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1 Introduction and summary

Entanglement entropy is an interesting non-local observable which carries important infor-

mation about field theory. Refs. [1, 2] proposed a way of computing entanglement entropy

in the strongly coupled conformal field theories dual to gravitational theories whose gravity

sector is described by the Einstein-Hilbert lagrangian with the negative cosmological con-

stant. The set of CFTs that admit duals of this type is strongly restricted. In particular

in four spacetime dimensions, all such CFTs necessarily have their a and c central charges

equal to each other.

It is known that some interesting phenomena in CFTs and, more generally, in quan-

tum field theories, are associated with the regime where a 6= c. For example, there are

unitarity constraints in CFTs [3] which restrict the ratio of a/c to lie within certain bounds.

Another interesting and important question is whether one can formulate and prove the

analog of Zamolodchikov’s c-theorem [4] in three and more spacetime dimensions. It has

been suggested that the value of the c-function in four dimensions is equal to a at fixed
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points [5]; recent work in field theory includes [6–8]. The conjecture is known by the

name “a-theorem”.

Holographic theories with higher derivative terms provide a natural arena for investi-

gating these phenomena. Recently Myers and Sinha [9, 10] have shown that one can formu-

late an a-theorem in certain higher derivative theories of gravity, but it is not completely

clear what the field theoretic counterpart of the corresponding a-function is. Their results

have been generalized to Lovelock theories in [11]. (Work which uses higher derivative

gravitational theories to study unitarity constraints in CFTs includes [12–25].) Interest-

ingly, entanglement entropy provides an independent way of computing the a and c central

charges in the CFTs. In particular, it has been noticed in [26] that depending on the shape

of the surface which defines entanglement entropy, the logarithmic terms contain a linear

combination of the a and c central charges. This provides an additional motivation to in-

vestigate the holographic entanglement entropy (EE) in the theories with higher derivative

gravitational terms. In this paper we consider Lovelock gravities, paying special attention

to the Gauss-Bonnet and cubic Lovelock cases. We make use of the prescription of [27]

and generalize it to the Lovelock case to compute the logarithmic terms in the holographic

entanglement entropy for a few simple geometries such as a ball, a cylinder and a slab.

The rest of the paper is organized as follows. In the next section we review the results

of [26] which imply that EE of a ball contains a logarithmic term proportional to the

a central charge, while the EE of a cylinder in the similar manner encodes the c central

charge. In section 3 we give a brief review of Lovelock theories of gravity. Section 4 contains

the description of holographic entropy proposal of [1, 2] together with the generalization

to the Gauss-Bonnet case [27]. There we holographically compute the logarithmic terms

in the EE of a ball and a cylinder in CFTs dual to Gauss-Bonnet gravity in AdS5 and

confirm that they are proportional to the a and c central charges respectively. We also

compute the entanglement entropy of a slab as a function of Gauss-Bonnet parameter.

In section 5 we make an educated guess for the holographic formula valid in all Lovelock

theories. We show that the coefficient of the logarithmic term in the EE of a cylinder in

six-dimensional CFT dual to cubic Lovelock gravity in AdS7 is proportional to the linear

combination of the B-type anomaly coefficients. In section 6 we consider the solution in

the bulk which is holographically dual to the non-relativistic field theory with Lifshitz

symmetries. We compute the entanglement entropy of a slab and a cylinder and compare

with earlier results. Section 7 is devoted to studying entanglement entropy in the bulk

geometries dual to renormalization group flows between conformal fixed points, motivated

by the search for a c-theorem in four spacetime dimensions.

Note added: as we were working on this project, we became aware of the forthcoming

paper [28] which partially overlaps with our results (see also [29]).

2 Entanglement entropy and conformal field theories in four dimensions.

The entropy of entanglement (EE) in a d-dimensional quantum field theory on IRd−1 × IR

is defined as the von Neumman entropy of the reduced density matrix associated with a
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subspace V of the total space IRd−1 where the field theory lives

S(V ) = −trV ρV ln ρV (2.1)

The EE can be ultraviolate (UV) divergent in the continuum limit and a cutoff ǫ needs

to be introduced. The leading divergent term is usually proportional to the area of the

boundary of V , (∂V )

S(V ) ∼ γ
Area(∂V )

ǫd−2
+ O

(
1

ǫd−3

)
(2.2)

where the proportionality coefficient γ depends on the regularization procedure. This

result, known as the “ area law” for EE, was first found numerically [30, 31] and later

derived analytically [32–37]. Note however that the area law is violated in the presence of

a finite Fermi surface [38–41].

For d-dimensional conformal field theories (CFTs) the structure of the divergent terms

usually takes the following form [42]

S(V ) =
gd−2[∂V ]

ǫd−2
+ · · · + g1[∂V ]

ǫ
+ g0[∂V ] ln ǫ + s(V ) . (2.3)

Here, s(V ) is the finite part of the entropy and gi[∂V ] are local, homogeneous of degree i,

functions of the characteristic length scale of the boundary (∂V ). Eq. (2.3) is based both on

the local nature of the ultraviolate divergences and on the fact that regions with common

boundary share the same entropy. In general, the terms gd−2[∂V ], · · · , g1[∂V ] are not

physical and depend on the regularization procedure. On the other hand, the coefficient of

the logarithmic term is physical and universal in nature, not affected by cutoff redefinitions.

Here our primary focus will be on conformal field theories in d = 4 dimensions where the

universal coefficient of EE was recently obtained [26]. In particular, using the replica trick

and conformal invariance of a four dimensional CFT on a curved manifold, [26] proposed

that the coefficient of the logarithmically divergent term in the entanglement entropy of a

smooth and connected region V is given by

g0[∂V ] =
c

720π
g0c[∂V ] − a

720π
g0a[∂V ] (2.4)

where (c, a) are the central charges of the four dimensional CFT and g0c, g0a are defined as

follows

g0c[∂V ] =

∫

∂V

Rµνστ (nµ
i nσ

i )(nν
j n

τ
j ) − Rµνnµ

i nν
i +

1

3
R + µ

[
1

2
kiki − (ki

µν)2
]

(2.5)

g0a[∂V ] =

∫

∂V

R(∂V ) =

∫

∂A

Rµνστ (nµ
i nσ

i )(nν
j n

τ
j ) − 2Rµνnµ

i nν
i + R +

[
kiki − (ki

µν)2
]
.

Notice that g0a[∂V ] is simply the Euler character of the boundary manifold (∂V ) which we

have also expressed (with the help of the Gauss-Codazzi identity) in terms of the ambient

spacetime Riemann Rµνστ and Ricci Rµν curvatures. g0c[∂V ] on the other hand, to the

best of our knowledge does not have a clear geometric meaning.

Let us clarify the notation used in (2.5). Suppose the two dimensional boundary (∂V )

is parameterized by a set of coordinates xa with a = 1, 2 whereas the spacetime metric gµν

– 3 –
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where the CFT lives is spanned by coordinates Xµ with µ = 0, 1, 2, 3. Then, nµ
i in (2.5)

denote two (i = 1, 2) vectors normal to the surface (∂V ) satisfying:

nµ
i nν

j gµν = δij

gµν
∂Xµ

∂xa
nν

i = 0. (2.6)

ki
µν represents the extrinsic curvature tensor of (∂V ) associated to the normal ni and is

given by

ki
µν = −γρ

µγσ
ν ∇ρn

i
σ , (2.7)

where γµν represents the induced metric equal to γµν = gµν − ni
µni

ν . Note that µ, ν =

0, 1, 2, 3 are spacetime indices raised and lowered with the metric gµν . Finally, ki is the

trace of the extrinsic curvature tensor ki = ki
µνgµν .

The coefficient µ in (2.5) cannot be determined by conformal invariance. In [26] it is

fixed by requiring agreement between (2.4) and the holographic calculation. Using this re-

sult [26] concluded that the coefficient of the logarithmic term in the entanglement entropy

of a ball B and a cylinder C in any four dimensional conformal field theory takes the form

S(B) = · · · + a

90
ln ǫ + s(B)

S(C) = · · · + c

720

l

R
ln ǫ + s(C) (2.8)

where B,C denote a ball of radius R and an infinite cylinder of radius R and length l

respectively.1 This interesting result provides an additional characterization of the anomaly

coefficients (c, a) through entanglement entropy.

Independent evidence in support of the work of [26] was first given in [43]. The authors

of [43] used Srednicki’s regularization method and numerically computed the coefficient of

the logarithmic term in the entanglement entropy of a ball for a free bosonic CFT in

d = 4 dimensions. Their result was in complete agreement with [26]. Recently, [44]

analytically computed the entanglement entropy for the region of a ball in a massless

scalar field theory in arbitrary dimensions, further verifying Solodukhin’s formula for this

case. General results for the entanglement entropy for a spherical region were established

later on in [45–48].

It is interesting to use eqs (2.4), (2.5) to compute the coefficients of the logarithmic

term of the EE for spatial regions of different geometrical shape such as, ellipsoids, toroids

e.t.c. It is important to stress here that the results of [26] are restricted to regions V of

smooth geometrical shape. Otherwise, contributions from the non-smooth boundary are

likely to modify the coefficients of the logarithmically divergent terms in the entropy [42].

3 Gauss-Bonnet gravity

Among all theories of gravity which contain higher derivative terms of the Riemann tensor

in the their action there exists a special class of theories usually referred to, as Lovelock

1Note that for a region V with zero extrinsic curvature, e.g. a slab, the logarithmic term vanishes.

– 4 –



J
H
E
P
0
7
(
2
0
1
1
)
1
0
9

gravity. This class of gravitational theories stands out both for its simplicity and the

several properties it shares with Einstein-Hilbert gravity. In particular, it is the most

general theory of gravity whose equations of motion involve only second order derivatives

of the metric. It is ghost free when expanded around a Minkowski spacetime background,

while recently, the Palatini and metric formulations of Lovelock gravity have been shown

to be equivalent [49].

The action for Lovelock gravity in d + 1-dimensions is

S =
1

16πGd+1
N

∫
dd+1x

√−g

[ d
2
]∑

p=0

(−)p
(d − 2p)!

(d − 2)!
λpLp , (3.1)

where Gd+1
N is the d + 1-dimensional Newton’s constant, [d2 ] denotes the integral part of d

2 ,

λp is the p-th order Lovelock coefficient2 and Lp is the Euler density of a 2p-dimensional

manifold. In d + 1 dimensions all Lp terms with p ≥ [d2 ] are either total derivatives or

vanish identically.

In this work we will primarily focus on five dimensional gravitational theories and limit

ourselves to the Gauss-Bonnet action. This is the simplest example of a Lovelock action,

with only the 4-dimensional Euler density included

S =
1

16πG
(5)
N

∫
d5x

√−g

(
R +

12

L2
+

λL2

2
L(2)

)
. (3.2)

Note that in eq. (3.2) we introduced a cosmological constant term Λ = − 12
L2 and denoted

the dimensionless Gauss-Bonnet parameter by λ instead of λ2 since the other Lovelock

terms vanish in this case. In what follows we will retain this notation except for section 5,

where we discuss generic Lovelock theories. The Gauss-Bonnet term L(2) in (3.2) is

L(2) = RMNPQRMNPQ − 4RMNRMN + R2 (3.3)

Equations of motion derived from (3.2) are expressed in the following way

− 1

2
gMNL + RMN + λL2H(2)

MN = 0 (3.4)

with H(2)
MN defined as

H(2)
MN = RMLPQR LPQ

N − 2RMP R P
N − 2RMPNQRPQ + RRMN (3.5)

Eq. (3.4) admits AdS solutions of the form [50, 51]

ds2 =
L2

AdSdr2

r2
+

r2

L2
AdS

(
−dt2 +

d−1∑

i=1

dxidxi

)
(3.6)

where the curvature scale of the AdS space is related to the cosmological constant via3

LAdS =
L√
α

α =
2

1 +
√

1 − 4λ
. (3.7)

2Note that λp are denoted as bλp in [19].
3To be specific, Gauss-Bonnet gravity admits another AdS solution with α = 2

1−
√

1−4λ
but this solution

is unstable and contains ghosts [50].
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Gauss-Bonnet gravity has been extensively studied in the context of the AdS/CFT

correspondence. The basic aspects of the holographic dictionary established in the case

of Einstein-Hilbert gravity remain the same, since the equations of motion retain their

second order form. Moreover, the additional parameter λ allows for a holographic CFT

dual with unequal central charges (c, a). It thus provides an opportunity to investigate

several new aspects of the correspondence (recall that all AdS backgrounds satisfying the

Einstein-Hilbert equations of motion yield a = c).

There are two ways to relate the gravitational parameters, the Gauss-Bonnet coupling

λ, Newton’s five dimensional coupling constant G
(5)
N and the cosmological constant L, to

the CFT parameters (c, a). One is via a holographic calculation of the three point function

of the stress energy tensor and the other through the holographic computation of the Weyl

anomaly [52, 53] . Both calculations yield the same result, which is a good consistency

check. The holographic calculation of the Weyl anomaly in Gauss-Bonnet gravity was

performed in [54]. Here we simply quote the results

c = 45π
L3

AdS

G
(5)
N

√
1 − 4λ

a = 45π
L3

AdS

G
(5)
N

[
−2 + 3

√
1 − 4λ

]
, (3.8)

where LAdS is given from (3.7). In our conventions the CFT central charges (c, a) are

defined through the Weyl anomaly in the following way

T µ
µ =

1

64π2

1

90
(cI − aL2) . (3.9)

It will be helpful for the calculations in the next section to have the ratio
L3

AdS

G
(5)
N

and the

Gauss-Bonnet coefficient, λ, expressed as functions of the central charges (c, a)

L3
AdS

G
(5)
N

=
1

90π
(3c − a) ,

λ =
(a − 5c)(a − c)

4(a − 3c)2

√
1 − 4λ =

2c

3c − a
. (3.10)

Finally, we should note that the correspondence between the positivity of the energy flux

in a CFT [3] and causality of the boundary theory in Gauss-Bonnet gravity discussed

in [12–15] , restricts the values of the Gauss-Bonnet parameter λ to lie within the region

− 7
36 ≤ λ ≤ 9

100 . Similar results were obtained for generic Lovelock theories of gravity in

arbitrary dimensions [16–21, 25].

4 Holographic entanglement entropy proposal

In the context of holography, entanglement entropy received a lot of attention after the work

of Ryu and Takayanagi where a concrete proposal for evaluating the entanglement entropy

– 6 –
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was set forth [1, 2]. In particular, the authors of [1, 2] conjectured that the entanglement

entropy of a spatial4 region V in a d-dimensional CFT admitting a dual description in

terms of Einstein-Hilbert gravity is given by

S(V ) =
1

4G
(d+1)
N

∫

Σ

√
σ (4.1)

where Σ is defined as the minimal area surface which asymptotes to the boundary of the

spatial region V , (∂V ). For more details the reader is encouraged to consult [56].

This proposal has by now passed several tests. When for instance, the spatial region

V extends to the whole of space, entanglement entropy should coincide with statistical en-

tropy. Indeed, at finite temperature eq. (4.1) naturally reduces to the Bekenstein-Hawking

entropy formula whereas for vanishing temperature, the dual gravitational description con-

tains no horizon and the entropy vanishes as it should. Other properties of the entanglement

entropy like strong subadditivity or the fact that V and its complement Vc have the same

entropy, are also satisfied by the holographic EE formula [57]. Moreover, precise agreement

between the holographic computation and the field theoretic one has been shown in the

cases where explicit results are available (mostly for two dimensional CFTs) [58–60].

It is interesting to generalize (4.1) to include higher derivative gravitational theories.

The most natural idea is to replace eq. (4.1) with Wald’s entropy formula. In fact, for Gauss-

Bonnet gravity, such a proposal already exists in the literature [27].5 To be specific, the

author of [27] suggested that the entanglement entropy of a connected region V of the dual

CFT, can be computed in the case of Gauss-Bonnet gravity through the following formula

S(V ) =
1

4G
(5)
N

∫

Σ

√
σ
(
1 + λL2RΣ

)
(4.2)

Here the integral is evaluated on Σ, the three dimensional surface which at the boundary of

the holographic space reduces to the two dimensional boundary (∂V ) of the region whose

entropy we want to compute and which is determined by minimizing (4.2). σ in the same

expression, corresponds to the determinant of the induced metric on Σ whereas RΣ is the

induced scalar curvature of Σ.6

To summarize the main reasoning of [27] recall that to compute the entanglement

entropy on the CFT side, one starts by evaluating the partition function on a d-dimensional

n-sheeted space — formed by gluing the n-copies of IRd along the boundary (∂V ). This

procedure produces a space Rn with conical singularities on the surface (∂V ). To evaluate

the partition function on Rn holographically, it is necessary to identify the dual d + 1

dimensional geometry, Sn. The latter should be a solution of the gravitational action with

non-zero cosmological constant, which asymptotes to Rn at the boundary. Finding such a

4Generalization to the covariant case is discussed in [55].
5For related work on holographic entanglement entropy and higher curvature corrections see also [61].
6To make the variational problem well-defined a boundary term should in principle be added in (4.2).

This term does not affect the solution of the embedding surface but it changes the value of the action

evaluated on the solution and thus of the entanglement entropy. It turns out however that the boundary

term only modifies the leading UV-divergent term in the entanglement entropy.
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solution is a difficult task. Instead, [27] assumed that Sn is given by a n-sheeted AdSd+1

formed by gluing together n-copies of AdSd+1 along a surface of codimension two. Then,

the problem essentially reduced to that of evaluating the gravitational action functional

on a space with conical singularities. A method for performing this calculation (at least

in some cases) has been developed in [62] (see also [63–70]). With the use of the above

method for Einstein-Hilbert gravity, [27] arrived at the holographic entanglement entropy

formula of Ryu and Takayanagi. Considering Gauss-Bonnet gravity instead, leads to the

modified expression (4.2).

Recently [71] questioned some of the assumptions that were used in [27] to derive (4.2).

Still, (4.2) remains a reasonable generalization of (4.1) to Gauss-Bonnet gravity. First,

the proposal agrees with Wald’s entropy formula for AdS-Schwartzchild black holes in

Gauss-Bonnet gravity [72–75]. Therefore, whenever the spatial region V coincides with the

total space, the entanglement entropy is guaranteed to be equal to the thermal entropy.

Moreover, the strong subadditivity property of EE is satisfied [57]. Finally, the difference

between (4.2) and (4.1) is the integral of a topological quantity i.e., the euler density in

two dimensions, just like the difference between the Einstein-Hilbert and Gauss-Bonnet

lagrangian is the Euler density term of four dimensions.

In the following we will use the proposal of [27] to compute the entanglement entropy

for a region bounded by ball, a cylinder and a slab. Comparison with (2.8) will provide

yet another check of (4.2).

4.1 The entanglement entropy of a ball

To compute the entanglement entropy of a ball of radius R, it is useful to parameterize the

AdS space in the following form

ds2
AdS = L2

AdS

[
dρ2

4ρ2
+

1

ρ

(
−dt2 + dr2 + r2dΩ2

2

)]
. (4.3)

The first step is to identify a three dimensional surface in the bulk of AdS which reduces to

a sphere of radius R at the boundary. Taking into account the symmetries of the problem

we see that the surface in question is determined by a single function r(ρ). With this ansatz

the induced metric of the surface can be written as follows

ds2
EE = L2

AdS

{
1

4ρ2

[
1 + 4ρ

(
∂r

∂ρ

)2
]

dρ2 +
r2

ρ
dΩ2

2

}
. (4.4)

Using (4.4) to compute the induced curvature RΣ and substituting into (4.2) yields

S(B) =
L3

AdSΩ2

4G
(5)
N

∫
dρ

r2
√

1 + 4ρ(r′)2

2ρ2

[
1 + λαR̂

]
, (4.5)

where α is given in (3.7) and R̂, the induced scalar curvature in units of the AdS radius, is

R̂ =
2
[
ρ + 4ρ2(r′)2 + 4ρr

(
r′ + 8ρ(r′)3 − 2ρr′′

)
− r2

(
3 + 20ρ(r′)2 + 16ρ2r′r′′

)]

r2 [1 + 4ρ(r′)2]2
. (4.6)

– 8 –
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Eq. (4.5) gives the equations of motion which determine r(ρ). To specify the coefficient

of the logarithmic term it suffices to solve for r(ρ) to the next to leading order in the

neighborhood of the boundary ρ = 0. We find that

r(ρ) = R − ρ

2R
+ · · · . (4.7)

The solution is identical in this order to the case λ = 0. Substituting (4.7) into (4.5) yields

S(B) =
L3

AdSΩ2

4G
(5)
N

∫

ǫ2
dρ

[
1 − 6λα

2ρ2
R2 − 1 − 6λα

4ρ
+ O(ρ0)

]
. (4.8)

Using (3.10) and the definition of α from (3.7) we arrive at

S(B) =
a

90

R2

ǫ2
+

a

90
ln ǫ + · · · , (4.9)

which is in complete agreement with (2.8).

4.2 The entanglement entropy of a cylinder

Consider a three dimensional surface in AdS which reduces to a two dimensional cylindrical

surface of radius R and length l on the boundary of the AdS space. It is then natural to

parameterize the AdS metric as follows

ds2
AdS = L2

AdS

[
dρ2

4ρ2
+

1

ρ

(
−dt2 + dz2 + dr2 + r2dφ2

)]
(4.10)

The symmetries of the problem lead us to consider a surface described by a single function

r(ρ). The induced metric is then

ds2
EE = L2

AdS

{
1

4ρ2

[
1 + 4ρ

(
∂r

∂ρ

)2
]

dρ2 +
1

ρ
dz2 + r2φ2

}
. (4.11)

Plugging this ansatz into (4.2) yields

S(C) =
L3

AdS

4G
(5)
N

2πl

∫
dρ

r
√

1 + 4ρ(r′)2

2ρ2

[
1 + αλR̂

]
, (4.12)

where now R̂ is the induced curvature of the surface in units of the AdS radius is

R̂ =
2
[
2ρ(r′ + 8ρ(r′)3 − 2ρr′′) − r

(
3 + 20ρ(r′)2 + 16ρ2r′r′′

)]

r [1 + 4ρ(r′)2]2
. (4.13)

The equations of motions in the vicinity of ρ = 0 are satisfied by7

r(ρ) = R − ρ

4R
+ · · · . (4.14)

7Notice that the solution is again identical in this order to the case λ = 0.

– 9 –
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Substituting (4.14) into (4.12) yields

S(C) =
L3

AdS

4G
(5)
N

2πl

∫

ǫ2
dρ

[
(1 − 6αλ)R

2ρ2
− 1 − 2αλ

16Rρ
+ O(ρ0)

]
. (4.15)

With the help of (3.10) and (4.13) we arrive at

S(C) =
a

90

2πRl

4πǫ2
+

c

720

l

R
ln ǫ + · · · . (4.16)

which agrees with (2.8).

4.3 The entanglement entropy of a slab

The slab geometry corresponds to the region of space bounded by −y
2 ≤ x1 ≤ y

2 and

infinitely extended along the x2, x3 directions. This is the simplest configuration to consider

because of the large amount of symmetry. Here, it is convenient to write the AdS metric as

ds2 =
L2

AdS

r2

(
ηijdxidxj + dr2

)
(4.17)

with ηij the four dimensional Minkowski metric. The three dimensional induced surface

can be parametrized by a single function x1(r) as follows

ds2
EE =

L2
AdS

r2

[(
1 + x′

1(r)
2
)
dr2 + dx2

2 + dx2
3

]
(4.18)

The induced curvature of the surface (in units of the AdS radius) is non-vanishing and

equal to

R̂ = −2
3 + 3x′

1(r)
2 + 2rx′

1(r)x
′′
1(r)

(1 + x′
1(r)

2)2
(4.19)

where the primes indicate differentiation with respect to the radial coordinate. The La-

grangian of the system is independent of x1(r) so there is a constant of motion

x′
1(r)

(
1 − 2αλ + x′

1(r)
2
)

r3 (1 + x′
1(r)

2)
3
2

=
1

r3
⋆

(4.20)

which allows us to solve for x′
1(r) exactly. Since the theory is conformal, one can rescale

the coordinate by denoting τ = r/r∗. Then eq. (6.5) can be written as

√
h(τ)

(1 − 2αλ + h(τ))

(1 + h(τ))
3
2

= τ3 (4.21)

where h(τ) = x′
1(r)

2. It is easy to see that there are three solutions for h(τ) but only one

of them is continuously connected with the solution of the λ = 0 case. In the following

we restrict our attention to this solution.8 It would be interesting to examine the other

two solutions which at first glance appear to be complex valued. We leave this analysis to

future work.

8We avoid writing down the solution explicitly since it is not particularly illuminating.
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Figure 1. γ(λ) [see eq. (6.8)] as a function of λα.

We proceed to relate the constant of motion r⋆ with the width y of the slab

y

2
= r⋆I0(λ) I0(λ) =

∫ 1

0
dτ
√

h(τ) . (4.22)

Evaluating the action on the solution of (4.21) yields

S(λ) =
L3

AdS

4G
(5)
N

{
1 − 6αλ

2

l2

ǫ2
+ γ(λ)

l2

y2

}
(4.23)

where

γ(λ) = 4I0(λ)2
∫ 1

0
dτ

[
[1 + h(τ)]

1
2

τ3

(
1−2αλ(3 + 3h(τ) + τh′(τ))

[1 + h(τ)]2

)
− (1 − 2αλ)

τ3

]
(4.24)

Recall from (3.10) that λ can be expressed as a function of the ratio a
c

whereas
L3

AdS

4G
(5)
N

=

3c−a
4×90π

. This allows us to express the final result as

S(λ) =
1

4π

a

90

l2

ǫ2
+ γ (a, c)

l2

y2
, (4.25)

with γ (a, c) = 3c−a
4π×90γ(λ). The result of numerical integration in eq. (6.8) is shown in

figure 1.

We see that the EE of a slab has the form expected from field theory considerations.

The leading divergent term follows the area law. Its coefficient is proportional to the central

charge a just like the entanglement entropy of the ball and the infinite cylinder. However

this coefficient depends on the regularization procedure and has no physical meaning. On

the other hand, the coefficient of the second term in (4.25) is universal and physical.

Computing γ(a, c) numerically we see that it changes sign approximately at αλ ∼ .08,

or a
c
∼ .62. The change of sign implies that γ(a, c) is not proportional to the coefficient

c̃ = (3c−a)4

(5c−a)3 of the thermal entropy s = c̃T 3. Recall also that αλ = c−a
2(3c−a) and from Fig 1.
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note that γ(λ) is not linear in (αλ). This observation shows that γ(a, c) is not linear in a

and c. It would be interesting to explore this further. Another direction to pursue, is to

consider the Gauss-Bonnet holographic dual of a confining gauge theory. Computing the

EE for a slab in this background and generalizing the results of [76] may help to clarify

the meaning of γ(a, c).

5 Generalization to Lovelock

So far we used Fursaev’s proposal to compute the leading divergent terms in the entangle-

ment entropy of a ball, an infinite cylinder and a slab in a four dimensional CFT defined

from Gauss-Bonnet gravity via gauge-gravity duality. Gauss-Bonnet gravity allows for the

holographic description of CFTs with unequal central charges (c, a) giving an opportunity

to check the proposal of [27] against the results of [26]. According to [26], the coefficient of

the logarithmic term in the entropy should be proportional to a for a ball, c for an infinite

cylinder and vanish for a slab, which is precisely what we found by using the prescription

of [27]. This result led us to generalize the proposal of [27] to any Lovelock theory of gravity

S(V ) =
1

4G
(d+1)
N

[ d
2
]∑

p=0

(−)p+1(p + 1)
(d − 2p − 2)!

(d − 2)!
λp+1

∫

Σ

√
σL(p) . (5.1)

Expression (5.1) coincides with the expression for the entropy of black holes in Lovelock

gravity as established in [72, 73], which in turn agrees with Wald’s entropy formula [74, 75].

As a result (5.1) satisfies by construction several properties of the entanglement entropy.

An interesting check of the proposal (5.1) is the computation of the entanglement

entropy of the cylinder in the case of cubic Lovelock gravity dual to the six-dimensional

CFT. In this case, we expect the log term in the EE to be proportional to the coefficients of

the B-type anomaly (just as in the four-dimensional case, the coefficient was proportional

to c).9 In fact, there is a non-trivial check of this statement. In Lovelock gravity, the three

coefficients of the B-type anomaly, bi, i = 1, . . . , 3 are not linearly independent. Using the

results of [19] one can write them as

b1 = c̃
L3

AdS

4πG
(7)
N

(
204

α
− 168 + 100λ2α

)

b2 = c̃
L3

AdS

4πG
(7)
N

(
75

α
− 66 + 41λ2α

)

b3 = c̃
L3

AdS

4πG
(7)
N

(
− 9

α
+ 6 − 3λ2α

)
(5.2)

where we used

λ3α
2 = − 1

α
+ 1 − λ2α (5.3)

9For the EE of a ball, the log term is shown to be proportional to the coefficient of the A-type anomaly

in [28].
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to eliminate terms linear in λ3. The overall coefficient c̃ is related to the definition of

the invariants Ii, i = 1, . . . , 3 and is therefore not important. One can fix its numerical

value to be c̃ = −1/2304. We can now use (5.1) to compute the EE of the cylinder. In

particular, (4.7) becomes

r(ρ) = R − 3ρ

8R
+

45 − 98λ2α − 159λ2α
2

521(−1 + 2λ1α + 3λ2α2)

ρ2

R3
+ . . . (5.4)

while the result for the EE

Slog = − 135

4 × 512

L5
AdS

4G
(7)
N

2π2l

R

[
1 − 94

45
λ2α − 49

15
λ3α

2

]
ln ǫ (5.5)

Using (5.3) we can eliminate the term proportional to λ3 from the square brackets. The

resulting expression has three terms, but turns out to be proportional to the linear combi-

nation of the two central charges (5.2),

1 − 94

45
λ2α − 49

15
λ3α

2 =
19

360
b1 −

1

10
b2 (5.6)

which is a highly nontrivial check of (5.1). Note that the third central charge, b3, is a linear

combination of b1 and b2 (since Lovelock gravity was shown to satisfy the supersymmetric

constraint [77]). Finally, the results of this section can be helpful in extending the pro-

posal of [26] to CFTs of higher dimensionality. We hope to investigate this issue further

in the future.

6 Entanglement entropy in Lifshitz backgrounds

Lifshitz spacetimes are geometries of the form

ds2 =
L̂2

r2

[
dr2 − 1

r2w−2
dt2 +

d−1∑

i=1

dx2
i

]
(6.1)

which preserve the scaling symmetry

r → κ−1r, t → κwt, xi → κxi, . (6.2)

w is usually referred to as the dynamical critical exponent. It is clear that any metric of

the form (6.1) with w 6= 1 breaks Lorentz invariance.

Lifshitz spacetimes received considerable attention in the literature (together with

Schrodinger geometries) because they provide a natural playground for the study of strongly

coupled systems near non-relativistic critical points [78]. Recently, they have been embed-

ded in string theory [79–82]. This typically requires non-trivial profiles for fields other

than the metric to be turned on. Including higher derivative terms in the gravitational

action however changes the situation. In [83] it was argued that higher curvature terms

generically lead to a finite renormalization of the critical exponent w and matter fields are

no longer required for the theory to support Lifshitz solutions.

In the specific case of Lovelock gravity it was shown in [84, 85] that for special val-

ues of the Lovelock parameters, Lifshitz solutions of arbitrary critical exponent w can be

constructed.10 Restricting our attention to Gauss-Bonnet gravity, we find that (6.1) solves

10Asymptotically Lifshitz black hole solutions however do not exist in pure Lovelock gravity [84].

– 13 –



J
H
E
P
0
7
(
2
0
1
1
)
1
0
9

the equations of motion (3.4) as long as λ = 1
4 and L̂2 = L2

2 .11 Note that when λ = 1
4

symmetries preserved by the gravitational action functional are enhanced to the SO(4, 2)

group. The Lagrangian of (3.2) then coincides with the Chern-Simons Lagrangian for the

AdS group and admits a natural supersymmetrization [86]. It is perhaps worth mentioning

that the AdS solution of Gauss-Bonnet gravity for λ = 1
4 is difficult to interpret in the con-

text of the AdS/CFT correspondence since the dual conformal field theory has vanishing

central charge c.

Here we will focus on computing the entanglement entropy holographically in d = 4

dimensional field theories with Lifshitz scaling. When the time coordinate is the only

coordinate with a different scaling, the computation of entanglement entropy is identical

to the one in AdS spacetime. Therefore the results of the previous sections go through

unmodified as long as we make the substitution λ → 1
4 and LAdS → L√

2
. In the following

we will consider the more interesting case where rotational invariance is broken and instead

of the time coordinate, one of the spatial coordinates e.g. x1, scales like x1 → κwx1. In

particular, we will compute the entanglement entropy of an infinitely extended slab and a

cylinder. Generalization to higher dimensions is straightforward.

As a final remark, let us mention here that a statement relating the universal terms in

the entropy with the “central charges” (physical quantities measuring degrees of freedom)

of the corresponding quantum field theory, is absent in this case (see however [10] for

some attempts in this direction). We will see in section 6.2 that the general structure of

the divergent terms in the entanglement entropy of a cylinder is quite different from the

relativistic case. In particular, there is no logarithmic term of the form which appears

in (2.8). This result might allow one to suggest that either a connection between degrees

of freedom in non-relativistic theories and universal terms in the entanglement entropy can

not be made or it will be of quite a different form from the relativistic one. This issue

clearly deserves further investigation.

6.1 Entanglement entropy of an infinite belt

Consider double Wick rotation of (6.1),

ds2 =
L̂2

r2

[
dr2 +

1

r2w−2
dx2

1 +

(
−dt2 +

d−1∑

i=2

dx2
i

)]
(6.3)

Now there are two distinct orientations for the belt geometry, depending on whether its

width (smallest size) extends along the direction with w-scaling or not. Here we concentrate

on the case where the slab is infinitely extended along the direction with anisotropic scaling.

11For completeness, we remark that Gauss-Bonnet gravity (for particular values of the parameter λ)

admits Lifshitz solutions of the most generic form where several boundary coordinates scale like xi
→ κwxi.

However, the anisotropic scaling is a relative notion and thus, in d = 4 there are effectively only two

physically distinct cases. The first case, with a single coordinate of anisotropic scaling, is discussed above.

The second case, of a Lifshitz spacetime with two coordinates scaling anisotropically, also satisfies the

equations of motion of Gauss-Bonnet gravity as long as λ = 1+w+w2

12w
and bL2 = 1+w+w2

6
L2. We will not

address the latter case in the following which can be studied in a similar manner.
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So let us consider a stripe, infinitely extended along directions x1, x3 and width y along

x2. It is convenient to parametrize the bulk surface by a single function x2(r). The induced

metric and curvature of the surface are

ds2
EE =

L2

2r2

[(
1 + x′

2(r)
2
)
dr2 + dx2

3 +
dx2

1

r2w−2

]

R̂ = −2

(
1 + w + w2

)
+
(
1 + w + w2

)
x′

2(r)
2 + (1 + w)rx′

2(r)x
′′
2(r)

(1 + x′
2(r)

2)2
(6.4)

Substituting (6.4) into (4.2) results in a Lagrangian independent of x2(r) which leads to

the following equation of motion

x′
2(r)

(
1 − w + x′

2(r)
2
)

(1 + x′
2(r)

2)
3
2

=
r2+w

r2+w
⋆

. (6.5)

Note that r⋆ is related to the width of the slab through

y

2
= r⋆I0 I0 =

∫ 1

0
dτ
√

h(τ) (6.6)

where the integral I0 is expressed in terms of the dimensionless variable τ = r
r⋆

. and the

function h(τ) =
(

∂x2
∂r

)2
.

Expressed in terms of h(τ) eq. (6.5) has three solutions. Only one of them is real and

continuously connected to the w = 1 case. Again we will restrict our attention to this case.

Evaluating (4.2) on the particular solution of (6.5) yields the entanglement entropy

SLif.(S) =
2−

3
2 L3

4G
(5)
N

[
−w

l1 × l3
ǫw+1

− γ
l1 × l3
yw+1

]
(6.7)

where γ is a numerical constant equal to γ = 4I2
0 ×

(
−w2−w

w+1 − I
)
. I0 is defined in (6.6)

while I denotes the following integral

I =

∫ 1

0
dτ

−w2 − w + (1 − w − w2)h(τ) + h(τ)2 + 1+w
2 τ ḣ(τ)

τ3 (1 + h(τ))
3
2

− −w2 − w

τ3
. (6.8)

Let us discuss eq. (6.7). First of all, we find that the entanglement entropy is propor-

tional to the boundary area l1× l3 of the belt. This is in accordance with expectations from

field theory considerations [87]. We see that the logarithmically divergent term is absent

just like in the relativistic case. The power of the leading divergent term depends on the

critical exponent w and is fixed by dimensional analysis. The coefficient of the second

term in (6.7) which is physical and assumed to measure the total degrees of freedom of the

system, scales in the same way the cutoff scales. It is interesting to note that the sign of

the leading divergent term is negative for w > 0 in contrast to the relativistic case. This

is not in contradiction with the results of the previous sections for Gauss-Bonnet gravity,

because for w = 1, i.e., AdS space, the central charge c of the dual theory vanishes and a

becomes negative (recall that Lifshitz solutions exist for λ = 1
4 ). For this reason the case
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w = 1 appears to be unphysical. Nevertheless, the leading divergent term in the entropy

does not have a physical meaning and its overall sign is immaterial. We expect that a

proper treatment of the boundary term would give a positive result but do not pursue

this issue further here. Similar results for the entanglement entropy of a slab in a Lifshitz

background were obtained in [88].

6.2 Entanglement entropy of an infinitely long cylinder

Another interesting case to consider is that of an infinite cylinder extended along a direction

with anisotropic scaling. To make contact with sections 4.2 and 4.3 we express the Lifshitz

metric in the following form

ds2 =
L2

2

[
dρ2

4ρ2
+

1

ρ

(
dz2

ρw−1
− dt2 + dr2 + r2dφ2

)]
(6.9)

The induced metric and scalar curvature (in units L√
2

= 1) of the surface are

ds2
EE =

(
1 + 4ρr′(ρ)2

) dρ2

4ρ2
+

dz2

ρw
+

r(ρ)2

ρ

R̂ =
−2(1 + w + w2)r(ρ) − 8ρ(2 + 2w + w2)r(ρ)r′(ρ)2

r(ρ) (1 + 4ρr′(ρ)2)2
+

+
4ρr′(ρ)(w + 4ρr′(ρ)2(1 + w)) − 8ρ2r′′(ρ)(1 + 2(1 + w)r(ρ)r′(ρ))

r(ρ) (1 + 4ρr′(ρ)2)2
(6.10)

where primes denote differentiation with respect to ρ. Combining (4.2) and (6.10) deter-

mines the equation of motion for r(ρ) which takes a rather complicated form but remains

second order in derivatives. Studying the equation of motion in the vicinity of the boundary

ρ = 0 we were able to eventually determine the exact solution. We find that

r(ρ) = R

√
1 − ρ

R2
(6.11)

Note that (6.11) is independent of the critical exponent w.12 Evaluating the action (4.2)

for λ = 1
4 on the solution (6.11) leads to

SLif.(C) =
2−

3
2 L3

4G
(5)
N

2πlz

∫ ∞

ǫ2
dρ

wR

2ρ
w+3

2

[
(w − 1)

ρ

R2
− (1 + w)

]
(6.12)

where lz regularizes the length of the cylinder. Performing the integral in (6.12) determines

the entanglement entropy to be

SLif.(C) =
2−

3
2 L3

4G
(5)
N

2πlz

[
wR

ρ
w+1

2

(
1 − ρ

R2

)]∞

ǫ2

⇒w>1
2−

3
2 L3

4G
(5)
N

2πlz

[
wR

ǫw+1

(
−1 +

ǫ2

R2

)]

(6.13)

12It is interesting to expand the solution close to the boundary ρ = 0 as r(ρ) = R −
ρ

2R
− · · · . Note

that the solution is not equal to next leading order to the embedding function for the case of a cylinder in

Gauss-Bonnet gravity (section 4.2 eq. (4.14)). This shows once more that the order of limits λ →
1
4

and

w → 1 cannot be interchanged.
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The computation of the entanglement entropy makes sense only for w > 1.13 Recall that

Lifshitz geometries are unstable for w < 1 (see for example [89]). We see a manifestation

of this fact here through the computation of entanglement entropy. As expected, the

leading divergence is proportional to the area 2πlzR whereas the scaling of the cutoff is

fixed by dimensional analysis. Note that the logarithmic divergence, characteristic of the

entanglement entropy on the cylinder in relativistic theories, is absent here. It would be

interesting to examine this point further from the field theory point of view.

7 Entanglement entropy and domain wall geometries

In an attempt to investigate aspects of the entanglement entropy along renormalization

group trajectories, we will consider here domain wall geometries. These are asymptotically

AdS spaces with a metric of the form

ds2 = dr2 + e2A(r)ηijdxidxj , (7.1)

where ηij is the Minkowski metric of the dual quantum field theory spacetime. We assume

here that domain wall geometries are solutions of Gauss-Bonnet gravity with matter fields

(e.g. scalars) just as they are solutions of Einstein-Hilbert gravity with matter fields. In

the spirit of the AdS/CFT correspondence they correspond to renormalization group flow

trajectories for the dual quantum field theories. The main difference here is that Gauss-

Bonnet gravity contains an additional dimensionless constant λ which at the fixed points

of the flow, e.g. at r = ∞, is expressed in terms of the ratio of the central charges a, c of

the dual CFT.

The central objective of this section is to explore how the universal and dimension-

less coefficient of the logarithmic term in the entanglement entropy changes along the

renormalization group flow. The main assumption we will rely on is that the holographic

computation of entanglement entropy remains the same despite the non-trivial profile of

the matter fields. In particular, we will assume that the equations of motion for the matter

are second order (standard kinetic term) and that their coupling to the metric is solely

through its determinant. For example, we exclude the case of a conformal coupling. To

make the comparison with the results of sections 4.1 and 4.2 straightforward, we express

the metric (7.1) in a different coordinate system by performing the coordinate transforma-

tion ρ = L̃2e
− 2r

eL . This way the IR region, r = −∞, is mapped to ρ = ∞ while the UV

region, r = ∞, corresponds to ρ = 0. Eq. (7.1) is expressed in the following form

ds2 = L̃2

[
dρ2

4ρ2
+

e2U(ρ)

ρ
ηijdxidxj

]
, (7.2)

with U(ρ) related to A(r) in (7.1) through U(r) ≡ A(r) − r
eL
, or equivalently e2A(ρ) ≡

L̃2 e2U(ρ)

ρ
. Since the metric (7.2) is asymptotically AdS, e2U(ρ) admits an expansion near

the boundary ρ = 0 of the form14

e2U(ρ) = 1 + β1ρ + ρ2
(
β2 + β3 ln ρ + β4 ln2 ρ

)
+ · · · . (7.3)

13We do not consider the case w = 1 since its physical meaning is ambiguous as explained earlier.
14In special cases, e.g. [90], the expansion may include half integral powers of ρ [91–93].
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The dimensionfull coefficients β1, β2, · · · are determined by solving the field equations order

by order in ρ.

7.1 The entanglement entropy of a ball along the RG flow

To compute the entanglement entropy of a ball of radius R we will take steps similar to

the conformal case. Writing the domain wall metric as

ds2 = L̃2

[
dρ2

4ρ2
+

e2U(ρ)

ρ

(
−dt2 + dr2 + r2dΩ2

2

)
]

, (7.4)

we see that the ansatz r(ρ) is still natural. The induced metric is then

ds2
EE = L̃2

{
1

4ρ2

[
1 + 4ρe2U(ρ)

(
∂r

∂ρ

)2
]

dρ2 +
r2(ρ)e2U(ρ)

ρ
dΩ2

2

}
, (7.5)

and substituting into (4.2) we arrive at

S(B) =
L̃3Ω2

4G
(5)
N

∫
dρ

r2(ρ)e2U(ρ)
√

1 + 4e2U(ρ)ρ(r′)2

2ρ2

[
1 + αλR̂

]
(7.6)

where R̂ = R̂(r(ρ), U(ρ)) is the scalar curvature of the induced three dimensional surface

in units of the asymptotic AdS radius in the UV, L̃. The equation of motion for r(ρ)

derived from (7.6) is rather complicated. In the vicinity of the boundary however it is

solved by r(ρ) = R − ρ
2R

+ · · · exactly like the case λ = 0, U(ρ) = 0. Knowledge of the

near boundary behavior of r(ρ) together with (7.3) allows us to determine the divergent

terms in the entanglement entropy of a ball

S(B) =
L̃3Ω2

4G
(5)
N

∫

ǫ2
dρ

[
1 − 6αλ

2ρ2
R2 − 1 − 6αλ

4ρ

(
1 − 2β1R

2 1 − 2αλ

1 − 6αλ

)
+ · · ·

]

=
L̃3 (1 − 6αλ)

4G
(5)
N

R2Ω2

2ǫ2
+

L̃3Ω2

4G
(5)
N

1 − 6αλ

2

(
1 − 2β1R

2 1 − 2αλ

1 − 6αλ

)
ln ǫ + · · · . (7.7)

Here α = L2

eL2
. To leading order in the vicinity of ρ = 0 it is given by (3.7).

The coefficient of the logarithmically divergent term is modified compared to the pure

AdS case by the overall factor
(
1 − 2β1R

2 1−2αλ
1−6αλ

)
and α given in (3.7). Since 1−2αλ

1−6αλ
is

positive, the behavior of the coefficient of the logarithmic term under rescalings of the

radius of the ball R → ΛR depends on the sign of β1.

7.2 The entanglement entropy of a cylinder along the RG flow

The case of a cylindrical surface is dealt with in a similar manner. We write the domain

wall solution as

ds2 = L̃2

[
dρ2

4ρ2
+

e2U(ρ)

ρ

(
−dt2 + dz2 + dr2 + r2dφ2

)
]

, (7.8)
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and select an ansatz of the form r(ρ) which leads to the following induced metric

ds2
EE = L̃2

{
1

4ρ2

[
1 + 4ρe2U(ρ)

(
∂r

∂ρ

)2
]

dρ2 +
e2U(ρ)

ρ

(
dz2 + r2(ρ)dφ2

)
}

. (7.9)

We subsequently substitute into (4.2) and derive an equation of motion for r(ρ) which we

solve near the boundary ρ = 0. The solution r(ρ) = R − ρ
4R

+ O(ρ2), together with (7.3),

help us obtain the divergent terms for the entanglement entropy of a cylinder

S(C) =
L̃3

4G
(5)
N

2πl

∫

ǫ2
dρ

[
(1 − 6αλ) R

2ρ2
− 1 − 2αλ

16ρR

(
1 − 8β1R

2
)

+ · · ·
]

=
L3

AdS (1 − 6αλ)

4G
(5)
N

2πlR

2ǫ2
+

L3
AdS

4G
(5)
N

2πl

R

1 − 2αλ

8

(
1 − 8β1R

2
)
ln ǫ + · · · . (7.10)

Notice that the coefficient of the logarithmic term differs by a factor equal to
(
1 − 8β1R

2
)

compared to the conformal case. Depending on the sign of β1, the overall coefficient be-

haves in exactly the same way for both the ball and the cylinder. It will be interesting to

understand the implications of this statement.

7.3 β1 and the weak energy condition

Here we will examine the weak (or null) energy condition and investigate whether it is

possible to constrain the sign of β1 without further specifying the geometry (7.2). The null-

energy condition implies that the matter stress energy tensor TMN satisfies TMNζMζN ≥ 0

for any arbitrary null vector ζM . Consider the most general null vector ζM

gµνζµζν = 0 ⇒ (ζρ)2 = −4ρe2U(ρ)
(
ηijζ

iζj
)

, (7.11)

where ηij represents the four dimensional Minkowski metric. It directly follows from (7.11)

that
(
ηijζ

iζj
)
≤ 0. Substituting eq. (7.11) into the null energy condition yields

Tµνζµζν ≥ 0 ⇒ −
(
ηijζ

iζj
) (

Ttt + 4ρe2U(ρ)Tρρ

)
≥ 0 . (7.12)

Here15 we used Txixi = −Ttt which follows from the symmetries of the metric (7.2). As we

saw earlier −ηijζ
iζj ≥ 0 which results in

(
Ttt + 4ρe2U(ρ)Tρρ

)
≥ 0.

Recall that the equations of motion (3.4) for d = 4 in the presence of matter reduce to

− 1

2
gMNL + RMN + λL2H(2)

MN =
(
8πG

(5)
N

)
TMN . (7.13)

Eq. (7.13) allows the determination of
(
Ttt + 4ρe2U(ρ)Tρρ

)
for arbitrary matter sector

Ttt + 4ρe2U(ρ)Tρρ = −12e2U(ρ)
(
U ′(ρ) + ρU ′′(ρ)

)
×

×
(
1 − 2λα + 8λαρU ′(ρ)

[
1 − ρU ′(ρ)

])
. (7.14)

15Note that (7.12) can also be written as −
e2U(ρ)

ρ

`
ηijζ

iζj
´ `

−T t
t + T ρ

ρ

´
.
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The energy condition implies that the left hand side is positive for any ρ, therefore for

ρ = 0 as well. The Fefferman-Graham expansion (7.3) helps us evaluate (7.14) at ρ = 0

and combined with the null-energy condition leads to

6β1
α − 2

α
≥ 0 , (7.15)

with α =
(

L
eL

)2
. To leading order close to the boundary α is defined by (3.7). For the

stable AdS solution of Gauss-Bonnet gravity (α−2) > 0 fixes the sign of β1 to be negative.

This is exactly what happens in Einstein-Hilbert gravity with a cosmological constant. It

is interesting that had we chosen the unstable AdS solution we would have a positive β1.

We conclude that the coefficient of the logarithmically divergent term in the entropy of

both the ball and the infinite cylinder is monotonically increasing with dilatations (as long

as β1 is non-vanishing). Unfortunately, this does not mean much. To apply the reasoning

of [94, 95] the full result, not just the logarithmic term, is required; mainly because away

from the conformal fixed point the EE depends on two, rather than one length scale, i.e.,

the radius R of the ball and the scale of the theory µ.

7.4 Entanglement entropy of the ball and the c-theorem in Einstein-Hilbert

gravity

In the previous section we saw that the coefficient of the logarithmically divergent term

in the entanglement entropy depends only on the UV data of the theory. It is therefore

clear that this coefficient is not a good candidate for a function decreasing along the RG

flow and being equal to a at the fixed points. This result, together with the work of

Casini and Huerta [42] in two-dimensional field theories, lead us to consider instead the

following quantity

Q ≡ −R
∂SEE,reg

∂R
→ aCFT . (7.16)

Here SEE,reg contains only the finite part of the entanglement entropy of a ball of radius R.

We would like to examine the monotonicity properties of Q(R) holographically. A priori,

this does not seem an easy task since we cannot compute (7.16) exactly in an arbitrary

domain wall geometry. However, it is possible that the null energy condition and general

characteristics of the spacetime (7.2) will determine whether (7.16) behaves monotonically

along renormalization group trajectories.

In the following we will attack this problem in the context of Einstein-Hilbert gravity.

This has the advantage of being technically simpler while the relevant features of the

problem remain the same. To simplify the analysis we will parametrize the surface in the

bulk by ρ(xi) where xi for i = 1, 2, 3 are cartesian coordinates at the boundary. This choice

yields a lagrangian independent of xi

S(B) =
L̃3

4G
(5)
N

∫ 3∏

i=1

dxiL
(
ρ(xi), ∂iρ(xi)

)

L =
e2U(ρ)

2ρ(xi)2

√∑

i

[∂iρ(xi)]2 + 4e2U(ρ)ρ(xi) (7.17)
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where ρ(xi) determines the profile of the embedding surface. Translational invariance

implies that the system has a conserved ”stress-energy” tensor T j
i

T j
i =

∂L
∂(∂jρ)

(∂iρ) − Lδj
i (7.18)

obeying ∂iT
j
i = 0. Due to spherical symmetry Tij takes the form

T ij = A(r)r̂ir̂j + δijB(r) (7.19)

where A, B can be explicitly found to be

A(r) =
e2U(ρ)

2ρ2

ρ′(r)2√
ρ′(r)2 + 4e2U(ρ)ρ

=
e2U(ρ)

2ρ2

1

|r′(ρ)|
√

1 + 4e2U(ρ)ρr′(ρ)2

B(r) = −e2U(ρ)

2ρ2

√
ρ′(r)2 + 4e2U(ρ)ρr′(ρ)2 = − e2U(ρ)

2ρ2|r′(ρ)|

√
1 + 4e2U(ρ)ρr′(ρ)2 (7.20)

In the first equality we have replaced the dependence of ρ on the cartesian coordinates xi

with the spherical coordinate r. In the second equality we give A(r) , B(r) in terms of r(ρ)

instead of ρ(r). Expressing the geometry of the embedding surface with r(ρ) will be more

convenient in the following. Note that r(ρ) satisfies the conservation equation of T ij, in

other words the equations of motion derived from (7.17). The conservation equation can

be written in a simple form in terms of the functions A(r) and B(r)

2A(r) + r
d

dr
(A(r) + B(r)) = 0 (7.21)

Solving for r(ρ) in the vicinity of the UV with the help of (7.3) and (7.20) yields

r(ρ) = R − ρ

2R
+ σ1ρ

2 +
β1

4R
ρ2 log ρ + σ3ρ

3 · · · . (7.22)

where σ1 is a function of the parameters (β1, β2, β3) which specify the domain wall geometry

but also of σ3, the coefficient of a higher order term in the near boundary expansion of r(ρ)

σ1 =
9 − 27R2β1 + 4R4(2β2

1 + 9β2 − 6β3) − 72R5σ3

12R3(−9 + 8R2β1)
. (7.23)

Unfortunately, σ1 cannot be determined without knowledge of the exact form of the profile

function r(ρ). This will turn out to be the main difficulty in determining the behavior of

Q(R) under rescalings of R.

Now suppose we vary the boundary conditions in the entanglement entropy computa-

tion as follows

ρ(xi + δxi) = ǫ + δǫ (7.24)

where the original boundary condition is ρ(xi) = ǫ for xi ∈ D (here D is a sphere of radius

R). The change in the on-shell action would then be equal to

δSon−shell =
L̃3

4G
(5)
N

[∫

D
dΣi

δL
δ∂iρ

δǫ −
∫

D
dΣjT

j
i δxi

]
(7.25)
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with dΣi the volume element on D. Substituting (7.19) into (7.25) leads to

Q = −R
∂SEE,reg

∂R
==

L̃3Ω2

4G
(5)
N

R3 (A(R) + B(R)) |reg. (7.26)

Having obtained the explicit form of the divergences in the previous section, it is easy to

subtract them from A(R) + B(R) to arrive at

Q = −R
∂SEE,reg

∂R
=

L̃3Ω2

4G
(5)
N

1

2

(
1 − 3R2β1 + 8R3σ1

)
(7.27)

Although we have obtained a simple expression for Q(R), we cannot determine whether it

has a monotonic behavior under rescalings of the radius R. It appears that one would need

to know the exact solution for the profile r(ρ). Smoothness and other generic characteristics

of the geometry of the induced surface did not suffice to prove the monotonicity of Q(R).

Moreover, it is not clear how the null energy condition, pertinent to the ambient

spacetime, will affect the behavior of Q(r) which depends on the details of the embedding

function r(ρ). It is likely that even if Q(R) is a c-function in the sense of Zamolodchikov,

it is most likely a different c-function than the standard holographic one — which in the

coordinates used here is expressed as chol ∼ 1
(−2U ′(ρ)ρ+1)3

. On the other hand, the null

energy condition may not be a sufficiently strong condition to establish a holographic c-

theorem in the generic case. As illustrated in [10] for a simple scalar coupling, the null

energy condition does not, at least in an obvious way, lead to a c-theorem.

It is also possible that our basic assumption, which is that the entanglement entropy

computation is not altered by the presence of matter fields, is incorrect even when matter

is coupled to gravity in the simplest, standard way (standard kinetic terms, no conformal

couplings etc.).

Finally, we would like to note that the proof of [94] -[95] in two dimensions, is based on

two main physical properties: Lorentz invariance of the theory and strong subadditivity of

entanglement entropy. To make use of the latter, it might be more appropriate to consider

the geometry of an annulus. We leave this issue to future investigation.
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