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1 Introduction

It was demonstrated in [1] for pure N = 2 supersymmetric SU(2) gauge theory that the

modular symmetry, the holomorphic anomaly equation and the gap condition at the singu-

larities, where dyons become massless, fix all gravitational corrections. Here we will extend

this approach to asymptotically free N = 2 gauge theories with matter. The method we

provide extends to several integrable systems which are connected to N = 2 gauge theories.

Let us first review these interrelations.

When the gauge theory is coupled to gravity, the coupling of the selfdual curvature

tensor R+ to the graviphoton field strength F+, i.e. F (g)(a)R2
+F 2g−2

+ , depends on the

moduli fields a and this dependence is exactly calculable within the topological sector

of the theory. An important point is that in different regions of the moduli there are

different canonically conjugated coordinates and the different expansion of the F (g) are not

just analytic continuations of each other. They are rather related by the wave function

transformation of Z = exp(
∑∞

g=0 λ2g−2Fg(a)) [2], which is closely related to the modular

and (an)holomorphic properties of the F (g)(a) [1, 3]. e.g. in the weak coupling regime the

F (g)(a) can be calculated from the field theory point of view using localization in the space-

time instanton moduli space [4, 5], but to obtain from this expansion the dual expansions

e.g. at the monopole points or the conformal points, also known as Argyres-Douglas points,

one has to use the wave function transformation [1–3].

N = 2 gauge theories are related to Type II string theory on non-compact Calabi-Yau

manifolds by geometric engineering [6]. It has been checked that the holomorphic gauge

coupling functions and the BPS masses of the gauge theory [7, 8] can also be obtained from

the topological sector of the Type II string theory on this backgrounds in a double scaling

limit which decouples α′- and Planck scale effects [6, 9]. In particular [6] discusses the

geometric engineering of non-compact toric Calabi-Yau spaces for SU(N) gauge theories

with few fundamental matter fields. In the large radius region of the topological string

theory the F (g)(t) are higher genus world-sheet amplitudes, which depend on the Kähler

moduli t. The field theory F (g)(a) can be obtained in the limit mentioned above [11].

A third approach is to calculate the F (g)(a) in the matrix model formalism suggested

by [12, 13] in an 1
N

expansion [11, 14].

The common mathematical structure of N = 2 Seiberg-Witten theories, topological

string on non-compact Calabi-Yau spaces and matrix models is a family of Riemann surface

C equipped with a meromorphic differential λ, which has in general non-vanishing residua.

In the Seiberg-Witten approach to supersymmetric gauge theories C is the Seiberg-

Witten curve and λ the Seiberg-Witten differential [7, 8]. (C, λ) can be re-derived from

the space-time instanton calculus as was demonstrated in [5].1 In topological string theory

on non-compact Calabi-Yau spaces the data (C, λ) arise via mirror symmetry in the B-

model geometry [6, 17]. In the matrix model approach C is the spectral curve and λ the

differential defining the filling fractions and the one point function [5, 12, 13, 16, 18]. The

calculations of [4, 5] using instanton calculus, of [1, 19] within the topological B-model, and

1Using [15] one can construct the space-time instanton sums of [5] directly as a matrix model [16].
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of [18, 20] utilizing the matrix model recursions suggest that the higher genus information

can be completely reconstructed from (C, λ).

The B model approach is particularly efficient. It uses for the reconstruction the

recursion relation in the genus, known as holomorphic anomaly equation [21]. The latter

has a kernel, the holomorphic ambiguity, which is strongly constrained by the symmetry

group of theory, but certain discrete data have to be fixed by additional arguments. For

pure gauge theory the gap condition at the conifold fixes these discrete data completely [1].

In this work we consider the asymptotically free SU(2) with Nf = 1, 2, 3 hypermulti-

plets in the fundamental representation. Similarly as the topological string theory on the

canonical line bundle over a del Pezzo surface with more than one Kähler parameter [19],

gauge theories with matter have more parameters than the complex moduli space of the

Riemann surface. In gauge theory these parameters are simply the masses of the hyper-

multiplets. While they make the form of the holomorphic ambiguity more complicated,

the requirement that the gap exists for all values of the additional parameter imposes

stronger conditions. We find that the latter over constrain the system and that an unique

solution exists. The gravitational corrections for gauge theories with matter are therefore

completely integrable.

One advantage of the method [1] is that it provides the F (g) in all regions in the

moduli space and not just in the asymptotically free region. Argyres, Plesser, Seiberg and

Witten found particularly interesting points in the moduli space of SU(2) gauge theory with

fundamental matter, where different conformal theories arise [22]. Using the formalism [1],

one can analyze the full topological sector of these conformal theories. The coordinate

choice and the structure of the topological gauge theory amplitudes near conformal points

is very similar as for topological string theory near orbifold points [23, 24].

Let us comment finally on the Nf = 4 case. An geometric engineering limit starting

from the Enriques Calabi-Yau manifold has been described in [26]. It was shown there,

that the calculation of the Fg on the Enriques Calabi-Yau are governed by the holomorphic

anomaly equations of [21]. Also the expression obtained for the Fg in the field theory limit

can be written as quasimodular forms after finding2 the correct relation between τIR and

τUV [26]. However in these quasimodular expressions we have Fg ∼ Eg−1
2 in leading order

in E2. This implies that the Fg for Nf = 4 does fulfill the holomorphic anomaly equation

(2.26) for the non-conformal cases, which implies Fg ∼ E
3(g−1)
2 .

The paper is organized as follows: In section 2, we first consider the simple case of

theory with massless matter. Here the Coulomb modulus u is related to the modular pa-

rameter τ by J(τ) = RNf
(u), where RNf

(u) is a rational function and J is the modular

invariant J-function. The Coulomb moduli space is then a ramified finite multicover of

the quotient of the upper half plane Im(τ) > 0 by PSL(2, Z) and u(τ) has very simple

transformation properties w.r.t. PSL(2, Z). We review the direct integration, which is an

efficient way to solve the holomorphic anomaly equation and write the F (g) as polynomi-

als of modular functions. In section 3 we generalize the analysis to the massive SU(2)

Seiberg-Witten theory. We provide an algorithm that is valid for the case of fundamental

2In [54] τIR and τUV were erroneously identified, compare [27].
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matter with arbitrary mass, and study the Nf = 1 case in details. This procedure can be

straightforwardly generalized to Nf = 2, 3. In section 4 we discuss some cases of special

fundamental hypermultiplet masses where two mutually non-local singular points in the u

plane collide and a non-trivial superconformal field theory appears. Section 5 discusses the

emergence of the gauge theory in the non-compact limit of a Calabi-Yau compactification.

This provides a connection to the direct integration formalism developed in [25, 26, 28, 29],

which is useful to solve the gravitational couplings of higher rank gauge theories entirely

from the solutions of the Picard-Fuchs equation. In section 6 we turn to the matrix model

approach. We find it particularly complicated to solve the Nf = 2 theory by the approach

of [20], point out some restrictions in the application of the open holomophic anomaly

of [49] and discuss analytic properties of the open amplitudes.

2 SU(2) Seiberg-Witten theory with massless hypermultiplets

The Seiberg-Witten curves3 [7, 8] C1 for N = 2 supersymmetric SU(2) gauge theory with

Nf < 4 flavors are families of elliptic curves given by4

y2 = C(x)2 − G(x) , (2.2)

where C(x) and G(x) are defined as

Nf = 0 : C(x) = x2 − u, G(x) = Λ4,

Nf = 1 : C(x) = x2 − u, G(x) = Λ3(x + m1),

Nf = 2 : C(x) = x2 − u +
Λ2

8
, G(x) = Λ2(x + m1)(x + m2),

Nf = 3 : C(x) = x2 − u +
Λ

4

(

x +
m1 + m2 + m3

2

)

, G(x)=Λ(x + m1)(x + m2)(x + m3).

Here u is the modulus parameterizing the Coulomb branch and mi are the masses of the

hypermultiplets. The genus one curves C1 have two periods aD and a of the meromorphic

Seiberg-Witten differential λ over the b and the a cycle in H1(C1, Z) respectively. The

meromorphic one form λ can be written with ′ = d
dx

as

λ =

√
2

4πi

xdx

y

[

C(x)G′(x)

2G(x)
− C ′(x)

]

. (2.3)

Physically the periods are the vev’s of the scalar component of the N = 2 vector multiplet

containing the photon and its dual in the infrared respectively.

3For the Nf = 0 we use the family of curves of [30] rather than the one of [7]. This distinction plays a

role in establishing the matrix model connection in section 6.
4One can do a change of variable and write the Seiberg-Witten curve in all cases as

y
2 = (x2

− u)2 − Λ2Nc−Nf

Nf
Y

i=1

(x + mi) (2.1)

[31]. Here we use the original notations in [8].
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We are interested in calculating the instanton expansion of the prepotential F (0) and

its higher genus generalization F (g) all over the moduli space. In the asymptotically free

region the prepotential F (0)(a) for the electric U(1) theory, which determines the exact

gauge coupling of the N = 2 Super-Yang-Mills theory, is related to the periods aD and a

by rigid special geometry

∂F (0)

∂a
= aD . (2.4)

As pointed out in [7] in the dual magnetic region where aD is small, the theory is more

suitably described by a magnetic U(1), whose prepotential is given by
∂F

(0)
D

∂aD
= a.

The higher genus terms F (g)(a) describe the exact moduli dependence of the gravita-

tional corrections

F (g)F 2g−2
+ R2

+ . (2.5)

in the effective Lagrangian, which encodes the coupling of the gauge theory to N = 2

supergravity. Here F+ and R+ are the self-dual part of the graviphoton field strength

and of the Ricci curvature respectively. In the weak coupling region u → ∞ we can

compare F (g)(a) to the localization calculations in [4]. The relation of the dual F
(g)
D (aD)

to the F (g)(a), follows from the quantum mechanical wave function transformation of Z =

exp(
∑∞

g=0 λ2g−2F (g)) and was studied in this context in [3].

In this section, we first consider the simple case where all the hypermultiplets are

massless. In this case u(τ) is a modular invariant function under the projective action on the

gauge coupling τ ∝ ∂2

∂2τ
F (0) of the group ΓNf

∈ PSL(2, Z) [32]. To find the rational function

RNf
(u) discussed in section 1 one simply brings the curve (2.2) into Weierstrass form

y2 = 4x3 − g2(u)x − g3(u) . (2.6)

The rational function is then determined by

J(τ) =
E4(τ)3

E3
4(τ) − E6(τ)2

=
g2(u)3

g2(u)3 − 27g3(u)2
=: RNf

(u) . (2.7)

Here

∆ = g2(u)3 − 27g3(u)2 (2.8)

is the discriminant of the curve. The group ΓNf
is the quotient of PSL(2, Z) by the group

interchanging the roots of u(J) and has been determined in [32]. In the mathematical

literature the invariant u(τ) is sometimes called the ‘Hauptmodul’ of ΓNf
.

The Picard-Fuchs differential equations are fulfilled by all periods over the cycles of C1.

In the massless case λ has no non-vanishing residua and the two periods aD and a fulfill

a second order Picard Fuchs differential equations,5 which were derived for Nf = 1, 2, 3

in [33]

p(u)
d2Π

du2
+ Π = 0 , (2.9)

5In the massive case discussed in section 3 there is also a cycle encircling the pole of λ picking up the

residuum and the differential equations are third order.
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where

Nf = 1 : p(u) = 4u2 +
27Λ6

1
64u

Nf = 2 : p(u) = 4
(

u2 − Λ4
2

64

)

Nf = 3 : p(u) = u
(

4u − Λ2
3

64

)

.
(2.10)

Using the leading behavior of F (0) and F
(0)
D from the 1-loop β-function and analytic con-

tinuation we find Π =

(

a

aD

)

as linear combination of the solutions to (2.9). We will set

the dynamical scales Λ1 = 2
2
3 , Λ2 = 2, Λ3 = 4 in order to match the convention in the

instanton counting calculations in [4, 5].

While in the pure SU(2) gauge there is a Z2 symmetry acting on the u plane, the

discrete symmetries of the u plane in Nf = 1, 2, 3 cases are Z3 symmetry, Z2 symmetry

and no symmetry respectively [7, 8]. As we will see, these different discrete symmetries

acting on the u plane in the three cases Nf = 1, 2, 3 play significant role in determining the

qualitative features of the solutions. We will find the structure of Nf = 2 solution closely

resembles that of the case of pure gauge theory in [1], while the cases Nf = 1, 3 have some

different qualitative features respectively.

In the next section we will review the direct integration approach for solving F (g).

Thereafter we discuss the Nf = 1, 2, 3 cases one by one.

2.1 Topological string amplitude F (g) as polynomials of Ê2

The main goal is to solve the topological sector of the theory and give in particular the

F g(u) everywhere in the Coulomb moduli space. To this end we first extend the direct

integration method of the holomorphic anomaly equations to the SU(2) gauge theory in

this section to the case with massless flavors and in section 3 to the case with massive

flavors. This approach was applied to Nf = 0 in [1] and solved the theory completely using

the gap condition. The point is to show this for theories with flavors as well.

The holomorphic anomaly equations of [21] read

∂a∂āF
(1) =

1

2
CaaaC

aa
ā ,

∂̄āF
(g) =

1

2
Caa

ā



DaDaF
g−1 +

g−1
∑

g=1

DaF
(g−h)F (h)



 , for g > 1 . (2.11)

Here we used the coordinate a introduced in the last section, but the equations are of course

covariant. We further introduced the Yukawa triple coupling and the connection Da, whose

calculation from the solutions of the Picard Fuchs equation are discussed below and more

generally in section (5.1). First F (0)(a) follows from the solution Π to (2.9) via (2.4) up to

an irrelevant constant. We define then the three point Yukawa coupling as

Caaa =
∂3F (0)

∂a3
= −2πim0

dτ

da
=: ξ (2.12)

– 6 –
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Our normalization convention is m0 = 2, 1, 1, 1
2 for the cases of Nf = 0, 1, 2, 3. Mathemat-

ically τ is the modular parameter and physically

τ = − 1

2πim0

∂2F (0)

∂a2
(2.13)

a combination6 of the gauge coupling and the theta angle τ = θ
π

+ i8π
g2 . Note that τ2 =

Im(τ) = τ−τ̄
2i

multiplies the kinetic term of the vector multiplet.7 With the methods

described in section 5 of [34] one can prove the following modular expression for ξ

Nf = 0 : ξ =
8θ2

2

θ4
3θ

4
4

, Nf = 1 : ξ =

4
√

6E
1
2
4

(

E
3
2
4 − E6

) 1
6

(−1)
1
6

(

E
3
2
4 + E6

) ,

Nf = 2 : ξ =
4θ2

2

θ4
3θ

4
4

, Nf = 3 : ξ =
8θ2

2

θ4
3θ

4
4

, (2.14)

where Ek and θk are the standard Eisenstein series and Jacobi θ functions in the conven-

tions [34]. Further the Weil-Petersson metric in the coordinate a is given by

Gaā = 2∂a∂āRe(ā∂aF
(0)) = 4m0πτ2 . (2.15)

The connection Da comes entirely8 from the metric Gaā, and is

Γa
aa = (Gaā)

−1∂a(Gaā) = − i

2τ2

∂τ

∂a
. (2.16)

Note that Γa
aa vanishes in the holomorphic limit τ̄ → ∞, confirming that the period a is a

flat coordinate in this limit. Finally we have

Caa
ā = GaāGaāC̄āāā . (2.17)

In the following it will be important to keep track of the anti-holomorphic dependence Γa
aa

in (2.11) in order to recover the full F (g)(τ, τ̄ ) including its anti-holomorphic dependence.

The holomorphic anomaly equation determines F (g) from lower genus data up to a

holomorphic anomaly, which can be fixed by modularity and the gap condition. Let us

start with genus one, which is somewhat special. It follows from (2.12), (2.15), (2.17) that

the right hand side of the g = 1 equation in (2.11) is 1
8τ2

2
|∂τ
∂a
|2. This can be integrated to

F (1) = −1

2
log(τ2) − log |Φ(τ)|2 , (2.18)

where Φ(τ) is modular form of weight 1
2 , which vanishes at the discriminant of the elliptic

curve. In the simplest cases, e.g. Nf = 0 one Φ(τ) can be identified with the Dedekind

6Here we used the normalization of [8].
7The key requirement that the latter has to be positive suggested the occurrence of Riemann surfaces

in this context, where τ2 is manifestly positive.
8In the global Calabi-Yau case there is an additional Kähler connection, as explained in section 5.1.
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η-function. Note that the transformation of Φ(τ) as weight 1
2 modular form cancels the

transformation of the −1
2 log(τ2) term. In general the form Φ(τ) is determined by its

modularity and its leading logarithmic behavior near a
(k)
D = 0. It has been pointed out

in [35] that log(a
(k)
D ) comes from the gravitational one-loop β function and its prefactor is

entirely determined by the massless spectrum at the critical point.

F (1)(τ, τ̄ ) is an almost holomorphic modular function or form of weight 09 and its τ

derivative, which appears in (2.11), is an almost holomorphic form of weight 2. Modu-

larity implies that this derivative contains the unique almost holomorphic modular weight

two form

Ê2(τ, τ̄ ) = E2(τ) − 3

πτ2
, (2.19)

where E2(τ) is the holomorphic quasimodular second Eisenstein form [34]. Under mod-

ular transformations τ 7→ τγ = aτ+b
cτ+d

with γ ∈ Γ1 = PSL(2, Z) E2 transforms with an

inhomogeneous shift

E2(τγ) = (cτ + d)2E2(τ) − 6ic

π
(cτ + d) . (2.20)

This shift cancels the shift transformation of − 3
πτ2

, so that Ê2 transforms indeed as a

honest weight two form.

In calculating the right hand side of (2.11) one needs derivatives of modular forms

of even positive weight. The covariant derivative D in (2.11) written in terms of the τ

coordinate is the so called Mass derivative

D̂τ = ∂̂τ − k

4πτ2
. (2.21)

Here ∂̂τ = 1
2πi

d
dτ

and k is the modular weight of the object acted on. The Mass derivative

D̂τ has the important property that it maps almost holomorphic modular forms of weight

k into almost holomorphic modular forms of weight k + 2. Modular invariance implies

that each covariant derivative increases the leading power of Ê2 by one and all powers of
1
τ2

must combine with E2(τ) to form the shift invariant combination Ê2(τ, τ̄ ). From this

follows the important fact that for g ≥ 2 all anholomorphic dependence of F (g) is in Ê2

and we can replace

d

dτ̄
=

dÊ2

dτ̄

d

dÊ2

=
3i

2πτ2
2

d

dÊ2

. (2.22)

Furthermore we find that the anti-holomorphic derivative in (2.11) combines with the three

point function as
2∂āF

(g)

Caa
ā

= 24m0
dF (g)

dÊ2

, for g ≥ 2 , (2.23)

so that (2.11) can be written as

24m0
dF (g)

dÊ2

= D2
aF

(g−1) +

g−1
∑

r=1

∂aF
(r)∂aF

(g−r) . (2.24)

9In slight abuse of notation we indicate almost holomorphic objects by writing a τ̄ dependence.
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Since the period a is a quasimodular object of weight 1 and Ê2 is of weight 2 one concludes

that all F (g) have modular weight zero. Combining the above facts it follows that the F (g)

are inhomogeneous polynomials of degree 3(g−1) in Ê2 whose coefficients are holomorphic

forms of negative weight so that F (g) have weight zero. Defining the following derivatives

∂aF
(r) = − ξ

m0
∂̂τF

(r) = − ξ

m0
D̂τF

(r)

D2
aF

(r) = (∂a − Γa
aa)∂aF

(r) =
1

m2
0

ξD̂τ (ξD̂τF (r)) , (2.25)

where we used the connection (2.16) and the fact that F (r) and ∂aF
(r) have modular weight

zero and −1 respectively, we write the holomorphic anomaly equation as

24m3
0

dF (g)

dÊ2

= ξ2

(

D̂2
τF (g−1) +

D̂τ ξ

ξ
D̂τF

(g−1) +

g−1
∑

r=1

D̂τF
(r)D̂τF (g−r)

)

. (2.26)

This provides an unifying description of the Seiberg-Witten theory with various number of

massless flavors, depending only on m0 and the holomorphic modular form of weight −3

given in (2.14).

In each integration step the coefficients of all nonzero powers of Ê2 are determined

by (2.11), while an holomorphic ambiguity of modular weight zero can be added. Boundary

conditions and modularity imply that this can be always written as ξ2g−2 times a modular

form of weight 6(g−1). This reduces problem of fixing the ambiguity to the determination

of a finite number of terms. The remaining task is solved by an analysis of the local form

of the effective action, which we discuss next.

A key concept in the analysis of effective action [8] is its transformation property under

the modular group ΓNf
and the concept of local holomorphic coordinates in which the

effective action is expanded near the critical points of the theory, where particles become

massless [8]. In particular in the asymptotically free region of the gauge theory a or more

precisely 1
a

is the correct small expansion parameter, while near points where a dyon of

magnetic charge and electric charge (qm, qe) in an N = 2 hypermultiplet becomes massless,

i.e. close to the components of the discriminant locus of (2.2), a
(k)
D = q

(k)
m aD + q

(k)
e a is the

small expansion parameter. In most cases, i.e. for Nf = 0, 1, 2 the Z2, Z3 and Z2 symmetry

of the theories respectively relates the dyon points and the local expansions are the same,

but for Nf = 3 we find truly inequivalent dyon points.

At the magnetic monopole point, also called conifold point, the leading term of the

topological string amplitudes in the variable aD, is determined by the c = 1 string at the

selfdual radius [36]. The 2g − 1 sub-leading terms are absent. This gap structure10

F (g) D =
cg−1B2g

2g(2g − 2)a2g−2
D

+ O(a0
D) . (2.27)

has been observed in [1] and as explained in [37] it originates indeed from integrating out a

single massless hypermultiplet in the Schwinger loop contribution to the higher derivative

10Below we can always rescale aD so that c = 1. The Bernoulli numbers Bk are defined by
P

∞

k=0
Bkxk

k!
=

x
ex

−1
, i.e. B2 = 1

6
, B4 = − 1

30
, B6 = 1

42
etc.

– 9 –



J
H
E
P
0
7
(
2
0
1
0
)
0
8
3

effective action, which arises from a singular Calabi-Yau 3 fold with a shrinking S3. The

shrinking occurs at the conifold in the complex moduli space. The hypermultiplet in

question is identified with a single dyon state in the gauge theory limit. In the gauge

theory limit the compact part of the singular 3-fold becomes a nodal Riemann surface and

it can be explicitly seen using the local limit of the periods around the S3 and its dual cycle

that the local limit preserves the gap condition. Indeed the gap was used already in [1] to

fix the holomorphic ambiguity in the calculation of the gravitational corrections in pure

SU(2) Seiberg-Witten theory. Here we find as expected that the gap occurs at all points

in the moduli space of the Riemann surface where a single dyon becomes massless and a

nodal singularity develops. Using the gaps and the leading coefficients we are able to fix in

the Nf = 0, 1, 2, 3 cases the holomorphic ambiguity genus for all genus, and obtain exact

formulae for the gravitational corrections F (g) that sum up all instanton contributions at

each genus g. Mathematically one could prove the gap condition eventually in general from

properties of the Nekrasov expansion and the modular transformation of the Fg. We have

not done this here but, merely checked the compatibility of this expansion with the gap

condition in our examples.

Let us finish this section with some comments on (2.26) and a calculation of the leading

terms in Ê2. First we note that the equations leading to (2.26) are invariant under the

change ∂̂τ , E2 → D̂τ , Ê2, one may therefore as well take a “holomorphic limit” and replace

D̂τ , Ê2 with ∂̂τ , E2 in equation (2.26), without losing any information. Furthermore the

holomorphic anomaly equation (2.26) provides a very efficient way to compute topological

string amplitudes. While in the Feynman rule approach of BCOV the number of diagrams

grows exponentially with g, in the direct integration approach the number of terms in F (g)

grows only with a power law with the genus g. This is similar as in the case of quintic

Calabi-Yau three-fold studied in [25, 37].

The leading coefficients of F (g) as polynomials of Ê2 do not depend on the holomorphic

ambiguity and can be computed to very high orders. Suppose we denote the leading

terms by11

F (g) =
A(g)

(g − 1)(1152m3
0)

g−1
ξ2(g−1)Ê

3(g−1)
2 + · · · (2.28)

where · · · denotes terms with lower powers of Ê2. One can see that the coefficients A(g−1)

do not depend on the holomorphic ambiguities, since there is no E2 in the holomorphic

ambiguities in all the models we study. Using the holomorphic anomaly equation (2.26),

we find a simple recursion relation for all the cases Nf = 0, 1, 2, 3 of Seiberg-Witten theory

A(2) =
5

36
,

A(g) = (g − 1)A(g−1) +

g−2
∑

r=2

A(r)A(g−r), g > 2 (2.29)

The first few coefficients A(g) are 5
36 , 5

18 , 1105
1296 , 565

162 , · · · .
In the next three subsections we discuss the massless Nf = 1, 2, 3 cases one by one.

11The numerical factor 1152 is included to keep the recursion for the A(g) below simpler.
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2.2 Nf = 1

For the Nf = 1 theory the discriminant is according to (2.9)

∆1 = 16(16u3 + 27) . (2.30)

The solution of the Picard-Fuchs equation in the weak coupling limit u → ∞ is

a =
√

u

(

1 +
3

64u3
− 315

16384u6
+

15015

1048576u9
+ · · ·

)

aD = 3 a log(u) +
√

u

(

3

32u3
− 297

16384u6
+

9047

1048576u9
+ · · ·

)

(2.31)

The prepotential and gauge coupling τ are then determined by ∂F (0)

∂a
= aD and τ =

− 1
2πi

∂2F (0)

∂a2 . The modulus u can be expressed in terms of τ as [32]

u =
1

8

(

−E4(τ)3 − E6(τ)E4(τ)
3
2

) 1
3
η(τ)−8

=
3

2
m2 E

1
2
4

(E
3
2
4 − E6)

1
3

(2.32)

where m is a one-sixth root of −1, i.e. m6 = −1.

The holomorphic limit of the genus one amplitude is [1, 11]

F (1) = −1

2
log

(

da

du

)

− 1

12
log(∆1) . (2.33)

This follows from F (1) = −1
2 log(Guū|∆| 16 ), which satisfies (2.11), in the holomorphic limit.

To provide modular formulas for all expressions we rewrite the Picard-Fuchs equation

for Nf = 1 in (2.9) as

(

4u2 +
27

4u

)

[

(

d2a

dτ2

)

/

(

du

dτ

)2

−
(

da

dτ

)(

d2u

dτ2

)

/

(

du

dτ

)3
]

+ a = 0 (2.34)

Using (2.32) we can obtain a differential equation for period a in terms of τ . In the weak

coupling limit τ → i∞, the modulus u goes like u ∼ (E
3
2
4 − E6)

− 1
3 , and the period a goes

like a ∼ √
u ∼ (E

3
2
4 − E6)

− 1
6 . After fixing the normalization, it follows that the solution

of (2.34) that corresponds to the period a is

a =

√

3

2

m

2

E
1
2
4 + E2

(E
3
2
4 − E6)

1
6

. (2.35)

As expected the period a has formally modular weight one, since τ = − 1
2πi

∂2F (0)

∂a2 and F (g),
d
dτ

have modular weight zero, two respectively.

The holomorphic genus one amplitude F (1), i.e. − log(Φ(τ)) is then

F (1) = − 1

12
log(E

3
2
4 + E6) . (2.36)
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We integrate the holomorphic anomaly equation (2.26) and expand F (g) around the

discriminant points ∆1(u) = 0, in order to use the gap structure. The 3 discriminant points

∆1(u) = 0 are related by a Z3 symmetry so we only need to consider the dual expansion

around one of the 3 points. According to [8] theses points should be related to the weak

coupling limit τ → +i∞ by an S-duality transformation τ → − 1
τ
. The Eisenstein series

En transform with modular weight n, and a shift for E2, i.e. E2 → τ2(E2 + 12
2πiτ

), E4 →
τ4E4, E6 → τ6E6. In the weak coupling limit τ2 is negative, so we find that under a S-

duality transformation, E2, E6 change sign and E4 doesn’t. Following the approach in [1],

we can find the dual period aD and F
(g)
D by replacing E2, E6 with −E2, −E6 in (2.35)

aD =

√

3

2

m

2

E
1
2
4 − E2

(E
3
2
4 + E6)

1
6

. (2.37)

Note that the modulus u transforms as

u =
3

2
m2 E

1
2
4

(E
3
2
4 − E6)

1
3

→ 3

2
m2 E

1
2
4

(E
3
2
4 + E6)

1
3

, (2.38)

i.e. the S-duality transforms u indeed from u = ∞ to the Z3 symmetric discriminant points

u = 3

2
4
3
m2.

It is now straightforward to expand the dual genus two amplitude F
(2)
D in terms of the

dual period aD in the weak coupling limit of the S-dual theory τD = − 1
τ
→ +i∞. We use

the gap condition as in the case of pure gauge theory [1] to fix the holomorphic ambiguity,

and we find the genus two amplitude and its S-dual

F (2) =
(E

3
2
4 − E6)

1
3

2160m2(E
3
2
4 + E6)2

[

−25E3
2E4 + E2

2

(

−135E
3
2
4 + 30E6

)

+E2

(

255E2
4 − 120E

1
2
4 E6

)

− 159E
5
2
4 + 140E4E6

]

(2.39)

F
(2)
D =

(E
3
2
4 + E6)

1
3

2160m2(E
3
2
4 − E6)2

[

25E3
2E4 + E2

2

(

−135E
3
2
4 − 30E6

)

−E2

(

255E2
4 + 120E

1
2
4 E6

)

− 159E
5
2
4 − 140E4E6

]

(2.40)

The genus two space-time instanton expansion and the S-dual expansion are as follows

F (2) =
1

160a2
+

9

1024a8
− 16749

262144a14
+

187215

1048576a20
,

− 6536606985

17179869184a26
+ O

(

1

a32

)

(2.41)

F
(2)
D = − 1

240a2
D

− 221aD

3
1
2 62208m3

+
76289a2

D

2
1
3 10077696m4

− 1082609a3
D

2
2
3 3

1
2 45349632m5

+ O(a4
D) .

(2.42)
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We obtain the genus three amplitude using the gap condition at the conifold point

F (3) =
(E

3
2
4 − E6)

2
3

544320m4(E
3
2
4 + E6)4

{

525E6
2E2

4 − 350E5
2 (19E

5
2
4 − 5E4E6)

+35E4
2(1225E3

4 − 694E
3
2
4 E6 + 16E2

6 ) − 280E3
2 (637E

7
2
4 − 546E2

4E6 + 51E
1
2
4 E2

6)

+7E2
2(67221E4

4 − 75400E
5
2
4 E6 + 14540E4E

2
6)

−14E2(49821E
9
2
4 − 68867E3

4E6 + 20960E
3
2
4 E2

6 − 560E3
6 )

+(440325E5
4 − 720006E

7
2
4 E6 + 308700E2

4E2
6 − 22400E

1
2
4 E3

6) ,
}

(2.43)

which yields to lowest order in the asymptotically free region and near the conifold

F (3) =
5

2688a4
− 3

1024a10
+

96453

524288a16
− 6065417

4194304a22

+
213776429067

34359738368a28
+ O

(

1

a34

)

(2.44)

F
(3)
D =

1

1008a4
D

− 197aD

2
2
3 3

1
2 165888m5

− 54542723a2
D

19591041024

+
159862731109a3

D

2
1
3 3

1
2 9873884676096m

+ O(a4
D) . (2.45)

The instanton expansion (2.44) agrees with Nekrasov’s calculations (A.5) and makes pre-

dictions at higher instanton numbers.

2.3 Nf = 2

The discriminant is

∆2 = (4u2 − 1)2 . (2.46)

That it is of fourth order in u can be seen from (3.15) in a later section, where we provide

the expression of the conifold divisor for generic flavor masses. The solution of the Picard-

Fuchs equation at weak coupling limit u → ∞ is

a =
√

u

(

1 − 1

64u2
− 15

16384u4
− 105

1048576u6
+ · · ·

)

aD = 2alog(u) +
√

u

(

− 1

32u2
− 13

16384u4
− 163

3145728u6
+ · · ·

)

(2.47)

The modulus u can be expressed in terms of τ = − 1
2πi

∂2F (0)

∂a2 as [32]

u =
1

16

η( τ
2 )8

η(2τ)8
+

1

2
=

θ4
4(τ)

θ4
2(τ)

+
1

2
. (2.48)

We verify the genus one amplitude satisfy the holomorphic anomaly equation

F (1) = −1

2
log

(

da

du

)

− 1

12
log(∆2) . (2.49)
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The period a can also be written in terms of theta functions of τ . We notice that the

Picard-Fuchs equation for Nf = 2 is very similar to the one of Nf = 0 pure Seiberg-Witten

theory studied in [1]. In particular, if we change the normalization u → u
2 , but leave τ and

a fixed, then the Picard-Fuchs equation (2.9) and the expression of u (2.48) are exactly the

same as that of pure SU(2) theory. So the expression of the period a in terms of τ should

be the same as that of [1] up to multiplicative constant. We find

a =
1

3θ2
2(τ)

(E2(τ) + θ4
3(τ) + θ4

4(τ)) . (2.50)

However since ∆2 is the square of the Nf = 0 discriminate ∆1. Therefore the genus one

amplitude is not simply F (1) = −log(η(τ)) as in the Nf = 0 case [1] but rather

F (1) = −1

3
log

(

θ2
3(τ)θ2

4(τ)

θ2(τ)

)

. (2.51)

In the following we use the notation in [1] and define

b := θ4
2(τ), c := θ4

3(τ) = b + d, d := θ4
4(τ) , (2.52)

h := b + 2d and X := b
1728c2d2 .

Under a S duality transformation, the theta functions have modular weight two, and

transform as b → −τ2d, c → −τ2c, d → −τ2b. The Eisenstein E2 is weight two and

transforms with a shift (2.20). The period a contains E2 as well as θ2
2 and is therefore

not modular invariant under Γ(2). By a duality transformation followed by a holomorphic

limit it is rather related to the dual period

aD = − i

3θ2
4

(E2 − b − c) . (2.53)

Using the gap condition from dual expansion, we fix the genus two amplitude and find

the space-time instanton expansion

F (2) =
2

15
X{25E3

2 − 75E2
2h + 15E2(13b

2 + 22cd) − h(137b2 + 8cd)} , (2.54)

F (2) =
7

480a2
− 7

1024a6
− 1425

262144a10
− 15717

8388608a14

− 8623029

17179869184a18
+ O

(

1

a22

)

. (2.55)

The S-dual of F (2) and its dual expansion fulfilling the gap condition are

F
(2)
D =

2

15
XD{25E3

2 − 75E2
2hD + 15E2(13d

2 + 22bc) − hD(137d2 + 8bc)} . (2.56)

F
(2)
D =

1

120a2
D

+
3iaD

512
− 33a2

D

1024
− 2147ia3

D

20480
+ O(a4

D) , (2.57)

where hD = −d − 2b, XD = − d
1728b2c2

.
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We push the analysis to genus three using the gap condition. The genus three ampli-

tude is

F (3) = X2

{

80E6
2 − 480E5

2h + 48E4
2(41b2 + 104cd) − 32

3
E3

2h(646b2 + 685cd)

+
16

5
E2

2(6503b4 + 23410b2cd + 7637c2d2)

−32

5
E2h(5867b4 + 11605b2cd + 671c2d2)

+
16

105
(177293b6 + 787182b4cd + 619233b2c2d2 + 40232c3d3)

}

. (2.58)

The space-time instanton expansion and the S-dual expansion are given below

F (3) =
31

8064a4
+

5

2048a8
+

8843

524288a12
+

140721

8388608a16

+
318316439

34359738368a22
+ O

(

1

a26

)

(2.59)

F
(3)
D =

1

504a4
D

+
45iaD

16384
− 279a2

D

8192
− 745933ia3

D

3670016
+ O(a4

D) . (2.60)

The instanton expansion (2.59) agree with (A.6) and make predictions at higher instanton

numbers.

2.4 Nf = 3

The discriminant is

∆3 =
u

4
(16u − 1) . (2.61)

The solution of the Picard-Fuchs equation at weak coupling limit u → ∞ is

a =
√

u

(

1 − 1

64u
− 3

16384u2
− 5

1048576u3
+ · · ·

)

aD = alog(u) +
√

u

(

− 1

32u
− 1

16384u2
+

1

3145728u3
+ · · ·

)

. (2.62)

In the case Nf = 3, it turns out to be convenient to define the gauge coupling as τ =

− 1
πi

∂2F (0)

∂a2 + 1. The modulus u can be expressed in terms of τ as [32]

u = − 1

256

η
(

(τ−1)
2

)8

η(2(τ − 1))8
=

1

256

η( τ
2 )8

η(2τ)8
+

1

16
(2.63)

We verify that the genus one amplitude satisfy the holomorphic anomaly equation

F (1) = −1

2
log

(

da

du

)

− 1

12
log(∆3) −

1

4
log(u) . (2.64)

We note an additional singularity at u = 0 besides the ∆3 = 0.
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We can also use the results from pure SU(2) case [1] to write period a and F (1) as

theta functions of τ . We notice that under a change of variable u = ũ+1
32 , the Picard-Fuchs

equation (2.9) and the formula (2.63) become the same as the pure gauge theory case,

namely we have

4(ũ2 − 1)
d2a

dũ2
+ a = 0

ũ =
1

8

η( τ
2 )8

η(2τ)8
+ 1 =

θ4
3(τ) + θ4

4(τ)

θ4
2(τ)

.

So we can use the result of pure SU(2) gauge theory and we find

a =
1

12θ2
2(τ)

(E2(τ) + θ4
3(τ) + θ4

4(τ)) (2.65)

and the genus one amplitude

F (1) = −1

3
log

(

θ4
3(τ)θ4(τ)

θ2
2(τ)

)

. (2.66)

In the case of Nf = 3, there are two different dual expansions: one at u = 0 and one

at u = 1
16 . Unlike the case in Nf = 0 and Nf = 2, the two expansions are not related by a

Z2 symmetry. The S-duality transformation transforms u = ∞ to u = 1
16 or ũ = 1, while

a T and S duality transforms u = ∞ to u = 0 or ũ = −1. The corresponding actions on

a, b and c are

S-duality : b → −τ2d, c → −τ2c, d → −τ2b

TS-duality : b → τ2d, c → −τ2b, d → −τ2c .

and yield the dual periods as

S-duality : aD1 = − i

12θ2
4

(E2 − b − c)

TS-duality : aD2 = − 1

12θ2
4

(E2 − b − c) .

It turns out there are gap structures in the dual series expansions at both u = 0 and u = 1
16 ,

where the first sub-leading terms of the dual series at u = 0 and u = 1
16 go like constant

and a3
D respectively. We are able to use this structure to fix the genus two amplitude

F (2) =
b

810c2d2

[

50E3
2 − 90E2

2(b + 4d) + 30E2(2b
2 − 4bd + 35d2)

−(16b3 + 51b2d − 1428bd2 + 443d3)
]

. (2.67)

The space-time instanton expansion and the dual expansions are

F (2) =
11

480a2
+

5

1024a4
− 109

262144a6
+

83

4194304a8

− 13361

1717869184a10
+ O

(

1

a12

)

, (2.68)
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F
(2)
D1 =

1

240a2
D1

+
1

2
+

271iaD1

16
− 3811a2

D1

16
− 50781ia3

D1

20
+ O(a4

D1) , (2.69)

F
(2)
D2 =

1

15a2
D2

+
4a3

D2

5
− 75a4

D2

4
+

2155a5
D2

8
+ O(a6

D2) . (2.70)

The vanishing of the subleading coefficients in both of the dual series expansions up order

a0
D1 and a3

D2 respectively yield independent conditions. These enable us to precisely to fix

the unknowns in the ansatz for the holomorphic ambiguity, which is increased w.r.t. to the

Nf = 0 and Nf = 2 case, because there is no Z2 symmetry u → −u in the Nf = 3 theory.

We push the analysis to genus three

F (3) =
2b2

76545c4d4

{

1050E6
2 − 1050E5

2 (5b + 13d) + 210E4
2 (80b2 + 233bd + 374d2)−

70E3
2(529b3 + 1752b2d + 1731bd2 + 3764d3) + 42E2

2 (1172b4 + 3985b3d+

4563b2d2 − 9299bd3 + 12818d4) − 42E2(844b
5 + 3109b4d + 4765b3d2+

12404b2d3 − 63022bd4 + 9554d5) + (10718b6 + 44304b5d + 81507b4d2+

19406b3d3 + 2674506b2d4 − 2382348bd5 + 117557d6)
}

.

(2.71)

The space-time instanton expansion and the two dual expansions are

F (3) =
47

8064a4
− 1

512a6
+

769

534288a8
− 1595

8388608a10

+
506627

34359738368a12
+ O

(

1

a14

)

, (2.72)

F
(3)
D1 =

1

1008a4
D1

+ 10 +
29327iaD1

32
− 413345a2

D1

16
+ O(a3

D1) , (2.73)

F
(3)
D2 =

4

63a4
D2

− 90a3
D2

7
+

4183a4
D2

8
− 35483a5

D2

3
+ O(a6

D2) , (2.74)

where the space-time instanton expansion (2.72) again agrees with Nekrasov’s calcula-

tions (A.7) and makes predictions at higher instanton numbers. Note that the non-zero

sub-leading term of the two dual series appear at order a0
D1 and a3

D2 respectively, as the

genus two case.

3 SU(2) Seiberg-Witten theory with massive hypermultiplets

In this section, we will show that the gravitational couplings F (g) for the massive Seiberg-

Witten theory can be solved as polynomials of generators of the relevant modular functions,

whose coefficients are rational functions of the Coulomb modulus u as well as the mass pa-

rameters mi. The equation J(τ) = RNF
(u,m) still governs the occurrence of the modular

functions and relevant group is again the quotient of PSL(2, Z) by the permutation group

acting on the roots u(J,m). Mathematically the mass parameters mi are known as isomon-

odromic deformation parameters.

3.1 The prepotential F (0)

For the massive case the Picard-Fuchs equation is much more complicated than the massless

case. There is a standard though tedious way to derive the Picard-Fuchs equations from the
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Seiberg-Witten curve [38]. The Picard-Fuchs equations for SU(2) Seiberg-Witten theory

with massive hypermultiplets were derived in [39, 40] and for the case of one massive

hypermultiplet (Nf=1) it is given by

d3Π

du3
+

3∆1 + (4m2
1 − 3u) ∂∆1

∂m1

∆1(4m2
1 − 3u)

d2Π

du2

−8[4(2m2
1 − 3u)(4m2

1 − 3u) + 3(3Λ3
1m1 − 4u2)]

∆1(4m2
1 − 3u)

dΠ

du
= 0 . (3.1)

Here m1 is the mass of the hypermultiplet and ∆1 is the discriminant of the Seiberg-

Witten curve

∆1 = 256u3 − 256m2
1u

2 − 288Λ3
1m1u + 256Λ3

1m
3
1 + 27Λ6

1 . (3.2)

The differential equation (3.1) has a second singularity at the vanishing locus of

∆2 = 4m2
1 − 3u . (3.3)

In order to match with Nekrasov’s convention [4], we again set the dynamical scale Λ1 = 2
2
3 .

In the weak coupling region near u → ∞, the Picard-Fuchs equation (3.1) has a

constant solutions and two other solution corresponding to the periods a and aD. It was

found in [39]

a =
√

u

[

1 − m1

4u2
+

3

64u3
− 15m2

1

64u4
+

35m1

256u5
− 105(3 + 64m3

1)

16384u6

+
3465m2

1

8192u7
+ O

(

1

u8

)]

,

aD = 3alog(u) +
√

u

[

−m2
1

u
−
(

m1

2
+

m4
1

6

)

1

u2
+

(

3

32
− m3

1

4
− m6

1

15

)

1

u3

+

(

3m2
1

64
− m5

1

8
− m8

1

28

)

1

u4
+ O

(

1

u5

)]

. (3.4)

We solved the prepotential using ∂F (0)

∂a
= aD and checked it against Nekrasov’s result

summarized in (A.1).

There are relations between the period a, Coulomb modulus u and the gauge coupling

τ , which become useful for solving the model. After a PGL(3, C) transformation, the

massive Seiberg-Witten curve can brought into Weierstrass form (2.6). For Nf = 1 one has

g2(u,m1) =
4

3
u2 − 4m1

g3(u,m1) = − 8

27
u3 +

4

3
m1u − 1 . (3.5)

Using the fact that the period equation is solved in terms of modular forms [41] (see [34]

for an elementary review), the definition of τ = − 1
2πi

∂aD

∂a
and the J function (2.7) one can

show that the period a satisfies the equation [42]

du

da
=

√

−18
g3(u,m1)

g2(u,m1)

E4(τ)

E6(τ)
. (3.6)
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Note that this equation is universal for Nf = 0, 1, 2, 3 in the sense that it depends on the

specifics of the curve only via g2(u,m) and g3(u,m).

3.2 Gravitational couplings

We shall follow the approach in [1] and treat the period a as a flat coordinate in the

holomorphic limit. The singular locus of the Picard-Fuchs equation (3.1) is at ∆1 = 0

and ∆2 = 0. ∆1 = 0 is the the conifold divisor, i.e. one hypermultiplet becomes massless

for these values of the moduli. According to [35] each hypermultiplet contributes − 1
12 to

one-loop gravitational β function, which yields a logarithmic running of the coupling of

R2
+. This gives rise to an − 1

12 log(∆1)R
2
+ contribution in the one loop effective action,

compare (2.5). On the other hand the conformal locus lies on ∆2 = 0, as discussed further

in section 4, and here the β function and hence the log(∆2) contribution to F (1) vanishes.

This fixes the ambiguity at genus zero and the holomorphic limit [11]

F (1) = −1

2
log

(

da

du

)

− 1

12
log(∆1) (3.7)

agrees with Nekrasov’s calculation (A.2) up to an ambiguous constant. The form of (3.7)

has been already noted in [43].

Using (3.6) the genus one gravitational correction F (1) can be also written as

F (1) = − 1

12
log

(

g3
2(g

3
2 − 27g2

3)

g3
3

E3
6

E3
4

)

. (3.8)

As discussed in section (2.1) the F (g) (g ≥ 2) of Seiberg-Witten theory are modular

invariant with weight zero. As we have seen the covariant derivatives in the recursion lead

to an anholomorphic dependence, which can be completely absorbed into powers of the non-

holomorphic Eisenstein series Ê2(τ). Their modular transformation must be compensated

by holomorphic modular forms. We claim that all anholomorphic dependence can be

absorbed into the weight zero anholomorphic modular form

X(τ) =
Ê2(τ)E4(τ)

E6(τ)
. (3.9)

This can be established by rewriting the holomorphic anomaly equation (g ≥ 2) as

∂F (g)(X,u)

∂X
=

E6

24E4

(

d2F (g−1)

da2
+

g−1
∑

r=1

dF (r)

da

dF (g−r)

da

)

. (3.10)

Using the relations of a, u and τ in (2.7) and (3.6), and induction one can easily show

the right hand side of the above equation is a polynomial of X of degree 3g − 4 whose

coefficients are rational function of u. It follows that the higher genus F (g) (g ≥ 2) are

polynomials of X(τ) of degree12 3g − 3, whose coefficients are rational functions of the

modulus u and m1.

12As we explained in the massless cases in section 2.1, there is an isomorphism between E2 and Ê2. So

one can treat the above equations by replacing Ê2 with E2 in the holomorphic limit.
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Given (3.8) it is easy to integrate (3.10) up to the holomorphic ambiguity. e.g. for

genus two we find

F (2) =
1

∆(u)2

{

−2880(3u − 4m2
1)

2

(

g3X

g2

)3

− 96
(

252u3 − 648m2
1u

2+ (3.11)

(352m4
1 + 54m1)u + 27(8m3

1 − 9)
)

(

g3X

g2

)2

−64

3

[

324u4 − 528m2
1u

3 + 4m1(76m
3
1 − 27)u2

−36(26m3
1 + 27)u + 3m2

1(128m
3
1 + 729)

]

(

g3X

g2

)}

+ f (2) ,

where f (2) is the holomorphic ambiguity, which is again a rational function of u and m1.

3.3 Fixing the holomorphic ambiguity with dual expansions

In order to fix the holomorphic ambiguity, we use the gap structure in the dual expansion

at a discriminant point u = u1, where ∆(u1) = 0. The formulae are essentially the same

as the semi-classical limit u → ∞, and we just need to use the dual coupling and period

τD and aD in places of τ , a. The formulae (2.7), (3.6) become

J(τD) =
g2(u)3

g2(u)3 − 27g3(u)2
(3.12)

du

daD
=

√

−18
g3(u)

g2(u)

E4(τD)

E6(τD)
(3.13)

From the above formulae we see that around the discriminant point u ∼ u1, the dual theory

is indeed weakly coupled in terms of the dual coupling τD → i∞, and the asymptotic

behavior of the dual period is aD ∼ (u − u1).

We can now replace τ in the genus two formula (3.11) with dual coupling τD, and

expand F (2)D in terms of the dual period aD.

The ambiguity f (g) can a priori have poles at the singular points of Picard-Fuchs

equation ∆(u) = 0 and ∆2 = 0. However ∆2 = 0 does not appear as a pole in the

holomorphic ambiguity. This is because there is a conformal massless spectrum at that

locus in the moduli space, similar to the situation encountered in [37] for the Gepner point

in the Calabi-Yau moduli space. The singular behavior of f (g) at the conifolds implies then

that f (g) = pn(u)

∆2g−2
1

, where pn(u) is a polynomial in u of degree n. Since f (g) must be regular

at u → ∞ and ∆1 ∼ u3 we get that n ≤ 6g − 6. In fact it turns out that n = 6g − 7.

Using the 2g − 1 first coefficients in (2.27) at the three inequivalent conifold points, we

see that the equations following from the gap condition overdetermine the coefficients of

pn(u). This fixes the holomorphic ambiguity for all g. e.g. for genus two we get

f (2) =
128

405∆(u)2
[−684u5 + 3192m2

1u
4 − 2m1(656m

3
1 + 4293)u3 + 378(8m3

1 + 45)u2

−54m2
1(80m

3
1 + 183)u + 27(664m3

1 − 729)] . (3.14)
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Unlike the massless case, here the constant term in the dual expansion does not vanish.

Although it is too complicated to write down the constant term, we have checked it indeed

vanishes in the massless limit m1 = 0.

The holomorphic ambiguity (3.14) together with (3.11) gives the exact formula for

genus two F (2) in the massive Nf = 1 Seiberg-Witten theory. We have checked the agree-

ment with Nekrasov’s instanton calculation in semi-classical limit. We can furthermore

obtain predictions for higher instanton results at genus two. For example, the 6-instanton

and 7-instanton results are

F
(2)
6−instanton =

1497720a6 − 39720651a4m2
1 + 131881442a2m4

1 − 96877135m6
1

8388608a26

F
(2)
7−instanton =

3(6542298a6m1 − 73190615a4m3
1 + 181612908a2m5

1 − 117503791m7
1)

8388608a30
.

3.4 Comments on the Nf = 2, 3 cases and integrability

We can transform the Seiberg-Witten curve for Nf = 2, 3 with generic hypermultiplet

masses into Weierstrass form. The conifold divisors ∆ = g3
2 − 27g2

3 = 0 for the Nf = 2, 3

cases are (here we use the convention for the QCD scale ΛNf =2 = 2, ΛNf =3 = 4)

∆Nf =2 = 16u4 − 16(m2
1 + m2

2)u
3 + (16m2

1m
2
2 − 80m1m2 − 8)u2

+[36(m2
1 + m2

2) + 72m1m2(m
2
1 + m2

2)]u

+1 − 12m1m2 − 6m2
1m

2
2 − 64m3

1m
3
2 − 27(m4

1 + m4
2) ,

∆Nf =3 = −16u5 + (1 + 16m2
1 + 16m2

2 + 16m2
3)u

4

+[8(m2
1 + m2

2 + m2
3) − 16(m2

1m
2
2 + m2

1m
2
3 + m2

2m
2
3) + 88m1m2m3)u

3

+f2(m1,m2,m3)u
2 + f1(m1,m2,m3)u + +f0(m1,m2,m3) , (3.15)

where f2, f1, f0 are some symmetric polynomial of m1,m2,m3.

The number of conifold point is n = 3, 4, 5 for Nf = 1, 2, 3 and these points are

distinct for generic hypermultiplet masses. The ambiguity at genus g is a rational function

whose denominator is ∆2g−2, while regularity at u = ∞ constrains the number of unknown

constants in the holomorphic ambiguity to be n(2g − 2). The gap boundary conditions

at each of the n distinct conifold singularities provide 2g − 2 conditions. This is exactly

enough information to fix the holomorphic ambiguity.

We have also checked the genus one formula

F (1) = −1

2
log

(

da

du

)

− 1

12
log(∆) (3.16)

agrees with Nekrasov’s instanton counting formulae for Nf = 2, 3 cases for generic masses

when we expand it at u = ∞.

4 SU(2) Seiberg-Witten theory at superconformal points

One of the most interesting aspect of the Seiberg-Witten solution of N = 2 gauge theories

is that it allows to study regions in the parameter spaces where previously unknown types
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of four dimensional interacting field theories have been discovered. Of particular interest

are the points where several dyons become massless, which have electric as well as magnetic

charges. It is well known that no effective action with only local interactions can be written

down in that case and one says the massless dyons are mutually non-local. Geometrically

the situation is characterized by the fact that pairs of cycles which mutually non-vanishing

intersection numbers vanish. It also implies that the divisors, where mutually non-local

dyons vanish, intersect in the moduli space.

In the previous section 2 we studied the case where the bare masses of hypermultiplets

are zero. In this case the extra massless particles at the colliding singularities are mutually

local. In [22], some special cases of hypermultiplet masses are studied where two mutually

non-local singular points in the u plane collide. In the case there is a non-trivial interacting

superconformal field theory at the colliding singularity in the u plane. Besides the known

Nf = 4 superconformal field theory, three new N = 2 superconformal field theories were

found [22] from SU(2) Seiberg-Witten theory with Nf = 1, 2, 3 flavors, and are denoted as

(Nf , 1) superconformal field theory respectively .

A technically interesting aspect is that the equation (2.7), which is for general masses,

compare (3.5), not easily solvable for u(τ), becomes simple and solvable at the confor-

mal points, which allows below to find explicit formulas for the amplitudes in terms of

modular forms.

4.1 Nf = 1, m1 = 3Λ1
4

We follow our previous notation Λ1 = 2
2
3 . In the special case of the mass of the flavor m1 =

3Λ1
4 , there is a non-trivial (1, 1) superconformal field theory at u = 3

2
2
3

where two mutually

non-local massless dyons collide, and there is another dyon singularity at u = − 15

4·2
2
3
. The

(1, 1) superconformal field theory at u = 3

2
2
3

is equivalent to the Argyres-Douglas point

originally found in pure SU(3) Seiberg-Witten theory in [44]. The discriminant is

∆ ∼
(

u − 3

2
2
3

)2(

u +
15

4 · 2 2
3

)

. (4.1)

Eq. (2.7) simplifies to

4(ũ + 1)3(ũ − 1)

4ũ + 5
=

E3
4

E2
6 − E3

4

, (4.2)

where ũ = 2
2
3 u
3 . The equation for u has 4 solutions and 3 of them have the correct

asymptotic behavior u → ∞ in the weak coupling limit τ → i∞. These 3 solutions are

related by a Z3 transformation and we just need to consider one solution

u =
3

2
5
3

(

−1 +
√

x +

√

3 − x +
2E2

6

(E2
6 − E3

4)
√

x

)

(4.3)

with x = 1 +
E2

4

(E2
6−E3

4)
2
3
− E4

(E2
6−E3

4)
1
3
.
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The formula (3.6) becomes

da

du
=

(

2
2
3 (ũ + 1)

6(2ũ2 + 2ũ − 1)

E6

E4

)
1
2

(4.4)

and the genus one amplitude becomes

F (1) = −1

2
log

(

da

du

)

− 1

12
log(∆)

= − 1

12
log

(

(4ũ + 5)(ũ + 1)3(ũ − 1)2

(2ũ2 + 2ũ − 1)3
E3

6

E3
4

)

, (4.5)

which can be written entirely in terms of τ using (4.3).

We study the gravitational couplings of the theory at the superconformal point u = 3

2
2
3

in more details. The Picard-Fuchs equation has a constant solution around this point and

two power series solutions. The two power series serve as the flat coordinate a and the

derivative of prepotential ∂F (0)

∂a
around this point. Denoting z = u − u1 → 0, we find the

solutions are

a = z
5
6

(

1 − 10

891
2

2
3 z +

128

111537
2

1
3 z2 − 6272

36669429
z3 + O(z4)

)

,

∂F (0)

∂a
= z

7
6

(

1 − 28

1053
2

2
3 z +

400

124659
2

1
3 z2 − 4096

7971615
z3 + O(z4)

)

. (4.6)

The scaling behavior of the period of the Picard-Fuchs equation as a ∼ z
5
6 agrees with the

analysis presented in [22]. We can invert the series and solve the prepotential in terms of

the flat coordinate

F (0) = a
12
5 − 28

3861
2

2
3 a

18
5 +

63872

142457535
2

1
3 a

18
5 − 11006912

256086163575
a6 + O(a

36
5 ) . (4.7)

Here we have not fixed the normalization of prepotential and the flat coordinate a. As usual

the prepotential is determined up to a quadratic polynomial of a due to the ambiguity in

choosing the basis of the solutions of the Picard-Fuchs equation.

For the genus one free energy, we find

F (1) = − 1

10
log(a) − 1

891
2

2
3 a

6
5 +

5732

22493295
2

1
3 a

12
5 + O(a

18
5 ) . (4.8)

For genus two free energy, we can use the result we derive for generic mass parameter

m1, and specialize to the superconformal point. Using formulae (3.12) we can derive the

expression for the Eisenstein series

E4(τ) = 12g2

(

da

du

)4

, E6(τ) = −216g3

(

da

du

)6

,

X(τ) =
E2(τ)E4(τ)

E6(τ)
=

2E4(τ)E6(τ) − 3E4(τ)3
(

dE4(τ)
dτ

)

/
(

dE6(τ)
dτ

)

2E4(τ)E6(τ) − 3E6(τ)2
(

dE4(τ)
dτ

)

/
(

dE6(τ)
dτ

) . (4.9)
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We find that the leading singularity at genus two is F (2) = O(1
z
), even though for a generic

holomorphic ambiguity f (2) one has a leading singular behavior of f (2) = O( 1
z4 ). The

expansion in flat coordinate is

F (2) =
133

38880a
6
5

+
19

360855 · 2 1
3

− 79793

1656324450

a
6
5

2
2
3

+
4310932

332775068175
a

12
5 +O(a

18
5 ) . (4.10)

This kind of singularity behavior is very similar to the situation at the orbifold singularity

in compact Calabi-Yau spaces encountered in [37], where the F (g) turns out to be less

singular than naively expected. Here the massless particles scale as the period a ∼ z
5
6

in the limit z → 0 and we know F (g) should be no more singular than a2−2g from the

usual Gopakumar-Vafa argument of integrating out charged particles in the graviphoton

background. This explains the leading singularity in the expression of F (2) above.

4.2 Nf = 2, m1 = m2 = ±Λ2
2

We follow our previous notation Λ2 = 2. There is a (2, 1) superconformal field theory at

u = 3
2 where a double singularity collides with a mutually non-local dyon singularity, and

there is another dyon singularity at u = −5
2 . The discriminant is

∆ ∼
(

u − 3

2

)3(

u +
5

2

)

. (4.11)

We solve a cubic equation for u, and there are 2 solutions with the correct asymptotic

behavior in weak coupling limit. As before they are related by a Z2 symmetry. We consider

one solution

u = −3

2
+

3e−
π
6
iE4(E6 + i(E3

4 − E2
6)

1
2 )

1
3

2(E3
4 − E2

6)
1
2

+
3e

π
6
iE4(E6 − i(E3

4 − E2
6)

1
2 )

1
3

2(E3
4 − E2

6)
1
2

. (4.12)

From (3.6) one gets

da

du
=

1

2

(

(2u + 3)

(2u − 3)(u + 3)

E6(τ)

E4(τ)

)
1
2

, (4.13)

which allows to write the genus one amplitude as

F (1) = −1

2
log

(

da

du

)

− 1

12
log(∆)

= − 1

12
log

(

(2u + 3)3(2u + 5)

(u + 3)3
E3

6

E3
4

)

. (4.14)

One can use the expression of u in equation (4.12) to obtain a formula for genus one

amplitude F (1) purely in terms of gauge coupling τ .

There are two other identical (2, 1) superconformal field theories at m1 = −m2 = ±iΛ2
2 .

These are the same theories as the ones at m1 = m2 = ±Λ2
2 , to which they are related by

the transformation u → −u.
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As in the Nf = 1 case, we can solve the flat coordinate a and express the prepotential

F (0) and genus one free energy F (1) in terms of it. The best way to solve the flat coordinate

is to use the Picard-Fuchs equation, since at the superconformal point it is not convenient

to do perturbative expansion the Eisenstein series. The Picard-Fuchs equation for the

massive Nf = 2, 3 Seiberg-Witten theory were found in [40]. We specialize to the case

of mass m1 = m2 = ±Λ2
2 . Denote z = u − 3

2 we find the solutions of the Picard-Fuchs

equation around z = 0

a = z
3
4

(

1 − 3

224
z +

25

22528
z2 − 9

65536
z3 + O(z4)

)

,

∂F (0)

∂a
= z

5
4

(

1 − 5

96
z +

147

26624
z2 − 847

1114112
z3 + O(z4)

)

. (4.15)

The genus zero and one free energy up to a constant are

F (0) = a
8
3 − 5

252
a4 +

3197

2690688
a

16
3 − 6883

65680384
a

20
3 + O(a8)

F (1) = −1

6
log(a) − 5

672
a

4
3 +

1409

1655808
a

8
3 − 11873

92725248
a4 + O(a

16
3 ) . (4.16)

4.3 Nf = 3, m1 = m2 = m3 = Λ3
8

We follow our previous notation Λ3 = 4. In this case there is a (3, 1) superconformal field

theory at u = 1
2 where a triple singularity collides with a dyon singularity, and there is also

a dyon point at u = −19
16 . The discriminant is

∆ ∼
(

u − 1

2

)4(

u +
19

16

)

. (4.17)

One can solve an algebraic equation and obtain an expression of u in terms of gauge

coupling τ . Here we will use the normalization τ = i
2π

∂2F (0)

∂a2 , which is one half of the

T-dual of the gauge coupling we use in Nf = 3 massless case previously in section 2. There

are two branches of solutions [42], and we take the branch where in the weak coupling limit

τ → i∞, the modulus goes like u → ∞. The expression for u is [42]

u =
27E6E

3
2
4 + 23E3

4 + 4E2
6

8(E2
6 − E3

4)
(4.18)

and there are also formulae for the derivative of period a

da

du
=

(

2

27

) 1
2





E6 − E
3
2
4

E4





1
2

da

dτ
= −

(

27

128

) 1
2 E6 + E

3
2
4

(E6 − E
3
2
4 )

1
2

.

We have not found an explicit formula for period a(τ). However, to write an exact formula

for the topological string amplitude of the F (g) in terms of modular forms, we only need
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the derivative of period a. The genus one amplitude is

F (1) = −1

2
log

(

da

du

)

− 1

12
log(∆)

= − 1

12
log











E3
4

(

E6 + E
3
2
4

)

(

E6 − E
3
2
4

)2











(4.19)

where as usual we are not careful about an ambiguous additive constant in F (1).

As in the Nf = 1, 2 case, we can solve the flat coordinate a and express the prepotential

F (0) and genus one free energy F (1) in terms of it. Denote z = u− 1
2 , we found the solutions

of Picard-Fuchs equation around z = 0 as the followings

a = z
2
3

(

1 − 8

405
z +

49

13122
z2 − 18928

17537553
z3 + O(z4)

)

,

∂F (0)

∂a
= z

4
3

(

1 − 80

567
z +

242

6561
z2 − 254320

20726199
z3 + O(z4)

)

. (4.20)

The genus zero and one free energy up to a constant are

F (0) = a3 − 64

945
a

9
2 +

401

36450
a6 − 885232

351833625
a

15
2 + O(a9)

F (1) = −1

4
log(a) − 4

135
a

3
2 +

3403

437400
a3 − 225869

81192375
a

9
2 + O(a6) . (4.21)

5 The non-compact limit of Calabi-Yau compactifications

A good way to solve the holomorphic anomaly equations for a Riemann surface of genus

one describing an N = 2 gauge theory is in terms of rings of anholomorphic modular forms,

as we have seen in sections 2 and 3.

However even without knowing anything about the structure of the modular forms

w.r.t. the modular group of the family of curves, one can derive the necessary almost holo-

morphic objects directly in terms of the periods, which are solutions of the Picard-Fuchs

equations. This has been done for compact Calabi-Yau spaces using special Kähler ge-

ometry [21] and the anholomorphic objects are the BCOV propagators. The derivatives

that appear in the holomorphic anomaly equation close within a finitely generated poly-

nomial ring of almost holomorphic modular functions and the F (g) are themselves such

polynomials [25].

As explained in [6, 9] extracting 4d N = 2 non-perturbative gauge theory from type II

string theory compactified on a Calabi-Yau space W can be done geometrically by taking

a limit in the geometrical parameter of the Calabi-Yau space in which part of the geometry

decompactifies. Since we are dealing with the vector moduli space the limit is taken in

the A-model in the complexified Kähler space and in the B-model on the mirror manifold

the limit is taken in the complex structure space. For Calabi-Yau manifolds W embedded

in toric ambient spaces a wide class of limiting configurations in the B-model has been
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described as the 3-d total space of a conic bundle over C
∗ × C

∗ branched at a Riemann

surface C∗
g ∈ C

∗×C
∗ [6]. For the relevant geometries the compactification of C∗

g is then the

Seiberg-Witten curve Cg. A general feature of the limit is that the periods of the (3, 0)-

form Ω over 3-cycles in W , which stay finite become the periods of a meromorphic form

λ over 1-cycles on C∗
g [9]. The form λ on C∗

g can be obtained by integrating Ω over the

non-compact directions in the limiting configuration of W [10].

Below we review in section 5.1 the important properties of the complex moduli space of

complex Calabi-Yau manifolds following [26] and compare then the ring structure used to

solve the holomorphic anomaly equation in the big phase space [26] with the one developed

for the small phase space [25, 28, 29].

Further we describe in the sections 5.2, 5.3 how the ring structure behaves in the non-

compact limit extending the formalism of [19, 46] from local toric Calabi-Yau manifolds to

non-conformal local gauge theory limits with matter fields. .

5.1 Special geometry and rigid special geometry

The origin of the anholomorphicity comes from the metric on the moduli space of the N = 2

vector multiplets, which determines their kinetic term in the effective action. The latter is

an N = 2 supergravity action for the compact case and an N = 2 super symmetric (gauge

theory) action without gravity in the non-compact case. The vector multiplet moduli

spaces are identified with the complex structure moduli space M of the Calabi-Yau W

and the Riemann-surface C∗
g respectively. The metrics are the Weil-Petersen metrics on

these geometric moduli spaces. In both cases they derive from a real Kähler potential K

as Gi̄ = ∂i∂̄̄K, but there is additional structure. For the Calabi-Yau case this is usually

formulated as special Kähler geometry in the small phase space, i.e. in the inhomogeneous

coordinates discussed below, and for the Riemann-surface the structure is always rigid

special geometry. However in the homogeneous coordinates, also called the big moduli

space, the N = 2 supergravity action for the compact case can also be formulated in terms

of rigid special geometry, which simplifies the limit to the local case.

The splitting of the middle de Rham cohomology of the compact Calabi-Yau W

H3(W, Z) = H3,0 ⊕ H2,1 ⊕ H1,2 ⊕ H0,3

Ω χi χ̄ı̄ Ω̄, i, ı̄ = 1, . . . , h21 (5.1)

into Hodge cohomology groups depends on the choice of complex structure. In particular

we indicated the basis Ω, χi, χ̄ı̄, Ω̄, i, ı̄ = 1, . . . , h21 of the individual Hodge cohomology

groups that changes with the complex structure. One introduces a fixed topological and

symplectic basis (AK , BK) of H3(W, Z) and a dual symplectic basis (αK , βK) of H3(W, Z).

Here K = 0, . . . , h21 and the non vanishing pairings are AL ∩ BK =
∫

W
αK ∧ βL :=

〈αK , βL〉 = −〈βL, αK〉 =
∫

AL αK =
∫

BK
βL = δL

K . If one expand Ω = XIαI − FIβ
I and

χi = χI
i αI − χIiβ

I in terms of periods

XI =

∫

AI

Ω, Fi =

∫

BI

Ω, χI
i =

∫

AI

χi, χIi =

∫

BI

χi , (5.2)

the XI become homogeneous coordinates of the moduli space of complex structures. The

dual periods FI =
∫

BI
Ω and the χI

i , χIi are not independent but related to XI by special
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geometry. It is convenient to define Y I := λ−1XI , I = 0, . . . , h21 and ∂I = ∂YI
. It is easy

to see that ∂I1, . . . , ∂Ik
Ω ∈⊕l=0,k H3−l,l. Transversality, i.e. 〈a, b〉 :=

∫

W
a ∧ b = 0 unless

both Hodge indices (p, q) of a and b add up to 3, means that 〈Ω, ∂IΩ〉 = 〈Ω, ∂I∂JΩ〉 = 0 and

that implies the existence of a holomorphic prepotential F (0)(Y ) = 1
2λ2Y IFI . The latter

is a homogeneous function of degree two in Y I , such that FI = ∂F (0)

∂Y I . In the big moduli

space, parameterized by the homogeneous coordinates Y I , one defines a Kähler potential

K =
i

2
(Y K F̄K − Ȳ KFK), GIJ = ∂I∂JK = Im τIJ , (5.3)

a symmetric weight zero tensor τIJ = ∂2F
∂YI∂YJ

and a symmetric weight −1 triple coupling

CIJK = ∂I∂J∂KF = 〈Ω, ∂I∂J∂KΩ〉. The metric GIJ has signature (1, h21). The connection

is ΓK
IJ = GKL̄∂JGIL̄ = − i

2CI
JK and one has the so called special geometry relation

[DĪ ,DJ ]LK = ∂̄ĪΓ
L
JK =

1

4
CJKP C̄PL

Ī
, (5.4)

which can be viewed as integrability condition for the existence of the holomorphic prepo-

tential F , such that CIJK and GIJ̄ can be obtained from it by differentiation. It was shown

in [26] that the holomorphic anomaly equation of [21] reads in the big moduli space

∂̄ĪF
(g) = − i

8
C̄JK

Ī

(

DJ∂KF (g−1) +

g−1
∑

h=1

∂JF (h)∂KF (g−h)

)

. (5.5)

Since D̄ĪC̄J̄K̄L̄ = D̄J̄ C̄ĪJ̄ J̄ and D̄K̄GIL̄ = 0 one can integrate

∂K̄SIJ =
i

4
C̄IJ

K̄
(5.6)

The SIJ are anholomorphic tensors, called the propagators,13 they play a similar rôle that

Ê2 plays for the elliptic curve. From (5.4) one can solve

SKL = i(C−1
I )KP (ΓI)

L
P + HKL . (5.7)

Here I is not summed over and HKL is a holomorphic ambiguity. The latter must be chosen

so that SKL is a tensor. The precise choice affects the form of the total ambiguity f (g), but

is otherwise arbitrary. One convenient choice is to require that ∂IF
(1) = − i

8CIKLSKL.

The idea of direct integration is based on the fact that all anholomorphic dependence of

the modular invariant scalar F (g) is in the SIJ . Therefore by (5.6) ∂̄ĪF
(g) = i

4C̄JK
Ī

∂F
∂SJK and

C̄JK
Ī

cancels from equation (5.5), which can then be directly integrated w.r.t. to SJK up to

holomorphic terms f (g), which must also be modular invariant. To proceed in the iteration

in g one must show that the anholomorphic generators SIJ close under the covariant

derivative up to holomorphic terms. By considering ∂̄ĪDIS
JK , using (5.4) and integrating

w.r.t Ȳ Ī one gets

DIS
JK = CIMNSNKSMJ + HJK

I . (5.8)

13Indeed the F (g) can be reconstructed with the propagators and vertices ∂I1 , . . . , ∂InF (h<g) by Feynman

rules of an auxiliary field theory [21] for the small phase space. For the formalism in the big phase space

see [26].
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Let us now come to special geometry in the small phase space, whose coordinates are

the inhomogeneous variables ti = Xi

X0 , i = 1, . . . , h21. The Kähler potential K in the small

phase space is given by14

e−K = i

∫

W

Ω∧ Ω̄ = i(XI F̄Ī − X̄ ĪFI) = i(ti − t̄ı̄)(∂iF (0) + ∂̄ı̄F (0)
)− 2i(F (0) −F (0)

) . (5.9)

Here we define (X0)2F (0)(t) = F (0)(X) using the degree 2 homogeneity of F (0) and the

third equality holds up to a Kähler transformation.

The connection ΓI
JK splits into a metric connection, w.r.t. Gi̄ = ∂i∂̄K, and a Kähler

connection. The covariant derivative becomes Di = ∂j −Γi−kKi for objects in Lk⊗T ∗M,

with an analogous definition for Dı̄. Holomorphic sections A(t) of Lk transform like A(t) →
A(t)e−kh(t) under Kähler transformations K(t, t̄) → K(t, t̄) + h(t) + h̄(̄t). In particular the

holomorphic (3, 0) form Ω ∈ L and F (g) ∈ L2−2g. The covariant derivative eliminates the

(3, 0) part in the derivative of Ω and hence χi = DiΩ (χ̄ı̄ = Dı̄Ω̄). Applying this under

the integral yields χI
i = DiX

I and χIi = DiFI , which serve as projectors from the big

to the small phase space. In particular the triple coupling in inhomogeneous variables

Cijk ∈ L2 ⊗ Sym3T ∗M are

Cijk = 〈Ω, ∂i∂j∂kΩ〉 =

h21
∑

I=0

(XI∂i∂j∂kFI − FI∂i∂j∂kX
I) = χI

i χ
J
j χK

k CIJK . (5.10)

It follows that Cijk = DiDjDkF (0)(t). Using 〈χi, χ̄ı̄〉 = e−KGīı from (5.9) and transversal-

ity one gets with the definition (5.10)

DiX
I =: χI

i , Diχ
I
j = iCijkG

kk̄χ̄I
̄ e

K , Diχ̄
I
ı̄ = GīıX̄

I . (5.11)

With [Di, D̄ı̄]χk = −Gīıχk + R l
īık χl one arrives at the special Kähler relation in inhomo-

geneous coordinates

[Di,Dı̄]
k
j = R k

īıj = ∂̄ı̄Γ
k
ij = δk

i Gjı̄ + δk
j Gīı − CijlC

kl
ı̄ . (5.12)

The projection of the SIJ is straightforward

SIJ = (XI χI
i )

(

S −Si

−Si Sij

)(

XJ

χJ
j

)

. (5.13)

Here the relations D̄ı̄C̄̄k̄l̄ = D̄̄C̄ı̄k̄l̄ are integrated to C̄jk
ı̄ = ∂̄ı̄S

jk, Gı̄kS
kj = ∂̄ı̄S

j and

Gı̄jS
j = 1

2 ∂̄ı̄S. The potentials Sij, Sj , S, also called the propagators, allow to solve the

anomaly equation, by partial integration, see for details [21], up to an holomorphic ambi-

guity. One can project the propagators from the big phase space or rederive them from

the projected special Kähler relation (5.12). e.g. Sij is solved from (5.12)

Γk
ij = δk

i ∂jK + δk
j ∂iK − CijlS

kl + h̃k
ij . (5.14)

14We follow the conventions of [26].
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The analogs of the statement about the closing of the propagators (5.8) under Di are [25, 28]

DiS
kl = δk

i Sl + δl
iS

k − CinmSkmSln + hkl
i ,

DiS
j = 2δj

i − CiklS
kl + hjk

i Kk + hj
i ,

DiS = CiklS
kSl + 1

2hkl
i KkKl + hl

iKl + hi ,

DiKj = −KiKj − CijkS
k + CijkS

klKl + hij

(5.15)

and are derived from special geometry similarly as (5.8). e.g. from ∂̄k̄(DiS
kl) = ∂̄k̄(δ

k
i Sl +

δl
iS

k − CinmSkmSln) follows the first of the closing relations (5.15), etc.

One finds from the properties under Kähler transformations [21, 25, 28] that S̃ij =

Sij , S̃j = Si − SijKj and S̃ = S − SiKi + 1
2SijKiKi are a complete set of anholomorphic

generators of a polynomial ring that contains the F (g) as polynomials with holomorphic

coefficients. Indeed one can write the holomorphic anomaly equation as

∂F (g)

∂Sij
=

1

2

(

DiDjF (g−1) +

g−1
∑

h=1

DiF (g−h)DjF (h)

)

(5.16)

and integrate it up to holomorphic terms as a polynomial. Note that the derivatives of F (g)

w.r.t. Sj , S and Ki, which naively occur at the left hand side, cancel. This cancellation

is equivalent to the statement that the dependence of F (g) is through the combinations

S̃ij , S̃j and S̃.

5.2 The non-compact limit

Non-compact Calabi-Yau manifolds are mirror to

uv = H(x, y; z), (5.17)

where u, v ∈ Z, x, y ∈ C
∗ and z are moduli of the geometry. The geometry is that of conic

bundle, which branches over the locus

H(x, y; z) = 0, (5.18)

which is a family Riemann surfaces C∗
g of genus g. Let λ = log(x)dy

y
be meromorphic

differential and (ai, bi) a symplectic basis of H1(Σg, Z) then the rigid effective action has a

Kähler potential15

K =
i

2
(tiF̄ı̄ − t̄ı̄Fi) , (5.19)

where ti =
∫

ai λ and Fi =
∫

bi
λ. Note that the form of K is like in (5.3), but the ti are

directly appropriate flat local coordinates. The metric reads

Gi̄ = ∂i∂̄̄K =
1

2i
(τij − τ̄ı̄̄) , (5.20)

where τij = ∂2F
∂ti∂tj

.

15We use here conventions, which differ by a factor i multiplying the prepotential from the ones used

in (2.15) and call the flat coordinates ti,Fi instead of ai, aDi
.
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In the local case one has the following simplifications. The Kähler connection in Di

becomes trivial, and the Sl as well as the S (see [47]) vanish, i.e. the first equation in (5.15)

and the equation (5.8) become equivalent and read

DiS
kl = −CinmSkmSln + fkl

i . (5.21)

The Sij are the generators of the ring of anholomorphic objects Since the Kähler

connection ∂jK in (5.14) drops out, so the Sji are solved from

Γk
ij = −CijlS

kl + f̃k
ij (5.22)

as

Sij = −(Cp)
il
[

(Γp)
j
l + (f̃p)

j
l

]

, ∀ p = 1, . . . , r . (5.23)

Here r is the number of Kähler parameter in the mirror to 5.17. It has been pointed out

e.g. in [19] that there are in general algebraic relations between the Sij . If Cf has genus

g = 1 there will be only one independent Sij , for g = 2 there should be 3 independent Sij .

Again p is not summed over in (5.23) and this over determined system requires a suitable

choice of the ambiguity f̃k
ij. This choice is simplified by the fact [48] that diF1 can be

expressed through the propagator as

∂iF1 =
1

2
CijkS

jk + Ai, (5.24)

with an ambiguity Ai, which can be determined by the ansatz Ai = di(a log ∆ + bj log zj).

Moreover the universal behavior of F1 near the conifold locus [36] implies a = − 1
12 .

The above construction of the an-holomorphic modular objects applies to the non-

compact geometries that relates the Calabi-Yau rings of [21, 25, 26, 28, 29] to the classi-

cal rings of almost holomorphic modular forms of subgroups of SL(2, Z) for SU(2) gauge

groups [7] or SP (2g, Z) for SU(g + 1, Z) gauge theories groups16 [1, 3]. Therefore it is

possible to write the generators of the anholomorphic rings that are needed to solve the

holomorphic anomaly equation for gauge theories in terms of solutions of the Picard-Fuchs

equations. For example for SU(3) in terms of the solutions for the Appel differential sys-

tem [38].

5.3 Monodromy action

The monodromy acts for the compact Calabi-Yau manifold W as a subgroup of

SP (h3(W ), Z) on the CY periods (FI = ∂IF,XI)T , i.e. as

(

F̃I

X̃I

)

=

(

A J
I BIJ

CIJ DI
J

)(

FJ

XJ

)

(5.25)

16Seiberg-Witten curves are by now known for any gauge group. In general they are special families of

complex curves, whose deformation parameters correspond to vev of fields in the Cartan subalgebra of the

group, see [45] for a review. However we expect the holomorphic anomaly and the gap condition discussed

here only in the non-conformal cases.
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with all entries of A J
I , BIJ , CIJ and DI

J integers and

(

AS
K (CT )SK

(BT )SK D K
T

)(

0 −δK
I

δ I
K 0

)(

A P
I BIP

CIP DI
P

)

=

(

0 −δS
P

δ P
S 0

)

. (5.26)

One clear advantage of the big phase space is that the monodromy acts simply on the

tensors in the homogeneous coordinates. e.g. τ transforms as

τ̃IJ = (Aτ + B)IK(Cτ + D)−1 K
J (5.27)

and modular objects of tensor weight −N transform like C̃I1,...,In = (Cτ +

D)−1 K1
I1

, . . . , (Cτ + D)−1 KN

IN
CK1,...,KN

.

The monodromy for the non-compact cases acts on the periods ΠT = (Fi =
∫

bi
λ, ti =

∫

ai λ,mµ =
∫

γµ
λ), where ai, bi is a symplectic basis of H1(Cg, Z) and γµ are cycles encircling

the points where λ has a pole with non-vanishing residua. As mentioned above ΠT can

be obtained as the periods of W which stay finite in the non-compact limit.17 We call

C∗
g = Cg \ {pi}. The monodromy acting on H1(Cg, Z) is a subgroup of SP (2g, Z). The

action on Π is






F̃i

t̃i

mµ






=







a j
i bij liµ

cij di
j liµ

0 0 I













Fj

tj

mµ






(5.28)

and analogous to (5.26) we have from the preservation of the intersection form aT c = cta,

bT d = dT b and aT d−cT b = I, with all entries of a, b, c, d and liµ, liµ integer. If C∗
g is obtained

by a non-compact limit from W the monodromy group of C∗
g generated by 5.28 is a subgroup

of the monodromy group of W . The action on τij is given similarly as in (5.27) by

τ̃ij = (aτ + b)ik(cτ + d)−1 k
j . (5.29)

An important difference is in the properties of the matrix τ . In the global case Im(τIJ)

has signature (1, h21), i.e. one negative eigenvalue. On the other hand as it was mentioned in

section (2.1) it is a key property of the solution of [7, 8, 38] that Im(τij), i = 1, . . . , rank(G),

with τij = i
2π

∂ai∂ajF (0) is positive definite. Mathematically τij defines the Siegel upper half

space associated to Cg. In the non-compact limit the matrix Im(τIJ) is therefore projected

a positive definite submatrix.

The Hodge star operator ∗ on W defines a natural complex structure on H3(W ), which

is +i on H3,0 ⊕H1,2 and −1 on H2,1 ⊕H0,3. This leads to the so called Weil intermediate

Jacobian, which comes with a natural pairing given by the anholomorphic matrix

NIJ = τIJ − 2i
Im(τIK)Im(τJL)X̄LX̄K

Im(τKL)X̄LX̄K
. (5.30)

It is well known in supergravity that this defines the matrix of theta angles and the gauge

couplings as NIJ =: ΘIJ

π
+ 8πi(g−2)IJ and that Im(NIJ) is positive. In the non-compact

17Typically the fundamental period X0 in the large radius limit becomes one of the constant periods mµ

see e.g. the discussion of local O(−3) → P
2 in the large fiber limit of the elliptic fibration over P

2 realized

as X18(1, 1, 1, 6, 9), see [19].

– 32 –



J
H
E
P
0
7
(
2
0
1
0
)
0
8
3

limit certain a submatrix of the anholomorphic NIJ becomes the holomorphic τij of the rigid

gauge theory. The Griffith complex structure on H3(W ) is defined by +i on H3,0 ⊕ H2,1

and −1 on H1,2 ⊕ H0,3 and the paring is given by τIJ , which as mentioned above has

one negative eigenvalue. We note that τIJ and NIJ transform in the same way under

SP (h3(W ), R) transformations.

6 Matrix model approach

The study of the gravitational couplings of SU(2) Seiberg-Witten theory has been a fruitful

setting to explore various approaches for solving topological expansions. As reviewed in

the introduction one can obtain the gravitational coupling F (g) by geometric engineering

from toric Calabi-Yau 3-folds and by Nekrasov’s instanton counting calculations. Both

approaches, the former via the vertex formalism, lead to sums over partitions, which are

valid in one region in the moduli space. In the geometric engineering approach one has in

addition to take a limit. The direct integration of holomorphic anomaly equation [1] studied

in the previous sections yields an analytic description of the higher genus amplitudes, which

is recurse in the genus, but valid throughout the moduli space.

In this section we will turn to another approach, namely the matrix model method. The

matrix model is in principle a framework that encodes exact perturbative information and

possible non-perturbative completions. It was pioneered by Dijkgraaf and Vafa in particular

in [13]. Following these suggestions the authors of [11] computed the gravitational couplings

of N = 2 Seiberg-Witten theory by a limit from the Hermitian matrix model describing the

glueball superpotential of N = 1 gauge theory. However, only the genus one amplitude F (1)

has been obtained in this way, and it is not clear how to compute higher genus amplitudes

in this approach, because F (g) is not gauge invariant for g > 1 [11].

A microscopic matrix model was recently derived in [16] from the partition function [4,

5] using the matrix model descriptions of infinite partitions [15]. Motivated by the recent

works of [20, 49], we will apply the formalism in [20] to the topological expansion of SU(2)

Seiberg-Witten theory. The formalism of [20] has been developed from the study of loop

equations in matrix models. It also proceeds recursively genus by genus. One advantage

of the formalism is that one no longer need to refer to a matrix model in this set up.

The defining date are the spectral curve C and the differential λ, which yields the filling

fraction and the open one point function. The Seiberg-Witten curve has been shown to be

the spectral curve of the microscopic matrix model considered in [16]. It also follows from

a double scaling limit of the spectral curve of Gross-Witten matrix model considered by

Dijkgraaf and Vafa in [13].

One obvious advantage of the matrix model approach is that it gives also the open

amplitudes. Given the local mirror curve C∗ and the meromorphic differential λ for topo-

logical string theory on local Calabi-Yau manifolds the matrix model predictions for the

open amplitudes have been checked against the topological vertex results [18, 23]. The

interpretation of these amplitudes in the gauge theory context is less clear.
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6.1 Review of the formalism

Here we review the formalism developed by Eynard and Orantin for integrating the loop

equation. For more details and references see [20].

The algorithm is particularly elegant for elliptic curves in Weierstrass form. We will

therefore focus on Seiberg-Witten curves in the Weierstrass form

y2 = 4x3 − g2(u)x − g3(u) . (6.1)

Here is u is the Coulomb modulus of the Seiberg-Witten theory. For the massless Nf = 2

theory we find by transforming (2.2) into Weierstrassform

g2(u) =
4

3
(u2 + 3), g3(u) =

8u

27
(u2 − 9) , (6.2)

where the three roots of (6.1) are x = 2u
3 , 1 − u

3 ,−1 − u
3 respectively. We note that is also

the Weierstrass form for the Seiberg-Witten curve for pure SU(2) gauge theory as quoted

in [7], while if we transform the Nf = 0 case [30] in (2.2) into Weierstrass form we obtain

g2(ũ) = −1 +
4ũ2

3
, g3(u) =

1

27
(9ũ − 8ũ3) . (6.3)

The two curves specified by (6.1) with (6.2) or (6.3) respectively are known to be isogeneous.

That means in particular that the Picard-Fuchs equation are the same, but a careful

analysis of the integral basis of H1(C1, Z) reveals the b periods differ by a factor of two.

The relation between ũ and u from the comparison of the J-function (2.7) is u = ũ√
ũ2−1

,

i.e. it exchanges the asymptotic free region and the monopole region [38]. At genus zero

it is difficult to distinguish the curves. Since the Picard-Fuchs equations are the same the

holomorphic prepotential can be derived from any of them. However at genus one there

is an important difference. We know that for Nf = 0 the conifold factor is ∆ ∼ (u2 − 1),

while for the massless Nf = 2 case it is ∆ ∼ (u2−1)2, see (2.49) and (3.15). By calculating

∆ from (2.8), we see that (6.1), (6.2) is the NF = 2 curve. Now an important simplification

for the application of the [20] formalism arises if the meromorphic differential λ is simple

rational function of the Weierstrass P-function for the curve written in the Weierstrass

form. It turns out that for the Weierstrass curve of Nf = 2 the form of the differential

λ =
√

2
2π

y dx
x2−1

used in [7] for the cubic curve quoted there as Nf = 0 curve has this property,

see (6.17). On the other hand if we transform the meromorphic (2.3) for Nf = 0 to the

Weierstrass representation we cannot express it as a rational function of the Weierstrass

P-function. As we mention above for genus zero prepotential it is not relevant to match

precisely the correct pair of curve and differential, but for higher genus it is crucial. Below

we stick to the technically simplest case namely the Nf = 2 case.

Given a curve Cg the associated Bergmann kernel is defined as the unique bilinear

meromorphic form with a single pole of degree 2, whose integral over the A-cycles vanish,

see [20] for details. For the family of genus one curves (6.1), the associated Bergmann

kernel B(p, q) is simply the Weierstrass P-function plus a constant X

B(p, q) = (℘(p − q) + X)dpdq . (6.4)
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The Weierstrass P function is a double periodic, even function on C

℘(p + 2a1) = ℘(p), ℘(p + 2a2) = ℘(p), ℘(−p) = ℘(p) , (6.5)

which has a double pole around the origin and the series expansion

℘(p) =
1

p2
+

g2

20
p2 +

g3

28
p4 + O(p6) . (6.6)

In particular the P-function is well defined on the two torus C1 = C/Λ, where Λ is the

lattice spanned by the periods (2a1, 2a2). The complex structure of C1 is τ = a2
a1

and

(a1, a2) are half periods.

The constant X can be fixed by the A-cycle integral
∫ 2a1

0
B(p, q) = (−2ζ(a1) + 2a1X)dp , (6.7)

where ζ(p) is the Weierstrass zeta function, and its value at half period is related to the

second Eisenstein series of τ as

ζ(a1)a1 =
π2

12
E2(τ) . (6.8)

Using the relations between Weierstrass invariants and the Eisenstein series

(2a1)
4g2(u) =

4π4

3
E4(τ), (2a1)

6g3(u) =
8π6

27
E6(τ) (6.9)

and the vanishing of (6.7), we determine X in (6.4)

X =
3g3(u)E2(τ)E4(τ)

2g2(u)E6(τ)
. (6.10)

Because of (2.20) the Bergmann Kernel transforms with a shift under modular transfor-

mations. One can define the modular invariant modified Bergmann kernel by replacing E2

in (6.4) with Ê2, as defined in (2.19). This replacement induces an isomorphism between

ring of quasimodular forms and the ring of almost holomorphic modular forms. In the

manipulations below we can work with E2 and replace it at the end of calculations with

Ê2, if we wish to consider truly modular objects.

The Eisenstein series are related to Jacobi theta functions by the well-known formulae

E4(τ) = b2 + bd + d2

E6(τ) =
1

2
(2d3 + 3bd2 − 3b2d − 2b3) , (6.11)

where b, c, d are defined in (2.52). The modulus u and half period a1 can be written in

terms of Jacobi theta function using (6.11) and (6.9) as18

u = 1 +
2d

b
, a2

1 =
π2b

8
(6.12)

18One can solve for u by eliminating a1 in (6.9). There are other solutions besides the solution u = 1+ 2d
b

we use. They correspond to various special points in the Coulomb moduli space as τ → i∞, or are related

the one we use by Z2 symmetry. Without loss of generality we will just use the solution u = 1+ 2d
b

in order

to compare with large u, i.e. weak coupling limit.
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Therefore the constant in (6.10) can be written in terms of modular forms

X =
2E2(τ)

3b
. (6.13)

In the Weierstrass form (6.1) the Seiberg-Witten curve is parameterized by the Weierstrass

function and its derivative via the identification

y = ℘′(p), x = ℘(p) . (6.14)

The branching points of the algebraic curve (6.1) are the points of dx = 0, which are

simply the half periods a1, a2, a3 = a1+a2 in the case of Weierstrass function. The values of

Weierstrass function at half periods are the roots of Weierstrass equation 4x3−g2x−g3 = 0.

The ordering will not be important for us, so without loss of generality we can take

℘(a1) =
2u

3
, ℘(a2) = 1 − u

3
, ℘(a3) = −1 − u

3
. (6.15)

The derivative of Weierstrass function vanishes at the half periods ℘′(a1) = ℘′(a2) =

℘′(a3) = 0. For a point p near each branching point ai, there is an unique image denoted

as p̄ such that ℘(p) = ℘(p̄). Since the Weierstrass function satisfies ℘(2ai − p) = ℘(p), we

can easily determine

p̄ = 2ai − p (6.16)

Higher derivatives of Weierstrass function can be related to Weierstrass function and its

derivative algebraically, for example we have the formula for the second derivative as

℘′′(p) = − g2

2 + 6℘(p)2, etc.

The periods of Seiberg-Witten theory should correspond to the “filling fraction” de-

fined in [20]. In the Nf = 2 massless theory it is the integral of the following meromor-

phic differential

λ(p) =
1

2
√

2

y(p)dx(p)

(x(p) − ℘(a2))(x(p) − ℘(a3))

=
1

2
√

2

℘′(p)2dp

(℘(p) − ℘(a2))(℘(p) − ℘(a3))
(6.17)

over the cycles of algebraic curve, i.e. a = 1
2πi

∫

a
λ(p). Here we have chosen a normalization

for which the derivative of the prepotential is ∂2F (0)

∂a2 = −2πiτ . This will be convenient

later on.

A set of diagrammatic rules are provided in [20] to construct the topological expansion

F (g) associated with the algebraic curve. Below we list the basic components and their

expansions around the branching points ai, i = 1, 2, 3:

1. The vertex ω(p). This can be constructed from the differential one-form in (6.17) as

the following,

ω(p) =
1

2
√

2

(y(p) − y(p̄))dx(p)

(x(p) − ℘(a2))(x(p) − ℘(a3))

=
1√
2

℘′(p)2dp

(℘(p) − ℘(a2))(℘(p) − ℘(a3))
(6.18)
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It is straightforward to compute the series expansion near the branching points. For

the branching point a1, the vertex ω(p) goes like ω(p) ∼ (p − a1)
2, while the other

two points a2 and a3, the vertex goes like ω(p) ∼ O(1).

2. The root Φ(p). This is simply the integral of the differential one-form λ(p) in (6.17)

from any base point on the algebraic curve

Φ(p) =

∫ p

λ(p) . (6.19)

The integration constant will not appear in final answers and will not be important.

It is straightforward to compute the series expansion of λ(p) near the branching points

and perform the integral. At the branching point a1 the root Φ(p) has the leading

behaviour Φ(p) ∼ (p − a1)
3, while at the other two points a2 and a3, it behaves like

Φ(p) ∼ (p − ai).

3. The line-propagator is simply the Bergmann kernel B(q, p). We expand it in the first

variable q around a branching point ai,

B(q, p)

dpdq
= ℘(ai − p) + X + ℘′(ai − p)(q − ai)

+
1

2
℘′′(ai − p)(q − ai)

2 + O((q − ai)
3) . (6.20)

We then expand in the second variable p around another branching point aj . If

ai = aj , there will be poles as p → ai. For ai 6= aj, there will be no pole. In both

cases it is straightforward obtain the series expansions.

4. The arrow-propagator dEq(p) is an integral of the Bergmann kernel and can be ex-

panded around a branching point ai in the following way

dEq(p)

dp
=

1

2

∫ q̄

q

B(ξ, p)

= −(℘(ai − p) + X)(q − ai) −
1

6
℘′′(ai − p)(q − ai)

3

− 1

120
℘(4)(ai − p)(q − ai)

5 + · · · (6.21)

Again, if ai = aj , there will be poles as p → ai, otherwise for ai 6= aj, there will be

no pole. The necessary series expansions are straightforward to obtain.

From these basic components one can construct the correlation functions

W
(g)
k (p1, · · · , pk), and free energy F (g) for all g ≥ 2 in terms of some residue formulae.

For example, The genus one one-point function is

W
(1)
1 (p) = Res

q→a

dEq(p)

ω(q)
B(q, q̄) (6.22)
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and the genus two free energy F (2) is

F (2) = −1

2
Res
p→a

Res
q→a

Res
r→a

Res
s→a

{

Φ(p)dEq(p)

ω(q)

dEr(q)

ω(r)

dEs(q̄)

ω(s)
B(r, r̄)B(s, s̄)

+
Φ(p)dEq(p)

ω(q)

dEr(q)

ω(r)

dEs(r̄)

ω(s)
B(r, q̄)B(s, s̄) +

Φ(p)dEq(p)

ω(q)

dEr(q)

ω(r)

dEs(r)

ω(s)

×[B(r̄, q̄)B(s, s̄) + B(s̄, q̄)B(s, r̄) + B(s, q̄)B(s̄, r̄)]

}

, (6.23)

where the residues are taken around the three branching points a1, a2, a3.

6.2 Calculations of open and close amplitudes

We calculate the genus one one-point function W
(1)
1 (p) and the genus two free energy F (2)

for the Seiberg-Witten curve (6.1). As we mentioned it describes the SU(2) Seiberg-Witten

theory with two massless flavors. The genus one one-point function W
(1)
1 (p) is calculated

from (6.22), we find

W
(1)
1 (p) =

3
∑

i=1

Res
q→ai

dEq(p)

ω(q)
B(q, q̄)

= − dp

48
√

2(u2 − 1)
[4(u − 6X)(℘(p − a1) + X) + 6(u − 1)(℘(p − a2) + X)

+6(u + 1)(℘(p − a3) + X) − ℘′′(p − a1)] . (6.24)

The genus one free energy F (1) is not directly constructed from the diagrammatic rules,

but the derivative of it with respect to the Seiberg-Witten period is the integral of W
(1)
1 (p)

over the B-cycle

∂F (1)

∂a
=

∫ 2a2

0
W

(1)
1 (p) . (6.25)

Using the formulae for Weierstrass zeta function 2a2ζ(a1) − 2a1ζ(a2) = πi and (6.12) we

can compute the integral

∂F (1)

∂a
=

∫ 2a2

0
W

(1)
1 (p) =

i
√

b

6cd
(E2 − b − 2d) . (6.26)

This matches with our earlier calculations for Seiberg-Witten theory with Nf = 2 massless

flavors, using (2.50), (2.51).19

19There is an extra factor of i comparing with (2.50), (2.51). This is because the matrix model should

describe the expansion of F (g) around the conifold point for which the filling fraction is real and goes to

zero, instead of the point u → ∞. The formulae (6.12) we have used are for the point at infinity u → ∞,

and should become u = 1 + 2b
d

, a2
1 = −π2d

8
for the conifold point. The extra factor of i is then cancelled

due to the extra minus sign of a2
1. Since this problem will not appear at higher genus g ≥ 2, we will still

use the convention at u → ∞ for convenience in comparing with instanton counting.
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Now we come to genus two free energy, we compute the various terms in (6.23) and

the total result is

F (2) =
675X3 − 1350uX2 + (990u2 + 1350)X − 16u3 − 1080u

6480(u2 − 1)2
. (6.27)

Substituting in u = 1 + 2d
b

and X = 2E2
3b

, we find the agreement with earlier calcula-

tions (2.54) for Seiberg-Witten theory with Nf = 2 massless flavors using holomorphic

anomaly.

Similarly, we can compute the genus two one-point function

W
(2)
1 (p) =

5

32
√

2(u2 − 1)3

[

X5 +
6u℘(p) + 3 − 7u2

2u − 3℘(p)
X4

+
9(75 + 77u2)℘(p)2 − 12u(75 + 77u2)℘(p) + 2(405 − 660u2 + 559u4)

45(2u − 3℘(p))2
X3

+b2X
2 + b1X + b0

]

(6.28)

where b0, b1, b2 are some very complicated functions of the Weierstrass function ℘(p) and

u.20 Some empirical remarks can be made about a genus g one-point amplitude21 W
(g)
1 (p):

1. W
(g)
1 (p) is a polynomial of X of degree 3g − 1.

2. The coefficients of the polynomial are rational functions of ℘(p) and u. They are

regular at p = 0 (or equivalently ℘(p) = ∞). They are singular at the half periods

p = a1, a2, a3. The degree of poles of ℘(p) − ℘(a1), ℘(p) − ℘(a2), ℘(p) − ℘(a3) are

g+3, 2, 2 respectively. For example, the coefficient b0 in (6.28) as a rational function

℘(p) can be written as

b0 =
A(℘(p))

(℘(p) − ℘(a1))5(℘(p) − ℘(a2))2(℘(p) − ℘(a3))2

∼ A(℘(p))

(3℘(p) − 2u)5(9℘(p)2 + 6u℘(p) + u2 − 9)2
(6.29)

where A(℘(p)) is a polynomial of ℘(p) of degree 9.

The boundary behavior of close string moduli u especially at the conifold point u → 1 is

discussed more details in section 6.4.

6.3 Holomorphic anomaly equation for open amplitudes

We see that we can use the matrix model formalism to compute higher genus topological

amplitude for the massless Nf = 2 Seiberg-Witten theory. But the formalism gets quite

complicated at higher genus, and for the close topological amplitude F (g), the most efficient

20They are too cumbersome to write down here, but are available upon request.
21The first remark follows generally from the Eynard formalism. The second remark applies to the Nf < 4

SU(2) spectral curves and the cubic matrix model.
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way of calculation is still through the use the holomorphic anomaly equation plus bound-

ary conditions at the conifold point. One might wonder whether this method of “direct

integration” can also be applied to the open topological amplitude. In order to explore this

idea, we consider a version of the holomorphic anomaly equation for the open topological

amplitudes proposed in [49] based on the matrix model formalism.

An extended open holomophic anomaly equation has been applied to the calculations

of open amplitudes on the the real quintic Calabi-Yau manifold [50]. This formalism was

recently applied to local O)(−3) → P
2 [51]. It differs from the discussion here, as it

encorporates no open moduli.

The open holomorphic anomaly equation of [49] is

∂K̄W
(g)
k =

1

2
CIJ

K̄

(

DIDJW
(g−1)
k +

∑

h

∑

L⊂K

DIW
(h)
l DJW

(g−h)
k−l

)

, (6.30)

where the I, J,K are close string moduli. For our toy model of Nf = 2 SU(2) Seiberg-

Witten theory, the only anti-holomorphic dependence comes from the function Ê2(τ), which

appears in the variable X we defined in (6.13). The close string moduli in this case can

be parametrized by the period a, and since it is a flat coordinate in the holomorphic limit,

the covariant derivatives in the r.h.s. of (6.30) can be replaced by just ordinary derivatives.

After fixing the normalization correctly, the equation (6.30) becomes for the case at hand

− 16

θ4
2(τ)

∂W
(g)
k

∂X
= ∂2

aW
(g−1)
k +

∑

h

∑

L⊂K

∂aW
(h)
l ∂aW

(g−h)
k−l . (6.31)

Consider the simplest case of the above open holomorphic anomaly equation, namely

the case g = 0 and k = 3. The equation becomes

− 16

θ4
2(τ)

∂W
(0)
3 (p, q, r)

∂X
= 2∂aW

(0)
1 (p)∂aW

(0)
2 (q, r) + 2∂aW

(0)
1 (q)∂aW

(0)
2 (p, r)

+2∂aW
(0)
1 (r)∂aW

(0)
2 (p, q) . (6.32)

To test the equation, we can use the residue formulae to compute directly the genus zero

3-point function

W
(0)
3 (p, q, r) = Res

s→a

dEs(p)

ω(s)
[B(s, q)B(s̄, r) + B(s̄, q)B(s, r)]

= −(℘(p − a1) + X)(℘(q − a1) + X)(℘(r − a1) + X)√
2(u2 − 1)

. (6.33)

On the r.h.s. , the genus zero one-point function is undefined in the matrix model formalism,

and the notation of ∂aW
(0)
1 (p) simply means the contour integral of W

(0)
2 (p, q) = B(p, q)

over the B-cycle. We find

∂aW
(0)
1 (p) =

∫ 2a2

0
B(p, q)dq =

πi

a1
=

2
√

2i

θ2
2(τ)

(6.34)
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We see an immediate problem with (6.32). The l.h.s. has a pole at p → a1, but the

r.h.s. involves the Weierstrass Zeta function from ∂a℘(p − q) and does not have a pole at

p → a1. The discrepancy comes from the fact that in the derivation of the open holomorphic

anomaly equation [49], the contour integral is converted into covariant derivative of the

close string moduli. However, it seems that this procedure is not valid in the presence of

open string moduli, so we have to do the contour integral directly instead of just taking

derivative. Namely,

∂aB(p, q) 6=
∫ 2a2

0
W

(0)
3 (q, r, s)ds (6.35)

So the correct version of the open holomorphic anomaly equation (6.32) should be

− 16

θ4
2(τ)

∂W
(0)
3 (p, q, r)

∂X
= 2∂aW

(0)
1 (p)

∫ 2a2

0
W

(0)
3 (q, r, s)ds + permutation. (6.36)

We check this is indeed satisfied by plugging in the expression for genus zero 3-point

function (6.33). However, this is not much useful for the purpose of computing W
(0)
3 (p, q, r)

as it appears in both r.h.s. and l.h.s. .

We also consider the case g = 1 and k = 1. Using (6.24) we get

− 16

θ4
2(τ)

∂W
(1)
1 (p)

∂X
=

4
√

2

3θ4
2(τ)(u2 − 1)

[−3X + 2u − 3(℘(p − a1) + X)] (6.37)

Again the naive equation

− 16

θ4
2(τ)

∂W
(1)
1 (p)

∂X
= ∂2

aW
(0)
1 (p) + 2∂aW

(0)
1 (p)∂aF

(1) (6.38)

is not correct, as it can be seen that the r.h.s. is independent of the open string modulus

p while the l.h.s. is dependent on p. The correct equation is

− 16

θ4
2(τ)

∂W
(1)
1 (p)

∂X
= −

∫ 2a2

0

∫ 2a2

0
W

(0)
3 (p, q, r)dqdr + 2∂aW

(0)
1 (p)∂aF

(1) (6.39)

where the minus sign in the first term of r.h.s. is just due to the different conventions of

using modular forms around conifold or infinity, and in the second term the derivative

∂aF
(1) is equal to the contour integral of genus one-point function since there is no open

string moduli.

We summarize the findings in a few remarks.

1. The holomorphic anomaly equation (6.30) is oversimplified and the improved version

does not seem to be too useful in computing higher point function W
(g)
k when k ≥ 2,

because W
(g)
k appears in both sides of the equation as exemplified by (6.36).

2. The reason for this subtlety in (6.35) is because we are using a non-standard differ-

ential one-form (6.17) necessary for our calculations in SU(2) Seiberg-Witten theory.

If we used the standard differential one-form λ = ydx as the [20], the open holomor-

phic anomaly equation would be valid, but this would not be the right differential

one-form to compute the gravitational coupling of Seiberg-Witten theory.
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3. For the free energy F (g) and one-point function W
(g)
1 (p), the holomorphic anomaly

equation can be used to determine the amplitudes up to a holomorphic anomaly. Only

lower genus open amplitudes appear in the r.h.s. of the holomorphic anomaly equa-

tion. For example, in order to compute the genus two one-point amplitude W
(2)
1 (p)

this way, we first have to determine lower amplitudes up to F 2, W
(1)
3 (p1, p2, p3).

6.4 Boundary condition for open topological amplitudes

We now turn to another important issue of boundary conditions. We consider the limiting

behavior open topological amplitudes around the conifold point, which is the point where

u → 1, τD = − 1
τ
→ i∞, and

aD = − i

3θ2
4(τD)

(E2(τD) − θ4
3(τD) − θ4

2(τD)) → 0 . (6.40)

We now expand genus one one-point function (6.24) around the conifold point in terms

of the flat coordinate aD. Firstly it is convenient to rewrite the expression in terms of only

℘ = ℘(p), u, and X

W
(1)
1 (p) =

1

2
√

2(u2 − 1)

{

X2 +
3 − 3u2

2u − 3℘
X +

1

36(2u − 3℘)2(9℘2 + 6u℘ + u2 − 9)
×

[405u2 − 1701)℘4 + (216u3 + 648u)℘3 + (594u4 + 1620u2 − 486)℘2

+(384u5 − 4896u3 + 2592u)℘ + 65u6 + 501u4 + 675u2 − 729]

}

. (6.41)

We notice the Weierstrass function ℘(p) is also dependent on the underlying elliptic curve.

However, for generic value of the open string modulus p, the function ℘(p) has a finite

generic value at the conifold point of the close string moduli space. So we can first expand

u and X in the expression (6.41), and treat ℘(p) as an independent parameter. Naively,

we should expect the singular behavior as

W
(1)
1 (p) = O(

1

aD
) . (6.42)

Surprisingly, we find that the leading singular term vanishes, and the conifold expansion

is regular. The series expansion result is

W
(1)
1 (p) =

3℘(p) − 2

8
√

2(3℘(p) + 4)
+

i(9℘(p)2 + 24℘(p) − 8)

8
√

2(3℘(p) + 4)2
aD + O(a2

D) . (6.43)

Thus the regularity of the conifold expansion in this case imposes boundary conditions for

the open holomorphic ambiguity. For the genus one one-point function (6.41), the terms

in the first line are fixed by the open holomorphic anomaly equation (6.39), and the rest

is the ambiguity which can be parametrized by 14 constants in this case. Unfortunately,

for generic holomorphic ambiguity, the coefficient of the singular 1
aD

term in the conifold

expansion of W
(1)
1 (p) turns out to be a rational function of ℘(p) whose numerator is a degree

4 polynomial of ℘(p). So the conifold boundary condition only fixes 5 of the 14 unknown
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constants in the holomorphic ambiguity of W
(1)
1 (p). More ingenuity may be needed to

completely fixes the holomorphic ambiguity.

We also similarly test the conifold expansion of the genus two one-point amplitude

W
(2)
1 (p) in (6.28). The leading singular term with generic holomorphic ambiguity is O( 1

a3
D

),

but we again find that the actual series is not singular

W
(2)
1 (p) =

27(3℘ − 2)

512
√

2(3℘ + 4)2
+

9i(27℘3 + 216℘2 + 288℘ − 224)

1024
√

2(3℘(p) + 4)3
aD + O(a2

D) . (6.44)

7 Future directions

We have solved the topological sector of the N = 2 SU(2) gauge theories with Nf = 0, 1, 2, 3

matter multiplets in the fundamental representation. Near the asymptotic free region in

the vector multiplet space our results agree with the instanton calculation of Nekrasov. At

the conifold points and the conformal points our globally defined expressions predict the

topological sector of these theories in canonical holomorphic coordinates.

Especially the analysis at the conformal points relies on the method proposed in [1]. It

would be challenging and interesting to find a microscopic description especially at these

points, at which the theory does not allow for an action formulation. The structure of

the F (g) is very similar as at orbifold singularities in topological string theory [19, 37, 46],

which suggests that a dual string description is a serious candidate.

We described the construction of the modular objects entirely from the Picard-Fuchs

system in a form that generalizes straightforwardly to N = 2 theories with higher rank

gauge groups and does not require knowledge of modular forms w.r.t. subgroups of

SP (2g, Z). e.g. the solutions for the periods of [38] for SU(3) could be used to study

the topological theory at Argyres-Douglas conformal points in SU(3) theory.

We find additional evidence that the simple boundary conditions namely the gap at the

conifold and regularity of the amplitudes at the conformal points fix the entire ambiguity

of N = 2 topological theories associated to Riemann surfaces. However one should prove

integrability of these type of topological theories in general.

Note that for the massless Nf = 4 case the F (g) can be written as quasi-modular forms

of weight 2g − 2 of PSL(2, Z) [26] similar as the F (g) for the asymptotic free cases here,

but there is no gap structure in the conformal cases. It seems possible but tedious to fix

the ambiguity here by considering mass perturbations and the associate limits to the cases

that are treated in this paper.

In the global case the above mentioned boundary conditions are not sufficient. We hope

that this can be overcome by the study of various limit in multi-moduli compact Calabi-

Yau manifold. For this reason we described the limit of rigid special Kähler geometry in

great detail. Enough field theory limits, which are integrable, could make the global theory

eventually also solvable.

We also compared our calculation with the matrix model, respectively spectral curve

approach of Eynard and Orantin. This yields an alternative way to solve these theories,

which gives additional information about certain open matrix model amplitudes, whose

meaning has not been studied in the context of gauge theory yet.
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In [16] a microscopic matrix model for the Seiberg-Witten theory was derived starting

from the instanton sums in asymptotic free regions. Here we go the opposite way and

derive from the improved recursive formalism of [20] the global higher amplitudes, whose

expansion in the asymptotic region checks with [4]. Given the by now well established

relation of Seiberg-Witten gauge theory with the matrix model makes the gauge theory a

most interesting laboratory to test the physical implications of the non-perturbative ideas

that were recently put forward in the matrix model context [52, 53].
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A Nekrasov’s calculations

In [4] Nekrasov compute the Seiberg-Witten prepotential and its gravitational corrections

by instanton counting. The results are represented by partition of instanton number into

Young tableau. The results for SU(2) theory with one massive hypermultiplet, i.e. Nf = 1,

up to 5-instanton and genus 2 are22

F (0) = 4a2log(a) +
(

c
(0)
2 a2 + c

(0)
1 a + c

(0)
0

)

−1

2
(a + m1)

2log(a + m1) −
1

2
(−a + m1)

2log(−a + m1)

−m1

2a2
+

3a2 − 5m2
1

64a6
+

7a2m1 − 9m3
1

192a10
− 153a4 − 1430a2m2

1 + 1469m4
1

32768a14

−1131a4m1 − 5250a2m3
1 + 4471m5

1

81920a18
(A.1)

F (1) =
1

12
log

(

(2a)2

a2 − m2
1

)

+ c(1) − 3a2 − 4m2
1

128a8
− 27a2m1 − 32m3

1

384a12

+
9(73a4 − 733a2m2

1 + 732m4
1)

32768a16
+

1899a4m1 − 9259a2m3
1 + 7848m5

1

16384a20
(A.2)

F (2) = − 1

480a2
+

1

240(a + m1)2
+

1

240(−a + m1)2

+
9a2 − 11m2

1

1024a10
+

103a2m1 − 117m3
1

1024a14
− 3(5583a4 − 58186a2m2

1 + 57067m4
1)

262144a18

−451719a4m1 − 2273690a2m3
1 + 1919923m5

1

655360a22
(A.3)

Here m1 is the mass of the hypermultiplet and for convenience we have set the N =

2 dynamical scale Λ = 1, which can be easily recovered by dimensional analysis. The

constants c
(g)
i are not important for us. In the above formulae we have also included the

leading perturbative terms. In SU(2) case the leading perturbative term at genus g is [4, 5]

F
(g)
pert = γg(2a) + γg(−2a) −

Nf
∑

i=1

γ(a + mi) −
Nf
∑

i=1

γ(−a + mi) (A.4)

22Our convention has a sign difference from that of [4, 5] at odd genus.
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where

γ0(x) =
1

2
x2log(x) − 3

4
x2

γ1(x) =
1

12
log(x)

γ2(x) = − 1

240

1

x2

· · ·
γg(x) =

(−1)gB2g

2g(2g − 2)

1

x2g−2
, g > 1

We will also consider the much simpler case where the hypermultiplets are massless.

We list the results for Nf = 1, 2, 3 and up to 5-instanton, genus 3. For Nf = 1

F (0) = 3a2log(a) +
(

c
(0)
2 a2 + c

(0)
1 a + c

(0)
0

)

+
3

64a4
− 153

32768a10
+ · · ·

F (1) = c(1) − 3

128a6
+

657

32768a12
+ · · ·

F (2) =
1

160a2
+

9

1024a8
− 16749

262144a14
+ · · ·

F (3) =
5

2688a4
− 3

1024a10
+

96453

524288a16
+ · · · (A.5)

For Nf = 2 we have

F (0) = 2a2log(a) +
(

c
(0)
2 a2 + c

(0)
1 a + c

(0)
0

)

− 1

2
− 1

64a2
− 5

32768a6
+ · · ·

F (1) = −1

6
log(a) + c(1) +

1

64a4
+

23

16384a8
+ · · ·

F (2) =
7

480a2
− 7

1024a6
− 1425

262144a10
+ · · ·

F (3) =
31

8064a4
+

5

2048a8
+

8843

524288a12
+ · · · (A.6)

For Nf = 3 we have

F (0) = a2log(a) +
(

c
(0)
2 a2 + c

(0)
1 a + c

(0)
0

)

− 1

64
− 1

32768a2
+ · · ·

F (1) = −1

3
log(a) + c(1) − 1

128a2
+

3

32768a4
+ · · ·

F (2) =
11

480a2
+

5

1024a4
− 109

262144a6
+ · · ·

F (3) =
47

8064a4
− 1

512a6
+

769

524288a8
+ · · · (A.7)
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