µνρ
j − 1

4
F iµνF i µν +MijDj2 ∧ F

i
2. (2.8)

As shown in appendix A.2 this Lagrangian directly leads to Stückelberg masses for the
U(1) gauge fields given by the sum of contributions from the different canonical forms,

m2
ab =

∑
j

MajMbj , (2.9)

4Allowing for cycles odd under the orientifold plane leads to larger masses and thus less interesting

phenomenology; nevertheless the full expression is given in appendix equation (A.28)
5The charges can be shifted by a half-integer either in the presence of a discrete B-field or in order to

cancel Freed-Witten anomalies.
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where

Mij =
(
gi qipC

p
j

)MP

2π
=

(
qipC

p
j√

2πτi

)
MP . (2.10)

2.2 Kinetic mixing between hidden and visible photons

As explained in [10, 51], supersymmetric kinetic mixing is determined by a holomorphic
function of only the complex structure moduli which is typically of order a loop factor, but
the physical parameter must be multiplied by the gauge coupling of each U(1), giving

χ ∼ gvisghid

16π2
, (2.11)

where gvis and ghid are the visible and hidden sector gauge groups, respectively.
From this we can immediately see that the kinetic mixing is of the order of χ ∼ 10−3

unless the hidden gauge coupling is significantly weaker than the observed visible ones.
This, however, occurs naturally if the D7 brane on which the hidden U(1) is realised has a
sizable extent in the extra dimensions. If such a brane has volume τhid, this gives (using 2.2)

χ ∼ 1
8π

√
2α
τhid
∼ 0.5× 10−2

√
τhid

. (2.12)

For large τhid the gauge coupling becomes hyperweak and the kinetic mixing can be signif-
icantly smaller than the naive expectation.

It is also possible that the supersymmetric kinetic mixing vanishes identically. To
determine this, we must have a microscopic understanding of it, and this has so far not
been possible on general backgrounds. However, for mutually hidden U(1)s it can be
understood as arising from exchange of Kaluza-Klein modes of the form fields [8, 10], and
thus if both branes intersect some two-cycle then we expect there to be mixing. This is
very similar to the generation of loop corrections to the Kähler potential (we are excluding
the other contribution in that case - winding modes - since we are insisting that the cycles
do not intersect). Furthermore, since it is the excitations of the form fields that mediate
the mixing rather than the zero modes, as argued in [10] we expect that they are sensitive
to even globally trivial fluxes on the branes, so that even if the hypercharge arises from a
GUT structure there should still be mixing.

2.3 Kaluza-Klein modes

In addition to the hidden gauge bosons, there will inevitably be a tower of Kaluza-Klein
excitations of the hidden gauge field. The determination of the spectrum and couplings
of these is in general a complicated task; however, the scaling with the Kähler moduli is
easily determined and allows us to make a reasonable estimate for the masses of the lightest
states (which typically scale as mKK ∼ 1/(length scale of extra dimension)). To do this
we must examine the geometry of the four-cycle supporting them. For example, if it is of
the form P1 × P1 then clearly there are two sets of KK modes with different characteristic
length scales; if it is of the form P2 (or blown up with globally trivial exceptional cycles)
there is just one. The first example corresponds to τi = αijt

jβikt
k, while the second is
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τi = (αijtj)2. In the latter case, clearly we can take mKK = 2π
lsτ1/4 =

√
πMP

V1/2τ1/4 , while in the

former we should take mKK =
√
πMP

V(αijtj)1/2
assuming that αijtj > βikt

k.
The other property of interest is whether the Kaluza-Klein modes of the hidden U(1)

also kinetically mix with the hypercharge. Indeed, from a calculation on a torus, this seems
to be impossible due to Kaluza-Klein momentum conservation. However, this is due to the
presence of isometries on the torus which are not present for general geometries. In general
the Kaluza-Klein modes are “unstable” [52], implying that they can mix with the zero
mode. We can then ask what the size of the mixing is; here the best estimate we can make
is that it is the same order of magnitude as the mixing of the zero modes.

2.4 Fayet-Iliopoulos terms

In the presence of a gauge flux the gauge coupling constant gi is modified to 2π
g2i

= τi −
hi(F c2 )Re(S), where Re(S) = e−φ and the flux-dependent factor is given by hi(F c2 ) =
fkfjkijk

2 = fjqij
2 where qij are the flux-dependent U(1) charges of the Kähler moduli (2.6).

The Fayet-Iliopoulos term can then be written as:

ξi
M2
P

=
1

4πV

∫
Di

(
J ∧ l2s

2π
F c2

)
=

1
4πV

tjfkkijk =
qij
4π

tj

V
= −qij

4π
∂K

∂τj
. (2.13)

Including also the presence of unnormalised charged matter fields ϕj (open string states)
with corresponding U(1) charges given by cij , the resulting D-term potential looks like
(considering the dilaton fixed at its VEV: eφ = gs):

VD =
g2
i

2

∑
j

cijϕj
∂K

∂ϕj
− ξi

2

=
π

(τi − f jqij/(2gs))

∑
j

cijϕj
∂K

∂ϕj
+
qij
4π

∂K

∂τj

2

. (2.14)

As we will see later in more detail the significance of the FI-terms is that they have
a tendency to destabilise the compactification. In section 4 we will discuss ways around
this problem.

2.5 Branes at singularities

Note that the above still applies for U(1)s on branes at singularities. Denoting the two-form
corresponding to the canonical class as D̂sing with Kähler modulus tsing, if this is a blow-up
mode with only self-intersections then it will only appear in the volume form via a term
at3sing and the U(1) will have a string-scale mass. If, however, the singularity intersects
some other two-cycle ti via a term V ⊃ −btit2sing,6 then a flux on tsing will yield a mass

m2
sing =

M2
P

4π2V
1
bti
. (2.15)

This is particularly interesting since, as described above, in this case the U(1) can mix with
the hypercharge if the Standard Model brane also intersects ti (for example if it is also at a

6Note that such an intersection corresponds to the presence of N = 2 sectors on toroidal orbifolds, and

such intersection forms can be found in the blow-ups [53].
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singularity with V ⊃ −b′tit2sing′) and also because of the potentially large suppression of the
mass if ti is large; for example if we had a very anisotropic compactification we could have
ti ∼ V! However, since the branes sit on singular cycles we cannot suppress the hidden
gauge coupling, and so the kinetic mixing will always be of the order 10−3.

Since we cannot suppress the kinetic mixing (without cancelling it or invoking some fine
tuning) in this case, we shall not explore it in detail in the subsequent sections. However,
the reader should be aware that such U(1)s can be embedded into string compactifications
with minimal impact upon moduli stabilisation, and could be interesting for the Dark
Forces regime.

3 Explicit Calabi-Yau examples

3.1 Isotropic compactifications

Let us start by studying the case of an orientifold of the Calabi-Yau three-fold given by
the degree 18 hyper-surface embedded in the weighted projective space CP 4

[1,1,1,6,9]. The
relevant Hodge numbers of this manifold are h1,1 = 2 and h2,1 = 272 and its defining
equation reads:

z18
1 + z18

2 + z18
3 + z3

4 + z2
5 − 18ψz1z2z3z4z5 − 3φz6

1z
6
2z

6
3 = 0, (3.1)

where ψ and φ are the only two complex structure moduli left invariant under the mirror
map. The Kähler form can be expanded as J = t1D̂1 + t2D̂2 while the only non-vanishing
intersection numbers are k112 = 1, k122 = 6, k222 = 36. Thus the overall volume looks like:

V =
1
6

∫
CY

J ∧ J ∧ J =
1
6
(
3t21t2 + 18t1t22 + 36t32

)
. (3.2)

The volumes of the divisors D1 and D2 take the form:

τ1 =
1
2

∫
D1

J ∧ J = 3t2(t1 + t2), τ2 =
(t1 + 6t2)2

2
, (3.3)

and the Calabi-Yau volume can be rewritten in terms of the 4-cycle volumes as:

V =
1

9
√

2

(
τ

3/2
2 − (τ2 − 6τ1)3/2

)
. (3.4)

The combination of 4-cycles D2 − 6D1 defines another divisor which is topologically a
rigid blow-up mode resolving a point-like singularity. It is therefore useful to perform the
following change of basis: Ds = D2 − 6D1, Db = D2 and expand the Kähler form as
J = tbD̂b− tsD̂s. The intersection numbers in the new basis are very simple since only two
of them are non-zero: ksss = kbbb = 36. The new expression for the overall volume is:

V = 6(t3b − t3s) =
1

9
√

2

(
τ

3/2
b − τ3/2

s

)
. (3.5)
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The subscripts b and s stay for ‘big’ and ‘small’ respectively since we shall be interested
in the large volume limit ts � tb ⇔ τb � τs ⇔ V ' τ

3/2
b /(9

√
2). In this limit, the Kähler

metric and its inverse look like (defining ε ≡
√
τs/τb � 1):

K0 =
3

2τ2
b

(
ε−1 −3ε
−3ε 2

)
and K−1

0 =
2τ2
b

3

(
ε 3ε2/2

3 ε2/2 1/2

)
. (3.6)

The leading order behaviour of the normalised eigenvectors of K−1
0 is:

~v1 =

√
3
2

{
1

τ
3/4
b τ

1/4
s

,
3τ3/4
s

τ
7/4
b

}
and ~v2 =

√
3
τb

{
3ε2, 1

}
, (3.7)

resulting in the following diagonalising matrix:

Cij =
1
τb

√
3
2

(
ε−1/2 3

√
2ε2

3ε3/2
√

2

)
. (3.8)

Moreover, the internal gauge flux can be expanded in a basis of 2-forms as F c2 = fbD̂b+fsD̂s.
We are now ready to explore the mass spectrum of possible hidden photons living on D7-
branes wrapped either around the large divisor Db or the small 4-cycle Ds.

D7 wrapping Db. We start by analysing the case of a D7-brane wrapping the large
4-cycle Db. Hence we have to set i = b in the general expression (2.10) for the mass of
the hidden photon. Due to the particularly simple structure of the intersection numbers,
we obtain:

Mbb =
(

1√
2πτb

fbkbbbC
b
b

)
MP =

(
54

√
3

5π
fb

)
MP

τ
3/2
b

=

(
3

√
6

5π
fb

)
MP

V
, (3.9)

and

Mbs =
(

1√
2πτb

fbkbbbC
b
s

)
MP =

(
54

√
6
π
fbτs

)
MP

τ
5/2
b

∼ fbτs
MP

V5/3
. (3.10)

Therefore a particular combination of Db2 and Ds2 couples to F2, but given that Mbb �Mbs

for large volume V � 1, we realise that:

Lint =
(
Mbb

4
Db2 +

Mbs

4
Ds2
)
∧ F2 '

Mbb

4
Db2 ∧ F2 ⇒ mγ′ 'Mbb '

MP

V
' Ms

V1/2
. (3.11)

Furthermore the kinetic mixing between the hidden and the visible photon looks like:

χ ' 0.5 · 10−2

√
τb
. (3.12)

Inverting this relation, we can eliminate τb in the expression (3.9) and obtain a direct
relation between χ and mγ′ :

χ ' 2 · 10−3f
−1/3
b

(
mγ′

MP

)1/3

' 10−9 · f−1/3
b

( mγ′

1 GeV

)1/3
. (3.13)
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The exact value of χ depends on τb whose value should in the end be determined dynami-
cally via moduli stabilisation. However, regardless of this, the key observation is that once
χ is fixed, the relation (3.13) also sets the value of mγ′ as a function of the flux coefficient
fb which has to be an integer. This makes it somewhat difficult to reach the interesting re-
gions in the (mγ′ , χ)-parameter space corresponding to either hidden CMB or dark forces.
In fact, setting χ ' 10−7 and fb ' O(1) in (3.13), we obtain mγ′ ' 106 GeV which is
definitely too heavy to explain the extra relativistic degree of freedom in the CMB and
very far beyond detectability for dark forces. Increasing χ the situation gets even worse
since also mγ′ increases. We finally stress the fact that since fb has to be an integer, there
is even no room for fine-tuning the mass of the hidden photon.

D7 wrapping Ds. Let us now turn to study the case of a D7-brane wrapping the small
blow-up mode Ds. Setting i = s in the general expression (2.10) for the mass of the hidden
photon, we find:

Msb =
(

1√
2πτs

fsksssC
s
b

)
MP ∼

fs√
τs

MP

τb
∼ fs√

τs

MP

V2/3
, (3.14)

and

Mss =
(

1√
2πτs

fsksssC
s
s

)
MP ∼

fs

τ
3/4
s

MP

τ
3/4
b

∼ fs

τ
3/4
s

MP

V1/2
. (3.15)

We find again that a particular combination of Db2 and Ds2 couples to F2, but given that
Mss �Msb for V � 1, we end up with:

Lint =
(
Msb

4
Db2 +

Mss

4
Ds2
)
∧ F2 '

Mss

4
Ds2 ∧ F2 ⇒ mγ′ 'Mss '

MP

V1/2
'Ms. (3.16)

We realise that this case is not very interesting for us since the Green-Schwarz mechanism
generates an O(Ms)-mass for this Abelian gauge boson which disappears from the low
energy effective field theory. This is the typical behaviour of an anomalous U(1).

3.2 Anisotropic compactifications

We shall now turn to study compactification manifolds whose overall volume is not con-
trolled by just one large 4-cycle but by several 4-cycles. Therefore in this case the extra
dimensions can have in principle a very anisotropic shape which can crucially modify the
properties of hidden photons. In this section we shall assume an anisotropic shape of the
Calabi-Yau, and show that this property allows us to decouple mγ′ from χ being able to
reach the more interesting regions of our parameter space corresponding to either hidden
CMB or dark forces. More precisely, we shall show that the relation (3.13) has to be mod-
ified introducing a new parameter whose value should be fixed dynamically. In the next
sections, we will then describe a moduli stabilisation mechanism that naturally gives rise
to these anisotropic compactification manifolds.

We shall focus now on the Calabi-Yau manifold defined by the degree 12 hyper-surface
embedded in CP 4

[1,1,2,2,6]. This Calabi-Yau is a K3 fibration and has (h1,1, h2,1) = (2, 128)
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with Euler number χ = −252. Including only the complex structure deformations that
survive the mirror map, the defining equation is:

z12
1 + z12

2 + z6
3 + z6

4 + z2
5 − 12ψz1z2z3z4z5 − 2φz6

1z
6
2 = 0. (3.17)

In terms of 2-cycle volumes the overall volume takes the form:

V = t1t
2
2 +

2
3
t32, (3.18)

which gives the following relations between the 2- and 4-cycle volumes:

τ1 = t22, τ2 = 2t2 (t1 + t2) ,

t2 =
√
τ1, t1 =

τ2 − 2τ1

2
√
τ1

, (3.19)

Hence the overall volume can be written as:

V =
1
2
√
τ1

(
τ2 −

2
3
τ1

)
. (3.20)

In what follows we shall be interested in anisotropic compactifications for which t1 � t2
⇔ τ2 � τ1, and so the previous relations can be simplified to:

V ' t1t22 =
1
2
√
τ1τ2 = t1τ1, (3.21)

with k122 = 2 the only non-vanishing intersection number. The 2-cycle and 4-cycle volumes
take the form:

τ1 = t22, τ2 = 2t1t2,

t2 =
√
τ1, t1 =

τ2

2
√
τ1
. (3.22)

The cycle τ1 is a “milliweak” cycle, being between a “small” and “hyperweak” cycle, and
arises due to the fibration structure. In the large volume limit described above, the Kähler
metric and its inverse look like (defining ε ≡

√
τs/τb � 1):

K0 =

(
τ−2

1 0
0 2τ−2

2

)
, and K−1

0 =

(
τ2

1 0
0 τ2

2 /2

)
. (3.23)

The normalised eigenvectors of K−1
0 are given by:

~v1 =
{
τ−1

1 , 0
}

and ~v2 =
{

0,
√

2 τ−1
2

}
(3.24)

resulting in the following diagonalising matrix:

Cij =

(
τ−1

1 0
0
√

2 τ−1
2

)
. (3.25)

Moreover, the internal gauge flux can be expanded in a basis of 2-forms as F c2 = f1D̂1 +
f2D̂2. We are now ready to explore the mass spectrum of possible hidden photons living on
D7-branes wrapped either around the “milliweak” K3 divisor D1 or the large 4-cycle D2.
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D7 wrapping D2. We start by analysing the case of a D7-brane wrapping the large
4-cycle D2. Hence we have to set i = 2 in the general expression (2.10) for the mass of
the hidden photon. Due to the particularly simple structure of the diagonalising matrix,
we find:

M21 =
(

1√
2πτ2

k122f2C
1
1

)
MP ∼ f2

MP√
τ2τ1

. (3.26)

and:

M22 =
(

1√
2πτ2

k122f1C
2
2

)
MP ∼ f1

MP

τ
3/2
2

. (3.27)

Therefore the particular combination of D2
2 and D1

2 that couples to F2, reads:

Lint =
(
M22

4
D2

2 +
M21

4
D1

2

)
∧ F2, (3.28)

with the corresponding coefficients that depend on the two different flux parameters f1

and f2. Given that we are free to turn on the magnetic gauge flux on either t1 or t2, this
implies that when f1 = 0 only D1

2 couples to F2, while viceversa when f2 = 0 then the
only 2-form that couples to the U(1) field strength is D2

2. The generic case when both
f1 6= 0 and f2 6= 0 has the same behaviour of the case with f1 = 0 since M21 �M22 in the
anisotropic limit τ2 � τ1. Let us study the two different cases separately.

Gauge flux on t1: f2 = 0. If we turn on a gauge flux only on t1 setting f2 = 0, we
find that D1

2 does not couple to F2 since M21 = 0. Then the interaction Lagrangian takes
the form:

Lint =
M22

4
D2

2 ∧ F2 ⇒ mγ′ = M22. (3.29)

Furthermore the kinetic mixing between the hidden and the visible photon looks like:

χ ' 0.5 · 10−2

√
τ2
. (3.30)

Inverting this relation, we can eliminate τ2 in the expression (3.27) and obtain a direct
relation between χ and mγ′ :

χ ' 5 · 10−3f
−1/3
1

(
mγ′

MP

)1/3

' 4 · 10−9f
−1/3
1

( mγ′

GeV

)1/3
, (3.31)

which looks like the same expression for the isotropic case (3.13). Hence this case does not
look very promising for particle phenomenology.

Generic gauge flux: fi 6= 0 ∀i = 1, 2. If a generic flux is turned on with both f1 6= 0
and f2 6= 0, the interaction Lagrangian can be approximated as:

Lint =
(
M22

4
D2

2 +
M21

4
D1

2

)
∧ F2 '

M21

4
D1

2 ∧ F2 ⇒ mγ′ 'M21, (3.32)
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since M21/M22 ' τ2/τ1 � 1. Hence the phenomenological implications of this set-up are
the same as the case in which f1 = 0 and exactly just D1

2 couples to F2. The relation
between mγ′ and χ now depends on an additional parameter since:

χ ' 10−2 τ1

f2

mγ′

MP
' 5 · 10−21 τ1

f2

mγ′

GeV
. (3.33)

Therefore we have managed to decouple the kinetic mixing parameter from the mass of the
hidden photon. However χ and τ1 are not completely independent parameters since the
validity of the anisotropic limit τ2 � τ1, when expressed in terms of χ using (3.30), sets a
lower bound on mγ′ :

τ1 � τ2 ⇔ τ1 � 25 · 10−6χ−2 ⇔ mγ′ � 4 · 1024f2χ
3 GeV, (3.34)

which brings us back to phenomenologically uninteresting regions of our parameter space.
The intuitive reason why we are not finding any relevant difference with the isotropic

case is that we are considering a D7-brane wrapped around the large 4-cycle D2. In this
sense we are not probing the anisotropy of the Calabi-Yau manifold which, on the other
hand, plays a crucial rôle only if we consider hidden photons living on the small K3 divisor
D1. We shall now turn to study this case showing how we can get more interesting results.

D7 wrapping the “milliweak” cycle D1. Let us now turn to study the case of a
D7-brane wrapping the small K3 divisor D1. Setting i = 1 in the general expression (2.10)
for the mass of the hidden photon, the simple form of the diagonalising matrix and the
intersection numbers forces M11 = 0. On the other hand, M12 is non-zero and looks like:

M12 =
(

1√
2πτ1

f2k122C
2
2

)
MP ∼ f2

MP√
τ1τ2

. (3.35)

Thus if we turn on a gauge flux on t1, we do not couple any 2-form to F2. This result is in
agreement with the general statement that an Abelian gauge boson can become massive
if a non-zero gauge flux is supported on a 2-cycle internal to the 4-cycle wrapped by the
corresponding D7-brane. Nevertheless in our case the 2-cycle t1 is not internal to τ1 = t22.

Hence we need to turn on a gauge flux on t2, i.e. f2 6= 0, which couples D2
2 to F2:

Lint =
M12

4
D2

2 ∧ F2 ⇒ mγ′ = M12 '
MP

V
' Ms

V1/2
. (3.36)

Moreover the kinetic mixing between the hidden and the visible photon looks like:

χ ' 0.5 · 10−2

√
τ1
. (3.37)

Inverting this relation, we can eliminate τ1 in the expression (3.35) and obtain a relation
between χ and mγ′ which again depends on an additional parameter:

χ ' 10−2 τ2

f2

mγ′

MP
' 5 · 10−21 τ2

f2

( mγ′

GeV

)
. (3.38)
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Contrary to the previous case of a D7-brane wrapped around D2, now we have really
managed to decouple χ from mγ′ since the anisotropic limit τ2 � τ1, when expressed in
terms of χ using (3.37), now gives just an irrelevant upper bound on mγ′ :

τ1 � τ2 ⇔ τ2 � 25 · 10−6χ−2 ⇔ mγ′ � 4 · 1024f2χ
3 GeV. (3.39)

Setting χ ∼ 10−7 and f2 ' O(1), this upper bound becomes mγ′ � 105 GeV without ruling
out any interesting region of our parameter space. Clearly, increasing χ this upper bound
becomes even less stringent.

Hence we have found a very promising set-up in an anisotropic compactification which
opens up the possibility to reach regions of the (mγ′ , χ)-parameter space that are very
appealing for hidden CMB and dark forces. However in order to be able to get a sensible
prediction, one needs to understand the dynamics of the extra dimensions and fix the value
of τ1 and τ2. In the next section we shall present a moduli stabilisation mechanism that
will allow us to derive a concrete prediction for mγ′ and χ in this set-up in a completely
top-down approach from string theory.

4 Stabilisation of the extra dimensions

In this section we shall follow [44] and present a moduli stabilisation mechanism that
naturally leads to anisotropic compactifications with both τ1 and τ2 fixed at large values in
string units. We shall then explore the phenomenological implications of this class of string
vacua and show that they can give rise to two interesting scenarios for hidden photons:

• Considering natural values of the underlying parameters leads to hidden photons
with mγ′ ' 1 GeV and χ ' 10−6, for intermediate string scale Ms ' 1012 GeV. These
values of the kinetic mixing parameter and the mass of the hidden photon are in the
region of parameter space that will be soon tested by the next beam dump and fixed
target experiments, and produce a particle with the right properties to explain the
Dark Forces phenomena. On top of that, an intermediate string scale naturally yields
TeV-scale supersymmetry, a QCD axion with a decay constant fa ' Ms within the
allowed window, and the right Majorana scale for right handed neutrinos.

• Fine tuning the underlying parameters leads to hidden photons with mγ′ ' 1 meV
and χ ' 10−6 for the extreme case of a TeV string scale Ms ' 1 TeV. These values
of the kinetic mixing parameter and the mass of the hidden photon yield a new
particle with the right properties to account for the observational evidence of an
extra relativistic degree of freedom in the CMB.

Moreover, in this case there is no need to have TeV-scale supersymmetry since the
hierarchy problem is solved by the low string scale, that would also allow to probe
string scale physics at the LHC.7 We also find as an accidental bonus in this case
that the Kaluza-Klein modes of the hidden gauge boson have masses of the right

7Here the string scale is simply defined as Ms ≡ 1/ls. However, the string resonances occur at multiples

of 2π/ls; the lowest such universal states should be seen therefore at 2πMs.
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order of magnitude to be observed in the “Dark Forces” regime (assuming they also
kinetically mix with the zero modes):

mKK ∼
Ms

τ
1/4
1

∼ 1− 10 GeV. (4.1)

Large radiative corrections to the moduli masses due to the absence of supersymmetry
and the weakness of some of the moduli couplings (which might be much weaker than
1/MP ) due to the geometric separation between different 4-cycles within the Calabi-
Yau, lead to no conflict with fifth force experiments [45, 54].

We shall now focus on the stabilisation of all the geometric moduli which emerge in the
low energy effective field theory of type IIB compactified on an orientifold of the Calabi-Yau
three-fold given by the addition of a blow-up mode to the geometry CP 4

[1,1,2,2,6][12] studied
in the previous sections. Explicit compact Calabi-Yau examples with these features have
been recently constructed in [55]. We point out that, as we shall see later on, the inclusion
of an extra blow-up mode is required to guarantee the existence of controlled large volume
solutions. Therefore the Calabi-Yau volume in terms of its three Kähler moduli looks like:

V = λ1t1t
2
2 + λ3t

3
3 = α

(√
τ1τ2 − γτ3/2

3

)
= t1τ1 − αγτ3/2

3 , (4.2)

with the constants α and γ which depend on the intersection numbers and are taken to
be positive and typically of order unity. In order to obtain light hidden photons we are
interested in large values of the overall volume, and so we shall work in the parameter
regime:

V ' α
√
τ1 τ2 � αγτ

3/2
3 � 1. (4.3)

Regarding the relative size of each Kähler modulus, we shall consider the limit τ2 � τ1 � τ3

⇔ t1 ' τ2/
√
τ1 � t2 '

√
τ1 � t3 '

√
τ3, corresponding to the interesting anisotropic case

having the two dimensions of the base, spanned by the cycle t1, hierarchically larger than
the other four of the K3 fibre, spanned by τ1.

4.1 F -term potential

4.1.1 Tree-level effective action

The geometric moduli of the N = 1 4D supergravity obtained as a low-energy limit of
type IIB string theory compactified on a Calabi-Yau orientifold, include h1,1 Kähler moduli
defined in (A.3) which parameterise the size of the internal manifold, h2,1 complex structure
moduli Uα which parameterise the shape of the Calabi-Yau, and the axio-dilaton S = e−φ+
iC0, defined in terms of the R-R 0-form C0 and the dilaton φ, whose vacuum expectation
value sets the string coupling: g−1

s = 〈Re(S)〉.
The tree level Kähler potential Ktree takes the factorised form (setting MP = 1 for the

time being):

Ktree(T + T̄ , S + S̄, U) = −2 lnV − ln
(
S + S̄

)
− ln

−i ∫
CY

Ω ∧ Ω̄

 , (4.4)
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where V depends only on (T + T̄ ) and Ω is the Calabi-Yau holomorphic (3, 0)-form which
is a function of the complex structure moduli.

A key ingredient to fix most of the geometric moduli is the turning on of background
fluxes G3 = F3 + iSH3, where F3 and H3 are respectively the R-R and NS-NS 3-form
fluxes [56]. These fluxes generate a tree-level superpotential which takes the Gukov-Vafa-
Witten form [57]:

Wtree(S,U) =
∫
CY

G3 ∧ Ω, (4.5)

As Wtree is independent of the Kähler moduli, the N = 1 F -term supergravity scalar
potential looks like:

VF = eK

∑
S,U

Kαβ̄DαWDβ̄W̄ +

(∑
T

Kij̄KiKj̄ − 3

)
|W |2

 . (4.6)

Due to the no-scale property of the tree-level Kähler potential (4.4),
∑

T K
ij̄KiKj̄ = 3,

all the T -moduli are exactly flat directions at semiclassical level. Thus one is left with a
semi-positive definite scalar potential for the S and U -moduli which admits a Minkowski
minimum for DSW = DUW = 0.

If we are then interested in fixing the Kähler moduli at subleading order via pertur-
bative and non-perturbative corrections, we can safely set the dilaton and the complex
structure moduli equal to their vacuum expectation values. Then the superpotential is
constant, W = 〈Wtree〉 ≡W0 and the Kähler potential is K = Kcs − ln (2/gs) +K0 with:

K0 = −2 lnV and e−Kcs =
〈
−i
∫
CY

Ω ∧ Ω̄
〉
. (4.7)

4.1.2 Leading order corrections

Let us now consider the leading order corrections to the tree level action which lift the
remaining flat directions. These are the leading order α′ corrections to K [58]:

K = K0 + δKα′ = −2 ln

(
V +

ξ

2g3/2
s

)
' −2 lnV − ξ

g
3/2
s V

, (4.8)

and non-perturbative corrections to W :

W = W0 +A3e
−a3T3 . (4.9)

The correction (4.8) comes from the reduction of the O(α′3)R4 10D term and corresponds
to higher derivative corrections in the effective supergravity description. The parameter ξ
is given by ξ = − χζ(3)

2(2π)3
, where χ = 2 (h1,1 − h2,1) is the Calabi-Yau Euler number, and the

Riemann zeta function is ζ(3) ' 1.2.
On the other hand, the non-perturbative correction to the superpotential (4.9) can

be generated wrapping the blow-up mode D3 with either a Euclidean D3-brane instanton
(in which case a3 = 2π) or a stack of D7-branes supporting an SU(N) gauge theory that
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undergoes gaugino condensation (in which case a3 = 2π/N). Notice that the fact that
D3 is a rigid divisor guarantees the existence of such kind of non-perturbative effects. The
coefficient A3 corresponds to threshold effects and it depends on U and D3-position moduli,
but not on the Kähler moduli.

Therefore the F -term scalar potential at leading order in a large volume expansion,
looks like:

VF =
gse

KcsM4
P

8π

[
8 a2

3A
2
3

3αγ

(√
τ3

V

)
e−2a3τ3 + 4W0a3A3 cos(a3b3)

( τ3

V2

)
e−a3τ3 +

3 ξW 2
0

4g3/2
s V3

]
,

(4.10)
where we have explicitly included the right prefactor obtained from dimensional reduction
(see appendix of [59]). Taking both W0 and A3 to be real and positive without loss of
generality, the minimum for the axion b3 is at b3 = kπ/a3 with k ∈ Z. The potential for τ3

and V then admits a minimum for ξ > 0 (i.e. h2,1 > h1,1 = 3) located at:

〈τ3〉 =
1
gs

(
ξ

2αγ

)2/3

and 〈V〉 =
(

3αγ
4a3A3

)
W0

√
〈τ3〉 ea3〈τ3〉 . (4.11)

This is the typical non-supersymmetric AdS minimum of LARGE volume scenarios [43, 44].
Supersymmetry is broken spontaneously by non-zero F -terms of the Kähler moduli [60] and
the minimum is found without fine-tuning the background fluxes, i.e. setting W0 ' O(1).
The exponentially large volume allows to explain many hierarchies observed in nature and
guarantees that the low-energy effective field theory is under good control.

Due to the fact that, within this level of approximation, VF depends only on two of the
three original Kähler moduli, VF = VF (V, τ3), we have been able to fix only a particular
combination of τ1 and τ2 corresponding to the overall volume. The potential along the
other orthogonal combination is therefore so far completely flat. This direction played
the rôle of the inflaton in [61–64] and can be lifted via subleading contributions to (4.10)
coming from string-loop corrections to the Kähler potential.

4.1.3 Subleading order corrections

The next to leading order correction to the flat tree-level potential for the T -moduli comes
from 1-loop open string contributions to the Kähler potential. Their form has been explic-
itly computed only in the simple case of N = 1 toroidal orientifolds and looks like [65]:

δK(gs) = δKKK
(gs)

+ δKW
(gs)

, (4.12)

where δKKK
(gs)

can be interpreted from the closed string point of view, as coming from the
exchange of Kaluza-Klein modes between D7 and D3-branes or non-intersecting stacks of
D7-branes, while δKW

(gs)
is due to the exchange of winding strings between intersecting

stacks of D7-branes. Assuming that all the three 4-cycles of the torus are wrapped by
D7-branes, these two corrections read:

δKKK
(gs)

= − 1
128π4

3∑
i=1

EKKi (U, Ū)
Re (S) τi

, and δKW
(gs)

= − 1
128π4

3∑
i=1

EWi (U, Ū)
τjτk

∣∣∣∣
j 6=k 6=i

,

(4.13)
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where the functions Ei(U, Ū) are encoding the very complicated dependence of these cor-
rections on the complex structure moduli.

These results have been used to conjecture the form of the string loop corrections to K
for an arbitrary Calabi-Yau compactification using two observations: the interpretation as
the tree-level propagation of Kaluza-Klein and winding modes respectively, and the Weyl
rescaling needed to convert the string computation to 4D Einstein frame [66]. The final
proposal is:

δKKK
(gs)

=
∑
i

CKKi (U, Ū)m−2
KK

Re (S)V
=
∑
i

CKKi (U, Ū)
(
ailt

l
)

Re (S)V
, (4.14)

and:

δKW
(gs)

=
∑
i

CWi (U, Ū)m−2
W

V
=
∑
i

CWi (U, Ū)
(ailtl)V

. (4.15)

The linear combination
(
ailt

l
)

of the volumes of the basis 2-cycles tl, in (4.14) gives the
2-cycle that is transverse to the 4-cycle wrapped by the i-th D7-brane, whereas in (4.15)
it gives the 2-cycle where the two D7-branes intersect. The unknown functions CKKi (U, Ū)
and CWi (U, Ū) can be simply regarded as free parameters since the complex structure moduli
are already stabilised at the semi-classical level by background fluxes.

A key property of these corrections is that their leading contribution to the scalar
potential is vanishing, leading to an ‘extended no-scale structure’ which has a nice low-
energy interpretation in terms of the Coleman-Weinberg potential [67]. This leading order
cancellation is crucial to render δV(gs) subdominant with respect to δV(α′). In fact, the
first non-vanishing contribution to the scalar potential of the corrections (4.14) and (4.15)
reads [67]:

δV 1−loop
(gs)

=
[(
gsCKKi

)2
K0
īı − 2δKW

(gs)

]W 2
0

V2
. (4.16)

This contribution is subdominant relative to the leading α′ correction, since it scales as
δV(gs) ∼ V−3t−1 while δV(α′) ∼ g

−3/2
s V−3. Hence their ratio behaves as δV(α′)/δV(gs) ∼

g
−3/2
s t � 1 since we require gs � 1 to be in the perturbative regime and t � 1 (in string

units) to trust the effective field theory.

We shall now apply these general results to our K3 fibred Calabi-Yau case where we
wrap a stack of D7-branes around each divisor. The stack of D7-branes wrapped around
D3 is needed to generate the non-perturbative effects via gaugino condensation, while the
two stacks wrapped around D1 and D2 generate the loop corrections needed to fix the
remaining flat direction and provide hidden U(1) gauge bosons.

The general formula (4.16) then gives rise to four corrections to the scalar poten-
tial (4.10):

δVF =
gse

KcsM4
P

8π

[
δV KK

(gs),τ1
+ δV W

(gs),τ1∩τ2 + δV KK
(gs),τ2

+ δV KK
(gs),τ3

]
, (4.17)
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which have the form:

δV KK
(gs),τ1

=
AW 2

0

τ2
1V2

, δV W
(gs),τ1∩τ2 = − BW 2

0

V3√τ1
, (4.18)

δV KK
(gs),τ2

=
CW 2

0 τ1

V4
, δV KK

(gs),τ3
=

DW 2
0

V3√τ3
,

with:

A =
(
gsC

KK
1

)2
> 0, B = 4αCW12 , C = 2

(
αgsC

KK
2

)2
> 0, D =

(
gsC

KK
3

)2
> 0.

Notice that the last term in (4.17) can be safely neglected since it does not introduce a
dependence on the remaining flat direction, which, on the other hand, is lifted by the first
three terms. In fact, minimising δVF with respect to τ1 at fixed V and τ3, we find:

1
〈τ1〉3/2

=
(

B

8A〈V〉

)[
1 + (signB)

√
1 +

32AC
B2

]
, (4.19)

which, when 32AC � B2 ⇔ 4 g4
s

(
CKK1 CW12

)2 � (
CKK2

)2, reduces to:

〈τ1〉 '
(
−B〈V〉

2C

)2/3

if B < 0 or 〈τ1〉 '
(

4A〈V〉
B

)2/3

if B > 0. (4.20)

Choosing for definiteness B > 0, we can reexpress the relation (4.20) in terms of τ1 and
τ2 as:

〈τ1〉 = κ 〈τ2〉, with κ ≡
(
gsC

KK
1

)2
CW12

. (4.21)

We finally point out that due to the incompatibility between chirality and non-perturbative
effects [68], the visible sector (the Standard Model or any generalisation thereof) cannot
be wrapped around τ3 but it has to be supported by another blow-up mode which we shall
call τ4 (see figure 2). This additional 4-cycle can be fixed either via D-terms [68] or via
string loop corrections [44].

4.2 D-term potential

As we have seen in the previous sections, every time a gauge flux is turned on to give a
Stückelberg mass to the hidden photon, also a moduli dependent Fayet-Iliopoulos term gets
generated. In this case, it is therefore inconsistent to study moduli stabilisation focusing
just on the F -term scalar potential and neglecting the D-term contribution.

When D-terms are properly taken into account, they turn out to dominate over VF
generically giving rise to a dangerous run-away behaviour for the overall volume mode.
Here are some possible way-outs:

• In the absence of matter fields charged under the U(1), there are two solutions:

1. Fine-tune the coefficients of VD. Given that all these are O(1) numbers, the only
way to achieve small D-terms is via warping. Then VD could be used to turn the
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Figure 2. Pictorial view of the K3 fibred Calabi-Yau three-fold and the brane set-up under
consideration. Four-cycles are shown as surfaces and two-cycles as lines.

AdS minimum into a Minkowski or slightly de Sitter one. However this solution
is not very satisfactory since it is hard to envisage a situation where a D7-brane
wrapping a large 4-cycle is in a highly warped region. In addition one should
check if also VF is affected by warping. Finally it might still be complicated
to estimate the new predictions for mγ′ and χ since the kinetic terms of the
2-forms which couple to F2, cannot be explicitly canonically normalised in the
presence of warping.

2. Consider more complicated topologies with intersecting large 4-cycles. In this
case, requiring a vanishing Fayet-Iliopoulos term fixes a particular combination
of the large divisors and the contribution of VD gets cancelled dynamically. One
should check that indeed no matter gets generated at the intersection of the two
4-cycles.

• In the presence of matter fields charged under the U(1), there are two situations:

1. If all the U(1)-charges of the matter fields have the same sign, the U(1) is anoma-
lous and each scalar acquires a vanishing vacuum expectation value. Hence, as
far moduli stabilisation is concerned, we get back to the situation above where
we did not consider any matter field, but with the additional phenomenolog-
ical constraint of avoiding the experimental bounds on millicharged particles.
Therefore this case does not look very promising.

2. If not all the U(1)-charges of the matter fields have the same sign, the U(1) can
be non-anomalous and some matter fields can acquire a non-zero vacuum expec-
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tation value partially cancelling the Fayet-Iliopoulos term. In fact, the scalar
potential for the matter fields involves also supersymmetry breaking contribu-
tions to their masses coming from F -terms which are generically subleading with
respect to the D-terms, resulting in a non exact cancellation of VD. Once the
matter fields are integrated out, it turns out that the remaining contribution to
the moduli potential is still dominating the moduli F -term potential. Hence we
are still facing the dangerous decompactification problem due to the run-away
behaviour of the volume direction.
For compactification manifolds whose volume is controlled by just one 4-cycle
like in the isotropic case, the only way to solve this problem is via fine-tuning
by means of warping. Due to the leading order cancellation in VD, the amount
of fine-tuning is less than in the case with no matter fields, but we would then
face the same resulting problems due to the use of warping. On the contrary,
Calabi-Yau three-folds, whose volume is controlled by more than one 4-cycle like
in the K3-fibration examples, look more promising since the dangerous contri-
bution from the scalar potential of the matter fields could compete against the
string loop corrections, resulting in the stabilisation of the K3 divisor and in
the generation of an up-lifting term. In this case we could achieve a Minkowski
vacuum without invoking warping since the fine-tuning could be performed on
the coefficients of the gs corrections.
On top of this, one should check that the Abelian gauge boson which gets a
Stückelberg mass does not also get a Higgs mass due to the non-zero VEV
of the matter fields, since the contribution from the Higgs mechanism would
generically be the leading effect. We should then envisage a situation similar to
the Standard Model where SU(2)L × U(1)→ U(1)Y leaving a massless photon,
which in our case would then acquire a mass just via the Stückelberg mechanism.
Finally no matter field should violate the experimental bounds on millicharged
particles. In order to achieve this, we should compute the mass of the scalars
studying their potential and ensure that our brane set-ups allows the generation
of appropriate Yukawa couplings needed to give a mass to the fermions.

4.2.1 Decompactification problem

Let us now see why the contribution of D-terms from magnetised D7-branes wrapping
large 4-cycles, tend to develop a dangerous run-away for the overall volume mode. We
shall first examine the isotropic case following [69] and then we shall extend these results
also to the anisotropic one.

Isotropic case. Focusing on the case of a D7-brane wrapping Db with a non-vanishing
gauge flux supported on tb, the general expression (2.14) for the D-term potential takes
the form:

VD =
π

(τb − fbqbb/(2gs))

(∑
j

cbjϕj
∂K

∂ϕj
+
qbb
4π

∂K

∂τb

)2

' p1

V2/3

(∑
j

cbjϕj
∂K

∂ϕj
− p2

V2/3

)2

,

(4.22)
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where p1 ≡ π
(
9
√

2
)−2/3

and p2 ≡ 9fb/
(
61/3π

)
, while the volume scaling of the Kähler

potential for the matter fields φj is given by (assuming a diagonal structure) [70]: K '∑
j |φj |2V−9/4. Considering also F -term contributions, the total scalar potential becomes:

V = VF + VD =
p1

V2/3

∑
j

cbj
|φj |2

V9/4
− p2

V2/3

2

+
∑
j

kj
|φj |2

V22/9
+ VF (T ), (4.23)

where the kj are O(1) numbers and VF (T ) denotes the scalar potential (4.10) for the Kähler
moduli. If the U(1)-charges of the matter fields have all an opposite sign with respect to
the FI-term, then clearly the total potential (4.23) is minimised for 〈φj〉 = 0 ∀j. Setting
each matter field equal to its vacuum expectation value, we are then left with just the
moduli-dependent contribution of the Fayet-Iliopoulos term:

V =
p

V2
+ VF (T ), with p = p1p

2
2 =

9f2
b

2π
. (4.24)

Given that (4.10) scales as VF (T ) ' O(V−3), we realise that in order to get a Minkowski
vacuum we need to fine-tune p ' O(V−1), while from (4.24) we notice that p can never be
made so small for integer values of the flux coefficient fb. A possible way-out is to invoke
warping but, as we pointed out above, it is hard to envisage a situation where this can be
done without loosing control over the effective field theory.

If some of the matter fields have a U(1)-charge with the same sign of the FI-term, then
we can have a leading order cancellation in the D-term scalar potential, so that the F -term
potential for the matter fields dominates over the contribution from D-terms. Nevertheless
we still obtain a run-away for the volume mode since the total potential becomes (focusing
on just one canonically normalised matter field ϕc):

V = VF + VD =
p1

V2/3

(
cb|φc|2 − ξ

)2 + k
|φc|2

V2
+ VF (T ), with ξ =

p2

V2/3
. (4.25)

The minimum for the matter field is at:

〈|φc|2〉 =
ξ

cb
− k

2c2
bp1V

' ξ

cb
, (4.26)

so that, after integrating out φc we are left with:

V ' k

cb

ξ

V2
+ VF (T ) =

p

V8/3
+ VF (T ), with p =

9kfb
61/3πcb

. (4.27)

In this case the fine-tuning needed to obtain a Minkowski vacuum is reduced to p '
O(V−1/3), but (4.27) is showing again that p cannot be rendered so small since k is an
O(1) number coming from the computation of the supersymmetry breaking contribution
to the mass of the matter scalars, fb is an integer flux-coefficient and cb is the U(1)-charge
of the matter fields.
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Anisotropic case. This problem subsists also in the anisotropic case. In fact, focusing on
the phenomenologically interesting case of a D7-brane wrapping D1 with a non-vanishing
gauge flux supported on t2, the general expression (2.14) for the D-term potential takes
the form:

VD =
π

(τ1 − f2q12/(2gs))

∑
j

c1j ϕj
∂K

∂ϕj
+
q12

4π
∂K

∂τ2

2

' π

τ1

∑
j

c1j ϕj
∂K

∂ϕj
− p
√
τ1

V

2

,

(4.28)
where p ≡ f2/ (2π). The volume scaling of the Kähler potential for the matter fields φj can
be inferred to be (following the same philosophy of [70] and assuming a diagonal structure):
K '

∑
j τ

1/3
1 V−2/3|φj |2. Considering also F -term contributions, the total scalar potential

becomes:

V = VF + VD =
π

τ1

∑
j

c1jτ
1/3
1

|φj |2

V2/3
− p
√
τ1

V

2

+
∑
j

kjτ
1/3
1

|φj |2

V8/3
+ VF (T ), (4.29)

where the kj are O(1) numbers and VF (T ) denotes the scalar potential (4.10) for the Kähler
moduli. If the U(1)-charges of the matter fields have all an opposite sign with respect to
the FI-term, then we find 〈φj〉 = 0 ∀j, leading again to a dangerous run-away behaviour
for the volume mode since the resulting potential is V = πp2V−2 + VF (T ).

If some of the matter fields have a U(1)-charge with the same sign of the FI-term, then
we can have a leading order cancellation in the D-term scalar potential, so that the F -term
potential for the matter fields dominates over the contribution from D-terms. Nevertheless
we still obtain a run-away for the volume mode since the total potential becomes (focusing
on just one canonically normalised matter field ϕc):

V = VF + VD =
π

τ1

(
c1|φc|2 − ξ1

)2 + k
|φc|2

V2
+ VF (T ), with ξ1 = p

√
τ1

V
. (4.30)

The minimum for the matter field is at:

〈|φc|2〉 =
ξ1

c1
− k τ1

2πc2
1V2
' ξ1

c1
, (4.31)

so that, after integrating out φc we are left with:

V ' k

c1

ξ1

V2
+ VF (T ) = λ

√
τ1

V3
+ VF (T ), with λ =

kf2

2πc1
. (4.32)

The τ1-dependent term is still dangerous for the destabilisation of the volume mode since
in order to trust the effective field theory we need to work in the regime τ1 � 1. On top of
this, we need now also to fix the K3 divisor τ1 balancing the term in (4.32) against other
τ1-dependent contributions to the scalar potential. These can only arise via string loop
corrections to K, as we have seen in section 4.1.3, since the fact that this cycle is non-rigid
prevents the presence of non-perturbative effects in τ1.8 Adding to (4.32) the gs correction

8Even taking non-perturbative effects into account, assuming that the deformation moduli might be

fixed by means of non-trivial fluxes, it turns out that no minimum would exist for τ1 � 1.
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coming from wrapping just a D7-brane around D1, the τ1-dependent part of the scalar
potential looks like:

V =
(
λ

√
τ1

V
+
A

τ2
1

)
W 2

0

V2
, with λ =

f2

6πc1
and A =

(
gsC

KK
1

)2
, (4.33)

where we have substituted in λ the correct factor coming from the computation of the
supersymmetry breaking contribution to the mass of the matter scalars: k = W 2

0 /3. The
potential (4.33) admits a minimum for τ1 at:

〈τ1〉 =
(

4A
λ

)2/5

〈V〉2/5 ⇔ 〈τ1〉 =
(

2A
λ

)1/2

〈τ2〉1/2, (4.34)

which implies τ1 � τ2 in agreement with the anisotropic limit we are interested in. Sub-
stituting (4.34) in (4.33), we end up with a total potential of the form:

V = δ
W 2

0

V14/5
+ VF (T ), with δ =

5λ
4

(
4A
λ

)1/5

' 0.16 ·
(
f2

c1

)4/5

A1/5. (4.35)

If we now integrate out τ3 from (4.10) we are left with a potential for just the volume mode
(setting γ = 1):

V =

[
−
(

lnV
a3

)3/2

+
ξ

g
3/2
s

+
4δV1/5

3

]
3W 2

0

4V3
. (4.36)

The minimum for V is localised at 〈V〉 ' e a3ξ2/3/gs and the requirement of obtaining a
vanishing cosmological constant fixes δ = 45

√
lnV/

(
8 a3/2

3 V1/5
)
' 45ξ1/3/

(
8 a3g

1/2
s V1/5

)
.

Using the expression (4.35) for δ, we see that the level of fine-tuning of the coefficients of
the loop corrections is:

CKK1 ' 7.33 · 103ξ5/6

a
5/2
3 g

9/4
s V1/2

(
c1

f2

)2

⇔
(

4A
λ

)2/5

=
324π2c2

1 lnV
f2

2a
3
3V2/5

. (4.37)

Substituting this result in (4.34) we notice that the VEV of τ1 is of the order:

〈τ1〉 =
324π2c2

1 ln〈V〉
a3

3f
2
2

'
(

18πc1

a3f2

)2 ξ2/3

gs
� 1. (4.38)

As we shall see in the next section, this case requires always a large amount of fine tuning
to reach the interesting regions of the (mγ′ ,χ)-parameter space. Moreover, it relies on the
model-dependent assumption of realising an explicit brane construction where the hidden
photon does not get a large Higgs mass of the order 〈ϕc〉 ∼

√
ξ1 ∼ Ms, and the fermions

can evade the stringent bounds on millicharged particles due to the presence of appropriate
Yukawa couplings.

Using similar arguments as above, it can be shown that when we wrap a D7-brane
also around D2 with a non-vanishing gauge flux, we face the same destabilisation problem
for the volume direction but without the possibility to fix it by having a leading order
cancellation of the D-terms as in the case of a D7-brane wrapping D1.
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We conclude that D-terms associated to U(1) factors living on 4-cycles controlling the
overall volume are the source of a serious run-away problem for the volume mode. Except
for the case of a K3 fibration with a D7-brane wrapping D1, where this problem can
be avoided by means of fine-tuning and some model-dependent assumptions, the general
solution seems to rely on the absence of gauge fluxes that prevents the presence of any Fayet-
Iliopoulos term, corresponding to the uninteresting situation of massless hidden photons.

However this is not the end of the story. In fact, in the previous analysis, we never
considered the supersymmetric case of vanishing D-terms with zero FI-terms since, due to
the particularly simple form of the overall volume, this situation would have corresponded
to the limit V → ∞. In the next section, we shall therefore solve this problem associ-
ated with the D-term potential, focusing on Calabi-Yau three-folds with more complicated
topologies where ξ = 0 does not correspond to V → ∞, but the requirement of having
vanishing FI-terms reduces dynamically the initial compactification manifold to the simple
ones we were considering before.

4.2.2 Vanishing FI-terms with finite volume

Consider a Calabi-Yau orientifold with h+
1,1 = h1,1 (i.e. h−1,1 = 0) even divisors with n < h1,1

of them wrapped by a stack of D7-branes with generic gauge fluxes:

FD7i
2 = f j(i)D̂j , ∀i = 1, . . . , n, (4.39)

that give rise to the following Fayet-Iliopoulos terms:

ξi =
1
V
fk(i)kijkt

j =
1
V
qij t

j . (4.40)

It is interesting to notice the nice relation between the U(1)-charges qij = fk(i)kkij and the
chiral intersections:

ID7i−D7j =
∫
CY

D̂i ∧ D̂j ∧
(
FD7i

2 − FD7j
2

)
=
(
fk(i) − f

k
(j)

)
kijk = qij − qji, (4.41)

ID7i−D7i′ = 2
∫
CY

D̂i ∧ D̂i ∧ FD7i
2 = 2f j(i)kiij = 2qii, (4.42)

ID7i−D7j′ =
∫
CY

D̂i ∧ D̂j ∧
(
FD7i

2 + FD7j
2

)
=
(
fk(i) + fk(j)

)
kijk = qij + qji, (4.43)

where we have used the fact that D′i = Di, while the gauge flux inverts its sign under
the orientifold action. We can then rewrite the Fayet-Iliopoulos terms as a function of the
chiral intersections as:

ξi =
1
V

 n∑
j=1

(
ID7i−D7j + ID7i−D7j′

2

)
tj +

h1,1∑
j=n+1

qijtj

 , (4.44)

where the first sum is over the 2-cycles dual to the wrapped 4-cycles while the last one is
over the unwrapped ones.
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If we then impose the absence of chiral intersections between the D7-branes and
their orientifold images in order to avoid any problem with millicharged particles, the
FI-terms (4.44) simplify to:

ξi =
1
V

h1,1∑
j=n+1

qijtj , (4.45)

with an explicit dependence only on the 2-cycles dual to the 4-cycles not wrapped by
any brane.

Focusing on the supersymmetric locus corresponding to vanishing FI-terms, we then
obtain a homogeneous system of n linear equations in m ≤ (h1,1 − n) unknowns (we have
m < (h1,1−n) if some unwrapped 4-cycles do not intersect any of the wrapped ones) which,
in the case of linearly independent equations, admits only the trivial solution if m ≤ n.

We shall therefore focus on the case m = (h1,1 − n) ⇔ n < h1,1 ≤ 2n, and look for
Calabi-Yau geometries that admit a singular limit to our previous examples, dynamically
driven by the supersymmetric requirement of having vanishing D-terms. Moreover the
absence of chiral matter renders our results truly model independent and the resulting
improved control over moduli stabilisation strengthens the robustness of our predictions.

Isotropic case. In this section we shall show how the supersymmetric requirement of
having vanishing D-terms allows us to obtain isotropic compactifications with just one large
4-cycle controlling the overall volume, as a singular limit of different Calabi-Yau three-folds
with more complicated topologies.

We shall start from the same manifold discussed in section 3.2, that is an orientifold of
the Calabi-Yau given by the degree 12 hyper-surface embedded in CP 4

[1,1,2,2,6]. The volume
can be expressed in terms of the 2-cycle moduli as in (3.18) or as a function of the 4-cycle
moduli as in (3.20) with the only two non-zero intersection numbers given by k122 = 2
and k222 = 4.

We now wrap a single D7-brane around the divisor D2 whose volume is τ2 =
2t2 (t1 + t2) turning on also a generic gauge flux on this brane: F2 = f1D̂1 + f2D̂2. On the
other hand, we do not wrap any D7-brane around the other divisor D1 with volume given
by τ1 = t22.

The requirement of avoiding the generation of chiral matter at the intersection between
the D7-brane and its orientifold image, constraints the form of the integer flux coefficients.
In fact, the number of chiral bi-fundamental states at this intersection reads:

ID7−D7′ = 2
∫
CY

D̂2 ∧ D̂2 ∧ F2 = 4 (f1 + 2f2) = 0 ⇔ f1 = −2f2, (4.46)

where we have used the fact that we are dealing with even 4-cycles under the orientifold, i.e.
D′1 = D1, while the gauge flux flips sign: F2 → −F2. Recalling the general relation between
the U(1)-charges and the Fayet-Iliopoulos terms, we find that the only non-vanishing charge
is q21 = 2f2 leading to:

ξ2 =
q2jtj
V

=
2f2t1
V

. (4.47)
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The supersymmetry requirement of having vanishing D-terms then forces the 2-cycle t1 to
shrink to zero size: t1 → 0. In this singular limit, the initial Calabi-Yau takes exactly the
same form of the isotropic case studied in section 3.1 while all the divisors stay finite:

V =
(
t1 +

2
3
t2

)
t22 →

2
3
t32 =

2
3
τ

3/2
1 ⇔ τ1 = t22, τ2 = 2t2 (t1 + t2)→ 2t22 = 2τ1. (4.48)

Therefore in this case the D-term potential is under control and the U(1) gauge boson
living on D2 can become massive via the Green-Schwarz mechanism due to its coupling
to a particular combination of the canonically normalised two-forms D1

2 and D2
2. In order

to compute the mass of the hidden photon we need the diagonalising matrix evaluated at
τ2 = 2τ1 which looks like:

Cij =
1
τ1

(
c1 c3

c2 c4

)
, with c1,2 = (−1∓

√
17)

√
3

2(51∓ 5
√

17)
, and c3,4 = 2

√
6

51∓ 5
√

17
.

Therefore the mass of the hidden photon living on D2 turns out to be:

mγ′ =
√
M2

21 +M2
22 ∼ f2

MP

τ
3/2
1

∼ f2
MP

τ
3/2
1

, (4.49)

which is exactly of the same form as (3.9) once we identify τ1 with the big 4-cycle τb.

Anisotropic case. Start from a Calabi-Yau with three Kähler moduli and volume of
the form:

V = t1t2 (t2 + t3) , (4.50)

so that the only non-zero intersection numbers are k122 = 2 and k123 = 1. It can be
checked that the Hessian ∂2V/ (∂ti∂tj) admits one positive and two negative eigenvalues
in accord with the generic property of Calabi-Yau manifolds that requires the signature of
the Hessian to be (1, h1,1 − 1).

The 4-cycle moduli are given by:

τ1 = t2 (t2 + t3) , τ2 = t1 (2t2 + t3) , τ3 = t1t2, (4.51)

and the volume can be reexpressed in terms of them as:

V =
√
τ1τ3 (τ2 − τ3). (4.52)

We now wrap a single D7-brane both around the divisor D1 and D2. In addition we
turn on generic gauge fluxes on these branes:

FD71
2 = f2D̂2 + f3D̂3, and FD72

2 = g1D̂1 + g2D̂2 + g3D̂3, (4.53)
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with the additional constraint that no chiral matter is generated at each of the possible
intersections between branes and their orientifold images:

ID71−D72 =
∫
CY

D̂1 ∧ D̂2 ∧
(
FD71

2 − FD72
2

)
= 2 (f2 − g2) + f3 − g3 = 0 (4.54)

ID71−D71′ = 2
∫
CY

D̂1 ∧ D̂1 ∧ FD71
2 = 0 (4.55)

ID71−D72′ =
∫
CY

D̂1 ∧ D̂2 ∧
(
FD71

2 + FD72
2

)
= 2 (f2 + g2) + f3 + g3 = 0 (4.56)

ID72−D72′ = 2
∫
CY

D̂2 ∧ D̂2 ∧ FD72
2 = 4g1 = 0 (4.57)

ID72−D71′ = ID71−D72′ , ID72′−D71′ = −ID71−D72. (4.58)

We remind the reader that in the previous expressions we have used the fact that we are
dealing with even 4-cycles under the orientifold, i.e. D′i = Di, while the gauge flux flips sign:
F i2 → −F i2. The combined constraints (4.54) and (4.56) imply f3 = −2f2 and g3 = −2g2,
while (4.55) is satisfied by construction since the divisor D1 has no self-intersection, i.e.
k1ij = 0 ∀i, j, and (4.57) forces g1 = 0.

Recalling the general relation between the U(1)-charges and the Fayet-Iliopoulos terms,
we find that the only non-vanishing charge is q13 = f2 leading to:

ξ1 =
q1jtj
V

=
f2t3
V

, and ξ2 =
q2jtj
V

= 0. (4.59)

The supersymmetry requirement of having vanishing D-terms then forces the 2-cycle t3
to shrink to zero size: t3 → 0. In this singular limit, the initial Calabi-Yau takes exactly
the same form of the K3 fibration studied in the previous section while all the divisors
stay finite:

V → t1t
2
2 =

1
2
√
τ1τ2 ⇔ τ1 → t22, τ2 → 2t1t2, τ3 → t1t2 = 2τ2. (4.60)

Therefore in this case the D-term potential is under control and the brane set-up is the
right one to generate the string loop correction to the Kähler potential needed to fix the
K3 divisor.

However in the previous sections, we have seen that the U(1) gauge boson living on
D1 becomes massive due to its coupling with the two-form D2

2 while in our case q12 = 0
and FD71

2 couples to a particular combination of the canonically normalised two-forms
D2

2 and D3
2. However the final mass of the hidden photon takes the same form since the

diagonalising matrix evaluated at τ3 = 2τ2 looks like:

Cij =
1
τ2

 τ2/τ1 0 0
0 λ1 λ3

0 λ2 λ4

 , with λ1,2 =
1∓
√

5

51/4
√√

5∓ 2
, and λ3,4 =

2

51/4
√√

5∓ 2
.

Therefore the mass of the hidden photon living on D1 turns out to be:

mD71
γ′ =

√
M2

12 +M2
13 =

√(
λ2

2 + λ2
4

)
4π2

f2
MP√
τ1τ2

∼ f2
MP√
τ1τ2

, (4.61)
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which is exactly of the same form as (3.35). We finally point out that the hidden photon
living on D2 is exactly massless since the corresponding FI-term is vanishing, ξ2 = 0, due
to the requirement of avoiding chiral intersections and the particularly simple structure of
the intersection numbers.

5 Phenomenological implications

Let us focus on the phenomenologically interesting case of K3 fibrations with a D7-brane
wrapped around D1 with f2 units of gauge flux on t2. We have seen that there are two
ways to stabilise the K3 divisor either via gs corrections to K for vanishing FI-terms or by
making these corrections compete with D-terms for non-zero FI-terms. Let now examine
the predictions for the features of the hidden photon in these two separate scenarios.

5.1 Vanishing FI-term

Fixing τ1 via string loop corrections to the Kähler potential we can rewrite the rela-
tion (3.38) between mγ′ and χ as:

χ

10−8
∼ κ−1/3

( mγ′

GeV

)1/3
⇔ κ ∼

(
10−8

χ

)3 ( mγ′

GeV

)
, (5.1)

where κ is a free parameter that is naturally small since it is proportional to g2
s � 1:

〈τ1〉 = κ 〈τ2〉, with κ ≡
(
gsC

KK
1

)2
CW12

. (5.2)

The masses and mixings reachable in this type of setup are shown in figure 3 as the light
blue area. For large volumes of the cycle supporting the hidden photon we typically also
obtain fairly light KK modes of the hidden photon. Assuming that their mixing with the
zero mode of the electromagnetic field is of similar size we expect values in the light green
area of figure 3.

Let us show some interesting values:

• χ ∼ 10−6 gives mγ′ ∼ κ 106 GeV and we obtain:

1. Dark forces: mγ′ ∼ 1 GeV for κ ∼ 10−6,

2. Hidden CMB: mγ′ ∼ 1 meV for κ ∼ 10−18,

• χ ∼ 10−7 gives mγ′ ∼ κ 103 GeV and we obtain:

1. Dark forces: mγ′ ∼ 1 GeV for κ ∼ 10−3,

2. Hidden CMB: mγ′ ∼ 1 meV for κ ∼ 10−15,

Therefore we realise that we can reach the dark force regime naturally while we need some
amount of fine-tuning to allow for the presence of a hidden CMB.

Let us now check the actual amount of fine tuning and the corresponding value of
the overall volume which sets all the fundamental scales in our theory. To do that let us
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Figure 3. Predictions from anisotropic compactifications. The area predicted by models with
vanishing FI-terms is shown in light blue and marked as “Stückelberg anisotropic”. The lines
denote different values of from bottom to top, κ = 1, 10−3, 10−6 . . . 10−21. The red line denotes a
natural κ = 10−6. The green area marked “KK anisotropic” denotes the region where we expect
the corresponding Kaluza-Klein modes. Finally the light red area “Non-zero FI-terms” corresponds
to parameter values expected in models with non-vanishing Fayet-Iliopoulos terms. The existing
experimental and observational constraints are marked in grey. As in figure 1 we have marked
phenomenologically interesting areas in yellow.

recall that naturally we have gs ∼ 0.1. Moreover, CKK1 and CW12 are unknown functions
of the complex structure moduli that can, in principle, be tuned by an appropriate choice
of fluxes, however the natural expectation is CKK1 ∼ CW12 ∼ O(1). Deviations from these
natural values require a certain amount of fine-tuning.

Natural dark forces for intermediate scale strings.

• κ = 2.5 · 10−6 ∼ 10−6 can be obtained choosing gs = 0.1, CKK1 = 0.05 and CW12 = 0.1
corresponding to a kinetic mixing parameter of the order χ ∼ 10−6. The VEVs of
the two moduli become τ1 ∼ 10−4χ−2 ∼ 108 and τ2 = τ1/κ ∼ 1014 � τ1 leading to a
volume of the order V ' α√τ1τ2 ∼ 1017 for α = 0.1. Thus the string scale turns out
to be intermediate Ms ∼ 1011 GeV.

• κ = 10−3 can be obtained choosing gs = CKK1 = CW12 = 0.1 corresponding to a kinetic
mixing parameter of the order χ ∼ 10−7. The VEVs of the two moduli become
τ1 ∼ 10−4χ−2 ∼ 1010 and τ2 = τ1/κ ∼ 1013 � τ1 leading again to a volume of the
order V ' α√τ1τ2 ∼ 1017 for α = 0.1 together with an intermediate string scale.

We therefore conclude that we can obtain dark forces for natural values of the underlying
parameters in scenarios where the string scale is intermediate. These scenarios are favoured
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also by the fact that TeV-scale supersymmetry can be achieved since the soft masses scale
as Msoft ∼ W0MP /V ∼ 1 TeV for W0 ∼ 40. Moreover Ms ∼ 1011 GeV yields also a decay
constant for the QCD axion in the allowed region and the right Majorana mass scale for
right handed neutrinos.

We finally notice that the dark force case corresponds to Calabi-Yau geometries with
a slight anisotropy since there is only a mild hierarchy between the characteristic size of
the base L ∼ t1/21 =

√
V/τ1 ∼ 104 and that of the K3 fibre l ∼ τ1/4

1 ∼ 102.

Hidden CMB with KK Dark Forces and strings at the LHC.

• κ = 10−15 can be obtained choosing gs = 0.01, CKK1 ∼ 10−4 and CW12 ∼ 103 corre-
sponding to a kinetic mixing parameter of the order χ ∼ 10−7. The VEVs of the
two moduli become τ1 ∼ 10−4χ−2 ∼ 1010 and τ2 = τ1/κ ∼ 1025 � τ1 leading to a
volume of the order V ' α

√
τ1τ2 ∼ 1030 for α = 1. Thus we are in the extreme case

of TeV-scale strings: Ms ∼ 1 TeV.

• κ = 10−18 can be obtained choosing gs = 10−3, CKK1 = 10−4 and CW12 = 104

corresponding to a kinetic mixing parameter of the order χ ∼ 10−6. The VEVs of
the two moduli become τ1 ∼ 10−4χ−2 ∼ 108 and τ2 = τ1/κ ∼ 1026 � τ1 leading
again to a volume of the order V ' α√τ1τ2 ∼ 1030 for α = 1 together with TeV-scale
strings.

We therefore conclude that we can obtain a hidden CMB candidate by fine-tuning the
values of the underlying parameters in scenarios with Ms ∼ 1 TeV. These scenarios are
very promising from several other points of view: they provide a solution to the hierarchy
problem that does not rely on supersymmetry, and they might shed new light on the
solution of the cosmological constant problem [45].

Furthermore they can be detected in the lab by four different means: via string reso-
nances and deviations from Standard Model quark scattering at the LHC; at light shining
through a wall experiments such as ALPS; they lead to large extra dimensions and light
moduli mediating long range fifth forces that would give rise to modifications of Newton’s
law at the edge of detectability; and the Kaluza-Klein excitations of the hidden gauge
bosons are in the Dark Forces regime and could thus be produced in the next generation
of experiments searching for these.

We finally notice that the hidden CMB case corresponds to Calabi-Yau three-fold with
a very anisotropic shape since there is a large hierarchy between the characteristic size of
the base L ∼ t1/21 =

√
V/τ1 ∼ 1011 and that of the K3 fibre l ∼ τ1/4

1 ∼ 102.

5.2 Non-zero FI-term

Fixing τ1 via the interplay of D-terms and string loop corrections to the Kähler potential
we can rewrite the relation (3.38) between mγ′ and χ as:

mγ′ ' 1020αf2

√
τ1

V
χ GeV ' 5 · 1017α

f2

V
GeV. (5.3)
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Substituting in (5.3) the expression (4.38) for the VEV of τ1 in terms of χ, we end up with:

mγ′ ' 5 · 1017µ1 e
−µ2χ−2

GeV, (5.4)

where µ1 = αf2 and µ2 = 25 ·10−6σ−1, with σ that is a free parameter whose value is fixed
by the requirement of getting a Minkowski vacuum:

〈τ1〉 = σ ln〈V〉, with σ ≡ 324π2c2
1

a3
3f

2
2

. (5.5)

Varying the integers in this equation within reasonable limits (1− 10) we can reach values
within the red area of figure 3.

Let us now illustrate the phenomenological implications of these results with the help
of some parameter fits that lead to χ ' 10−6. The dark force case with mγ′ ∼ 1 GeV
can be achieved for µ1 = 0.1 and µ2 = 4.1565 · 10−11. These two values can be obtained
choosing α = 0.1, f2 = 1, c1 = 8 and a3 = 2π/N3 with N3 = 9. The VEV of the K3 divisor
becomes τ1 ' 25 · 10−6χ−2 = 2.5 · 107 while the volume is of the order V ' eτ1/σ ∼ 1018

corresponding to an intermediate string scale. Given that the volume can be also expressed
as a3 lnV ' ξ2/3/gs, we can choose ξ = 1.5 and gs = 0.045. Using (4.37), we can finally
check that no fine-tuning of the string loop corrections is needed in order to get a vanishing
cosmological constant since the above choice of parameters sets CKK1 ' 1.63.

We therefore conclude that, even in this case where the K3 divisor is fixed by the
interplay of D-terms and gs corrections, we can obtain dark forces for natural values of
the underlying parameters in scenarios where the string scale is intermediate. However
this case looks less promising than the one with vanishing FI-terms since the additional
constaint coming from the requirement of a viable up-lifting reduces the reliability of our
predictions. In fact, due to the exponential dependence of mγ′ on χ, a small change in
our choice of parameters gives drastic changes for the mass of the hidden photon at fixed
kinetic mixing. For example, if we just change c1 = 8 to c1 = 7 in the above fit, the
prediction for the U(1) mass gets modified from mγ′ ' 1 GeV to mγ′ ' 10−6 GeV.

With other small changes, like α = 0.1 → 10 and c1 = 8 → 6, we can easily reach
the interesting hidden CMB regime for mγ′ ∼ 1 meV. The VEV of the K3 divisor is still
of the order τ1 ' 107 while the volume now becomes V ' eτ1/σ ∼ 1032 corresponding to
the extreme case of TeV-scale strings. Such a large value of V can be obtained for ξ = 1.5
and gs = 0.025. Using (4.37), we can finally check that, contrary to the dark force case,
the upliting now requires a large fine-tuning of the coefficient of the loop corrections of the
order CKK1 ' 3.3 · 10−7.

6 Conclusions

We have shown that allowing for anisotropy in LARGE volume compactifications greatly
enhances the phenomenological possibilities for hidden D-brane U(1)s. In this case, in
addition to collapsed, small, or hyperweak cycles, it is possible to wrap (hidden) branes
on “milliweak” cycles. Each of these will give different ranges of gauge couplings and
thus kinetic mixing with the hypercharge, but since in this case the Stückelberg masses
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of the U(1)s become more weakly correlated with the volume of the cycle, a milliweak
cycle allows for the attractive possibility of a very small mass but moderate (and thus
observable) mixing.

In fact, naively there is an embarrassment of riches; the possible masses and mixings
become so diverse as to render the scenario almost unpredictive, with the exception of lower
bounds due to there being a maximum volume of the compactification (of V ∼ 1030 since the
string scale cannot be below O(TeV)). We therefore considered the constraints imposed
by insisting on moduli stabilisation, taking careful account of the relationship between
fluxes required to give the U(1)s masses and the presence of D-terms and hidden chiral
matter. These constraints then translate into requirements on uncalculable parameters in
the model such as the coefficients of the loop corrections to the Kähler potential. We found
that without any fine-tuning it is possible to have hidden U(1)s in the Dark Forces regime
even for intermediate scale strings, and so we could soon be probing intermediate scale
string effects in the lab!

We also found that we can realise the “hidden CMB” scenario of a hidden U(1) of
mass ∼ meV and mixing ∼ 10−6, with the price being some fine tuning. In compensation
we surprisingly find multiple ways to test it: other than cosmological observations, it can
be directly tested in lab experiments at very low energies, in Dark Forces experiments due
to the hidden Kaluza-Klein modes, and at the LHC since the string scale must be low.

We hope that we have provided ample motivation and tools to search for these setups
in more complete models, including explicit brane constructions with tadpole cancellation.
The reward for this endeavour would be a way to probe in the lab the hidden sectors that
generically arise, and interesting hidden sector model building.
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A U(1) masses from dimensional reduction

A.1 U(1) factors from D-branes

A very important ingredient of Calabi-Yau flux compactifications is the presence of Dp-
branes which wrap internal (p− 3)-cycles and have to fill the four-dimensional space-time
in order not to break Poincaré invariance. Each space-time filling Dp-brane comes along
with a U(1) gauge theory that lives on its world volume. Thus string compactifications
naturally come along with many U(1) gauge bosons.
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The dynamics of a Dp-brane is governed by the Dirac-Born-Infeld action SDBI together
with a Chern-Simons action SCS :

SDBI = −µpe−φ
∫
W
dp+1ξ

√
−det [ı∗(G+B2) + l2sF2/(2π)], (A.1)

SCS = µpe
−φ
∫
W

∑
p

ı∗ (Cp) ∧ eı
∗(B2)+l2sF2/(2π), (A.2)

where φ is the dilaton, µp is the tension of the Dp-brane which is equal to its RR-charge
since the Dp-brane has to satisfy a BPS condition, G denotes the 10D metric, B2 is the
NS-NS 2-form, F2 is the gauge field strength, and Cp is a R-R p-form. The integrals in (A.1)
and (A.2) are taken over the (p+ 1)-dimensional world-volume W of the Dp-brane, which
is embedded in the ten dimensional space-time manifold X10 = R3,1 ×M6, where M6 is a
6D Calabi-Yau manifold, via the map ı :W ↪→ X10. ı∗ denotes the pullback operation.

From now on, we shall focus on type IIB flux compactifications since this is the context
where moduli stabilisation is best understood. We shall also be interested in the case of
a D7-brane wrapping an internal 4-cycle D which is a smooth divisor of the Calabi-Yau
three-fold. The volume of a generic 4-cycle Di is given by the real part of the Kähler
modulus Ti which in 4D Einstein-frame is defined as:

Ti ≡
(∫

Di

√
g d4y + i

∫
Di

C4

)
e−φ

l4s
≡ τi + ibi, i = 1, . . . , h1,1, (A.3)

where h1,1 is one of the Calabi-Yau Hodge numbers and C4 is the 10D R-R 4-form.
The standard Maxwell action can be obtained from expanding the DBI action (A.1)

in powers of the field strength:9

SDBI = −µ7e
−φ
∫

R3,1×Di
d8ξ
√
−det [ϕ∗(G) + l2sF2/(2π)] (A.4)

= −µ7e
−φ
∫

R3,1×Di
d8ξ
√
−det [ϕ∗(G)]×

×
(

1 +
l4s

16π2
FMNF

MN − l8s
128π4

(
FMNF

MN
)2

+ . . .

)
,

and then performing the dimensional reduction from 8D to 4D:

− µ7e
−φl4s

16π2

∫
R3,1×Di

d8ξ
√
−det [ϕ∗(G)]FMNF

MN → −
(
µ7l

8
s

16π2

)
τi

∫
R3,1

FµνF
µνd4x.

The D7-brane tension is given by µ7 = 2π/(gsl8s), and so we obtain the final result:

Lkin = − 1
4g2
i

∫
R3,1

FµνF
µνd4x with g2

i =
2π
τi
. (A.5)

9We are neglecting the background NSNS two-form B2 since we shall look at orientifold projections such

that h−1,1 = 0.
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A.2 Massive U(1)s from internal fluxes

A U(1) gauge boson living on a D7-brane can acquire a mass by turning on an internal
magnetic flux in the world-volume of the D7-brane. In fact, turning on a 2-form gauge
flux on a 2-cycle internal to the 4-cycle wrapped by the D7 generates a coupling between
the U(1) gauge boson and the Kähler modulus (A.3) corresponding to the 4-cycle Poincaré
dual to the 2-cycle supporting the magnetic flux. Then the axion, that is the imaginary
part of the charged Kähler modulus, gets eaten up by the U(1) gauge boson which becomes
massive via the Stückelberg mechanism. This is the way in which string theory cures any
problem coming from dangerous anomalous U(1)s which acquire O(Ms)-masses through
the Green-Schwarz mechanism, and so they disappear from the 4D effective field theory.
However we shall be interested in non-anomalous U(1)s which can still become massive via
the same mechanism, but their mass can be much lighter than Ms. Therefore these hidden
photons have to be included in the description of the 4D effective field theory coming from
string compactifications.

Let us see more in detail how this happens. The expansion of the Chern-Simons
action (A.2) contains a coupling with the 10D R-R 4-form C4 which looks like:

L ⊃ −2π
e−φ

l2s

∫
R3,1×Di

F2

2π
∧ C4 ∧

F2

2π
. (A.6)

The R-R form C4 can be decomposed as:

C4 = Qi2(x) ∧ D̂i(y) + bi(x)D̃i(y), i = 1, . . . , h1,1, (A.7)

where the D̃i are a basis of harmonic (2,2)-forms of H2,2(M6), dual to the (1,1)-forms
D̂i, while the 4D fields bi(x) are the axions defined in (A.3) and Qi2(x) are 2-forms dual
to the bi(x) (due to the self-duality of F5 = dC4 = ?10DF5). Taking both of the F ’s
to be with non-compact indices, and reducing C4 along the divisor Di, gives rise to the
axion-dependent CP-odd coupling:

L ⊃ − e
−φ

2πl4s

(∫
Di

C4

)∫
R3,1

F2 ∧ F2 =
bi
2π

∫
R3,1

F2 ∧ F2, (A.8)

which combined with the result (A.5) for the CP-even coupling, yields the following ex-
pression for the gauge kinetic function:

fD7i =
Ti
2π
. (A.9)

On the other hand, taking one of the F ’s to be the compact flux (denoted as F c2 ) and the
other to be with non-compact indices, we obtain (working in Einstein frame):

L ⊃ − 1
2πl4s

(∫
Di

D̂j ∧ F c2
)∫

R3,1

Qj2 ∧ F2 =
qij
l2s

∫
R3,1

Qj2 ∧ F2, (A.10)

where qij is the charge of the 2-form Qj2 under the U(1) living on the divisor Di. Expanding
the gauge flux F c2 in the basis of (1,1)-forms D̂i as F c2 = f icD̂i, and defining the Calabi-Yau
intersection numbers as:

kijk =
1
l6s

∫
M6

D̂i ∧ D̂j ∧ D̂k, (A.11)
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we end up with the following expression for the U(1)-charge qij :

qij =
1

2πl2s

∫
Di

D̂j ∧ F c2 =
fkc

2πl6s

∫
M6

D̂i ∧ D̂j ∧ D̂k =
fkc
2π
kijk. (A.12)

Therefore the gauge flux coefficients and the intersection numbers determine which 2-
forms couple to the Abelian gauge boson which lives on the divisor Di. Recalling that the
2-forms Qj2(x) are 4D dual to the axions bj(x), we realise that the Kähler moduli which
get charged under the U(1), are those parameterising the volume of 4-cycles that intersect
the 2-cycle supporting the gauge flux. This is topologically equivalent to saying that the
Kähler moduli which get a U(1)-charge are a combination of 4-cycles corresponding to the
4-cycle that is Poincaré dual to the 2-cycle on which the magnetic flux is turned on. Due
to the coupling (A.10), the U(1) gauge boson becomes massive by eating the axion (or
an appropriate combination of axions) which is the imaginary part of the charged Kähler
modulus.

In order to see this mechanism in more detail, we need to include also the kinetic terms
for the Qj2 which are expressed in terms of the corresponding field strength Hj

3 = dQj2. They
can be derived from the 10D term S ⊃ − 1

8κ2
10

∫
F5 ∧ ?F5:

− 2π
4l6s

∫
R3,1×M6

dC4 ∧ ∗dC4 = − π
l2s

(∫
M6

D̂j ∧ ∗D̂k

)∫
R3,1

1
2
dQj2 ∧ ∗dQ

k
2, (A.13)

where:
1
l6s

∫
M6

D̂j ∧ ∗D̂k =
(K−1

0 )jk
V

, (A.14)

with V the dimensionless Calabi-Yau volume. The matrix K−1
0 is defined as the inverse

of the metric obtained by taking the second derivatives of the tree-level Kähler potential
K0 = −2 lnV with respect to the real part of the T -moduli. Thus we end up with:

− π
(K−1

0 )jk
Vl2s

∫
R3,1

1
2
dQj2 ∧ ∗dQ

k
2 = −π

(K−1
0 )jk
Vl2s

∫
R3,1

1
12
Hj
µνρH

k,µνρd4x. (A.15)

Our final Lagrangian is then given by the standard Maxwell action (A.5) plus the
term (A.10) describing the coupling of the 2-form Qj2 to the Abelian gauge boson and
the 2-form kinetic term (A.15). Before showing how the gauge boson becomes massive, let
us redefine the 2-form so that it gets a canonical mass dimension 1:

Zj2 ≡MPQ
j
2 ⇔ Gj3 ≡MPH

j
3 . (A.16)

Using l−2
s = M2

s = M2
P /(4πV), the final Lagrangian takes the form:

L = −
(K−1

0 )jk
48V2

GjµνρG
k,µνρ − 1

4g2
i

FµνF
µν + qij

MP

4πV
Zj2 ∧ F2. (A.17)

The 2-form kinetic terms can be canonically normalised by defining (suppressing the space-
time indices):

Gi = 2V CijHj , ⇔ Zi2 = 2V CijD
j
2, (A.18)
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where the columns of the matrix Cij are given by the eigenvectors of K−1
0 normalised as:

(K−1
0 )ijCja = Ciaλa, with (Ct)iaCib = λ−1

a δab. (A.19)

Note that

(Ct)ib(K−1
0 )ijCja = δab → (Ct)ib(K−1

0 )ijCja(C
t)ak = (Ct)bk → Cja(C

t)ak = (K0)ik. (A.20)

Canonically normalising also the U(1) field strength as F = giF i, and using the expres-
sions (A.5) and (2.6) for the coupling constant gi and the U(1)-charge qij respectively, we
end up with (defining the dimensionless flux coefficients f i as f i ≡ l2sf ic/(2π)):

L = − 1
12
HjµνρH

µνρ
j − 1

4
F iµνF i µν +MijDj2 ∧ F

i
2. (A.21)

where:
Mij ≡

(
gif

kkipkC
p
j

)MP

2π
=
(
gi qipC

p
j

)MP

2π
. (A.22)

with no sum over i since this index simply denotes the 4-cycle Di wrapped by the D7-
brane. Hence we realise that in general F2 couples to a particular combination of all the
2-forms, and not just to a single 2-form, due to the canonical normalisation which typically
introduces a mixing among all the 2-forms.

Let us see why on dualising D2 to the corresponding axion a, the Lagrangian (A.21)
generates an explicit mass term m2

γ′AµAµ for the U(1) gauge boson. The dual axion a

can be introduced as a Lagrange multiplier for the arbitrary field Hµνρ by imposing the
constraint d∗H = 0 which is locally equivalent to dD2 = H:

L = − 1
12
HjµνρH

µνρ
j − 1

4
FµνFµν −

Mij

6
εµνρσHjµνρ Aσ −

Mij

6
aεµνρσ∂µHjνρσ. (A.23)

We can now obtain a quadratic Lagrangian for H by integrating by parts the last term
in (A.23). Then the equations of motion for H give:

Hµνρj = −Mij ε
µνρσ (Aσ + ∂σa) , (A.24)

which inserted back into (A.23) yields:

L = −1
4
FµνFµν −

m2
γ′

2
(Aµ + ∂µa) (Aµ + ∂µa) , with m2

γ′ =
∑
j

M2
ij . (A.25)

The field Aµ ≡ Aµ + ∂µa clearly represents a massive U(1) gauge boson. Thus the axion
a is eaten up by the gauge boson without the need of any Higgs-like field in a stringy
realisation of the standard Stückelberg mechanism. Note that the above can be simplified
using A.20 to

(M2)ab = MajM
t
jb =

M2
P

2π
√
τaτb

qapC
p
j (Ct)jrqbr

=
M2
P

2π
√
τaτb

qapqbr(K0)pr. (A.26)
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If we include also the contributions from four-cycles odd under the orientifold D̂c
−,

defining

rac ≡
∫
Da

D̂c
−, (A.27)

the final total result is

m2
ab =gagb

M2
P

4π2

[
V−2rac(K−1

0 )cdrbd + qaα(K0)αβqbβ

]
. (A.28)

This expression is equivalent to the one presented in [10] noting the different metrics used
and the different definition of Ms.

A.3 FI-terms

In the previous section we have seen how U(1) gauge bosons can acquire a mass by turning
on an internal magnetic flux in the world-volume of a D7-brane wrapping a divisor Di

with corresponding Kähler modulus Ti. This guarantees that also a moduli-dependent 4D
Fayet-Iliopoulos term gets generated [71–73]. In fact, denoting as TU(1) the charged Kähler
modulus which is in general a combination of all the basis divisors corresponding to the
4-cycle Poincaré dual to the 2-cycle supporting the magnetic flux, the axion a = Im(TU(1))
gets eaten up by the U(1) gauge boson via the Stückelberg mechanism, but τ = Re(TU(1))
is a light modulus that has to be taken into account in the effective field theory and gives
rise to a moduli-dependent Fayet-Iliopoulos term.

This can be seen to arise from the low-energy reduction of the DBI action (A.4):

SDBI = −µ7e
−φΓ(y)

∫
R3,1

d4x

(
1 +

l4s
16π2

Fµν(x)Fµν(x) + . . .

)
, (A.29)

where:

Γ(y) =
∫
Di

d4y
√
−det [ϕ∗(gCY )]

(
1 +

l4s
16π2

Fmn(y)Fmn(y) + . . .

)
.

From the BPS calibration condition for a D7-brane we find that:

Γ(y) =
1
2

∫
Di

(
J ∧ J − l4s

4π2
F c2 ∧ F c2

)
+

(∫
Di
J ∧ l2s

2πF
c
2

)2

∫
Di

(
J ∧ J − l4s

4π2F
c
2 ∧ F c2

) . (A.30)

When in (A.29) Γ(y) multiplies the first term in parenthesis, after performing the appro-
priate Weyl rescaling to 4D Einstein frame,10 we obtain two contributions to the 4D scalar
potential: the D7-brane tension TD7 and a moduli dependent Fayet-Iliopoulos term ξi:

TD7 = g−2
i 4π2e2φM4

s , and VD =
g2
i

2
ξ2
i , with

ξi
M2
P

=
1

4πV

∫
Di

(
J ∧ l2s

2π
F c2

)
. (A.31)

The D7-brane tension gives no net contribution to the scalar potential since it will be
compensated by by other extended objects due to tadpole cancellation.

10We recall that the 10D metric in string frame is related to the 10D metric in Einstein frame via

g
(s)
MN = eφ/2g

(E)
MN .
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On the other hand, considering in (A.29) Γ(y) multiplied by the second term in paren-
thesis, we realise that in the presence of a non-vanishing world-volume flux, the expres-
sion (A.5) for the gauge coupling constant gi gets modified to:

2π
g2
i

= Re(Ti)− hi(F c2 )Re(S), (A.32)

where Re(S) = e−φ and the flux-dependent factor is given by hi(F c2 ) = fkfjkijk
2 = fjqij

2

where qij are the flux-dependent U(1) charges of the Kähler moduli (2.6).
The Fayet-Iliopoulos term in (A.31) can be rewritten as:

ξi
M2
P

=
1

4πV

∫
Di

(
J ∧ l2s

2π
F c2

)
=

1
4πV

tjfkkijk =
qij
4π

tj

V
= −qij

4π
∂K

∂τj
. (A.33)

Including also the presence of unnormalised charged matter fields ϕj (open string states)
with corresponding U(1) charges given by cij , the resulting D-term potential looks like
(considering the dilaton fixed at its VEV: eφ = gs):

VD =
g2
i

2

∑
j

cijϕj
∂K

∂ϕj
− ξi

2

=
π

(τi − f jqij/(2gs))

∑
j

cijϕj
∂K

∂ϕj
+
qij
4π

∂K

∂τj

2

.

(A.34)
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