
J
H
E
P
0
7
(
2
0
1
0
)
0
5
4

Published for SISSA by Springer

Received: May 21, 2010

Accepted: June 29, 2010

Published: July 15, 2010

Refined cigar and Ω-deformed conifold

Yu Nakayama

Berkeley Center for Theoretical Physics, University of California,

Berkeley, CA 94720, U.S.A.

E-mail: nakayama@berkeley.edu

Abstract: Antoniadis et al proposed a relation between the Ω-deformation and refined

correlation functions of the topological string theory. We investigate the proposal for the

deformed conifold geometry from a non-compact Gepner model approach. The topolog-

ical string theory on the deformed conifold has a dual description in terms of the c = 1

non-critical string theory at the self-dual radius, and the Ω-deformation yields the radius

deformation. We show that the refined correlation functions computed from the twisted

SL(2,R)/U(1) Kazama-Suzuki coset model at level k = 1 have direct c = 1 non-critical

string theory interpretations. After subtracting the leading singularity to procure the 1PI

effective action, we obtain the agreement with the proposal.

Keywords: 2D Gravity, Bosonic Strings, Topological Strings, String Duality

ArXiv ePrint: 1004.2986

Open Access doi:10.1007/JHEP07(2010)054

mailto:nakayama@berkeley.edu
http://arxiv.org/abs/1004.2986
http://dx.doi.org/10.1007/JHEP07(2010)054


J
H
E
P
0
7
(
2
0
1
0
)
0
5
4

Contents

1 Introduction 1

2 Topological cigar, conifold, c = 1 string triality 2

2.1 Coset construction 2

2.2 Operator mapping 4

2.3 Relation to conifold 5

3 Refined cigar and Ω-deformation 6

4 Discussion 10

1 Introduction

In recent studies of N = 2 supersymmetric gauge theories (i.e. with 8 supercharges), the

Ω-deformation [1–3] has been playing a significant role. While the Ω-deformation enables

us to exactly compute various quantities in gauge theories, many physically interesting

observables (e.g. low energy prepotential) are not affected by the deformation. This has

generated novel approaches to attack the non-perturbative aspects of the N = 2 super-

symmetric gauge theories [4–7].

The Ω-deformation in the four-dimensional Euclidean space has two deformation pa-

rameters i.e. ǫ1 and ǫ2. It has been long know that when ǫ1 = −ǫ2, the Ω-deformation

can be interpreted as higher genus corrections to the topological string partition func-

tion [8, 9] when the geometric engineering gives the N = 2 supersymmetric gauge theory

under consideration [10, 11]. In particular, the topological vertex method [12] has given

a very convenient way to compute the higher genus topological string partition function,

and the result completely agrees with the ǫ1 = −ǫ2 gauge theory computation.

It is then natural to attempt to generalize, or refine, the topological string computation

so that we recover the two-parameter deformations of the N = 2 supersymmetric gauge

theories. A heuristic approach to modify the rules of the topological vertex method (known

as “refined topological vertex”) has been pursued in [13], while the physical derivation is

still lacking. On the other hand, certain higher derivative F-terms in the topological string

theory have been computed in [14], and it is proposed that they correspond to the second

parameter in the Ω-deformation.

An indirect check of the proposal has been done in the simplest non-trivial N = 2 the-

ory based on the deformed conifold through the duality to the heterotic string theory [15].

The partition function of the topological string theory on the deformed conifold is given by

the partition function of the c = 1 non-critical string theory at the self-dual radius [17]. It
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is known that the second parameter in the Ω-deformation of the deformed conifold corre-

sponds to the change of the radius from the c = 1 non-critical string theory viewpoint [6].

The heterotic string one-loop computation has revealed that this is indeed the case. The

aim of this paper is to investigate the correspondence directly in the type II string theory.

For this purpose, in section 2, we first review the triality relations among the topological

string theory on the deformed conifold, the c = 1 non-critical string theory at the self-dual

radius, and the topologically twisted SL(2,R)/U(1) Kazama-Suzuki coset model [16] at

level k = 1 [17–19]. It is the last coset construction that gives us interpretations of the

refined topological amplitudes in terms of the c = 1 non-critical string theory in section 3.

The coset theory is known as a cigar model because the target space shows a geometry of

the cigar [20]. The deformed conifold theory realized as a SL(2,R)/U(1) coset theory is a

non-compact version of the Gepner-model construction of the Calabi-Yau theories. After

subtracting the leading singularity to procure the 1PI effective action, we show that the

refinement in the topological amplitudes can be regarded as a radius change deformation

of the c = 1 non-critical string theory as proposed.

2 Topological cigar, conifold, c = 1 string triality

The relation between the topologically twisted SL(2,R)k/U(1) Kazama-Suzuki coset

model [16] at level k = 1 and the c = 1 non-critical string theory at the self-dual radius was

first advocated in [18]. The original construction was based on the Wakimoto representation

of the SL(2,R) current algebra, but later in more recent years, it was shown [19] that with-

out referring to the specific Wakimoto representation, one can complete the analysis based

on the restricted Hilbert space (i.e. with the so-called improved unitarity bound [21]) by us-

ing the spectral flow, which directly appears in the partition function of the SL(2,R)1/U(1)

coset theory.

2.1 Coset construction

Let us begin with the parent supersymmetric SL(2,R)k current algebra generated by

(Ja, ψa) with the OPE1

Ja(z)Jb(w) ∼ kgab

2(z − w)2
+
fab

c Jc

z − w

Ja(z)ψb(w) ∼ ifab
c ψc

z − w

ψa(z)ψb(w) ∼ gab

z − w
, (2.1)

where gab = diag(1, 1,−1) and f123 = 1. We introduce the bosonic current ja with level

k + 2 as

ja = Ja +
i

2
fa

bcψ
bψc , (2.2)

1In the following, we follow the convention in [19] except that our Liouville field φ will have a flipped

sign compared to theirs.
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which commutes with the free fermions (ψa, ψ̄a).

The SL(2,R)/U(1) Kazama-Suzuki construction gives the N = 2 currents:

T = TSL(2,R) − TU(1)

G± =

√

2

k
ψ±j∓

JR =
2

k
J3 + ψ+ψ− , (2.3)

where TU(1) = − 1
kJ

3J3 + 1
2ψ

3∂ψ3. The central charge of the Kazama-Suzuki coset is

c = 3 + 6
k . In the following, we will set k = 1 so that we obtain c = 9.

To obtain the geometric picture of the coset, it is useful to introduce the gauging of

the U(1) symmetry by introducing an additional gauge field [20]. In the axial gauging, we

add an extra N = 1 multiplet (X,ψX ) and introduce the BRST charge

JBRST = C

(

J3 + i

√

1

2
∂X

)

+ γ′(ψ3 + ψX) , (2.4)

where (B,C) is a (1, 0) ghost with the central charge −2, and (β′, γ′) is a fermionic ghost

to remove ψ3, ψX from the spectrum to obtain two free fermions ψ± on the cigar. The

bosonic gauging currents are

Jg = J3 + i

√

1

2
∂X . (2.5)

For the best comparison to the c = 1 string theory, it is useful to introduce the

Wakimoto representation of the SL(2,R) algebra at level k = 1:

j+ = β j̄+ = −β̄γ̄2 +
√

2γ̄∂̄φ− 3∂̄γ̄

j3 = −βγ +

√

1

2
∂φ j̄3 = β̄γ̄ −

√

1

2
∂̄φ

j− = βγ2 −
√

2γ∂φ+ 3∂γ j̄− = −β̄ . (2.6)

With these variables, the energy momentum tensor is given by

TSL(2,R) = β∂γ − 1

2
(∂φ)2 +

√

1

2
∂2φ− 1

2
ψ+∂ψ− − 1

2
ψ−∂ψ+ . (2.7)

To connect to the c = 1 string theory, we perform the topological A-twist:

Ttop = T +
1

2
∂JR , T̄top = T̄ − 1

2
∂J̄R . (2.8)

In Wakimoto variables they are

Ttop = −∂βγ − 1

2
(∂φ)2 +

√
2∂2φ− 1

2
(∂X)2 − 1

2
ψ+∂ψ− − 1

2
ψ−∂ψ+ +

3

2
∂(ψ+ψ−)

T̄top = −∂̄β̄γ̄ − 1

2
(∂̄φ)2 +

√
2∂̄2φ− 1

2
(∂̄X)2 − 1

2
ψ̄+∂̄ψ̄− − 1

2
ψ̄−∂̄ψ̄+ +

3

2
∂̄(ψ̄+ψ̄−) (2.9)
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up to the BRST trivial terms. The topological BRST charges are given by

Qtop =

∮

G+ =

∮

ψ+j− , Q̄top =

∮

Ḡ− =

∮

ψ̄−j̄+ . (2.10)

Similarly, the twisted supercurrent is given by

G− = ψ−β , Ḡ+ = ψ̄+β̄ . (2.11)

It is shown [18] that after taking the cohomology with respect toQtop, (β, γ) and (B,C)

will be decoupled and we are left with the c = 1 variables. ψ− and ψ̄+ will be identified

with the anti-ghost b and b̄, and ψ+ and ψ̄− will be identified with the ghost c and c̄.

The c = 1 non-critical string theory is described by the world-sheet action (see [22]

for a review):2

1

2π

∫

d2z

(

∂X∂̄X + ∂φ∂̄φ+
1√
2
Rφ+ 2πµe

√
2φ

)

(2.12)

together with the world-sheet reparametrization ghost (b, c). Here R is the world-sheet

scalar curvature. We have used the same notation in the above coset construction to

denote the fields appearing in the non-critical string theory so that the identification is

obvious. We will compactify the X boson at the self-dual radius r =
√

2.

2.2 Operator mapping

The claim is that the BRST cohomology of the A-twisted SL(2,R)/U(1) Kazama-Suzuki

coset at level k = 1 is same as the physical observables of the c = 1 non-critical string

theory at the self-dual radius. We would like to refer [18, 19] for the detailed analysis

of the claim, and let us summarize the operator contents of the c = 1 non-critical string

theory at the self-dual radius. Once we admit that the cohomology agrees, the following

list can be used as representatives of the observables in the A-twisted SL(2,R)/U(1) coset

model written in the Wakimoto representation.3

The ghost number zero states in the c = 1 string theory are known as the ground

ring [23]. They are labelled by two (half-)integers (s, n) and denoted as Os,n, where

s ≥ 0,−s ≤ n ≤ s. Correspondingly, we can construct paired states with ghost number 1:

aOs,n by acting a = cγ.

Other important series of operators are tachyon operators that are given by

Y +
s,−s = ce−i

√
2sX+

√
2(1−s)φ , (2.13)

with s ≥ 0. They correspond to the N = 2 Liouville chiral primary operator and its

generalization (see e.g. [22] for a review on the relation between the SL(2,R)/U(1) Kazama-

Suzuki coset theory and the N = 2 Liouville theory).

2Throughout this paper, we will use the convention α′ = 2.
3In the following, the right-mover is suppressed. When we combine the left-mover and the right-mover,

we have to take care of the fact that φ is non-compact while X is compactified at the self-dual radius.
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We can also construct the discrete states:

Y −
s,n = (Ks−n)cei

√
2sX+

√
2(1+s)φ , (2.14)

and their partners aY −
s,n, where K =

∮

βe−i
√

2X is the SU(2) lowering operator. They

have ghost number 1 and 2 respectively.

The other half of the cohomology is the BPZ dual of all the above operators.

Up to the ghost factor, they are obtained by the reflection of the Liouville factor:√
2(1 + s)φ→

√
2(1 − s)φ.

For later purposes, we observe a simple formula for the U(1) R-charge assignment.

From the gauging relation, the R-charge, the ghost number and the U(1)X momentum are

all related by the linear relation:

QR = Qghost − 2QX . (2.15)

The relation (2.15) is only true for the physical observables that are invariant under the

U(1) gauging.

2.3 Relation to conifold

The topological string theory (B-model) on the deformed conifold is equivalent to the c = 1

non-critical string theory at the self-dual radius [17]. First of all, the ground ring structure

of the c = 1 string theory suggests that the deformed conifold would somehow appear as an

emerging geometry. The direct computation of the higher genus partition function shows

that these two indeed agree with each other.

The topological partition function can be computed as

F = logZ =

∫

dt

t

e−tµ

(2 sin(ǫt/2))2

=
1

2
µ̃2 log µ̃− 1

12
log µ̃+

∑

g=2

B2g

2g(2g − 2)
µ̃2−2g , (2.16)

where µ̃ = µ/ǫ = µ/gs is a renormalized cosmological constant that is identified with the

deformation parameter of the conifold divided the topological string coupling constant.

An alternative way to see the duality is to realize that the SL(2,R)/U(1) coset model

at level k = 1 can be formally realized as a Landau-Ginzburg model with the superpotential

W = µX−1+X2
1 +X2

2 +X2
3 +X2

4 . A simple application of the Calabi-Yau/Landau-Ginzburg

correspondence gives us the defining equation of the deformed conifold

−µx−1 = x2
1 + x2

2 + x2
3 + x2

4 (2.17)

embedded in the weighted projective space WCP4
−2,1,1,1,1. The deformed conifold is ob-

tained by simply setting x = −1.

The operators corresponding to the discrete tachyon Y +
s,±s are related to the deforma-

tion of the asymptotic complex structure moduli of the deformed conifold. The scattering

amplitudes in the both sides are governed by the W∞ algebra. It has a structure of the
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Toda hierarchy and the partition function, which can be computed from the matrix model,

is regarded as a τ -function [24–26].

However, we observe that the corresponding operators in the SL(2,R)/U(1) coset

model possess QR 6= 1, except for the cosmological constant operator ce
√

2φ, so in the

physical string theory, it seems that they do not give us conformal invariant perturba-

tions. A related point is the SU(2) × SU(2) symmetry of the deformed conifold. The

deformed conifold has a geometric SO(4) ≃ SU(2) × SU(2) symmetry, and so does the

c = 1 non-critical string theory at the self-dual radius. The SU(2) × SU(2) symmetry of

the SL(2,R)/U(1) Kazama-Suzuki coset model is not manifest. In fact, the coset theory

itself does not possess such a symmetry, while the topological twisted theory does.

This might clarify the above-mentioned puzzle about the topological string theory

interpretation of the tachyon operators. The tachyon operator with s unit of the X-

momentum has spin s representation under SU(2). One can always perform the SU(2)

rotation so that Y +
s,0 are the “tachyon operators” in the c = 1 non-critical string theory. In

the rotated basis, they do have U(1) R-charge QR = 1 and now they do correspond to the

conformal (non-normalizable) deformations of the untwisted SL(2,R)/U(1) coset theory.

The SU(2) × SU(2) symmetry does not commute with the U(1) R-symmetry, nor

untwisted Virasoro generators of the physical SL(2,R)/U(1) coset theory, but it seems

crucial to realize this symmetry to guarantee the deformed conifold interpretation. It

is almost obvious from the above non-compact Gepner model construction because the

SU(2) × SU(2) symmetry does not act on µX−1 superpotential, so the appearance of the

symmetry after the topological twist is totally miraculous. It would be interesting to see

how this hidden symmetry is realized within the coset field theory beyond the discussions

relied on the Wakimoto representation.

3 Refined cigar and Ω-deformation

In [14], it was shown that a certain class of higher derivative F-terms in N = 2 compactifica-

tion can be computed from the topological string amplitudes. It is schematically denoted as

Tg,n =

∫

d4xFg,n(φ̂I ,
¯̂
φI)(R

−)2(T−)2g−2(F+
I )2n + · · · . (3.1)

Here R− is the anti-self-dual Riemann tensor and T− is the anti-self-dual graviphoton

field strength and F+
I is the self-dual field strength associated with the vector multiplet

whose lowest component is φ̂I .

A direct computation in the type II string theory [14] relates the higher derivative

F-terms with the topological string amplitudes:

Fg,n =

∫

M(g,n)

〈
3g−3+n

∏

k=1

|(µk ·G−)|2
n

∏

k=1

∫

ΨIk

n
∏

l=1

Ψ̂Jl
〉top . (3.2)

Here, ΨI are (anti chiral, chiral) primary operators with the U(1) R-charge (−1, 1) and

dimension (1, 1), which will be integrated over the Riemann surface. The hatted operators

are defined as Ψ̂J =
∮

dzρ(z)
∮

dz̄ρ̃(z̄)ΨJ , where ρ is the unique left-moving operator with
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the charge +3 and dimension 0. Thus, Ψ̂J have U(1) R-charge (+2,−2) and dimension

(0, 0), and they are in the twisted BRST cohomology. They are located at n distinct

punctures on the genus g Riemann surface. µk is the Beltrami-differential associated with

the complex structure moduli space M(g,n) for the n-punctured genus g Riemann surfaces.

The natural measure for the A-twist is given by

|(µk ·G−)|2 = (µk ·G−)(µ̄k · Ḡ+) . (3.3)

When n = 0, the amplitude corresponds to the partition function of the genus g

topological string theory, and it computes the graviphoton corrections to the N = 2 pre-

potential. It is important to observe that the amplitude Fg,n for n ≥ 1 is not holomorphic

because the insertion
∫

ΨIk
is not necessarily annihilated by the topological BRST charge.

To evaluate the refined topological string amplitude (3.2) in the deformed conifold

theory, or equivalently for the SL(2,R)/U(1) Kazama-Suzuki coset at level k = 1, we

would like to use the map reviewed in the previous section. In the Wakimoto representation,

which is intuitively related to the c = 1 variables, the operators appearing in the refined

topological string amplitude are given by

Ψ̂ = Y +
1
2
,− 1

2

Ȳ +
1
2
,− 1

2

= cc̄e−
i
√

2
2

X+
√

2
2

φ

ρ = Y +
1,−1 = ce−i

√
2X

Ψ = ei
√

2
2

X+
√

2
2

φ , (3.4)

where the subscripts I, J are dropped because the deformed conifold allows only one

(normalizable) vector multiplet.

The identification is straightforward. First of all, ρ is supposed to be the unique

U(1) R-charge +3 operator in the coset theory with the ghost number 1. From the

U(1) R-charge assignment, it means that the X-momentum is −1. The reason why the

simplest tachyon vertex (rather than higher Y +
n,−1) is chosen is as follows: otherwise

the operator would have non-zero Liouville momentum, and as a consequence, the

decomposition between the left-mover and the right-mover, which is necessary to define ρ

and ρ̄ separately, would be impossible.

With the similar reason, we have chosen Ψ̂ to be a tachyon operator, which has a direct

interpretation in the deformed conifold geometry. Again the U(1) R-charge assignment

dictates that Ψ̂ has −1/2 unit of X-momentum, and the simplest possibility is the tachyon

field Y +
1
2
,− 1

2

. It is also important to recognize that the choice guarantees that Ψ̂ does

not have an OPE singularity themselves in the computation of the refined topological

string amplitude. Once we have fixed ρ and Ψ̂, the remaining operator Ψ is automatically

determined (up to BRST trivial terms).

Therefore, the refined topological string amplitudes can be rewritten as

Fg,n =

∫

M(g,n)

〈
3g−3+n

∏

k=1

|µk · bβ)|2
n

∏

k=1

∫

ei
√

2
2

X+
√

2
2

φ
n

∏

l=1

cc̄e−
i
√

2
2

X+
√

2
2

φ〉c=1 , (3.5)
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where the correlation function is evaluated by the c = 1 non-critical string theory at the

self-dual radius whose action is given in (2.12). Note that G− is replaced by bβ. The

ghost number conservation as well as X momentum conservation are all satisfied. This is

the first main result of this paper.

Without using the Wakimoto representation, we can keep track of the origin of the

vertex operator in the SL(2,R)/U(1) coset theory. We begin with the chiral primary oper-

ator ΦJ=−1/2,m=1/2 of the SL(2,R)/U(1) coset model that corresponds to the cosmological

constant operator ce
√

2φ in the c = 1 theory, and we act a ∼ cγ = [G−
−1/2]

−1 operation.

Then we perform the inverse of the spectral flow operation U−1, which brings us to Y +
1
2
,− 1

2

that will be identified with Ψ̂. By repeating the same procedure, we obtain Y +
1,−1 which

corresponds to ρ. In summary, we have the correspondence:4

Ψ̂ = U−1aΦJ=−1/2,m=1/2

ρ = U−1aU−1aΦJ=−1/2,m=1/2

Ψ = a−1U . (3.6)

All these operations are intrinsic to the SL(2,R)/U(1) coset theory without referring

to the particular Wakimoto representation. Indeed, the correlation functions of the

c = 1 theory are reproduced from the SL(2,R)/U(1) coset model [33] by using the

Stoyanovsky-Ribault-Teschner relation [27, 28].

The remaining task is to compare the refined topological amplitude (3.5) with the

radius deformation of the c = 1 string theory. We would like to regard (3.5) as deformed

c = 1 string theory amplitudes perturbed by the radius changing operator
∫

d2z∂X∂̄X

added to the c = 1 action at the self-dual radius.

Superficially, we do not see direct equivalence because the refined topological vertex

is perturbed by
∫

ei
√

2
2

X+
√

2
2

φ ∏n
l=1 cc̄e

− i
√

2
2

X+
√

2
2

φ and not by
∫

d2z∂X∂̄X. However, it

is important to realize, as argued in [14], that the refined topological amplitude (3.2)

or (3.5) has a singularity when Ψ approaches Ψ̂, and the leading singularity ∼ 1
|z|2 must be

subtracted to obtain the 1PI effective action, and it is this 1PI effective action that will be

compared with the c = 1 radius deformation.

The leading singularity comes from the OPE of the X boson:

ei
√

2
2

X(z) · e−i
√

2
2

X(w) ∼ 1

|z − w|2 + ∂X∂̄X + · · · (3.7)

where the overall coefficient (that will also depend on |z − w|) is omitted for simplicity.

From the above argument, it is clear that one has to subtract the 1/|z − w|2 term in the

evaluation of the 1PI effective action. This leaves us with the regularized deformation

∫

ei
√

2
2

X+
√

2
2

φ
n

∏

l=1

cc̄e−
i
√

2
2

X+
√

2
2

φ →
∫

cc̄∂X∂̄X + · · · . (3.8)

The exponent of the Liouville factor is determined so that the perturbation is conformally

invariant.

4For Ψ̂ and Ψ, we will repeat the same procedure for the right-mover as well, which is implicit in (3.6).
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The OPE of the Liouville part might require a little bit more attention. Usually,

the OPE in the Liouville theory is defined in the physical Liouville momentum range:

e
√

2(1+ip)φ, where p ∈ R (see e.g. [22] for a review). Here, we are discussing the unphysical

region of the Liouville momentum e
√

2(1−s)φ, so the OPE must be regarded as an “analytic

continuation” of the three-point function defined in the physical range. However, the OPE

in the unphysical range of the Liouville momentum formally makes sense, and indeed

it was even used in the original derivation of the three-point function [30–32]. We note

that the OPE used in (3.8) is precisely when the Liouville momentum is saturated by

the cosmological constant operator insertion in the perturbative Liouville computation as

done in [30, 31].5

Can we say anything about the higher derivative deformations in (3.8)? We know

that the vertex e±i
√

2
2

X+
√

2
2

φ transforms as spin 1
2 representation under the enhanced

SU(2) symmetry at the self-dual radius. As long as the higher derivative terms that could

appear in (3.8) is within the observables of the c = 1 theory, the higher derivative terms

cannot appear because the higher derivative terms are in the higher spin representation

than 1. The only possible term is the radius changing operator that lies in the spin

1 representation. We conclude that the regularized 1PI action can be computed by

perturbing the c = 1 non-critical string amplitude by a radius changing operator.

We note that after subtracting the leading order singularity, the computation of the

refined topological string amplitude is holomorphic in our example (up to a possible holo-

morphic anomaly) because cc̄∂X∂̄X is in the BRST cohomology of the c = 1 string theory

denoted by Y +
(1,0) (and hence in the topologically twisted theory). Similarly, from the

charge assignment, if one subtracts the leading order singularity, the first non-trivial OPE

between ΨI and Ψ̂J should give birth to the operator whose R-charge is (1, 1) and the

twisted conformal dimension (0, 0). Unless it is given by a certain descendent operator, it

has the same charge as the topological chiral primary operator, and the amplitude is likely

to be holomorphic (up to a possible holomorphic anomaly).

Finally, to see the connection to the heterotic string computation [15], we introduce

the generating function for the (regularized) amplitudes

F (ǫ−, ǫ+) =
∞
∑

g=1

∞
∑

n=1

ǫ2g
− ǫ

2n
+ Fg,n . (3.9)

The heterotic partition function

F ∼
∫

dt

t

πǫ1
sin(πǫ1t)

πǫ2
sin(πǫ2t)

e−tµ , (3.10)

where ǫ1 = ǫ+ +ǫ− and ǫ2 = ǫ+−ǫ−, is nothing but the free energy of the c = 1 non-critical

string theory at the radius
√

2|ǫ1/ǫ2| [29]. The change of the radius is induced by a small

unit ǫ+
ǫ−

∼ µǫ+.

5A better approach might be to perform the double Wick rotation ei
√

2sX
→ e

√
2sX = e−i

√
2sT , and

e
√

2(1−s)φ
→ e

√
2(1+is)φ in the scattering amplitude. The c = 1 amplitudes are originally defined in these

variables, and the OPE in the Liouville sector perfectly makes sense in this physical region.
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To reproduce the µ dependence from our computation, we first normalize Ψ and Ψ̂ as

Ψ =
√
µe

i
√

2
2

X+
√

2
2

φ and Ψ̂ =
√
µce−

i
√

2
2

X+
√

2
2

φ. The normalization by the factor
√
µ is cho-

sen so that the insertion does not introduce any power of µ from the Liouville correlation

function because otherwise the relation between the genus expansion and the 1/µ expansion

is lost. Then, on the right hand side of (3.8), we will gain no powers of µ after taking care of

the Liouville OPE. Finally, we note that the |βb|2 in the Beltrami differential is replaced by

µbb̄. The rule β → √
µ in the twisted cigar was first advocated in [18]. After this substitu-

tion, we see that all the factors combine so that our refined topological amplitude correctly

reproduce the radius change by the amount µǫ+ as in the heterotic string computation.

We note that the Ω-deformed partition function (3.10) is closely related to the special

function known as the Barnes double Gamma function Γb(x) (see e.g. [22] for its property

and its usage in the Liouville theory) upon the analytic continuation in ǫ1 and ǫ2 and

subtracting the singularity: F (µ, ǫ1, ǫ2) ∼ log Γb(µ+ b+b−1

2 ), where b = |ǫ1/ǫ2|. The Barnes

double Gamma function has a manifest “T -duality” property b→ b−1, and it is ubiquitous

in the computation of the Liouville correlation functions with the central charge c = 1+6(b+

b−1)2. The double appearance of the double Gamma function for the radius deformation

of the c = 1 non-critical string theory as well as the change of the background charge

in the Liouville field theory manifests the duality philosophy to connect the world-sheet

formulation (radius deformation) and the target space Kodaira-Spencer theory formulation

over the Riemann surfaces (changing of the background charge) advocated in [6].

4 Discussion

In this paper, we have studied the refined topological amplitudes for the deformed conifold

by using the SL(2,R)/U(1) Kazama-Suzuki coset construction. After subtracting the

leading singularity to procure the 1PI effective action, we have showed that the refinement

corresponds to the radius deformation of the c = 1 non-critical string theory at the

self-dual radius as proposed in the literature.

We note that the c = 1 non-critical string theory at the self-dual radius has an enhanced

SU(2) symmetry. The refinement given by the radius deformation transforms as spin 1

representation of the SU(2). More precisely, they form a triplet

Y +
1,1 = −cei

√
2X

Y +
1,0 = c

√
2i∂X

Y +
1,−1 = ce−i

√
2X , (4.1)

and similarly for the right-mover. Therefore, we expect an SU(2) × SU(2) rotated (but

physically equivalent) version of the refinement. It would be interesting to find out its

significance in the topological string theory, or N = 2 gauge theory.

We also note that more complicated non-compact Calabi-Yau space can be generated

by using the non-compact Gepner-model construction with the usage of the SL(2,R)/U(1)

Kazama-Suzuki coset model with k 6= 1. It was conjectured that they are related to the

c < 1 non-critical string theory after twisting as in the deformed conifold case [34–36].

– 10 –



J
H
E
P
0
7
(
2
0
1
0
)
0
5
4

Then, we naturally expect that the refined topological amplitudes might have similar

c < 1 non-critical string theory interpretations.

Finally, the recent developments in non-rational CFTs have enabled us to compute

various quantities directly and exactly within the CFTs. The above mentioned triality is

now understood beyond the cohomology of the observables, but at the correlation function

levels. It would be important to generalize the relation further to take into account the

refinement discussed in this paper.
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