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1 Introduction

In recent years, our understanding of the universe has become greatly improved thanks to

the high precision cosmological observations that we have available today. According to the

Standard Model of Cosmology, which assumes General Relativity as the theory describing

the gravitational interaction, our universe is composed by about 4% of baryons, 23% of

dark matter and 73% of dark energy. Moreover, in addition to these components, we need

to assume an early inflationary epoch in order to explain the current state of our universe.

Although this budget enables us to successfully account for the current cosmological data,

it needs to assume the existence of three unknown components from a particle physics

point of view, namely: dark matter, dark energy and inflaton field. Thus, we find that

predictions based on General Relativity plus the Standard Model of particle physics are

at odds with current astronomical observations, not only on cosmological scales, but also

on galactic scales where dark matter plays a crucial role. This indicates failures either in

particle physics or in general relativity (or both) and, in particular, it might be indicating

the existence of new particles/fields as candidates to dark matter, dark energy and the

inflaton which could arise in high energy physics [1–15].

Spinors have played an important role in mathematics and physics throughout the last

80 years. They theoretically model particles with half integer spin, like the electron in

the massive case or the neutrino (massive or massless). The spin structure of manifolds

has played an important part in modern mathematics, while in mathematical physics this

structure motivated the twistor program.

In the framework of particle physics all spinors used are either Dirac, Weyl (massless

Dirac spinors) or Majorana spinors, ψ. Such spinors obey a field equation which is first

order in the derivatives (momenta) of ψ. Cosmologically, this first order field equation

implies that the average value of both Φ = ψ̄ψ and the spinor energy density of a free

spinor field evolves like the energy density of pressure-less dust i.e. proportional to (1+z)3,

where z is the redshift. Additionally, the first order nature of the field equation results in

a quantum propagator, GF , which, for large momenta p, behaves as GF ∝ p−1. This limits

the form of perturbatively renormalizable spinor self-interaction terms in the action to be

no more than quadratic in ψ e.g. ψ̄ψ and ψ̄γµA
µψ. The momentum drop-off of GF also

results in ψ having a canonical mass dimension of 3/2.

A wider range of renormalizable self-interaction terms and cosmological behavior would

be allowed if one could construct a viable spinor field theory where GF ∝ p−2, for large

p, resulting in a ψ with a canonical mass dimension of unity. We refer to this entire class

of spinor field theories with such properties as Non-Standard Spinors (NSS). This class

of spinors is closely related to Wigner’s non-standard classes [16]. Weinberg showed that,

under the assumptions of Lorentz invariance and locality, the only spin-1/2 quantum field

theory is that which describes standard spinors (Dirac, Weyl, Majorana). NSS will therefore

violate either locality or Lorentz invariance, or possibly both. Our working assumption is

that reasonable NSS models preserve Lorentz invariance, while being non-local.

Along these lines of reasoning, Ahluwalia-Khalilova and Grumiller [17, 18] constructed

a NSS model using momentum space eigen-spinors of the charge conjugation operator
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Eigenspinoren des LadungsKonjugationsOperators (ELKO) to build a quantum field. They

showed that such spinors belong to a non-standard Wigner class, and to exhibit non-

locality [16]. They satisfy (CPT )2 = −I while Dirac spinors satisfy (CPT )2 = I. In more

mathematical terms, they belong to a wider class of spinorial fields, so-called flagpole spinor

fields [19]. The spinors correspond to the class 5, according to Lounesto’s classification

which is based on bilinear covariants, similar to Majarona spinors, see also [20–22]. Locality

issues and Lorentz invariance were further investigated in [23, 24] resulting in results along

the lines of the current work. Causality has been analyzed in [25, 26].

The construction of ELKOs using momentum space eigenspinors, λ(p, h, e), of the

charge conjugation operator leads to a spinor field with a double helicity structure. The

left-handed and the right-handed spinor have opposite helicities which in turn requires a

careful construction of the resulting field theory. These spinors have received quite some

attention recently [27–29] and their effects in cosmology have been investigated [30–42].

However, as we will show in § 3, ELKO spinors, defined in the way described above, are

not Lorentz invariant. We demonstrate using our construction of NSS where this Lorentz

violation appears, thus confirming [23, 24]. The original analyses defined the field structure

entirely in terms of momentum space basis spinors rather than say starting with an action

whose minimization would imply that structure. This led to the violation of Lorentz

invariance being hidden in the mathematical structure of the model. In the present work,

on the other hand, we start with a general action principle for NSS. When applied to

the ELKOs and an alternative model also based eigenspinors of the charge conjugation

operator, the violation of Lorentz invariance and other issues with their construction are

explicit at the level of the action. The original ELKO definition is seen to require a

preferred space-like direction and is ill-defined when the momentum points along that

direction. We offer a new NSS field theory which is also based on the eigenspinors of the

charge conjugation operator (i.e. using the basis λ(p, h, e)) which respects the rotational

group SO(3) but is not invariant under boosts.

We shall see that the general construction of NSS models can be seen as the choice of

some operator P satisfying P2 = I which acts on ψ to project out what states that would

otherwise give an inconsistent Hamiltonian density. In this article we provide a general

treatment of class of NSS models based on an action principle and choice of operator P. We

show that there is one, potentially unique, choice of P which results in a Lorentz invariant,

ghost-free but non-local spinor field theory with canonical mass dimension one.

We are also interested in the cosmological behavior of general NSS models and con-

struct the energy momentum tensor, Tµν . For ELKO spinors it appears that, at present,

no one has obtained the full Tµν as all previous works in the literature, including ours, have

overlooked contributions to Tµν from the variation of spin connection.

This article is organized as follows: we define our notation, general spinors and exactly

what a non-standard spinor is in § 2, then in § 3 we look specifically at the original ELKO

definition, offer a modified version, finishing the section by examining the possibility of a

Lorentz invariant non-standard spinor. In § 4 we examine the energy momentum tensor

both with and without the projection operator, this then leads us nicely into sections § 5

and § 6, where we examine the cosmological applications of both the original ELKO and
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the Lorentz invariant NSS respectively and in each case note the existence of non-trivial de

Sitter solutions. We make our final remarks in § 7, followed by three appendices showing

explicit calculations of the variation of the spin connection with respect to the metric for

the general case, the Dirac spinor and finally the ELKO spinor.

2 Generalized spinor actions

2.1 Notation and preliminaries

We work with a metric signature (+,−,−,−), and define γ-matrices, γa, in the Weyl basis:

γ0 =

(

0 I2×2

I2×2 0

)

, γi =

(

0 −σi
σi 0

)

, (2.1)

where σi are the Pauli matrices:

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

. (2.2)

We also define tetrads eaµ by eaµe
b
νηab = gµν , where gµν is the space-time metric and

ηab = diag(1,−1,−1,−1). Space-time γ-matrices, γµ are then given by γµ = eµaγa, and

hence obey:

γµγν + γνγµ = 2gµν .

We also define γ5 = iγ0γ1γ2γ3 i.e.:

γ5 =

(

I2×2 0

0 −I2×2

)

. (2.3)

The covariant derivative ∇µ is defined by ∇µgνρ = 0, and so acting on a vector Aµ one has:

∇µAν = ∂µA
ν + ΓνµρA

ρ, (2.4)

where Γνµρ denotes the Christoffel symbol of gµν . The definition of ∇µ is extended to

spinors by further requiring that ∇µeaν = 0; hence ∇µγν = 0. The extension defines the

spin connection:

ωabµ = eaν∂µe
νb + eaνe

σbΓνµσ. (2.5)

The action of ∇µ on a spinor ψ is then given by:

∇µψ ≡ ∂µψ − Γµψ (2.6)

where Γµ is given by:

Γµ =
i

4
ωabµ fab, fab =

i

2

[

γa, γb
]

. (2.7)
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The adjoint of an arbitrary spinor is defined by ψ̄ = ψ†γ0, where ψ† is the hermitian conju-

gate of ψ. Since ψ̄ψ is a space-time scaler, it follows that ∇µ acts on adjoint spinors thus:

ψ̄
←−∇µ ≡ ∇µψ̄ ≡ ∂µψ̄ + ψ̄Γµ. (2.8)

Similarly, if we define a dual spinor
¬

ψ of ψ so that
¬

ψψ is a space-time scalar, we have:

¬

ψ
←−∇µ ≡ ∇µ

¬

ψ ≡ ∂µ
¬

ψ +
¬

ψΓµ. (2.9)

We also define the slashed notation thus: /A = γµAµ so /∇ = γµ∇µ. The usual Dirac dual

spinor is ψ̄ = ψ†γ0.

For any operator A, acting on the right or
←−
A , acting on the left, we define the respective

dual operators
←−
¬

A and
¬

A by the requirement that
¬

ψ
←−
¬

A be dual to Aψ and that
¬

Aψ be dual

to
¬

ψ
←−
A for any ψ. We note that

←−
¬

A acts on the left and
¬

A acts on the right.

The commutator of two covariant derivatives on a spinor can then be calculated to be:

[∇µ,∇ν ]ψ = [∂νΓµ − ∂µΓν + ΓµΓν − ΓνΓµ]ψ

=
1

8
Rµνρσ [γρ, γσ ]ψ,= − i

4
Rµνρσf

ρσψ, (2.10)

where Rµνρσ is the Riemann curvature tensor, see e.g. [43]. It follows that:

/∇2
ψ = ∇2ψ +Rψ. (2.11)

where

R = −1

4
Rµνρσf

µνfρσ =
1

4
Rµνρσγ

µγνγργσ. (2.12)

2.2 Generalized free spinor actions

We begin with the criterion that a free, massive spinor free field, ψ, in flat space-time (with

tetrads eaµ = δaµ so Γµ = 0) should obey the flat space Klein-Gordon equation:

∂2ψ = m2
ψψ. (2.13)

This suggests the following flat-space Lagrangian for ψ:

L(1)
free−flat ≡ (

¬

ψ
←−
/∂ )(/∂ψ)−m2

ψ

¬

ψψ, (2.14)

where
¬

ψ is some dual spinor to ψ defined so that
¬

ψψ is a space-time scalar. We vary ψ

and
¬

ψ independently. We note that up to a surface term, the above action, L(1)
free−flat is

equivalent to another L(2)
free−flat given by:

L(2)
free−flat ≡ (∂µ

¬

ψ)(∂µψ)−m2
ψ

¬

ψψ. (2.15)

However, this equivalence relies on ∂2ψ = /∂
2
ψ which is broken when the actions are

promoted to curved space by taking ∂µ → ∇µ, since generally R 6= 0 when Rµνρσ 6= 0.

One must therefore choose which of the two actions to promote to curved space.
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Remaining in flat-space, there is a problem with both actions as there are given above.

The field equation (∂2−m2)ψ = 0 constrains the evolution of each of the four components

of ψ but does not impose any relation between the different components. We define a basis

ψi where i = 1, 2, 3, 4 on 4-spinor space, such that,
¬

ψiψj = 0 if i 6= j and ∂µψi = 0. We

assume that ∂µ
¬

ψi = 0. However, as is well known, Lorentz invariance prevents us from

defining
¬

ψiψj = δij , instead we can ensure that
¬

ψ1ψ1 =
¬

ψ2ψ2 = 1 and
¬

ψ3ψ3 =
¬

ψ4ψ4 = −1.

Solutions of (∂2 −m2)ψ = 0 are then given by:

ψ =
∑

i,p

ai(p)
1

2Ep
eiEpt−ip·xψi +

∑

i,p

b†i (p)
1

2Ep
e−iEpt+ip·xψi,

where ai(p) and b†i (p) are some functions of p and Ep =
√

m2 + p2. Here
∑

p =
∫

d3p.

Let us define the Hamiltonian density H =
˙¬
ψ¬π + πψ̇ − L(1) where the momentum is

defined as usual π = ∂L(1)/∂ψ̇ =
˙¬
ψ, and ¬π = ∂L(1)/∂

˙¬
ψ = ψ̇. In flat-space, the Hamiltonian

density formed from on L(2) differs from that based on L(1) only by an irrelevant total

derivative which can be dropped. We then have

H =
[

π¬π +∇i ¬

ψ∇iψ +m2 ¬

ψψ
]

. (2.16)

Taking ǫi =
¬

ψiψi, one can show that

H =

∫

d3xH =
∑

j

ǫj
∑

p

(E2
p + p2 +m2)

2Ep
[a†j(p)aj(p) + bj(p)b†j(p)] (2.17)

which then becomes

H =
∑

j

ǫj
∑

p

(Ep)[a
†
j(p)aj(p) + bj(p)b†j(p)]. (2.18)

Finally we can assume that these will be upgraded to operators and since we are refer-

ring to spin one half particles we are dealing with fermions and therefore anti-commutation.

H =
∑

j

ǫj
∑

p

(Ep)[a
†
j(p)aj(p)− b†j(p)bj(p)]. (2.19)

This then gives an ill defined Hamiltonian density which is not positive definitive. However,

we know that if we were to write the Dirac spinor in the KG equation and followed the same

step we would get a consistent Hamiltonian density. Thus, there is a projection operation

implicitly present which removes (projects out) the components of the spinor which would

give an inconsistent Hamiltonian density. It is important to note that this is not directly

related to the actual energy as the energy is squared in this expression and therefore we

retain the negative energy information, which is, of course, what we learned from Dirac.

Let us assume that the ai and a†i to represent creation and annihilation operators, then

a†iai 6= 0 and b†i bi 6= 0. If we interpret
¬

ψψ as the energy-density of the spinor field with

ǫ1 = ǫ2 = −ǫ3 = −ǫ4 = 1, it follows that the spinor field can have negative energy density,

unless there is some additional condition that requires a3 = a4 = 0 and b1 = b2 = 0 in

– 6 –
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the definition of ψ. Additionally, without such a requirement it would be possible to have

states with both a†iai and b†i bi ≥ 0 but with zero energy. Negative energy or ghost states

lead to well known instabilities both classically and at the level of quantum field theory.

The requirement that a3 = a4 = 0 and b1 = b2 = 0 can be seen as an additional

equation for ψ which projects out negative energy states, i.e. we would have Pψ = ψ for

some operator P with the property:

P
(

ψie
∓ipµxµ)

= ∓ǫiψie∓ipµxµ

. (2.20)

where pµ = (Ep,p
i). This form implies that when one moves to momentum space P (pµ) is

an odd function of pµ. If one were to attempt to define spinors using a P(pµ) that was an

even function of pµ, one would have to require that the ai(p) and bi(p) commute rather

than anti-commute leading to a field obeying Bose-Einstein statistics.

We define projection operators:

P± =
1

2
[I± P] , (2.21)

and note that:

P±P± ≡ P±, P±P∓ ≡ 0. (2.22)

Positive / negative energy spinor modes then respectively correspond to those which obey

P+ψ = ψ and P−ψ = ψ, or written out explicitly

P+(ψ) =
1

2

∑

i,p

(1 + ǫi)ai(p)eiEpt−ip·xψi +
1

2

∑

i,p

(1− ǫj)b†i (p)e−iEpt+ip·xψi. (2.23)

We also define the adjoint operator,
←−
P , by:

∫ √−gd4x ¬χPψ ∼=
∫ √−gd4x ¬χ

←−
Pψ, (2.24)

where ∼= implies that this relation is true up to a surface integral term. We let
←−
P± =

(I±←−P )/2. For any ψ and
¬

ψ we then define the shorthand:

ψ± = P±ψ,
¬

ψ± =
¬

ψ
←−
P ±. (2.25)

We can now rewrite our Hamiltonian density as

H =
1

4

∑

j,p

Ep

[

ǫj(1 + ǫj)
2a†j(p)aj(p)− ǫj(1− ǫj)2b†j(p)bj(p)

]

. (2.26)

One sees that if we use the definition laid out earlier, namely ǫ1 = ǫ2 = −ǫ3 = −ǫ4 = 1, we

find that this Hamiltonian density becomes

H =

2
∑

j=1,p

Epa
†
j(p)aj(p) +

4
∑

j=3,p

Epb
†
j(p)bj(p), (2.27)

– 7 –
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which is now positive definite for any spinor field, provided it satisfies the projection con-

dition (2.20).

Next we discuss an alternative approach to enforce the condition that only positive

energy modes propagate i.e. ψ = ψ+ and
¬

ψ =
¬

ψ+, which is equivalent to P−ψ = 0 and
¬

ψ
←−
P − = 0. Suppose that we initially take the Lagrangian density for ψ and

¬

ψ to be

Lψ(ψ,
¬

ψ). We may project out unphysical modes by adding an extra term, LP , to the

Lagrangian: Lψ → Lψ + LP where:

LP = −¬χP−ψ −
¬

ψ
←−
P−χ, (2.28)

∼= −¬χ
←−
P−ψ −

¬

ψP−χ,

where ∼= indicates equality up to a total derivative.

Varying the action with respect to χ then gives ψ− =
¬

ψ− = 0, as required. With

Sψ =
∫

d4x
√−gLψ, the other field equations from the variation of the action with respect

to ψ and
¬

ψ are:
[

δSψ
δ

¬

ψ

]

+

= 0,

[

δSψ
δψ

]

+

= 0, (2.29)

[

δSψ
δ

¬

ψ

]

−
= χ−,

[

δSψ
δψ

]

−
= ¬χ−, (2.30)

and χ+, ¬χ+ are undetermined gauge degrees of freedom which do not enter the action or

field equations. We may integrate out the χ fields by replacing ψ and
¬

ψ with ψ+ and
¬

ψ+

in the Lagrangian Lψ, i.e. we redefine:

Lψ(ψ,
¬

ψ)→ Lψ(ψ+,
¬

ψ+). (2.31)

Then the field equations follow from:
[

δSψ
δ

¬

ψ+

]

+

=

[

δSψ
δψ+

]

+

= 0. (2.32)

Now we know that:

P2
(

ψie
∓ipµxµ)

= ǫ2iψie
∓ipµxµ

= ψie
∓ipµxµ

, (2.33)

and so we must have that P2 ∼= I where ∼= implies that this identity holds modulo the

field equation p2 = m2. We also know that P2 is an even function of p and P(p) is an odd

function, so we may write P2 = F(p2/m2 − 1) where F is some operator which depends on

p2/m2; we must then have F(0) = I. If F(p2/m2 − 1) = I implies that p2/m2 = 1, e.g. if

P2 = F = p2/m2, then Pψ = ψ implies the field equation p2ψ = m2ψ rendering the latter

superfluous. It would then be sufficient to take the total action to be simply LP :

Lψ = LP . (2.34)

This is precisely what happens for Dirac and Majorana fields where, respectively P is

PD = i /∇/m and PM = Ci /∇/m and Cψ = ψc; here ψc is the charge conjugate spinor field

and C2 = I. Positivity of the energy then requires ¬χ = mψ̄ = mψ†γ0 in the Dirac case,

and ¬χ = mψ̄C in the Majorana case.

– 8 –
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2.3 Non-standard spinors

We shall think of Dirac and Majorana as standard classes of spinors. In flat space, we define

a general class free non-standard spinors (NSS) as being those spinor which, in momentum

space, obey:

p2ψ(p) = m2ψ(p), (2.35)

P(pµ)ψ(p) = ψ(p), (2.36)

where P(pµ) = −P(−pµ) and where P2(pµ) = I does not automatically imply p2 = m2, so

that eqs. (2.35) and (2.36) are independent, the former fixing the dynamics of ψ and the

latter the spinor structure. One such form for the P operator would be:

P(p) = sin

(

π/p

2m

)

,

thus P2 = sin2(π
√
pµpµ/2m) and P2 = I only implies

√
pµpµ/2m = 2n + 1 for n ∈ N.

However, whilst this does not imply p2 = m2 globally, it does require p2 = m2 locally. This

is to say that in momentum space, for pµ lying in or close to the sub-space, Sp2=m2 , of points

defined by p2 = m2, P 2 = I requires that pµ be in Sp2=m2 . So close to Sp2=m2 , the eq. (2.35)

is again superfluous. We therefore further require, in our definition of non-standard spinors,

that in some open region around the sub-space Sp2=m2 , we have P2(p) ≡ I. For simplicity

we may therefore restrict to consider P(p) such that P2(p) = I for all pµ.

We would also like non-standard spinors to have a canonical mass dimension of unity,

like scalar fields rather than the 3/2 mass dimension of Dirac / Majorana spinors. The

canonical mass dimension of a quantum field is determined by the momentum drop-off of the

free field propagator, GF (p;m), for |p2| ≫ m2. For standard spinors GF (p;m) ∼ O(p−1)

whereas for scalar fields or vector bosons, both with mass dimension one, GF (p;m) ∼
O(p−2). In general, if GF (p;m) ∼ O(p−2+δ) the quantum field has canonical mass dimen-

sion 1 + δ/2. This definition of the mass dimensions also determines the renormalizability

of self-interaction terms. For a general field Ψ (not necessarily a spinor), by counting

powers of momentum in field loops, one determined that if GF (p;m) ∼ O(p−2+δ) the self-

interaction terms of O(Ψ)n are not perturbatively renormalizable in 3 + 1 dimensions if

n > 4/(1 + δ/2). With spinor fields self interactions must all involve an equal number of ψ

and
¬

ψ fields and so n must be even. Thus if the mass dimensions is 3/2 then we could only

have n ≤ 2 (as n = 3 is not allowed) implying that only renormalizable self-interaction

terms are simply mass terms proportional to
¬

ψψ. However a mass dimensions one NSS

field (δ = 0) could be renormalizable with a fourth order interaction term (n = 4) and

so we could have additional self-interaction terms of the form λ(ψ̄ψ)2. We shall see that

δ = 0 requires lim|p2|≫m2 P(pµ) ∼ O(|p2|−n/2) or equivalently limλ→∞ P(λpµ) ∼ O(λ−n)

for some n ≤ 0. We note that this condition (with n = 0) is implied by the requirement

that P2(pµ) = I for all pµ.

Finally P must be chosen so that the NSS spinor action is real (or at least real up

to a surface integral). Firstly this implies that the dual spinor must be defined so that

(
¬

ψψ)† =
¬

ψψ for any ψ. Reality of the kinetic term in the action requires that either

– 9 –



J
H
E
P
0
7
(
2
0
1
0
)
0
5
3

¬

/∇2
=
←−
/∇2 or

¬∇2 =
←−∇2, depending on the choice of kinetic structure. Finally reality of the

projection term LP requires that:

P =
¬

P.

We summarize the definition of NSS below.

Definition A non-standard spinor, ψ, is defined by an operator P(x), which in momentum

space is P(pµ), and has the following properties:

1. P(pµ) is an odd function of momentum: P (pµ) = P (−pµ).

2. P2 ≡ I on any spinor (i.e. not just those that satisfy the field equation).

3. P =
¬

P on any spinor to ensure reality of the action.

The second condition implies that if λ → ∞, P(λpµ) ∼ O(λ0). The adjoint operator to P

is
←−
P , and we define P± = (I±P)/2,

←−
P± = (I±←−P ), and ψ± = P±ψ,

¬

ψ± =
¬

ψ
←−
P±. Physical

modes are those for which ψ = ψ+,
¬

ψ =
¬

ψ+. Starting with some Lagrangian L(ψ,
¬

ψ) we

can project out the unphysical modes either by adding:

LP = −¬χP−ψ −
¬

ψ
←−
P −χ, (2.37)

or by replacing L(ψ,
¬

ψ) with L(ψ+,
¬

ψ+), both methods result in equivalent field equations,

and, since LP vanishes on-shell, in equivalent values of the action.

A free, non-standard spinor satisfies ψ = ψ+ i.e. ψ = Pψ and:

[

(p2 −m2)ψ
]

+
= 0. (2.38)

In flat-space, this NSS field equation results from two simple actions which are inequivalent

in curved spacetimes. With the total Lagrangian taken to be L(i)
ψ−P = L(i)

free(ψ,
¬

ψ) + LP ∼=
L(i)

free(ψ+,
¬

ψ+), the two choices for L(i)
free(ψ,

¬

ψ) are:

L(1)
free = (

¬

ψ
←−
/∇) /∇ψ −m2 ¬

ψψ, (2.39)

L(2)
free = (

¬

ψ
←−∇µ∇µψ)−m2 ¬

ψψ. (2.40)

The minimizing L(1)
ψ−P gives:

[

/∇2
ψ+ +m2ψ+

]

+
= 0,

[

¬

ψ+

←−
/∇2 +m2 ¬

ψ+

]

+
= 0.

The minimizing L(2)
ψ−P gives:

[

∇2ψ+ +m2ψ+

]

+
= 0,

[

¬

ψ+
←−∇2 +m2 ¬

ψ+

]

+
= 0.
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In general, as we noted above, ∇2 6= /∇2
. In appendix B.1 we find that the free field

quantum propagator for ψ is (in flat space) for action S
(1)
ψ given by:

GF (pµ) =
1

2

(I± P(p))

p2 −m2
. (2.41)

It is straight-forward to check that this is also the flat-space free-field propagator for for

action S
(2)
ψ .

It is then clear that GF ∼ p−2 for large |p2| is equivalent to limλ→∞ P (λpµ) ∼ O(λ−n)
for some n ≥ 0. For NSS spinors this is ensured (with n = 0) by P 2(pµ) = I for all pµ. We

note that if we took the NSS action with P (pµ) = i /∇/m then upon integrating out the χ

and ¬χ we would recover the Dirac spinor action.

We can generalize the free-field actions to include self-interaction terms by replacing

m
¬

ψψ with V (
¬

ψψ), so L(i)
ψ−P = L(i)

ψ (ψ,
¬

ψ) + LP ∼= L(i)
ψ (ψ+,

¬

ψ+):

L(1)
ψ (ψ,

¬

ψ) = (
¬

ψ
←−
/∇) /∇ψ − V

(

¬

ψψ
)

, (2.42)

L(2)
ψ (ψ,

¬

ψ) = (∇µ
¬

ψ)∇µψ − V
(

¬

ψψ
)

. (2.43)

By power-counting arguments we noted that perturbatively renormalizable V (
¬

ψψ) will

have the form

V (
¬

ψψ) = V0 +m2 ¬

ψψ +
λ

2
(

¬

ψψ)2.

3 Specific non-standard spinor models

3.1 Eigenspinors of C

In refs. [17, 18], Ahluwalia-Khalilova and Grumiller introduced the class of non-standard

spinors (in the sense defined above). They constructed these spinors in momentum space

from the eigenspinors of the charge conjugation operator and hence called them Eigen-

spinoren des LadungsKonjugationsOperators (ELKOs). They were shown to belong to a

non-standard Wigner class [19] and satisfy (CPT )2 = −I. In more mathematical terms,

they belong to a wider class of spinorial fields, so-called flagpole spinor fields which corre-

sponds to the class 5 of the Lounesto’s classification based on bilinear covariants.

The idea behind ELKOs is an attempt to construct a spinor field, ψ(x), from momen-

tum space eigenspinors of the charge conjugation operator, λ(p, e, h) say, rather than the

u(p, σ) and v(p, σ) in case of Dirac spinors. The λ(p, e, h) are defined by:

Cλ(p, e, h) ≡ −γ2λ∗(p, e, h) = eλ(p, e, h), (3.1)

H(p̂)λ(p, e, h) = hλ(p, e, h), (3.2)

where e, h = ±1 and H(p̂) is the dual helicity operator:

H(p̂) =

(

σ · p̂ 0

0 −σ · p̂

)

= γ0γip̂i. (3.3)
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The general free ELKO field is then given by:

ψ(x) =
∑

p,h

ah(p)λ(p,+1, h)e−ipµxµ

+
∑

p,h

b†h(p)λ(p,−1, h)eipµxµ

.

where pµ = (Ep,p
i), Ep =

√

p2 +m2. It should be noted that the conditions which define

the basis spinor λ, do not do so uniquely (i.e. uniquely up to an overall phase). Instead

we have:

λ(p,+1,±1) =

(

±ieiα(p)φ±(p)

φ∓(p)

)

, (3.4)

λ(p,−1,±1) =

(

∓ieiα(p)φ±(p)

φ∓(p)

)

, (3.5)

where φ±(p) obey σ · pφ±(p) = ±φ±(p), and φ†a(p)φb(p) = δab. It is straightforward

to check that any two such spinors will be related by: φ±(p) = ∓e−iα(p)iσ2φ
∗
∓(p) for

some α(p), which also features in the definition of λ, which depends on the phases in the

definitions of φ±. It can also be checked that φ±(p) = ∓ie±iβ(p)F (p)φ∓(p) for some β(p).

Here F (p)2 = 1 and F † = F and F (p) = n̂ · σ where n̂(p) is a unit vector in the direction

of n which is defined by n = p̂ × ẑ; here ẑ is a unit vector in some fixed direction. The

original definition of ELKOs in refs. [17, 18] effectively picked φ± so that α = β = 0 and

worked in a basis where ẑ = (0, 0, 1)T .

To complete the definition of ELKOs one must now find some operator P, which in

momentum space is an odd function of pµ, such that Pψ = ψ. We note since ah and bh are

arbitrary, P must commute with the ah and b†h. refs. [17, 18] did not approach the definition

of non-standard spinors in the general way that we laid out in the previous section, and so

did not explicitly construct P. Explicitly constructing P, however, reveals that the above

definition of ELKOs is not Lorentz invariant, see also [23, 24]. We find that for ELKOs

P = PELKO where in momentum space:

PELKO(pµ; ẑ) =

(

0 n̂ · σeiα−iβσ·p̂
n̂ · σe−iα+iβσ·p̂ 0

)

.

It follows that with α = β = 0 as in refs. [17, 18], PELKO simplifies to:

PELKO(pµ; ẑ) =

(

0 n̂(p, ẑ) · σ
n̂(p, ẑ) · σ 0

)

. (3.6)

It can be checked that modulo the relation (p2 = m2) there is no other operator P, with

P2 = I that satisfies the required properties. It is also clear that because P(p) depends on

both a preferred direction ẑ and p̂ it is not Lorentz invariant. Thus the initial definition

of the ELKO basis and hence ELKO field is also not Lorentz invariant as it implicitly

assumes the existence of a preferred direction ẑ. Additionally when p̂ = ẑ, n = 0 and so

n̂ and hence P(p) is not defined. In the limit p̂ → ẑ, the limiting value of n̂ depends on

the direction of approach. The original definition therefore suffers from a number of issues:
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it requires a preferred space-like direction, and is ill-defined for momentum pointing along

that direction. Similar issues will arise if different (potentially p-dependent) values of α

and β are taken. The Lorentz violation in the definition of ELKOs was not clear in the

original papers because, primarily, they did not approach the construct of non-standard

spinors in the general covariant manner that was laid out in the previous section.

3.2 Modified eigenspinors of C

We can make an alternative definition of an ELKO, motivated by more exotic ideas, which

is well-defined for all momenta and invariant under rotations, albeit not under boosts. The

basis spinors are once again eigen-spinors of the charge conjugation operator. This time

however we define the ELKO field by:

ψ(x) =
∑

p,e

ae(p)λ(p, e,+1)e−ipµxµ

+
∑

p,e

b†e(p)λ(p, e,−1)eipµxµ

. (3.7)

This definition has the advantage of being now independent of the phases in the definitions

of the φ± two-spinors used to construct the λ(p, e, h). It is also straight-forward to check

that it is invariant under rotations. This can be seen explicitely by noting that the pro-

jection operator, PM−ELKO, under which PM−ELKOψ = ψ is given in momentum space by

simply the dual helicity operator H(p):

PM−ELKO(pµ) =

(

σ · p̂ 0

0 −σ · p̂

)

= γ0γip̂i.

This operator is manifestly invariant under SO(3) rotations, but also manifestly not in-

variant under general boosts. However we can write it in a covariant manner by intro-

ducing a preferred unit time-like direction Aµ with AµA
µ = 1. We may then choose

coordinates so that Aµ = (1,0) and with Pµs = (0,pi) = pµ − AµAνp
ν we have p̂µ =

(0, p̂i) = pµs (p,A)/
√

pνs(A, p)psν(A, p). It follows that in this frame: PM−ELKO(pµ) =

PM−ELKO(pµ)(pµ;Aµ) where

PM−ELKO(pµ, Aµ) = psµAνγ
[µγν] =

pµAνγ
[µγν]

√

p2 − (A · p)2
. (3.8)

We then define
¬

λ = −λ̄γµpsµ, and by working in the frame where Aµ = (1,0)T find:

± ¬

λ(p, e,±)PM−ELKO
± λ(p, e,±) > 0, (3.9)

where PM−ELKO
± = 1

2(I± PM−ELKO).

From the above discussion, it is clear that the original ELKO definition breaks Lorentz

invariance as, when written in a covariant form, it clearly requires the existence of a

preferred space-like direction, ẑ. Additionally, the original definition breaks down, even

if one takes a limit, for spinors with momentum in the direction of ẑ. We have also given

a second definition for an ELKO like field. This again breaks Lorentz invariance, but

preserved rotational invariance, as it only requires the introduction of a preferred time-like

direction Aµ. Of course any violation of Lorentz invariance is arguably a serious reason to

doubt a theory.
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3.3 Lorentz invariant non-standard spinors

We have shown above that the original definition of ELKO fields violates Lorentz invariance

by introducing a preferred space-like direction. Additionally we noted a modification of

this definition could be made, still using dual helicity basis spinors, where there is a frame

choice where rotational invariance is preserved, however this required the introduction of

a preferred time-like direction, which also violates Lorentz invariance. We may therefore

wonder whether there is any reasonable Lorentz invariant definition of projection operator

P(pµ) which obeys P2 = I (independently of the field equation p2 = m2 i.e. without placing

any restriction on p2) as well as the other conditions on P. We know that any such operator

must be non-local in position space, since it has been shown that the assumptions of locality

and Lorentz invariance imply that the only spin 1/2 field theory is that of Dirac / Majorana

spinors. Working in a flat background and in momentum space, Lorentz invariance implies

that we cannot introduce any preferred frame-fields. Hence P (pµ) can only be constructed

from the Lorentz covariant operators I, pµ and γµ. Additionally the requirement that

P 2 = I independently of the value of p2 implies that the operator should not depend on

the on-shell value of p2(= m2). Additionally we know that P must be an odd function of

pµ and P =
¬

P.

Taken together these conditions imply that, up to an arbitrary phase factor, the only

choice we can make for P(pµ) is:

P(pµ) ≡ 1

2
(1 + iγ5)P0(p

µ) +
1

2
(1− iγ5)

¬

P0, (3.10)

where:

P0 = p−1
/p, (3.11)

and p =
√
pµpµ with some appropriate choice of branch for the square root’s action on

negative pµp
µ. Thus we have P2

0 = I. We shall see below that with this choice we must

take
¬

ψ = ψ̄; it follows that ¬γ5 = γ0γ5†γ0 = −γ5. Hence the operator iγ5 is self-dual.

Additionally γ5 anti-commutes with P0. Given this choice of dual, it is straight-forward to

check that
¬

P0 = ±P0 depending on the sign of pµp
µ; hence

¬

P0 and P0 commute and
¬

P2
0 = I.

Additionally, the dual of
¬

P0 is therefore P0.

We found that the first condition that P must obey is that it is an odd function of

momentum. Since P0 is manifestly an odd-function of pµ and P is also. Secondly we must

check that P2 = I. Explicitly:

P2 =
1

4
(1 + iγ5)P0(1 + iγ5)P0 +

1

4
(1− iγ5)

¬

P0(1− iγ5)
¬

P0 (3.12)

+
1

4
(1 + iγ5)P0(1− iγ5)

¬

P0 +
1

4
(1− iγ5)

¬

P0(1 + iγ5)P0,

=
1

4
(1 + iγ5)(1− iγ5)

[

P2
0 +

¬

P2
0

]

+
1

4

[

(1 + iγ5)2P0
¬

P0 + (1− iγ5)2
¬

P0P0

]

,

= I +
1

2
iγ5
[

P0,
¬

P0

]

= I.
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Here we have used the anti-commutation of γ5 with P0
¬

P0 and the commutation of P0 and
¬

P0. We have also used P2
0 =

¬

P2
0 = I. Thus as require P is an odd-function of momentum,

and P2 ≡ I on any spinor. We also note that since
¬

ψ = ψ̄, (
¬

ψψ)† =
¬

ψψ and the action is real

provided the final condition P =
¬

P (i.e. P is self-dual) is satisfied. We show this explicitly:

¬

P =
1

2

¬

P0(1 + iγ5) +
1

2
P0(1− iγ5), (3.13)

=
1

2
(1− iγ5)

¬

P0 +
1

2
(1 + iγ5)P0 = P,

where we have used the anti-commutation of γ5 and P0 and the self-dual nature of iγ5.

Thus this choice of P satisfies all the required properties and is manifestly Lorentz

invariant. The appearance of p−1 factor means that in position space P will be non-local,

as expected.

In flat position space:

P =
1

2
(1 + iγ5)P0 +

1

2
(1− iγ5)

¬

P0, P0 = −ip−1/∂,

where in position space: p−1 =
√
−∂−2; ∂−2 is the inverse of ∂2. In a general curved

space-time p−1 is the inverse square root of /∇2
. The definition of what is meant by this

square root is fixed by the requirement that in flat-space p−1 it reduce to
√
−∂2.

In curved space-time it is not immediately obvious that the extension of p−1 com-

mutes with /∇. To prove that this is indeed the case we consider eigenstates of −i /∇
i.e. −i /∇ψz(xµ; s) = −izψz(xµ; s) for some z ∈ C where s labels the multiplicity. Now

p2 = − /∇2
and so p2ψz(x

µ; s) = −z2ψz(x
µ; s). The operator p−1 =

√

− /∇2
where the

square-root requires a choice of branch to make it unambiguous. We right z = ReiΘ where

R > 0 and −π < Θ ≤ π. We choose the branch so that pψz(x
µ; s) = −εizψz(xµ; s) where

ε = −1 for 0 < Θ ≤ π and ε = +1 for −π < Θ ≤ 0. Thus in a general space-time the defi-

nition of p−1 is fixed by p−1ψz(x
µ; s) = iεz−1ψz(x

µ; s). Since p−1 and /∇ have simultaneous

eigenstates (by definition) it is automatic that p−1 and /∇ commute. Acting on ψz(x
µ; s),

P0ψz(x
µ; s) = εψz(x

µ; s) where ε = −sign(argz) and ε = +1 if argz = 0; −π < argz ≤ π.

In general backgrounds:

P =
1

2
(1 + iγ5)P0 +

1

2
(1− iγ5)

¬

P0, P0 = −ip−1 /∇ = −i /∇p−1. (3.14)

We have stated above that
¬

ψ = ψ̄. It is now straight-forward to show that this must

be the case. We can always write
¬

ψ = ψ̄
←−
D for some operator

←−
D . We must first require

that
¬

ψψ is real, which in turn requires that
←−
D =

¬

D. It implies that
←−
D = D = c0I + c1iγ

5.

We also need
←−
P =

←−
¬

P . We found that if
←−
D = I then

←−
P =

←−
¬

P . For general
←−
D we have:

←−
P
←−
D =

←−
D
←−
¬

P , hence the reality condition P =
¬

P, or equivalently
←−
P =

←−
¬

P , requires that←−
D commutes with

←−
P . Since γ5 anti-commutes with P0, it also anti-commutes with P and

hence
←−
P . It follows that c1 = 0 and we can then normalize ψ so that c0 = 1 and

←−
D = I

i.e.
¬

ψ = ψ̄ = ψ†γ0.

For a free-field, obeying /∇2
ψ = −m2ψ, q−1 = m−1 and so Pψ = ψ reduces to the Dirac

equation. The dynamics of free fields defined in this way are therefore identical to those of
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Dirac fermions. The differences between the definitions are only apparent for non free fields

e.g. those where V (
¬

ψ+ψ+) is a non-linear (e.g. quartic) function of the invariant
¬

ψ+ψ+.

We also note that P manifestly commutes /∇2
= −q2 and hence

( /∇2
ψ+)+ = /∇2

ψ+ = ( /∇2
ψ)+.

In appendix B, we given a general treatment of the path integral quantization of non-

standard spinor models with special reference to the Lorentz invariant model presented

above. The free field, flat space propagator for this theory is:

GNSS(p;m) =
P+(pµ)

p2 −m2 + iǫ
. (3.15)

One might be worried that the p−1 term in this propagator (which comes from P0 in

P(pµ)) leads to some additional divergences in quantum amplitudes. In appendix B.1

and B.3 we show explicitly that this is not the case. Simply, this may be understood

from the fact that p−1 does not lead to a new pole in the components of pµ = (ω,p),

since p =
√

ω − |p|
√

ω + |p| and so the integral of p−1 with respect to the momenta does

not diverge. It follows that the position space Green’s function, GNSS(x − y) (related by

Fourier transform to GNSS(p;m)) is well defined. Self-interactions of ψ can be introduced

as perturbations about the free field theory. For completeness, we show explicitly, in

appendix B.3, that the p−1 in GNSS(p;m) does not lead to any new divergences in loop

integrals and so the quantum theory may be rendered finite by re-normalization in the

usual way.

We also find in appendix B.1, that there is a preferred choice of kinetic term. Specifi-

cally one wishes P to commute with the free-field Green’s function in a general background.

In a general background P commutes with /∇2
but not with ∇2. Thus the preferred struc-

ture for the action of a Lorentz invariant non-standard spinor, with arbitrary sources J

and
¬

J is:

LNSS ≡ (
¬

ψ
←−
/∇)( /∇ψ)−m2

ψ

¬

ψψ − ¬χP−ψ −
¬

ψ
←−
P−χ+

¬

Jψ +
¬

ψJ. (3.16)

4 Energy momentum tensor

Let us now construct the energy-momentum tensor based on the above actions, not taking

into account any of the possible interaction terms. By definition, we need to vary the

Lagrangian with respect to the metric gµν . In all previous treatments, when the variation

with respect to the metric was computed, the implicit dependence of the connection on the

metric was neglected. This happened because in the case of Dirac spinors, one can indeed

neglect this contribution as it vanishes identically. Although this is relatively well known to

experts, we show this calculation explicitly in appendix A.2. Therefore, we will now show

in detail the derivation of the complete energy-momentum tensor of ELKO spinors. It

should be noted however, that one can start with an effective scalar field Lagrangian which

contains a mass dependent on the Hubble parameter to reproduce the previous results.

We now derive a formal expression for the energy momentum tensor for the two possible

actions S(1)
ψ and S(2)

ψ with Lagrangian density L(1)
ψ−P = L(1)

ψ + LP and L(2)
ψ−P = L(2)

ψ +
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LP , where L(1)
ψ , L(2)

ψ are given by eqs. (2.42) and (2.43) respectively. This derivation is

complicated by the presence of the projection action LP , which projects out the ‘unphysical’

modes, it is an odd function of momentum and it has a dependence on ∇µ and γµ therefore

on the metric itself complicating the derivation of the energy momentum tensor. Since P

is also a non-local operator, its dependence on gµν is also generally extremely complicated,

and this prevents us from finding a general explicit expression for T µνψ . In some choices of

P in certain backgrounds, however, δSψ/δP = 0 and in these cases we can give an explicit

expression for T µνψ .

4.1 Variation of ∇µ
It is important to remember when calculating Tµν that ∇µ also depends on the gamma

matrices γµ through Γµν . Thus:

δ∇ρψ
δgµν

= − δΓρ
δgµν

ψ, (4.1)

¬

ψδ
←−∇ρ

δgµν
=

¬

ψ
δΓρ
δgµν

. (4.2)

Now Γµ = iωµ
abfab/4 and the spin connection depends on eµ

a and hence gµν . We calculate

δωµ
ab in a local inertial frame (LIF) where eaµ = δaµ and so Γρµν = 0. In a LIF, we find:

fabδωµ
ab = −fabeνbeaρ∂µ [eρcδe

c
ν ] + fabe

a
νe
bσδΓνµσ . (4.3)

Now in a LIF:

fabe
a
νe
bσδΓνµσ =

1

2
fabe

νaeσb [δgµν,σ + δgνσ,µ − δgµσ,ν ] = f νρδgµν,ρ.

To move to a general frame we promote partial derivatives to covariant derivatives and have:

fabδωµ
ab = f νρ∇µ [eρcδe

c
ν ] + f νρ∇ρ [δgµν ] . (4.4)

where we have used fab = −f ba and defined fµν = eµaeνbfab. Now δgµν = 2ea(µδeν)a and

the first term in eq. (4.4) depends only on e[µδe
a
ν] and which is independent of the variation

in gµν . Hence just varying gµν :

δΓρ =
i

4
δ(µρ f

ν)σ∇σδgµν . (4.5)

4.2 Variation of γµ

Now γµ = eµaγa and so:

δγµ = −eµb eνaδebνγa, (4.6)

and so just varying gµν :

δγρ = −1

2
γ(νgµ)ρδgµν . (4.7)
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4.3 Variation of Liψ
The total Lagrangian is L(i)

ψ−P = L(i)
ψ + LP . We consider the variation of the projection

term LP separately. Here we simply calculate T
(i)µν
ψ = [−2/

√−g] δS(i)
ψ /δgµν where the

action S(i)
ψ is the integral of L(i)

ψ (ψ,
¬

ψ). This action is independent of P .

We find:

T
(1)µν
ψ =

¬

ψ
←−∇(µγν) /∇ψ +

¬

ψ
←−
/∇γ(µ∇ν)ψ − gµνL(1)

ψ +∇ρJρµν(1) , (4.8)

where the last term comes from the variation of Γµ and is equal to:

Jµνρ(1) = − i
2

[

¬

ψ
←−
/∇γ(µf ν)ρψ +

¬

ψfρ(µγν) /∇ψ
]

. (4.9)

For the second action we have:

T
(2)µν
ψ = 2

¬

ψ
←−∇ (µ∇ν)ψ − gµνL(2)

ψ +∇ρJρµν(2) , (4.10)

where again the last term comes from the variation of Γµ is given by:

Jµνρ(2) = − i
2

[

¬

ψ
←−∇(µf ν)ρψ +

¬

ψfρ(µ∇ν)ψ
]

. (4.11)

4.4 Variation of LP
We now focus on the variation of LP with respect to P. We have:

δLP =
1

2
¬χ(δP)ψ +

1

2

¬

ψ(δP)χ. (4.12)

Now P2 = I implies P±δP = δPP∓ and using ψ = P+ψ, and dropping an irrelevant surface

term it is straightforward to check that the above variation reduces to:

δLP =
1

2
¬χ−(δP)ψ+ +

1

2

¬

ψ+(δP)χ−. (4.13)

We see that generally the variation of LP with respect to P and hence gµν only vanishes

if ¬χ− = χ− = 0. To see what this requires, we define the differential operators Lψ and
←−
¬

L ψ by:

δSψ
δ

¬

ψ
= −Lψψ,

δSψ
δψ

= − ¬

ψ
←−
¬

L ψ. (4.14)

The field equations are then (Lψψ)+ = (
¬

ψ
←−
¬

L ψ)+ = 0 and

χ− = −(Lψψ)−,
¬χ− = −(

¬

ψ
←−
¬

L ψ)−. (4.15)

Since, ψ− =
¬

ψ− = 0 we have:

χ− =
1

2
RPψ,

¬χ− =
1

2

¬

ψ
←−
¬

R P , (4.16)
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where

RP = [Lψ,P] = 2[P−,Lψ],

and
←−
¬

R P is the dual operator. It follows that in general χ− = ¬χ− = 0 requires RP = 0, i.e.

P must commute with the field equation operator Lψ. For general P we do not expect (in

a non-flat background) P to commute with either /∇2
or ∇2, and so expect RP 6= 0. We

noted that that if we take Lorentz invariant definition of P given in § 3.3 , then we do have

[P, /∇2
] = 0. Hence if we take the action to be L(1)

ψ−P , then Lψ = /∇2
+ V ′(

¬

ψ+ψ+) and:

RP =
[

V ′(
¬

ψ+ψ+), P
]

= −V ′′( ¬

ψ+ψ+)P(
¬

ψ+ψ+), (4.17)

where we define P(α) acting on c-numbers α by: [P, α] ≡ P(α). In general then, even

with a Lorentz invariant choice of P, we do not have RP = 0 unless V ′′ = 0, in which case

the theory reduces to that of a Dirac spinor, or if our solution has such symmetries as to

ensure P(
¬

ψ+ψ) = 0.

We do not attempt to calculate δP/δgµν , instead we merely note that, in a general

background, this dependence of P on gµν results in an additional contribution to the energy-

momentum tensor which we write as T µνP . In some backgrounds, it may be that the

symmetries of the solution imply that δP vanishes for small changes, δgµν , in the metric.

Such cases represent another way in which T µνP could vanish.

5 ELKO cosmology

In the previous section we attempted to calculate the energy momentum tensor for non-

standard spinors. The presence of the operator P , which in general has a complicated

dependence on the metric, prevented us from explicitly evaluate Tψµν except in circumstances

where [Lψ, P ] = 0 in which case the variation of the P dependent term vanishes on-shell.

In general backgrounds, and for general P it is therefore difficult to make much

progress. We therefore begin by focusing on the relatively simple background of a flat

FRW spacetime with line element:

ds2 = dt2 − a2(t)dx2. (5.1)

In this background:

Γt = 0, Γxi = − ȧ
2
γ0γi (5.2)

5.1 Comments on previous work

We noted that the definition of the ELKO field theory is not Lorentz invariant since it

requires a preferred direction. This casts doubt on the validity of the model and its useful-

ness for cosmology. Let us emphasize that in general an explicit and complete expression

of the energy-momentum tensor is difficult to find since it is expected to include a term

from the variation of the P operator.
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Previous studies of ELKO cosmology have, however, side-stepped this issue by simply

studying the cosmology of a theory defined by that action:

Lcosmo =
1

2

¬

ψ
←−∇µ∇µψ − V (

¬

ψψ), (5.3)

which is equivalent to L(2)
ψ up to a different normalization of the kinetic term (there is an

additional factor 1/2). This is just a different normalization of the spinor field and does not

alter the physics. The additional projection term, LP , did not feature in previous studies of

ELKO cosmology. With ELKOs, all Lorentz violating terms are located in LP and it is this

term that creates the problems in deriving an explicit expression for the energy-momentum

tensor. Analyzing a NSS without any projection term is therefore more straight-forward

than a NSS with LP. This said, strictly speaking, the LP is not optional since it is required

to project out ghost modes which would otherwise result in an unstable quantum theory.

Nonetheless, one may treat the action LELKO−cosmo classically and study its cosmology.

Since P does not appear in this action, previous studies have not truly addressed ELKO

cosmology but simply the cosmology of an unconstrained spinor with Klein-Gordon action.

We found in the previous section that the energy momentum tensor of an unconstrained

NSS cosmology. Adjusting this for the the different kinetic term normalization we have:

T µνcosmo =
¬

ψ
←−∇ (µ∇ν)ψ − gµνLcosmo +

1

2
∇ρJµνρ,

Jµνρ = − i
2

[

¬

ψ
←−∇ (µf ν)ρψ +

¬

ψfρ(µ∇ν)ψ
]

.

The ∇ρJµνρ term in T µνcosmo did not appear in previous studies of “ELKO” cosmology, since

they did not take into account the variation of the spin-action with respect to the metric.

We therefore briefly re-derive the cosmology of these models with the corrected energy

momentum tensor.

We make the definition ψ = ϕξ where ξ is a constant spinor. Now in principle we can

have
¬

ξξ > 0,
¬

ξξ = 0 or
¬

ξξ < 0 with ξ 6= 0. However the last two possibilities will result in

non-positive energy solutions i.e. ghosts, and we should properly therefore concentrate on

the non-ghost solutions with
¬

ξξ > 0, and by fixing the definition of ϕ, we have
¬

ξξ = 1.

We note that Jµνρ = J̃ (µν)ρ where:

J̃µ
νρeaνe

b
ρ ≡ Jabµ = − i

2

[

¬

ψ
←−∇µf

abψ − ¬

ψfab∇µψ
]

,

= − iϕ
2

2

[

¬

ξΓµf
abξ +

¬

ξfabΓµξ
]

.

It is straight-forward to see that J̃abµ = −J̃baµ and since Γt = 0 that J̃abt = 0.

Now f0j = iγ0γj = idiag(σj ,−σj). Thus:

J̃0j
xi = −J̃j0

xi = −ϕ
2ȧ

4

[

¬

ξ
(

γ0γiγ0γj + γ0γjγ0γi
)

ξ
]

= −ϕ
2ȧ

2
δi
j .

Now f jk = ǫljkdiag(σl, σl). Thus
(

γ0γif jk + f jkγ0γi
)

= 2ǫijkγ
5 where γ5 =

diag(I2×2,−I2×2). It follows that:

J̃jk
xi =

ϕ2ȧi

4

[

¬

ξ
(

γ0γif jk + f jkγ0γi
)

ξ
]

=
ϕ2ȧ

2
iǫijk

¬

ξγ5ξ.
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It follows that the only non-vanishing component of Jµνρ is

Jx
itxj

= J0xixj

=
ϕ2ȧ

4a3
δij, Jx

ixjt = −ϕ
2ȧ

2a3
δij .

Recall that the contribution of the current to the energy-momentum tensor is
1
2∇ρJ (µν)ρ, thus we define the symmetric tensor Fµν = F (µν) = 1

2∇ρJµνρ and find for

its non-vanishing components

F tt =
3ȧ2

4a2
ϕ2, (5.4)

F xi
xj

=
1

4a2
δij

d

dt

[

a2ȧaϕ2
]

. (5.5)

Therefore, the complete energy-momentum tensor is

T tt =
1

2
ϕ̇2 + V (ϕ2) +

3ȧ2

8a2
ϕ2, (5.6)

T xi
xj

= δij

{

3ȧ2

8a2
ϕ2 + V (ϕ2)− 1

2
ϕ̇2 +

1

4

[

ȧ

a
ϕ2

]

,t

}

. (5.7)

We define energy density, ρψ, and pressure, pψ, via the diagonal components of the

energy-momentum tensor T µν = diag(ρψ,−pψ,−pψ,−pψ). Hence:

ρϕ =

[

1

2
ϕ̇2 + V (ϕ2)

]

+
3

8
H2ϕ2, (5.8)

pϕ =

[

1

2
ϕ̇2 − V (ϕ2)

]

− 3

8
H2ϕ2 − 1

4
Ḣϕ2 − 1

2
Hϕϕ̇.

One can now easily check that ρ̇ϕ + 3H(ρϕ + pϕ) = 0 implies, as it should, that the

field equation for ϕ is

ϕ̈+ 3Hϕ̇+ 2V ′(ϕ2)− 3

4
H2ϕ = 0. (5.9)

Let us consider now the acceleration equation which contains the usual term ρψ+3pψ,

we find

ρϕ + 3pϕ =
[

2ϕ̇2 − V (ϕ2)
]

− 3

4

(

H2ϕ2 + Ḣϕ2 + 2Hϕϕ̇
)

. (5.10)

The Friedman equation with matter source, ρmatter now reads

H2 =
8πG

3(1− πGϕ2)

[

1

2
ϕ̇2 + V (ϕ2) + ρmatter

]

. (5.11)

This form of writing the Friedman equation has a particularly nice interpretation. Namely,

the presence of am “ELKO” (i.e. an NSS without projection operator term) modifies the

effective gravitational coupling constant with G → Geff = G/(1 − πGϕ2). This in turn

places a simple limit on the maximum value of ϕ, ϕ < 1/
√
πG = 2

√
2MPl, where MPl =

1/
√

8πG is the reduced Planck mass. However since we have not included a projection

term in the Lagrangian, it is not clear to what extent, if at all, such a cosmology can be

realized with a Lorentz invariant and ghost-free NSS spinor model.
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5.2 Dimensionless representation of field equations

Consider a setting in which we only have ELKO spinor fields coupled minimally to gravity,

this means we neglect all possible interaction terms. We will now formulate the field

equations as an autonomous system of two differential equations. We define u = πGϕ̇

and v = πGϕ2 and V (ϕ2) = f(v)/(πG)2. Moreover, we introduce a new time coordinate

τ = t/
√
πG and h(u, v) = H(t)

√
πG. Then, for the field equations we find

uτ = −3h(u, v)u +
3h2(u, v)

4

√
v − 2f,v(v)

√
v, (5.12)

vτ = 2
√
vu, (5.13)

where the function h(u, v) is given by

h(u, v) = 2

√

u2 + 2f(v)

3(1− v) . (5.14)

Let us analyze these equations from a dynamical systems point of view for the moment.

The critical points of the system are obtained by solving uτ = 0 and vτ = 0 for u and v.

The equation vτ = 0 is satisfied if either u = 0 or v = 0. Thus, we now need to solve the

other equation uτ = 0 for these two cases. Thus, we find three conditions when critical

points can exist

A : u = 0, v = 0, (5.15)

B : u = 0, f ′(v) = f(v)/(1 − v), (5.16)

C : u2 = −f(0), v = 0. (5.17)

The critical point A always exists and corresponds to ϕ̇ = ϕ = 0. The existence of the

two other points depends on the function f and thus on the chosen potential of the ELKO

field. Point C exists provided f(0) ≤ 0, this means that a canonical mass of a quartic self

interaction term would yield a critical point identical to point A. The most interesting is

point B since it depends on the form of the entire function on the positive half line. Note

that the equation f ′(v) = f(v)/(1− v) can in principle have infinitely many solutions. For

example, f(v) = c/(1− v) solve this equation for all values of v and in that case we would

encounter a critical line. The function f(v) = αv+β/2 v2 on the other yields up to solution

depending on the values of α and β.

5.3 De Sitter solutions

Based on this discussion we can have a closer look at de Sitter type solutions. A de Sitter

phase is characterized by h = h0 6= 0 where h0 is a constant. Let us for the moment denote

c2 = 3h2
0/4. Now eq. (5.14) implies

u2 = c2(1− v)− 2f(v), (5.18)

⇒ 2uuτ = −(c2 + 2f,v)vτ = −(c2 + 2f,v)2
√
vu,

where we used eq. (5.13). This latter equation can be satisfied by either u ≡ 0 or we have

uτ = −(a2 + 2f,v)
√
v.
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‘Fast Roll’ de Sitter Solutions u 6= 0: with u 6= 0, the right hand side of

eq. (5.12) gives

− (c2 + 2f,v)
√
v = uτ = −2

√
3cu+ (c2 − 2f,v(v))

√
v, (5.19)

from which we find

2c2
√
v = 2

√
3cu = 2

√
3c

vτ
2
√
v
, (5.20)

where we used eq. (5.13) in the last step. Thus, v is a solution of the simple differential

equation vτ = h0v and so v = v0e
h0τ and therefore f(v) = 3h2

0/8 − h2
0v/2. Note that this

corresponds to the solution discussed in Subsection 5.3.

‘Slow / no roll’ de Sitter solutions: another possible de Sitter solutions exist for

u ≡ 0. In that case we have uτ = 0 and so for v 6= 0 must require v = v̄ = v̄(τ) with

f,v̄(v̄) =
3h2

0

8
, f(v̄) =

3h2
0(1− v̄)

8
. (5.21)

Thus we need v̄ = v0 = const where

f,v̄(v0) =
f(v0)

1− v0
. (5.22)

These solutions are stable with respect to small homogeneous perturbations if

f,v̄v̄(v0) >
2f,v(v0)

1− v0
=

2f(v0)

(1− v0)2
=

2f2
,v(v0)

f(v0)
. (5.23)

Thus, stability requires

f(v0) > 0,
(1− v0)f,v(v0)

f(v0)
= 1, (5.24)

f,vv(v0)f(v0)

2f2
,v(v0)

> 1.

Whilst the first two conditions are straightforward to satisfy, the last is more difficult

and imposes restrictions on the form of f . As above, let us restrict ourselves to f(v) =

αv + βv2/2 then the last condition is never satisfied when the first two conditions hold.

Recall that this choice of f corresponds to a potential with canonical mass term and quartic

self interaction

Solutions with f(v) = f0 + αv + βv2/2 do, however, exist provided certain conditions

on f0/α and α/β hold. In this case, as opposed to the standard scalar field scenario, Φ is

held up the potential by H2 and so one is not actually at a minimum of V (
¬

λλ).

If there is a minimum of the potential at
¬

λλ = 0, then one does, however, get de

Sitter type solutions. This could be interesting if f(0) < f(v0), f,v(0) > f(0) (and the

other conditions given above hold when v = v0) as then the de Sitter solution at v = v0 is

only actually meta-stable and one would expect it to decay via tunneling to the solution

at v = 0.

– 23 –



J
H
E
P
0
7
(
2
0
1
0
)
0
5
3

5.4 Conformal couplings

Let us now briefly outline the case when a conformal coupling −β/2 ¬

λλR is taken into

account. Then the energy momentum tensor becomes

T µν = ∇(µ ¬

ψ∇ν)ψ − 1

2
gµν∇ρ ¬

ψ∇ρψ (5.25)

+∇ρJ (µν)ρ
elko + gµνV (

¬

ψψ) + β∇µ∇ν( ¬

ψψ) − β�(
¬

ψψ)gµν .

The Einstein field equations are modified to

(1− 8πGβ
¬

λλ)Gµν = −8πG
[

T µνelko + T µνmatter

]

, (5.26)

where the matter energy momentum tensor is defined as usual

T µνmatter = −2
δ(
√−gLmatter)

δgµν
. (5.27)

As before, we consider the case where the cosmological ELKO spinor is given in the

form ψ = ϕ(t)ξ where ξ is a constant spinor satisfying
¬

ξξ = 1. In this case ϕ obeys

ϕ̈+ 3Hϕ̇+

(

2V,ϕ2 + βR− 3

4
H2

)

ϕ = 0, (5.28)

which reduces to eq. (5.9) in the limit β → 0. Moreover, the effective energy density of the

conformally coupled ELKO field is given by

ρelko =
1

2
ϕ̇2 + V (ϕ2) +

3

8
H2ϕ2 − 6βHϕϕ̇. (5.29)

The modified Friedman equation now take the form

3(1− β8πGϕ)H2 = 8πG [ρelko + ρmatter] . (5.30)

It is clear that de Sitter type solutions will exist also in the conformally coupled case since

there is now an additional degree of freedom and a more interesting coupling between the

matter and the geometry. Since this scenario has not been studied yet for the ELKO spinor

field, we expect a variety of interesting results to emerge.

6 Cosmology of Lorentz invariant NSS

We now focus on the cosmology of non-standard spinors with the Lorentz invariant form

of P :

P =
1

2
(1 + iγ5)P0 +

1

2
(1− iγ5)

¬

P0, P0 = −ip−1 /∇. (6.1)

We also focus on the action given by L
(1)
ψ (i.e with the kinetic term

¬

ψ
←−
/∇ /∇ψ) since the

resulting field equation operator /∇2
commutes with P . With this choice of kinetic term

we do not find any modification to the effective gravitational constant. However, in this
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case when V ′ = m2 we recover standard Dirac spinors both in curved and flat space and

so we can be confident that the free-field theory is ghost-free.

In flat FRW backgrounds Γ0 = 0 and Γxi = 3ȧ/2γiγ0 so −γµΓµ = 3ȧ/2a. It fol-

lows that:

/∇ψ = a−3/2 /∂(a3/2ψ). (6.2)

Hence:

Pψ = a−3/2Pflat
(

a3/2ψ
)

, (6.3)

where Pflat = (1 + iγ5)Pflat
0 + (1− iγ5)

¬

Pflat
0 where Pflat

0 = −ip−1 /∂ and p−1 is 1/
√
−∂2.

The total Lorentz invariant NSS spinor action is:

Sψ =

∫ √−gd4x
[

ψ̄
←−
/∇ /∇ψ − V (ψ̄ψ) −χ̄P−ψ − ψ̄

←−
P−χ

]

.

Using the relation between /∇ and /∂ and between P and Pflat in an FRW background gives:

Sψ =

∫

d3x

∫

dt
[

¯̃
ψ
←−
/∂ /∂ψ̃ − a3V (a−3 ¯̃

ψψ̃) +¯̃χPflat
− ψ̃ +

¯̃
ψ
←−
P flat
− χ̃

]

.

where ψ̃ = a3/2ψ. Varying the full action with respect to a and defining Φ̃ = ¯̃ψψ̃, and

Φ = a−3Φ̃, gives:

3H2 + 2Ḣ = κ
[

V (Φ)− V ′(Φ)Φ
]

. (6.4)

Assuming that ψ = ψ(t), we find that
¬

P = P and so P = P0 and Pflat = Pflat
0 .

The field equations for ψ̃ and ¯̃ψ are then:

ψ̃ = ψ̃+,
¯̃ψ = ¯̃ψ+,

¨̃ψ + V ′(Φ)ψ̃ = χ̃−,
¨̃̄
ψ + V ′(Φ)

¯̃
ψ+ = ¯̃χ−.

We define Ψ̃ =
˙̃̄
ψ ˙̃ψ and Ψ = a−3Ψ̃. We then have the coupled equations:

¨̃Φ = 2
[

Ψ̃− V ′(Φ)Φ̃
]

, (6.5)

˙̃Ψ = −V ′(Φ) ˙̃Φ. (6.6)

In an FRW background ψ = ψ(t), and so in the Dirac representation of the γ matrices

where γ0 = diag(+1,+1,−1,−1), it can be checked that the projection conditions requires

that ψ have the form:

ψ+ = a−3/2
∑

ω,k≥0











e−ikt
[

A+(ω, k)eωt +A−(ω, k)e−ωt
]

e−ikt
[

B+(ω, k)eωt +B−(ω, k)e−ωt
]

e+ikt
[

C+(ω, k)eωt + C−(ω, k)e−ωt
]

e+ikt
[

D+(ω, k)eωt +D−(ω, k)e−ωt
]











. (6.7)
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where A+(0, k) = B+(0, k) = C−(0, k) = D−(0, k) = 0 and A−(ω, 0) = B−(ω, 0) =

C+(ω, 0) = D+(ω, 0) = 0.

When V ′(Φ) ≡ V ′0 = const, solutions to the ψ field equation are proportional to

exp(±i
√

V ′0t) and
√
−D2 →

√

V ′0 . Using the form of ψ mandated by the projection condi-

tion, it is then straight-forward to check that:

Ψ̃ = ‖V ′0‖Φ̃.

and Φ̃ ≥ 0.

Combining this with eq. (6.6) we have that V ′0 > 0 implies ˙̃Φ = 0. If V ′ < 0, however,

there is no additional restriction on ˙̃Φ.

The Friedman equation with additional source ρmatter now reads:

H2 =
κ

3
[Ψ + V (Φ) + ρmatter] . (6.8)

So the energy density ρψ and pressure pψ are given by:

ρψ = Ψ + V (Φ), (6.9)

pψ = V ′(Φ)Φ− V (Φ). (6.10)

When V (Φ) = m2Φ = m2ψ̄ψ we therefore have pψ = 0 and the non-standard spinors (NSS)

evolve like dust ρψ ∝ a−3. In this situation, V ′ = m2 = const and so Ψ = |m2|Φ ∝ a−3

and so if m2 > 0, ρψ = 2m2Φ ∝ a−3 ≥ 0 whereas if m2 < 0, ρψ = 0 = pψ. The projection

condition has essentially ensured the positivity of the potential energy, that is ρψ ≥ 0.

6.1 Non-trivial de Sitter solutions

We now consider what is required for there to be a de-Sitter solution where pψ = −ρψ;

ρψ 6= 0. We distinguish between trivial de-Sitter solutions where the effective dark energy

density is ρde = V (0) and non-trivial ones where ρde > V (0). All non-trivial solutions

feature a cosmological spinor condensate Φ = Φ0 > 0, see also [33, 39, 40].

Eqs. (6.9) and (6.10) give that pψ = −ρψ implies Ψ̃ = −V ′(Φ)Φ̃. Differentiating the

relationship and using eq. (6.6) then gives V ′(Φ) = const. There are then two possibilities.

If V ′′ = 0, so that V (Φ) = V0 + V ′0Φ, we have pψ = −V0 and so all de Sitter solutions must

have ρψ = V0 i.e. a trivial de-Sitter solution where, other than the contribution from the

constant term in V , the NSS energy vanishes.

Non-trivial solutions therefore require V ′′ 6= 0 and Φ = a−3Φ̃ = Φ0 = const so that

V ′(Φ) = const. de-Sitter solutions have H = ȧ/a = H0 = const > 0 and so Φ̃ = Φ0e
3H0t.

Using the Friedman equation, H2 = H2
0 = κρψ/3 and eq. (6.5) then gives:

H2
0 = −4

9
V ′(Φ0) =

κ

3

[

V (Φ0)− V ′(Φ0)Φ0

]

. (6.11)

Since H2
0 > 0, we must have V ′(Φ0) < 0. We also need:

V ′(Φ0) = − V (Φ0)
4
3κ − Φ0

. (6.12)
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If V (Φ0) > 0 then we need Φ0 < 4/3κ.

In this non-trivial de Sitter, ψ = ψ0. Noting that a−3/2 = e−3H0t/2, we see from

eq. (6.7) that the projection condition requires the following form (in the Dirac represen-

tation) for ψ0:

ψ0 = A0











cos θ

eiφ sin θ

0

0











. (6.13)

for some θ ∈ [−π/2, π/2], φ ∈ [0, 2π) and non-vanishing A0 ∈ C. We then have Φ0 =

‖A0‖2 > 0.

We note, in passing, that such de Sitter solutions exist for quartic potentials (in ψ) i.e.

V (ψ̄ψ) = V (Φ) = λ

[

µ4 +
1

2

(

Φ−m2
)2
]

,

for λ > 0. It is clear that V (Φ) is non-negative for all real values the µ and m2 and solving

the equation for Φ0 requiring V ′(Φ) < 0 gives:

Φ0 =
4

3κ
−

√

2µ4 +

(

4

3κ
−m2

)2

(6.14)

The projection condition on ψ0 requires that Φ0 > 0 and this requires:

4m2

3κ
>

1

2
m4 + µ4, (6.15)

which is certainly satisfied when m,µ2/m≪Mpl. With such a potential the effective dark

energy density is ρψ = ρde = λ(µ4 +m4/2− Φ2
0/2).

6.2 Perturbations about the de Sitter solution and stability

To consider the stability of NSS de-Sitter solutions, we rewrite eqs. (6.5) and (6.6) in terms

of Φ = a−3Φ̃ and Ψ = a−3Ψ̃. We have:

Φpp + [6− F ] Φp =

[

4

κ
− 3Φ

]

F − 3ΦG,

Ψp + 3Ψ = −V ′(Φ) [Φp + 3Φ] , (6.16)

F = − Ḣ

H2
=

3

2

Ψ + V ′(Φ)Φ

Ψ + V (Φ)
, (6.17)

G =

(

4
κ − 3Φ

)

V ′(Φ) + 3V (Φ)

Ψ + V (Φ)
, (6.18)

where p = ln a. In the de-Sitter background F = G = 0 and Φ = Φ0 = const. We now

consider a linear perturbation, δΦ, in Φ. Now:

3δG =
4V ′′(Φ0)

H2
0

[

1− 3κΦ0

4

]

δΦ,

4

κ
δF =

2 (δΨ + V ′(Φ0)δΦ)

H2
0

+
2V ′′(Φ0)Φ0

H2
0

δΦ.
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We define δY = (δΨ + V ′(Φ0)δΦ)/H2
0 and let:

ǫ0 = 1− 3κΦ0

4
, η0 = V ′′(Φ0)Φ0/H

2
0 .

We then have:

δΦpp + 6δΦp = 2ǫ0 [δY − η0δΦ] ,

δYp + 3δY = −3η0δΦ.

Now defining δΦ̃ = a3δΦ and δỸ = a3δY and differentiating the δΦ equation we have:

δΦ̃ppp − 9δΦ̃p = −2ǫ0η0

[

3δΦ̃ + δΦ̃p

]

. (6.19)

Thus δΦ = Φ0
∑

qQqe
H0qt for some constants Qq where:

[q(3 + q) + 2ǫ0η0] (q + 6) = 0.

So either q = −6, or q = q±(ǫ0η0) where:

q±(ǫ0η0) =
3

2

[

−1±
√

1− 8ǫ0η0

9

]

. (6.20)

Since the underlying field ψ obeys a second order equation and has a projection condi-

tion to eliminate ghost modes, it may seem slightly strange that there are three linearly

independent modes in δΦ (and hence δρψ). Fortunately, as we show below, the projection

condition ensures that the q− is not actually present (Qq− = 0).

Note that perturbations of the spinorial part of a spinor in this context have been

considered in [33, 39, 40] where a hedgehog type ansatz was used to identify the correct

degrees of freedom when perturbing a spinor in a cosmological spacetime.

Consider the form of ψ. We have ψ̃ = a−3/2ψ = a−3/2
[

e3H0t/2ψ0 + δψ̃
]

. We then have

∂2
t δψ̃ = −V ′(Φ0)δψ̃ − e3H0t/2V ′′(Φ0)ψ0δΦ + δχ̃−. (6.21)

where P̃ δχ̃− = −δχ̃. Solving this equation with the projection condition it follows that:

δψ̃ = −Qq+
2ǫ0

e(
3

2
+q)H0tψ0 + C0e

3

2
H0tψ0 +C1e

3

2
H0tψ1 − C2e

− 3

2
H0tψ2, (6.22)

where Ci ∈ C and

ψ1 = A0











sin θ

−eiφ cos θ

0

0











, ψ2 = A0











0

0

cos β

eiα sin β











,

for some α and β. We note that ψ̄1ψ1 = Φ0, ψ̄2ψ2 = −Φ0 and that both ψ1 and ψ2 are

orthogonal to ψ0. Thus writing a = eH0t+δA and Qq± = Q± we have:

Φ

Φ0
= 1− 3δA+

Q+

ǫ0
eH0q+t + 2Re(C0) + |C1|2 − |C2|2a−6. (6.23)
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We then have:

3δAp =
κ

2H2
0

[

δΨ + V ′(Φ0)δΦ
]

. (6.24)

It follows that:

− 3δA = −3A1 −
(ǫ0 − 1)

ǫ0
Q+e

H0q+t

−(ǫ0 − 1)

ǫ0
Q−e

H0q+t +
(ǫ0 − 1)µ0

9
Q−6e

−6H0t.

Thus:

Φ

Φ0
= 1 +Q+a

q+ +
[

(2Re(C0) + |C1|2 − 3A1

]

(6.25)

−(ǫ0 − 1)

ǫ0
Q−a

q− +

(

(ǫ0 − 1)µ0

9
Q−6 − |C2|2

)

a−6.

Now we previously found that Φ/Φ0 = 1+Q+a
q+ +Q−aq− +Q−6a

−6 and so since 1− ǫ0 =

3κΦ0/4 > 0 we must have Q− = 0 and:

Q−6

[

1 +
κΦ0µ0

12

]

= −|C2|2.

Thus we see that the projection condition eliminates one of the possible modes in δΦ (that

proportional to aq− and we have:

δΦ = Φ0

[

Q+a
q+ − |C2|2a−6

1 + κΦ0µ0

12

]

,

for some Q+ and C2. Finally, we that δρψ = δΦ + V ′(Φ0)δΦ is given by:

δρψ =
Q+a

q+

3 + q+
+
|C2|2a−6

3 + κΦ0µ0

4

. (6.26)

If µ0ǫ0 > 9/8 then we must take q+ = −3/2 − i
√

8µ0ǫ0/9− 1 in the expression for ψ and

replace aq+ with Re(aq+) in δΦ. In δρψ we take the real part of aq+/(q+ + 3).

7 Conclusions

In this article, we have constructed a new class of theories of non-standard spinors (NSS).

Their dynamics is more general that than that of Dirac or Majorana spinors, even when

self-interactions are not taken into account. In contrast to standard spinors, the dynamics

of NSS is not described by a first order equations of motion like the Dirac equation. This

leads to a more general and thus more interesting cosmological behavior than that exhibited

by normal spinors, including for instance the existence of non-trivial de Sitter solutions.

It is therefore possible to invoke NSS, as an alternative to scalar fields, as one possible

explanation of the early and late time acceleration of our Universe. As example of a NSS
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theory is that of the eigenspinors of C, originally proposed by Ahluwalia-Khalilova and

Grumiller in ref. [17, 18].

We have constructed a general action for NSS. We began by considering a Klein-Gordon

action for spinors and noted that because there is no positive definite Lorentz invariant

norm for spinors, such an action would have propagating negative energy ghost modes.

These would lead to instabilities in the quantum theory. These negative energy modes can,

however, be eliminated by including an additional term in the action. This term depends

on an operator P, which must have the property that Pψ = ψ on positive energy modes,

and P2ψ = −ψ on negative energy ones. Hence P2 = I. We also noted that in momentum

space P must be an odd function of momentum i.e. P(p) = −P(−p). The original ELKO

model as well as Dirac and Majorana spinors correspond simply to specific choices of the

projection operator P.

By constructing the NSS action in this way, we found that ELKO spinors require a

choice of P that is not Lorentz invariant but instead includes a preferred axis. Previous

works on this field have effectively made a specific choice of frame so that this preferred

direction and hence the violation of Lorentz invariance was not manifest explicitly. Using

our general definition of NSS theories, however, the violation of Lorentz invariance which

is required to define ELKOs is clear at the level of the action. We note that an alternative

definition of the eigenspinors of C replaces the spatial direction with a preferred time-

like direction.

A truly Lorentz invariant NSS theory requires a Lorentz invariant projection operator

P. For most such choices of the operator, Pψ = ψ is essentially equivalent to the Dirac

equation with self-interaction terms. The projection condition then effectively reduces the

dynamics from second to first order equations of motion. We found that there was only

one suitable, Lorentz invariant choice of P which preserves the second order dynamics.

In momentum space and by assuming a flat background this operator is given by P =

pµγ
µ/
√
pµpµ, and so P is a non-local operator. In the absence of self-interactions, i.e. we

have V = V0 +m2ψ̄ψ, the field equations then reduce to the Dirac equation, but for more

complicated choices of V this is no longer the case.

Having provided a general definition of NSS we then constructed and examined the

full energy-momentum tensor. In the case of ELKOs we noted that even if one ignores the

additional contributions to the energy-momentum tensor from the variation of P which

respect to the metric, the energy momentum tensor differs from that which has previously

appeared in the literature [27–42]. We show explicitly in appendix A.3 where the additional

terms come from, namely from the variation of the spin connection with respect to the

metric. In case of Dirac spinors this contribution identically vanishes, see appendix A.2,

and therefore, we believe, this has been neglected in the past for ELKO spinors.

The presence of additional terms even in the ELKO energy-momentum tensor led us

to re-address the cosmology of such models. We defined ψ = ϕ(t)ξ, where ξ is a constant

spinor, and so were able to treat ϕ as the only cosmological dynamical variable. In the

simplest case, the flat FLRW background, it produces an effective gravitational coupling G

which places a simple limit on the maximum value of Φ, namely Φ < 1/
√
πG = 2

√
2MP l.

When we examine de Sitter type solutions, this ansatz produces a potential very similar
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to those discussed in previous work. Its form is surprisingly similar to the case where

the variation of the spin connection with respect to the metric was neglected. However,

as we noted, it is not clear if a Lorentz invariant NSS model can be found which has

these dynamics.

We also considered the dynamics of the only Lorentz invariant NSS model we were

able to construct. We found that cosmologically the dynamics can be written in terms

of Φ = ψ̄ψ and Ψ = ˙̄ψψ̇. The potential describing self-interactions depends only on Φ:

V = V (Φ). When V,ΦΦ = 0, we had previously noted that the theory should be equivalent

to that of a Dirac spinor, and so ρψ ∝ a−3. We confirmed that this was indeed the case.

When V,ΦΦ 6= 0 and V,Φ < 0 we found that there stable de Sitter solutions; stability of

these solutions is ensured when V,ΦΦ > 0. In contrast to the situation with scalar fields,

de Sitter solutions do not require |V,Φ/κV (Φ)| ≪ 1 (i.e. slow-roll). Instead with NSS we

generally have −V,Φ/κV (Φ) ∼ O(1). With NSS spinors, the expansion of the Universe acts

as a brake to prevent the effective scalar field Φ rolling down the potential.

The main results of the paper lie in our discussion of the definition and dynamics of the

entire class of NSS, and their cosmology. We laid the foundations of an in depth analysis of

the dynamics of this field in an arbitrary spacetime with a focus on cosmological dynamics.

Importantly we also constructed what is, to the best of our knowledge, the only Lorentz

invariant, ghost free proposal for a theory of non-standard spinors.

The cosmological dynamics of the effective scalar degree of freedom in both ELKO

and Lorentz invariant NSS cosmology show a large number of very interesting properties,

mainly due to their more complicated couplings to the gravitational sector when compared

to the scalar field. The cosmological evolution of the NSS energy density exhibits a much

wider range of behavior than that seen with Dirac spinors where it always scales as a−3.

The existence of stable de Sitter solutions means that NSS could represent an alternative

to scalar field inflation / dark energy.
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A Spin connection contribution to the energy-momentum tensor

The purpose of these appendices is to demonstrate that the contribution from the variation

of the spin connection, ωabµ to the energy momentum tensor has generally been overlooked

in previous work on ELKO spinors. First we look in detail at the derivation of δΓµ then

we will check with the Dirac spinor that this does not give any contribution, as expected,

but rather in the case of an ELKO spinor it becomes very important.
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A.1 Variation of δΓµ

Starting from (2.7) we can write down the variation

δΓµ =
i

4
fabδω

ab
µ . (A.1)

Now

δωabµ = δeaν∇µeνb + eaν∇µδeνb + eaνe
σbδΓνµσ . (A.2)

We evaluate this in a local inertial frame where gµν,ρ = 0 and eaµ,ρ = 0, in such a LIF:

δωabµ

∣

∣

∣

LIF
= −eνb∂µδeaν +

1

2
eνaeσb [∂σδgµν + ∂µδgνσ − ∂νδgµσ ] , (A.3)

= eν[aeσb]∂µ [eνcδeσ
c] + eν[aeσb]∂σδgµν .

Hence in a general frame:

δΓµ =
i

4
f νρ

[

∇µ
(

e[νcδeρ]
c
)

+∇ρδgµν
]

where f νσ = eνae
σ
b f

ab. Now δgµν = 2ec(µδeν)c and so the first term on the right hand side

does not contribute to the variation with respect to gµν , and so just varying gµν we have:

δΓµ =
i

4
f νρ∇ρδgµν = − i

4
fρν∇ρδgµν . (A.4)

A.2 Dirac spinors

In this subsection we will calculate the contribution to the Dirac energy-momentum tensor

from δΓµ which will be zero. We follow Hehl [43–45] and write the Lagrangian as

LD =
1

2

(

ψ̄iγα∇αψ − ψ̄
←−∇αiγ

αψ
)

−mψ̄ψ. (A.5)

Thus we find

T µνD = − 2√−g
δ(
√−gLD)

δgµν
(A.6)

=
i

2

[

ψ̄γ(µ∇ν)ψ − ψ̄←−∇ (µγν)ψ
]

− gµνLD + T ′µν , (A.7)

where T ′µν includes just the contributions from δΓα. We will confirm that in the case of

Dirac spinors, T ′µν vanishes.

Thus:

T ′µν = i

[

ψ̄γα
δΓα
δgµν

ψ + ψ̄δΓαδgµνγ
αψ

]

,=
1

4
∇ρ
[

ψ̄F (µν)ρψ
]

,

where

Fµνρ = γµf νρ + f νργµ =
i

2
[γµγνγρ − γργνγµ − γµγργν + γνγργµ] = −F νµρ, (A.8)

where we have used γµγν = −γνγµ + 2gµν to establish the antisymmetry in µ and ν. It

follows that F (µν)ρ ≡ 0 and hence T ′µν ≡ 0 also. As expected, the contribution to T µν

from varying the spin connection is identically zero in the case of Dirac spinors.
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A.3 NSS

In this subsection we consider the contribution to the energy momentum tensor from the

NSS action when the operator P is fixed i.e. δP = 0. We show that ignoring the contribution

from δΓµ gives an incomplete energy-momentum tensor.

We focus on the variation of L(2)
ψ with respect to the metric; the variation of L(1)

ψ is

similar. Fixing P , modulo the projection condition, the Lagrangian is

L(2)
ψ = gµν

¬

ψ
←−∇µ∇νψ (A.9)

When we vary this with respect to the metric we find:

T
(2)µν
ψ = − 2√−g

δ(
√−gL(2)

ψ )

δgµν
=
[

2
¬

ψ
←−∇ (µ∇ν)ψ − L(2)

ψ gµν
]

+ T ′µν , (A.10)

where

T ′µν = −2gρσ(
¬

ψ
δΓρ
δgµν

∇σψ −
¬

ψ
←−∇ρ

δΓσ
δgµν

ψ)

=
i

2
gρσ∇κ

[

¬

ψfκµδνρ∇σψ −
¬

ψ
←−∇ρf

κµδνσψ
]

,

= ∇ρJµνρ,

where we have defined:

Jµνρ = − i
2

[

¬

ψ
←−∇(µf ν)ρψ +

¬

ψfρ(µ∇ν)ψ
]

. (A.11)

Thus the full energy-momentum term (up to an additional contribution from the variation

of P ) is:

T (2)ψ
µν = 2∇(µ

¬

ψ∇ν)ψ −
1

2
gµνL (A.12)

+∇ρJµνρ.

The first line is the usual energy-momentum of the Elko spinor quoted in literature [27,

28, 30–32]. The second line provides the additional contributions to Tµν from variation of

the metric in the spin connection. The important point is that this is non zero.

B Path integral quantization

In this appendix, we consider the quantization of the action:

S[ψ,
¬

ψ,χ, ¬χ] =

∫ √−g
(

L(1)
ψ + LP

)

d4x, (B.1)

L(1)
ψ = (

¬

ψ
←−
/∇)( /∇ψ)− V (

¬

ψ,ψ), (B.2)

LP = −¬χP−ψ −
¬

ψ
←−
P

(A)
− χ. (B.3)

using the path integral formalism. We define V (
¬

ψ,ψ) = m2 ¬

ψψ + I(
¬

ψ,ψ) so that I(
¬

ψ,ψ)

represents the non-free field self interaction terms. We will assume that the effect of I(
¬

ψ.ψ)
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can be evaluated via a perturbative expansion about the free field theory. We can split S

into a free-field action S0 and interaction term Iψ[
¬

ψ,ψ] thus:

S[ψ,
¬

ψ,χ, ¬χ] = S0[ψ,
¬

ψ,χ, ¬χ]− I[ ¬

ψ,ψ]. (B.4)

where the free field action is:

S0[ψ,
¬

ψ,χ, ¬χ] =

∫ √−g
(

(
¬

ψ
←−
/∇)( /∇ψ)−m2 ¬

ψψ + LP
)

d4x.

The interaction term is therefore given by:

Iψ[
¬

ψ,ψ] =

∫ √−g
[

V (
¬

ψ,ψ) −m2 ¬

ψψ
]

d4x.

Such an interaction term is generally introduced perturbatively and so the free field mass,

m2, should be chosen so that Iψ can be treated as a small perturbation to S0.

The generating functional, Z[J,
¬

J ] is defined by:

Z[J,
¬

J ] =

∫

DψD ¬

ψDχD¬χ e
iS[ψ,

¬

ψ,χ,¬χ]+i
R √−g

“

¬

Jψ+
¬

ψJ
”

d4x
. (B.5)

where J and
¬

J are respectively spinor and dual spinor valued current. Quantum expecta-

tions of the form
〈

A(
¬

ψ,ψ)
〉

, for some function A are the given by:

〈

A(
¬

ψ,ψ)
〉

=

∫

DψD ¬

ψDχD¬χA(
¬

ψ,ψ)eiS[ψ,
¬

ψ,χ,¬χ]

∫

DψD ¬

ψDχD¬χ eiS[ψ,
¬

ψ,χ,¬χ]
,

=

[

A

(

δ

i
√−gδJ ,

δ

i
√−gδ ¬

J

)

lnZ[J,
¬

J ]

]

J=
¬

J=0

.

It is clear that observables are unaltered by a (J ,
¬

J)-independent rescaling of Z[J,
¬

J ].

Using eq. (B.4) we may rewrite Z[J,
¬

J ] thus:

Z[J,
¬

J ] =

∫

DψD ¬

ψDχD¬χ exp
(

−iIψ[
¬

ψ,ψ]
)

e
iS0[ψ,

¬

ψ,χ,¬χ]+i
R √−g

“

¬

Jψ+
¬

ψJ
”

d4x

= exp

(

−iIψ
[

δ

i
√−gδJ ,

δ

i
√−gδ ¬

J

])

×

×
[∫

DψD ¬

ψDχD¬χ e
iS0[ψ,

¬

ψ,χ,¬χ]+i
R √−g

“

¬

Jψ+
¬

ψJ
”

d4x
]

= exp

(

−iIψ
[

δ

i
√−gδJ ,

δ

i
√−gδ ¬

J

])

Z0[J,
¬

J ], (B.6)

where Z0 is the free field generating functional given by:

Z0[J,
¬

J ] =

∫

DψD ¬

ψDχD¬χ e
iS0[ψ,

¬

ψ,χ,¬χ]+i
R √−g

“

¬

Jψ+
¬

ψJ
”

d4x
. (B.7)
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B.1 Free field propagator

In flat-space (in coordinates where
√−g = 1), the field free Green’s function, GF (x−y;m),

and its Fourier transform, the free-field propagator, GF (p;m) are derived from Z0[J,
¬

J ] by:

Z0[J,
¬

J ] = Z0[0, 0]e
−i

R ¬

J(x)GF (x−y;m)J(y)d4xd4y. (B.8)

Integrating by parts and assuming that all resultant surface terms vanish:

S0[ψ,
¬

ψ,χ, ¬χ] + i

∫ √−g
(

¬

Jψ +
¬

ψJ
)

d4x =

∫ √−g
{

¬

ψ
[

− /∇2 −m2
]

ψ (B.9)

−
(

¬χ
←−
P− −

¬

J
)

ψ − ¬

ψ (P−χ− J)
}

d4x.

Now define:

φ = ψ −
[

− /∇2 −m2
]−1

[P−χ− J ] ,

¬

φ =
¬

ψ −
[

¬χ
←−
P− −

¬

J
] [

− /∇2 −m2
]−1

,

ν = χ− J, ¬ν = ¬χ− ¬

J.

and then:

S0[ψ,
¬

ψ,χ, ¬χ] + i

∫ √−g
(

¬

Jψ +
¬

ψJ
)

d4x =

∫ √−g
{

¬

φ
[

− /∇2 −m2
]

φ (B.10)

−
[

¬ν
←−
P− −

¬

J
←−
P +

] [

− /∇2 −m2
]−1

[P−ν − P+J ]

}

d4x.

To quantize this theory in the usual way we must ensure that the terms in the above

expression which involve mixing of the currents, J and
¬

J , and the auxiliary fields, ν and ν̄,

vanish. This requires that P−
[

∇2 +m2
]

P+ = P+

[

∇2 +m2
]

P− = 0 when acting on any

spinor state. This is equivalent to requiring that P is chosen so that it commutes with /∇2
:

[

P, /∇2
]

= 0. (B.11)

This is certainly the case with the Lorentz invariant choice P given in § 3.3. If we instead

consider the quantization of the action with L(1)
ψ → L

(2)
ψ we would have /∇2 → ∇2 every-

where and instead require the P commute with ∇2. We have not found any choice of P

with this property in a general background. Thus with the Lorentz invariant choice of P

the kinetic structure of L(1)
ψ is clearly preferred.

With P obeying eq. (B.11), we then have:

S0[ψ,
¬

ψ,χ, ¬χ] + i

∫ √−g
(

¬

Jψ +
¬

ψJ
)

d4x =

∫ √−g
{

¬

φ
[

− /∇2 −m2
]

φ

− ¬ν
←−
P −

[

− /∇2 −m2
]−1

P−ν.−
¬

J
←−
P +

[

− /∇2 −m2
]−1

P+J

}

d4x.

Hence:

Z0[J,
¬

J ] = Z0[0, 0]e
−i

R √−g¬

J
←−
P +

h

− /∇2−m2
i−1

P+Jd4x
, (B.12)

Z0[0, 0] =

∫

DφD ¬

φDνD¬νe
−i

R √−g¬

φ
h

/∇2
+m2

i

φd4x+i
R √−g¬ν

←−
P −

h

/∇2
+m2

i−1

P−νd4x
.
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We noted previously that observables do not depend on the overall
{

J,
¬

J
}

-independent

normalization of the generating functional and so are independent of Z0[0, 0]. We therefore

drop this overall factor in what follows. Integrating by parts and using [P, /∇2
] = 0 and

P+P+ = P+ (which follows from P2 = I), we have:

∫

¬

J
←−
P +

[

− /∇2 −m2
]−1

P+J
√−gd4x (B.13)

=

∫

¬

J
[

− /∇2 −m2
]−1

P+J
√−gd4x,

=

∫∫
[

¬

J(x)
[

− /∇2
(x) −m2

]−1
P+(x)δ(4)(x− y)J(y)

]

√

−g(x)d4x
√

−g(y)d4y.

where δ(4)(x− y) is the Dirac δ-function.

Henceforth we work in flat-space and pick coordinates so that
√−g = 1 and ∇µ = ∂µ.

We define ∂(x)µ = ∂/∂xµ. By comparing eq. (B.8) and eq. (B.12) and using eq. (B.13)) we

may now read off the free field propagator as:

GF (x− y;m) =
[

−∂2
(x) −m2

]−1
P+(x)δ(4)(x− y). (B.14)

Using

δ(4)(x− y) =
1

(2π)4

∫

d4p eip·(x−y),

and P+(x)eip·(x−y) = P+(pµ)eip·(x−y) where P+(pµ) = (I + P(pµ))/2 we have:

GF (x− y;m) =
1

(2π)4

∫

d4p
1
2 (I + P(pν))

p2 −m2
, (B.15)

=
1

(2π)4

∫

d4pGF (p;m)eipµ(xµ−yµ),

where GF (p;m) is, by definition, the free-field propagator. We therefore find:

GF (p;m) =
1
2 (I + P(pν))

p2 −m2
. (B.16)

Just as with other quantum propagator, GF (p;m), has simple poles at p = ±m which are

dealt with by making a specific choice of integration contour in GF (x− y;m) which can be

written thus:

GF (x− y;m) =
1

(2π)4
lim
ǫ→0

∫

d4p
P+(pν)eipµ(xµ−yµ)

p2 −m2 + iǫ
.

The reality condition for GF (x− y;m) is that:

ℑm

[
∫∫

¬

J(x)GF (x− y)J(y)
√

−g(x)d4x
√

−g(y)d4y

]

= 0.

This is equivalent to
¬

GF (x− y) = GF (y−x) which in turn is the case if any only if
¬

P = P.

This was precisely one of the conditions that was required in the definition of P and so
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does not represent an additional condition on P. We have shown explicitly in § 3.3 that

the Lorentz invariant choice of P obeys this condition.

In the Lorentz invariant NSS theory we have proposed:

P(pµ) =
1

2
(1 + iγ5)P0(p

µ) +
1

2
(1− iγ5)

¬

P0(p
µ),

where

P0(p
µ) = p−1

/p,

hence and p =
√
pµpµ. Also

¬

ψ = ψ̄ and so
¬

P0(p
µ) = p−1†/p. We take

√
pµpµ = i|p|. Thus if

pµp
µ > 0:

P(pµ) = p−1
/p,

and if pµp
µ < 0:

P(pµ) = γ5|p|−1
/p.

The operator P (pµ) and hence the propagator, GF(p;m) is well-defined and non-singular

for all p2 6= 0 and p2 6= m2. Singularities are only problematic if they result in singular

contributions to the Green’s function GF(x− y;m). We must show that GF(x− y) is well-

defined. We have already noted that, with an appropriate choice of integration contour,

the p = ±m singularities in GF(p;m) are harmless. What remains is to consider the new

singularity at p2 = 0.

Let us write pµ = (ω,pi)T , and then p =
√

ω2 − p2 and suppose that A(ω,p) is

non-singular (or perhaps simply non-singular at p = 0). We now consider the integral of

p−1A(ω,p) over all ω:

IA ≡
∫

p−1A(ω,p)ω =

∫ ∞

−∞

dω
√

(ω − |p|)
√

(ω + |p|)
A(ω,p).

We note that the simple pole in p we have introduced does not result in a simple pole in ω

or |p|. Instead, as one approaches the points p = 0→ ω = ±p the integrand diverges more

slowly than a simple pole and so the integral does not diverge. It should be noted though

that the full specification of p =
√

p2 (and hence P(xµ)) requires a choice of branch its value

when p2 < 0. This amounts to fixing the sign of
√
−1 = ±i. Since our P(pµ) = ±p−1

± /p the

full specification of this operator must include a such a choice of branch. Once the action

of p−1 on p such that p2 < 0 has been fixed, integrals of the form of IA are well-defined.

Now p =
√

ω2 − p2 so with an appropriate choice of branch which fixes the sign of√
−1 = ±i, we have that p takes values from ±i|p| to 0 along the imaginary axis and then

from 0 to ∞ along the real-axis.

We also define E(p2,p2) =
√

p2 + p2, and note that for fixed p and p, ω = ±E(p2,p2).

We also have pdp = ωdω and so:

IA =

∫ ∞

−∞
p−1A(ω;p)dω (B.17)

= ∓i
∫ |p|

0
ds

[

A(E(−s2;p2);p)

E(−s2,p2)
+
A(−E(−s2;p2);p)

E(−s2,p2)

]

+

∫ ∞

0
dp

[

A(E(p2;p2);p)

E(p2,p2)
+
A(−E(p2;p2);p)

E(p2,p2)

]

.
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The integrand on the right hand side is now manifestly finite at p = 0. It is now clear that

the p−1 term in the integrand on the left hand side does not introduce a divergence in IA.

Hence, using /p = pµγ
µ = ωγ0 − piγi and defining xµ − yµ = (τ, zi):

GF (x− y) =
1

(2π)4
lim
ǫ→0

∫

d3pe−ip·z {I−(p) + I+(p)} , (B.18)

where

I−(p) =

∫ |p|

0

ds

−s2 −m2 + iǫ

[

∓ iγ5γ0 sin(E(−s2, |p|2)τ)

+

(

sI

E(−s2, |p|2) ∓
γ5piγi

E(−s2, |p|2)

)

cos(E(−s2, |p|2)τ)
]

,

I+(p) =

∫ ∞

0

dp

p2 −m2 + iǫ

[

− iγ0 sin(E(p2, |p|2)τ)

+

(

pI

E(p2, |p|2) +
piγi

E(p2, |p|2)

)

cos(E(p2, |p|2)τ)
]

.

At p2 = 0, E(p2,p2) = |p|. It is therefore clear that the integrands of both I− and I+
are non-singular as p → 0 for all p. It follows that, despite the singular behaviour of

GF (p;m) at p = 0, the position space Green’s function GF (x − y) is well-defined. This is

enough to ensure that the pole at p = 0 in GF (p;m) does not introduce any new divergent

behaviour into quantum expectations and hence observables. Once the operator P (xµ) has

been completely specified, which includes specifying the branch, the quantum theory is

well-defined.

This remains true when perturbatively renormalizable interactions are introduced, and

in § B.3 below we show explicitly that the p = 0 pole does not introduce any new divergences

into loop integrals.

B.2 Quantum effective action

For completeness, we finish our treatment of the free-field theory by considering the quan-

tum effective action. In flat-space, we define the energy functional:

E [J, ¬

J ] = i lnZ[J,
¬

J ] =

∫∫

¬

J(x)GF (x− y)J(y)d4xd4y. (B.19)

and define:

ψJ(x) = −iδ lnZ

δ
¬

J
= −δE

δ
¬

J
= −

∫

d4y GF (x− y)J(y), (B.20)

¬

ψJ(x) = −iδ lnZ

δJ
= −δE

δJ
= −

∫

d4y
¬

J(y)GF (y − x). (B.21)

The quantum effective action, Γ, is defined thus:

Γ[ψJ ,
¬

ψJ ] = −
∫

d4x
[

¬

J(x)ψJ (x) +
¬

ψJ(x)J(x)
]

− E [J, ¬

J ] (B.22)

=

∫∫

d4xd4y
¬

J(y)GF (x− y)J(x).
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Using the following equations:
[

− /∇2 −m2
]

ψJ(x) = −P+(x)J(x),

ψ̄J(x)
[

−
←−
/∇2 −m2

]

= − ¬

J(x)
←−
P +(x),

we find:

Γ[ψ,
¬

ψ] =

∫∫

¬

ψ(x)
←−
P +(x)

[

− /∇2 −m2
]

P+(x)ψ(x) d4x.

Thus, as should be expected, the quantum effective action for the free field theory is

equivalent to that of the classical theory (once the auxiliary χ and ¬χ fields have been

integrated out).

B.3 Interaction terms

Interaction terms can then be introduced as a perturbation about the free field theory by

expanding out the exponential of Iψ in eq. (B.6) in the usual fashion. In flat-space this

expansion is given by:

Z[J,
¬

J ] =

[

1− iIψ
(

δ

iδJ
,
δ

iδ
¬

J

)

+ I2
ψ

(

δ

iδJ
,
δ

iδ
¬

J

)

+ . . .

]

Z0[J,
¬

J ]. (B.23)

From this one can extract Feymann rules in the usual manner and calculate Z[
¬

J,
¬

J ]. The

quantum theory derived from this procedure will be well-defined provided the form of the

interactions is perturbatively renormalizable and provided the free field Green’s function

GF (x− y) is well-defined.

We noted above that in our Lorentz invariant non-standard spinor model, the Fourier

transform, GF(p;m), of GF (x − y), had an additional simple pole at p = 0 coming from

P0(p
µ) = p−1/p terms in P. Crucially, however, we showed that this pole did not result in a

divergent GF(x−y); the Green’s function remained well-defined. It follows eq. (B.23) that,

provided the interactions are perturbatively renormalizable, a non-free Lorentz invariant

non-standard spinor will also have a well-defined quantum theory.

We now show this explicitly by noting that the p = 0 pole in GF(p;m) does not

introduce any additional divergences into quantum loop integrals, and hence the pole in

P(pµ) is harmless.

Consider the contribution, Iloop, to a general quantum loop integral from the inte-

gration over one of the loop momenta pµ. We define the number of internal lines in the

Feymann diagram corresponding to this integral to be N . Each internal line is represented

in the integral by a propagator, GF(qi;m) where qµi = pµ + kµi where we define pµ so that

kµ0 = 0 and the other kµi are independent of each other. The internal lines join at vertices

which are represented by some matrix valued operators M(i)
AB......
CD......(qj). The capital letter

indices may represent either space-time or spinor valued indices. Henceforth we suppress

these indices.

Thus we have:

Iloop =

∫

d4p

(2π)4

N−1
∏

i=0

(MiGF(qµi ;m))MN . (B.24)
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Now d4p = d4qi for any of the qi and so defining qµi = (ωi,qi) and letting E(q2i , |qi|2) =
√

q2i + |qi|2 we have:

Iloop =

∫

dqjd
3qj

E(qj ,qj)

{

X(qi; j)|ωj=E(qj,qj)
+ X(qi; j)|ωj=−E(qj,qj)

}

, (B.25)

X(qi; j) =

[

j−1
∏

i=0

(MiGF (qµi ;m))

]

Mj

[

qjGF (qµj ;m)
]





N−1
∏

k=j+1

(

MkGF (qµk ;m)
)



MN .

Note that in the integral, the integration along qj is along a path, γq, that runs along the

imaginary axis from
√

−|qj | to 0 and then from 0 to ∞ along the real axis. We note that,

for any j,
[

qjGF (qµj ;m)
]

is finite as qj → 0, and limqj→0X(qi; j) is also finite for any j.

Therefore, for all j, the integrand of Iloop does not diverge near qj = 0 for all j. The

additional pole in p the propagator does not lead to any new divergences in loop diagrams

and hence in quantum expectations and observables.
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