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1 Introduction

Recently, there has been a plethora of progress on the black hole information paradox,
which itself has been a central problem of quantum gravity for decades. At the semiclassical
level, black holes can be said to evaporate through the pair production and emission of
(thermal) Hawking radiation [1]. Subsequent work by Hawking [2] had found this process
to be non-unitary — the final state of the gravitational system appears mixed, rather than
pure, with the entanglement entropy monotonically increasing throughout evaporation.
However, holographic considerations in the context of AdS/CFT had indicated that black
hole evaporation should be unitary when phrased in the language of a dual field theory.
Unitarity in this sense led to the Page curve[3, 4] describing the entanglement entropy of
the Hawking radiation over time; the Page curve for evaporation is characterized by rising,
reaching a maximum at the so-called Page time, then falling to zero by the evaporation
time. The Page time thus describes a phase transition. Essentially, Hawking’s work yielded
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an ever-increasing entropy curve with a discontinuity at the evaporation time, instead, so,
in the gravitational picture, the entangled degrees of freedom corresponding to Hawking
radiation appear to vanish discontinuously.

Recent work in simple holographic models, reviewed in [5], is at odds with Hawking’s
past work. The most basic setup is presented by [6]. There, the full configuration is 2-
dimensional and doubly holographic. More specifically, the black hole is a solution to a
dynamical gravitational theory in two dimensions called Jackiw-Teitelboim (JT) gravity,
and the matter fields are described by a holographic CFT2. Furthermore, the black hole
geometry is coupled via transparent boundary conditions to a zero-temperature bath, i.e. a
CFT2 on Minkowski space. This allows for matter fields to propagate away from the black
hole, providing a mechanism for evaporation.

Such a setup is called doubly holographic because it lives in a theory with three equiv-
alent descriptions, established by multi-sided application of holographic duality:1

(1) a 2-dimensional, non-gravitating, zero-temperature boundary CFT (BCFT2) contain-
ing a 1-dimensional defect on which there exists a quantum mechanical dual to JT
gravity (possibly N = 2 SYK [9]),

(2) a 2-dimensional JT gravitational theory coupled to a CFT2 and glued to the BCFT2
of (1) at the latter theory’s defect (turning it into an interface), with CFT degrees
of freedom free to propagate through the interface due to transparent boundary
conditions,

(3) a 3-dimensional, purely gravitational theory on AdS3, but with a dynamical 2-
dimensional boundary (identified as a Planck brane[6]) containing the JT gravity
degrees of freedom.

The transparent boundary conditions are pivotal for evaporation to take place. They
are considered to be “turned on” at some time t = 0. More specifically, [6] mentions activat-
ing them over some finite interval of time ∆t. In (3), the reflecting boundary conditions for
t < 0 translate to having a so-called Cardy brane blocking the bath’s bulk from the Planck
brane’s bulk, while turning on transparent boundary conditions smoothly is interepreted
as having the Cardy brane move away from the conformal boundary and into the bulk.

To compute the Page curve in the semiclassical regime in description (2), one uses the
machinery of quantum extremal surfaces (QES)[10], the areas of which yield the fine-grained
von Neumann entropy by minimizing the generalized entropy functional. This functional,
put simply, captures corrections to the classical entanglement entropy due to propagating
bulk fields. When applying this machinery to an evaporating black hole in (2), one finds
that the early-time QES is just the empty set. However, at some finite time, there is a
phase transition at which the QES becomes a point disconnected from the conformal bound-
ary [11]. This point is the boundary of a so-called entanglement island which consists of
degrees of freedom behind the horizon that are redundant with those of the emitted Hawk-
ing radiation. The need for this island in fully describing the Hawking degrees of freedom
indicates that we essentially sacrifice locality in (2) to maintain unitarity in evaporation.

1Such theories had also been discussed long ago in [7, 8].
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The work by [6] instead approaches the problem using description (3). Specifically, if
the central charge of the matter CFT2 is large, then the quantum part of the generalized
entropy can be calculated to semiclassical order by application of the classical RT [12] or
HRT [13] proposals in AdS3/CFT2 in the presence of a brane. There is a phase transition
in this classical entanglement surface — the surface changes from one which entirely pen-
etrates the bulk to another that intersects the Planck brane. Accounting for this phase
transition produces a Page curve for the entropy, and the point on which the late-time clas-
sical entanglement surface intersects with the Planck brane is recognized as the boundary
of the island.

The minimization of the generalized entropy functional may also be phrased in terms of
the island rule[6], a modification to the classical RT/HRT prescriptions which includes the
consideration of islands as part of the boundary region so as to “complete” the homology
constraint in a braneworld.

S(R) = min
[
ext
I

(Area(∂I)
4G(2) + SBulk-2d(R∪ I)

)]
. (1.1)

Although the above doubly holographic setup is rather specific, the notion of entangle-
ment islands is believed to be applicable to more general circumstances. For instance, one
may consider non-evaporating setups, such a black holes in equilibrium with an external,
thermal bath, and simply look at the time evolution of entanglement surfaces.

Hartman and Maldacena considered surfaces in maximally-extended, eternal AdS black
hole geometries [14] that were meant to capture the entanglement between regions on
each disjoint part of the overall conformal boundary. In other words, they computed the
entanglement of degrees of freedom on the left part of the thermofield double with similar
degrees of freedom on the right part. They describe these surfaces (relative to the t = 0
surface) as crossing the Einstein-Rosen bridge, thus increasing in area with time due to the
growth of the bridge.

For an AdSd black hole in equilibrium with a bath and with holographic CFTd mat-
ter, one can use these Hartman-Maldacena surfaces in the higher-dimensional theory to
compute the entanglement entropy of Hawking radiation emitted through the CFTd. The
corresponding entropy curve, from t = 0, would thus appear to increase monotonically.
This is an alternate version of the information paradox, since eternal black holes only con-
tain a finite amount of information, thus defining an upper limit for how much entropy
may be emitted.

This issue is resolved in [15], which introduces a second candidate surface in the higher-
dimensional theory that produces islands on the AdSd black hole. By applying the standard
minimality condition, one sees that this island-producing surface represents the late-time
entropy, which has an upper bound of twice the Bekenstein-Hawking entropy.2 The Page
curve of [15] is shown figure 1. Furthermore, the island itself technically starts outside of
the horizon but still spans the interior.

2Although the resulting plot of entropy versus time is not quite the Page curve obtained in the evapo-
rating case, we still call this eternal variant a Page curve, as well, since it manifests from unitarity. The
key point is that the entropy does not increase forever.

– 3 –



J
H
E
P
0
7
(
2
0
2
1
)
0
0
4

Sren

t

◦

tp

Sren
HM(t0)

2SBH

0

Figure 1. A sketch of the renormalized entanglement entropy of Hawking radiation emitted from
an eternal AdSd black hole into a bath, as a function of time t. The orange curve Sren

HM(t) is the
entropy of the Hartman-Maldacena surface, while the blue curve represents the maximum amount
of information that can be emitted. The phase transition must occur by t = tp, which is larger for
more entropic black holes. This Page curve is only for t ≥ 0, but we can also extend it to negative
times. By time-reversal symmetry, the Page curve is actually symmetric about t = 0.

This story is also discussed in [16], which considers the exterior patch of one side of
a planar AdS5 black hole. In just this patch, the Hartman-Maldacena surface is simply
a radial line (suppressing the time and all but one of the non-radial spatial coordinates)
which dives straight into the horizon. However, [16] asserts the presence of a brane that
allows for an additional candidate surface which does not penetrate the black hole horizon
and, consequently, does not exhibit an increasing area in time in the maximally-extended
geometry. Based on where this surface hits the brane, one observes the expected island
from [15] which starts outside of the horizon.

Another natural avenue to explore is higher-dimensional configurations [17].3 In
braneworld scenarios, one may also modify the brane tension [16, 19]. However, if the
brane theory is more than 3-dimensional, then one must consider the presence of massive
gravitons on the brane [16]. Other possible situations include geometries which may not
have black holes at all by modifying the entropy functional [20, 21], islands in either asymp-
totically flat [22–25] or de Sitter [26, 27] backgrounds, a bath at finite temperature [28], or
a gravitating bath region [29, 30].

Even the doubly holographic braneworld setup is not essential in this story. Work
has been done on realizing the appropriate unitary Page curve for a black hole by using
the replica trick with the gravitational path integral. In doing so, one must consider
contributions to the path integral by replica wormhole geometries [31, 32], on top of the

3In this work, the authors consider (3 + 1)-dimensional Randall-Sundrum (RS) branes[18] instead of
Planck branes. Note that the exact form of the brane theory depends on the dimensionality, but the
braneworld ideas of [18] form the basis of doubly holographic configurations.
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usual n-sheeted covering space. Along this vein, the idea of baby universes emerging behind
the horizon has been used to describe the redundant island degrees of freedom in the interior
of an evaporating black hole [33, 34].

In this work, we follow yet another route; we change the theory describing the matter
from a CFT2 to something else. However, to keep the doubly holographic setup, the matter
itself must be holographic, as well. Below, we elaborate on our motivation behind doing so.

In particular, we consider holographic warped CFT2 (WCFT2)[35, 36]. The corre-
sponding bulk is described either by AdS3 or warped AdS3 (WAdS3)[37–39], as per the
conjectured AdS3/WCFT2 and WAdS3/WCFT2 dualities. However, a generic WCFT2 is
non-local, and any holographic WCFT2 is also non-unitary. The details are discussed in
section 2, but concrete examples of WCFT2 have been and continue to be explored in the
literature. Specifically, [40] discusses chiral Liouville gravity, a version of Liouville gravity
in so-called chiral gauge, and suggests the existence of a (bosonic) quantum theory. Ad-
ditionally, [41] describes warped versions of free Weyl fermions4 and bc systems, and [43]
discusses non-unitary scalar theories. Furthermore, [44] relates the complex SYK model
to WCFT2, noting that the former in the IR regime has the symmetry structure of the
latter. Regardless, exploring the case of matter described by a WCFT2 is a novel direction
in the understanding of entanglement islands and their possible connections with unitarity
(or lack thereof) as well as non-locality of the system. The prescriptions for holographic
entanglement entropy in this arena have been explored in the literature [45–51].

Even more generally, it should be possible to utilize recent work on entanglement
surfaces in the zoo of holographic dualities discussed by [48, 50, 51]. They consider holo-
graphic dualities described by six assumptions listed in section 2.3, all of which are satisfied
by AdS/CFT, AdS3/WCFT2, and WAdS3/WCFT2. In such setups, the classical entan-
glement surface for a boundary region A is a so-called swing surface. This is a union of
null geodesics anchored to ∂A, called ropes, with a spacelike, codimension-2 surface in the
bulk, called a bench, connecting the ropes. The bench is selected via minimization, and
the ropes allow for the entire swing surface to be homologous to A. In figure 2, we depict
a sketch of such a surface.

In doubly holographic configurations where swing surfaces are used in place of the RT
or HRT proposals, one can search for the emergence of islands by checking if the minimized
swing surface for a boundary region in the bath intersects the brane — this is why we have
chosen this particular prescription. Indeed, past prescriptions (particularly [47]) did not
discuss the ropes and only treated WCFT2 entanglement surfaces as a “floating” geodesics
(later identified as benches). Thus the role of homology only becomes clear when the ropes
are involved, and we reiterate that the enforcement of homology in braneworlds is how
islands are identified in the island rule (1.1).

Additionally, studying the behavior of entropy over time becomes a matter of under-
standing the behavior of swing surfaces corresponding to boundary intervals situated on
different fixed-time slices. Consequently, we can use the swing surface prescription to study
the time evolution of both entanglement islands and entanglement entropy.

4These are further explored by [42].
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Figure 2. A simplified sketch depicting a swing surface for a boundary interval A in a bulk space
with time coordinate t and radial coordinate z. The dashed lines γ(L) and γ(R) are the (null) ropes,
while the solid line γ is the (spacelike) bench.

To summarize, our immediate goal in this work is to perform an analysis of the en-
tanglement surfaces in a doubly holographic setup akin to that of [6], but with matter
fields being described by a WCFT2. Ultimately, using the prescription of [50], one finds
that the eternal BTZ features entanglement islands at all times, with the accompanying
entropy curve having a phase transition just as the Page curve for holographic CFT matter
does. However, the curve itself is quite different from the Page curve, in that there is a
constant piece followed by a monotonically decreasing piece. We assert that this stems
from the non-unitarity of holographic WCFT2. In section 2, we review WCFT2 and dis-
cuss holography, concluding with a brief discussion of swing surfaces in AdS3/WCFT2. In
section 3, we introduce our doubly holographic model and compute both the islands and
the entropy curve, deriving the time of the phase transition in the process. We also include
an interpretation of our results, describing both how our results mesh with previous work
and how this model, which includes non-unitary holographic matter, adds wrinkles to the
general story about black hole information and islands.

2 Warped CFT2: review

Here, we discuss the main differences between the symmetries of WCFT2 and CFT2. Ad-
ditionally, we emphasize how WCFT2 may be understood holographically, particularly in
terms of an AdS3 bulk. This duality is called AdS3/WCFT2, and its dictionary includes a
notion of holographic entanglement entropy similar to the RT and HRT proposals, termed
the swing surface proposal by [50, 51].

2.1 Symmetries, unitarity, and differences from CFT2

The seminal introduction to WCFT2 is [36], which specifically explores symmetry structure,
entropy, and holography. For now, we just review the global and local symmetry structure.

It is a well-known result of Polchinski that a CFT2 on a Minkowski background can
be obtained by imposing unitarity, Poincaré invariance, and global scale invariance [52].
Weakening our requirements a bit, it is natural to ask what happens when we have chiral
scale invariance in the right-moving sector alone; using light-cone coordinates x± = t± x,
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combining such a symmetry with translational invariance means that we have the following
three global symmetries (with a, b ∈ R and λ > 0):

x+ → x+ + a, x− → x− + b, x− → λx−. (2.1)

Assuming (2.1) (which rules out Lorentz invariance and makes the theory non-
relativistic), [35] finds that any unitary5 theory whose dilatation operator has a discrete,
non-negative spectrum must be either a CFT2 or a WCFT2. However, a CFT2 will auto-
matically have true scale invariance, so if we strictly have chiral scale invariance, then the
field theory is a WCFT2.

That a WCFT2 is characterized by strict chiral scale invariance has implications for
the enhanced local symmetry structure of the quantum theory. Specifically, as we no longer
have the full global conformal group, the local symmetries will not be described by two
copies of the Virasoro algebra. Rather, a WCFT2 is characterized by one copy of the
Virasoro algebra, corresponding to the chirally scale-invariant sector, and one copy of a
U(1) Kac-Moody algebra, corresponding to the purely translationally-invariant sector. [36]
writes the generators as {Ln, Pn}n∈Z, the central charge of the Virasoro algebra as c, and
the level of the Kac-Moody algebra as k, so the canonical WCFT2 algebra is,

[Ln, Lm] = (n−m)Ln+m + c

12n(n2 − 1)δn+m, (2.2)

[Pn, Pm] = k

2nδn+m, (2.3)

[Ln, Pm] = −mPm+n. (2.4)

In a sense, the loss of Virasoro symmetry in the quantum theory relative to a true
CFT2 arises from the loss of full scale invariance.

Additionally, the symmetry structure appears to indicate that a generic WCFT2 is
non-local. [53] supports this by computing WCFT2 correlation functions and finding that
they ultimately fail to decay in the U(1) direction.6 As this non-locality emerges by a dis-
continuous breaking of the full CFT2 symmetry, there is no parameter which may smoothly
interpolate between WCFT2 non-locality and CFT2 locality.

Primary states are defined similarly to in a CFT2. Specifically, take a state |p, h〉.
Then it is said to be primary if, for n > 0,

Pn |p, h〉 = Ln |p, h〉 = 0, (2.5)

and,
P0 |p, h〉 = p |p, h〉 , L0 |p, h〉 = h |p, h〉 . (2.6)

The descendant states are P−n |p, h〉 and L−n |p, h〉. Unitarity imposes constraints on
the central charge, level, and weights (p and h), however, and [36] finds these constraints

5Non-unitary WCFTs still feature chiral scale invariance. We will discard unitarity later.
6[43] attempts to do away with this non-locality in the U(1) direction, but in the process shows that

the Hofman/Rollier WCFTs [41] and their scalar counterparts admit infinite families of marginal non-local
deformations. Thus, getting a local QFT requires an infinite number of tunings. Whether this QFT truly
inherits the symmetry structure of the original WCFT2 is unclear.
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to be,

c ≥ 1, k > 0, p ∈ R, h ≥ p2

k
. (2.7)

2.2 Holographic duality

The enhanced local symmetries of a WCFT2 give us a hint about holographic duality.
In AdS3/CFT2, the Brown-Henneaux boundary conditions [54] enhance the isometries of
AdS3, described by the (Minkowskian) 2-dimensional global conformal group, SO(2, 2), to
two copies of the Virasoro algebra. Thus, if we wish to consider a gravity dual to WCFT2,
we must have a spacetime with boundary conditions under which the isometries enhance
to the appropriate local symmetries.

There are two well-known proposed dualities meeting this criteria: AdS3/WCFT2 and
WAdS3/WCFT2. Both conjectured dualities are justified by asymptotic symmetry analysis,
but in slightly different ways. In this work, we will rely on the former AdS3/WCFT2 duality.
However, it is still worthwhile to understand how to arrive at WAdS3/WCFT2.

WAdS3 is a non-maximally symmetric, Lorentzian spacetime of constant negative cur-
vature. It is constructed by viewing AdS3 as fiber bundle consisting of copies of R over
AdS2, then warping those fibers by some positive factor. Details regarding the structure of
WAdS3 have been discussed in [37–39]. However, for our discussion, it is sufficient to note
that the Lie algebra of Killing vectors loses some symmetry,

so(2, 2) warping−−−−−→ sl(2,R)× u(1). (2.8)

Thus, under the Dirichlet-Neumann boundary conditions discussed by [55], all of the
spacetime symmetries of WAdS3 are enhanced to some asymptotic symmetry algebra for
a boundary field theory. Such an asymptotic algebra would be a Virasoro algebra plus a
U(1) Kac-Moody algebra, the hallmark of a WCFT2. Summarily, the asymptotic symmetry
algebra hints at WAdS3/WCFT2.

However, AdS3/WCFT2 is different, in that the relevant boundary conditions must not
preserve all of the spacetime symmetry. Such boundary conditions were found in [56] to
be similar to the Dirichlet-Neumann boundary conditions characterizing WAdS3/WCFT2;
in this context they are called Compère-Song-Strominger (CSS) boundary conditions.

So, we have seen that a holographic dual for a WCFT2 may be obtained in one of two
ways. We either use a WAdS3 bulk, or we change the boundary conditions of AdS3 from
those of Brown and Henneaux used for AdS3/CFT2. However, in the doubly holographic
setup used to explore entanglement islands, it helps to use AdS3, so as to not deviate
too strongly from [6]. Regardless, note that prescriptions for holographic entanglement
entropy in both AdS3/WCFT2 and WAdS3/WCFT2 have been explored in [45–51]. For
our purposes, however, we will primarily draw on the results of [50, 51], which build on [47].

We conclude by noting that a holographic WCFT2 with a dual AdS3 bulk violates uni-
tarity, in the sense that there exist states with negative norm. This occurs because the Kac-
Moody level k is negative for holographic theories [56, 57], directly violating (2.7). However,
the central charge is still related to the bulk radius L via the Brown-Henneaux equation,

c = 3L
2G(3) � 1. (2.9)
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The authors of [57] constrain holographic WCFT2, despite the lack of true unitarity.
They find that, despite the negative level, holographic WCFT2 has primary states with
either negative norm or imaginary Kac-Moody weight,

ip ∈ R. (2.10)

However, primaries for which (2.10) hold are mentioned in [57] to have natural bulk
interpretations as:

(1) the AdS3 vacuum,

(2) causal singularities in the form of closed timelike curves (CTCs),

(3) conical deficits and surpluses.

So, in short, although holographic WCFTs are not truly unitary, they are still under
control so long as the primaries, at worst, satisfy (2.10) instead of having negative norm.
It is thus sensible to discuss Hawking radiation via WCFT2 degrees of freedom. As we are
considering doubly holographic configurations, we will be assuming a non-unitary WCFT2
with large central charge (2.9) from here on out. Note that [58] has observed both islands
and a unitary Page curve for higher-derivative gravitational theories which may be non-
unitary, but non-unitarity of the matter sector appears to change the story in that we no
longer have a Page curve.

2.3 AdS3/WCFT2 and holographic entanglement entropy

We now review the holographic prescription for classical entanglement entropy
in AdS3/WCFT2, analogous to both the Ryu-Takayanagi and Hubeny-Rangamani-
Takayanagi prescriptions of AdS/CFT. In particular, we focus on the application of the
swing surface proposal discussed in [50, 51] to the case of AdS3/WCFT2.7 While swing
surfaces can be used in other models, they provide a bridge between the “floating” geodesics
in prior literature on AdS3/WCFT2 holographic entanglement proposals [47] and the anal-
ogous (H)RT surfaces of AdS/CFT. Additionally, that the swing surface prescription in-
corporates a homology condition makes it rather convenient for finding islands, as we will
see in section 3.

The reader may worry about the validity of the notion of entanglement entropy in a
system that is non-unitary. It is indeed not obvious that one can define a reduced density
matrix in such cases. We do not offer a precise resolution of this issue. However, we
emphasize that numerous recent works suggest that entanglement entropy may still hold
for such systems. Towards that, we point the reader to [59] for a comprehensive study of
a wide class of non-unitary CFTs, in which precise calculations of entanglement entropy
can be performed. Furthermore, we only needed to rely on a geometric description, which
is certainly well-defined from a bulk perspective. Therefore, we make a highly motivated
assumption that the von Neumann entropy is well-defined for us.

7See also an earlier discussion of such entanglement surfaces conducted by [48].
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We start with a rather general description of swing surfaces. [50, 51] consider holo-
graphic models consisting of quantum gravity in d + 1 dimensions and a d-dimensional
field theory at the boundary, satisfying, among other possible consistency conditions (as
in AdS/CFT [60]), the following criteria:

(1) the bulk theory has a semiclassical description which may be written in terms of
Einstein gravity,

(2) the field theory has a symmetry group G, and the vacuum state itself is invariant
under some subgroup of G, generated by elements of the form hi,

(3) there exist well-defined, consistent boundary conditions such that the bulk asymptotic
symmetry group agrees with G,

(4) the bulk theory has a solution, identified as the dual to the vacuum state, whose
Killing vectors Hi correspond to the asymptotic generators hi at the boundary,

(5) the bulk and boundary theories’ partition functions agree,

(6) ball-shaped regions of the boundary theory’s vacuum configurations have a local
modular Hamiltonian.

Conditions (1)-(5) appear rather standard, and in conjunction with condition (6)
are used to generalize the Rindler method [61], Lewkowycz-Maldecena [62], and Dong-
Lewkowycz-Rangamani [63] to so-called non-AdS holography8 in order to derive the swing
surface proposal. The importance of the modular Hamiltonian in this procedure has been
emphasized in earlier work by [64].

The swing surface proposal starts as follows — for a boundary region A, one first
shoots null geodesics from each point p ∈ ∂A, respectively labeled as γ(p). One does
so by taking, near the boundary, the tangent vector of γ(p) to be an asymptotic Killing
vector which reduces to a so-called approximate modular flow generator at p, denoted by
ζ(p). This generator can be defined whenever there exist Rindler coordinates on a local
neighborhood of p, in which case ζ(p) is the generator of translations in local Rindler
time. The trajectory of γ(p) away from the boundary is then defined by a corresponding
approximate bulk modular flow from p, ultimately terminating at a fixed point. These null
geodesics are called ropes.

Upon finding the ropes, one must subsequently compute the minimal, extremal,
codimension-2, spacelike surface whose boundary is contained within the region bounded
by the ropes. That is, when performing the extremization, we pick-out surfaces X whose
boundaries lie on ⋃p∈∂A γ(p), so they hang from the ropes. Then we minimize over all
such extremal surfaces. The resulting surface is called the bench γ, and its area is the
holographic entanglement entropy of A.

8This actually refers to holographic systems which depart from AdS/CFT specifically, so AdS3/WCFT2

would count.
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Mathematically, denoting the entanglement entropy of A by SA,

SA = min
[

ext
XA∼A

Area(XA)
4G(d+1)

]
, XA =

 ⋃
p∈∂A

γ(p)

 ∪X. (2.11)

X denotes arbitrary codimension-2 surfaces which hang from the ropes, and XA ∼ A
means that the two surfaces are homologous, as is the case with (H)RT surfaces in
AdS/CFT. The area ultimately reduces to that of the bench because each γ(p) is null,
so only γ has a nonzero contribution. See figure 2 for a simplified sketch of a swing surface.

There is a subtlety with regards to IR regularization of the bulk radial coordinate in
how different entanglement surfaces must be compared when exploring non-AdS holog-
raphy. In AdS/CFT, the divergence structures of the areas of surfaces anchored to the
boundary have been determined in [65]. Specifically in AdS3, the length of a spacelike
line exhibits a logarithmic divergence at the boundary. All lines that hit the boundary the
same number of times thus have the same divergence structures, so a minimality constraint
on surfaces homologous to A cannot be sensitive to a cutoff. As bulk IR divergences are
interpreted via the holographic dictionary as boundary field-theoretic UV divergences, we
may also say that the choice of entanglement surface is not affected by the field theory’s
UV cutoff.9

However, swing surfaces are anchored to the boundary by the null ropes, so divergences
in the area depend entirely on benches situated in the bulk. Such divergences must be
treated carefully; when comparing different benches, one must also check how their UV
divergence structures align.

As an aside, the swing surface proposal reduces to (H)RT in AdS/CFT. One finds that
the fixed points of the bulk modular flow are those of ∂A on the boundary [51]. As such,
the ropes reduce to points, and the bench itself is homologous to the boundary as expected.

In AdS3/WCFT2, however, the ropes are non-trivial, and the bench manifests as a
“floating” geodesic, as described in [47].10 We can see this explicitly by considering vacuum
solutions in three dimensions. For such geometries, [50] evaluates swing surfaces by working
with the following metric (written in lightcone coordinates (ρ, u, v) and with the AdS3 radius
set to 1),

ds2 = dρ2

4(ρ2 − 4T 2
uT

2
v ) + ρdudv + T 2

udu
2 + T 2

v dv
2, (2.12)

where ρ2 ≥ 4T 2
uT

2
v and (u, v) ∼ (u + 2π, v + 2π). The dual WCFT2 lives on a cylinder at

ρ→∞, but we can consider it to live on a plane, instead, if we decompactify u and v.
The different vacuum solutions can be classified according to energy E and angular

momentum J ,

E = T 2
u + T 2

v

4G(3) , J = T 2
u − T 2

v

4G(3) . (2.13)

9Because of the UV/IR relations and to avoid ambiguity with another field-theoretic IR divergence which
appears later in our work, we will refer to the cutoff for the radial coordinate as a (boundary) UV cutoff.

10Because “surfaces” are actually lines in AdS3/WCFT2, any “area” is actually a length. We will employ
this abuse of notation throughout our work.
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The specific types of backgrounds are,

AdS3 vacuum: E = − 1
8G(3) , J = 0, (2.14)

Conical defects: 0 > E > − 1
8G(3) , (2.15)

BTZ black holes: E ≥ |J | ≥ 0. (2.16)

To more concretely illuminate this discussion, we now explicitly write the swing sur-
faces in a static BTZ background for single intervals. The expressions we obtain will be
useful in our doubly holographic model, as well.

2.3.1 Static BTZ swing surfaces

For simplicity, we consider a static planar two-sided BTZ black hole, so that T 2
u = T 2

v

(allowing us to take either to be the temperature) and u and v are decompactified. Then,
denoting the black hole temperature as T , the horizon radius is,

ρh = 2T 2, (2.17)

and (2.12) (with ρ ≥ ρh and u, v ∈ R) reads,

ds2 = dρ2

4(ρ2 − ρ2
h) + ρdudv + ρh

2 (du2 + dv2). (2.18)

Recall that this would only cover a patch of the maximally-extended geometry. Specif-
ically, this metric describes one of the exterior regions in figure 3.

We consider a boundary interval A with endpoints,

∂A = {(u−, v−), (u+, v+)}, lu = u+ − u−, lv = v+ − v−, (2.19)

so there exists two ropes, γBTZ
± , emanating from the points (u+, v+) and (u−, v−) respec-

tively. In terms of a positive affine parameter λ, the ropes are,11

γBTZ
± (λ) =



ρ(λ) =
√

2ρhλ+ ρh,

u(λ) = ∓1
2

√
1

2ρh
log

(
1 +
√

2ρh
λ

)
+ u± +O

( 1
ρ2
∞

)
,

v(λ) = ∓1
2

√
1

2ρh
log

[
2ρhλ(λ+

√
2ρh)

ρ2
∞

]
+ v± +O

( 1
ρ2
∞

)
.

(2.20)

ρ∞ defines a UV cutoff in the boundary field theory. Taking λ → ∞ corresponds
to reaching the conformal boundary. However, there exists some finite, positive value for
λ > 0 corresponding to reaching fixed points of the bulk modular flow, i.e. the endpoints
of the ropes.

11Technically, we have rescaled the affine parameter relative to what is presented in [50], eliminating the
constant momentum of the ropes.
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t
/Z2

Figure 3. The Penrose diagram for the maximally-extended, two-sided BTZ, with one of the spatial
dimensions (φ in AdS-Schwarzschild (2.32)) suppressed. Each gray patch is an exterior region, while
the purple patches comprise the interior. This geometry exhibits a Z2 symmetry which proves useful
in our calculations. Specifically, we only need to work within a single exterior region.

In accordance with the former limit of λ, the affine parameter at the cutoff surface
includes an O(ρ∞) term,

λ∞ = ρ∞ − ρh√
2ρh

. (2.21)

Furthermore, the minimized bench from [50] is a straight line,

γBTZ =



ρ = ρh coth
(
lu

√
ρh
2

)
,

u = u+ + u−
2 ,

v ∈
[
v+ + v− −∆v

2 ,
v+ + v− + ∆v

2

]
,

(2.22)

where ∆v is a cutoff-dependent, divergent term of the form,

∆v = lv +
√

2
ρh

log
[
ρ∞
ρh

sinh
(
lu

√
ρh
2

)]
. (2.23)

As discussed in [51], the bench hangs from the endpoints of the ropes fixed under the
bulk modular flow. The affine parameter at the bench λb is found by setting the radial
coordinates of (2.20) and (2.22) equal to one another,

√
2ρhλb + ρh = ρh coth

(
lu

√
ρh
2

)
=⇒ λb =

√
ρh
2

[
coth

(
lu

√
ρh
2

)
− 1

]
. (2.24)

Additionally, equipped with the metric (2.18), we can compute the area of (2.22) and,
consequently, the associated holographic entanglement entropy as,

Area(γBTZ) =
√
ρh
2 ∆v = lv

√
ρh
2 + log

[
ρ∞
ρh

sinh
(
lu

√
ρh
2

)]
, (2.25)

SA = Area(γBTZ)
4G(3) . (2.26)

In order for this to line-up with prior results from WCFT2 calculations, the cutoff ρ∞
is related to the WCFT2 lattice spacing ε by the matching,

ρ∞ =
√

2ρh
ε

. (2.27)
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However, as our goal is to study black hole information dynamics, we need a notion of
time. Thus, we introduce AdS-Schwarzschild coordinates (t, z, φ).

u = φ+ t, (2.28)
v = φ− t, (2.29)

ρ = 1
z2 −

1
2z2
h

, (2.30)

where zh is the horizon coordinate, related to ρh by,

ρh = 1
2z2
h

. (2.31)

In AdS-Schwarzschild coordinates, (2.18) is more recognizably one of the exterior
patches (z ≤ zh) of a planar black hole described by a blackening factor h(z),

ds2 = 1
z2

[
−h(z)dt2 + dz2

h(z) + dφ2
]
, h(z) = 1− z2

z2
h

. (2.32)

The t-coordinate (t ∈ R) is time, and the φ-coordinate (φ ∈ R) is a transverse spatial
direction. In these coordinates, the temperature (2.17) reads as,

T = 1
2zh

. (2.33)

The conformal boundary is now at z → 0. We will be concerned with surfaces analogous
to those of the RT proposal, i.e. entanglement surfaces for a boundary region at constant
t = t0. For such a constant-t interval φ ∈ [φ−, φ+], (2.19) becomes,

∂A = {(t0, φ−), (t0, φ+)}, lu = lv = φ+ − φ−. (2.34)

The ropes become,

γBTZ
± (λ) =



z(λ) = zh√
1 + zhλ

,

φ(λ) = ∓zh2 log
(

1 + zhλ

z2
hρ∞

)
+ φ± +O

( 1
ρ2
∞

)
,

t(λ) = ±zh2 log
(

λ

zhρ∞

)
+ t0 +O

( 1
ρ2
∞

)
.

(2.35)

Observe that, as λ decreases from λ∞ to λb, the φ-component of γBTZ
+ (λ) increases

montonically, while the φ-component of γBTZ
− (λ) decreases monotonically.

− ∂φ+
∂λ

= z2
h

2(1 + zhλ) > 0, −∂φ−
∂λ

= − z2
h

2(1 + zhλ) < 0. (2.36)

Meanwhile, as λ decreases, the t-component of γBTZ
+ (λ) decreases monotonically, while

the t-component of γBTZ
− (λ) increases montonically.

− ∂t+
∂λ

= − zh2λ < 0, −∂t−
∂λ

= zh
2λ > 0. (2.37)
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The bench can be found by transforming (2.22). However, as we are only concerned
with its endpoints, we can also evaluate (2.35) at λb, which, in AdS-Schwarzschild coordi-
nates, reads,

λb = 1
2zh

[
coth

(
φ+ − φ−

2zh

)
− 1

]
. (2.38)

The endpoints of the bench in AdS-Schwarzschild coordinates are thus,

γBTZ
± (λb) =



z(λb) = zh

√√√√ 2
1 + coth

(
φ+−φ−

2zh

) ,
φ(λb) = φ± ∓

zh
2 log

coth
(
φ+−φ−

2zh

)
+ 1

2z2
hρ∞

+O

( 1
ρ2
∞

)
,

t(λb) = t0 ±
zh
2 log

coth
(
φ+−φ−

2zh

)
− 1

2z2
hρ∞

+O

( 1
ρ2
∞

)
.

(2.39)

As opposed to RT surfaces in AdS/CFT, the entire swing surface does not lie on a
constant-t surface. Even the bench reaches across different constant-t slices. This makes
sense since one of the ropes is directed towards future null infinity, while the other rope is
going towards past null infinity.

Lastly, the area of γBTZ should not change under a coordinate transformation, so we
may simply plug (2.31) and (2.34) into (2.25) to write,

Area(γBTZ) = φ+ − φ−
2zh

+ log
[
2z2
h sinh

(
φ+ − φ−

2zh

)]
+ log ρ∞. (2.40)

3 Warped entanglement entropy in a braneworld

After our review of holographic entanglement entropy in AdS3/WCFT2, we are ready to
discuss doubly holographic models. We start by coupling 2-dimensional dynamical dilatonic
gravity (a “JT-like” theory) to holographic WCFT2 degrees of freedom which extend into
a non-gravitating bath via eternal transparent boundary conditions. Furthermore, the
bath is taken to be in thermal equilibrium with the gravitational region. As a result, no
gravitational evaporation occurs, and the setup is eternal. That being said, there would
still be emitted Hawking degrees of freedom in the form of WCFT2 matter.

We will demonstrate that there are two candidate swing surfaces, both featuring is-
lands, with a phase transition between them. The time of this phase transition, however,
will be seen to depend on an IR cutoff in the field theory. Furthermore, we obtain an
entropy curve which differs radically from the Page curve of [15], in that it monotonically
decreases after the phase transition. Despite some passing similarities to previous work in
AdS/CFT, we interpret our model as demonstrating that islands reaching behind a black
hole horizon need not be sufficient to prevent an information paradox in the entropy curve
(possibly due to non-unitarity in the matter sector). However, islands are still seen to be
needed to appropriately describe entanglement entropy at all, so the idea that Hawking
radiation generally requires redundant degrees of freedom lives on. That being said, we
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will also find that there are always islands, a strong departure from AdS/CFT which we
attribute to the coupling of gravity to a non-local field theory.

3.1 Warped doubly holographic setup and Hawking radiation

Taking inspiration from the doubly holographic model of [6], we consider a similar model
using AdS3/WCFT2. In particular, we consider a 2-dimensional theory of dilatonic gravity
IWJT coupled to holographic WCFT2 matter IW ,12

I[g(2)
ij , ϕ, χ] = IWJT [g(2)

ij , ϕ] + IW [g(2)
ij , χ]. (3.1)

The matter fields are represented by χ, the gravity dilaton by ϕ, and the background
metric by g(2)

ij . Unlike Einstein gravity, (3.1) ultimately describes a 2-dimensional, dynam-
ical theory of gravity containing matter, thanks to the introduction of the dilaton.

In appendix A, we discuss how the analogous theory using JT gravity and holographic
CFT2 is solved classically by a fixed AdS2 background (A.9), with the dilaton being coupled
to the CFT2 stress tensor (A.17) and having a particular boundary condition (A.7). We
assume these core elements — that there exists a classical saddle point of (3.1) which
admits an AdS2 background and which features a dilaton (subject to the dilaton boundary
condition in (A.7)) coupled entirely to the WCFT2 stress tensor as (A.17). However, we
make no further assumptions about the form of the action, so we simply say that the
gravity theory is JT-like.

Additionally, we couple the “end” of the gravitational region to a non-gravitating,
flat bath, but with transparent boundary conditions at the interface. This allows for the
WCFT2 degrees of freedom to propagate out as Hawking radiation.

Because the WCFT2 is holographic, we can consider a higher-dimensional dual descrip-
tion. Likewise, under the holographic principle, we can treat the JT-like gravity degrees of
freedom as living on one dimension, instead of two. This amounts to the following triality,

(1) a boundary WCFT2, on whose 1-dimensional boundary there exists a quantum me-
chanical holographic dual to the JT-like theory,

(2) the 2-dimensional gravitational region coupled to a matter WCFT2 with some UV
cutoff ε and a non-gravitating bath region, with transparent boundary conditions
imposed at the interface,

(3) Einstein gravity on locally-AdS3 background subject to CSS boundary conditions and
with a dynamical, JT-like gravitating brane.

The third picture (3) is by far the most straightforward one and where we perform our
computations. The saddles here in a sense justify our assumption about the saddle in (2)
including an AdS2 background, since the branes may be taken from an AdS2 slicing of the

12We are technically considering the semiclassical regime of some quantum gravity theory, so the metric,
as a field, will not have any quantum backreaction, whereas matter sector observables are treated as
expectation values.
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AdS3 bulk. In doing so however, note that the CSS boundary conditions would also have
to convey to the brane.

One can realize a thermal state in (1) to be dual to an AdS3 black hole in (3) with a
brane present. More specifically, we may consider a probe brane13 which does not backreact
with the bulk, as in [16]. Consequently, the induced metric on the gravitating brane will be
that of an AdS2 black hole with the same radius as the geometry of (3), so this configuration
in (2) is precisely a black hole coupled to and in equilibrium with a thermal bath. Similarly,
the vacuum state in (1) arises by taking empty AdS3 in (3) instead, thus inducing an empty
AdS2 geometry on the brane.

Furthermore the nuances of coupling of WCFT2 to curved backgrounds is not entirely
clear [41], but it is the view of the 2-dimensional system as being induced by the more
straightforward 3-dimensional picture that saves us. Our analysis is thus in the latter.

As in [6], we would expect that the appropriate prescription to compute the entropy
of the Hawking radiation in (2) under the semiclassical limit would be the machinery of
generalized entropy and quantum extremal surfaces [10]. However, it is simpler to consider
(3), because, from this perspective, a QES is well-approximated by a classical surface
allowed to end on the brane. For the model in [6] in which the matter is described by a
holographic CFT2, this is said to be because the number of degrees of freedom (described
by c) is large. Consequently, in the following generalized entropy functional evaluated over
0-dimensional collections of points y in the 2-dimensional bulk,14

Sgen(y) =
∑
p∈y

ϕ(p)
4G(2) + SBulk-2d[A], (3.2)

the classical term in SBulk-2d[A] dominates over higher-order quantum fluctuations, allowing
it to be written as some area in the 3-dimensional bulk by holography. Meanwhile the extra
ϕ contribution comes from the area of the endpoints of any islands that appear, these end-
points being identified as the intersection between the brane and the entanglement surface.

This argument does not change for a holographic WCFT2. We still take c to be large,
so it should have a large number of degrees of freedom. However, the key difference is
that SBulk-2d[A] instead becomes well-approximated by the area of a swing surface in the
3-dimensional braneworld.

Our search for islands will be as follows: in the 3-dimensional bulk geometry of (3), we
define a large, constant-t radiation region R on the conformal boundary. The entanglement
entropy of Hawking radiation is computed by first applying the swing surface proposal to
R, modified to accommodate a probe brane. Because the probe brane does not backreact
onto the geometry, this modified prescription amounts to finding the swing surface with
no brane present, then excising the geometry on one side of the brane. We then consider

13While it is possible to consider other types of branes with tension [66], probe branes are easier to
work with.

14One considers the interval A to be some bath radiation region union intervals in the 2-dimensional bulk
with boundary points in y. y may also be the empty set.
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whether the swing surface intersects with the brane itself. Based on the island rule of [6],

S(R) = min
[
ext
I

(Area(∂I)
4G(2) + SBulk-2d(R∪ I)

)]
, (3.3)

the appropriate entanglement island is identified as the region I such that R∪I is homol-
ogous to the piece of the swing surface remaining after excision.

We will observe that, for the eternal planar BTZ, there are two candidate swing sur-
faces. Both surfaces feature islands, and there is a phase transition between them. However,
the transition time depends on the size of R relative to the black hole’s inverse temperature
β: the larger R is, then the earlier the phase transition occurs. The early-time surface has
islands strictly outside of the horizon, while the late-time surface has an island which runs
across the black hole interior.

3.2 Radiation surface candidates in the BTZ

Following the lead of [16], we again go back to the static planar two-sided BTZ (2.32), but
with a probe brane φ = 0 present. As for the radiation region, we take t = t0 and two
copies of the interval [φr, φIR] (one on each side of the black hole). Here, φIR is a large
cutoff relative to zh, while φr > 0. We also define the difference,

lφ = φIR − φr � zh = β

2 . (3.4)

For now, we keep lφ/zh finite. This is a regularization procedure; we wish to prevent
a possible field-theoretic IR divergence associated with the size of the boundary interval.
We denote the radiation region as R(t0).

One of the exterior regions for the above configuration is depicted in figure 4. Addi-
tionally, the induced metric on φ = 0 is an AdS2 black hole with a horizon at z = zh and
the radius still set to 1,

ds2|φ=0 = 1
z2

[
−h(z)dt2 + dz2

h(z)

]
. (3.5)

By analyzing (2.35) (setting φ+ = φIR and φ− = φr), we can see that the rope ema-
nating from φIR will never cross the brane, since that rope’s φ-component monotonically
increases. However, as the rope emanating from φr has a monotonically decreasing φ-
component, it may cross φ = 0 precisely once at some allowed value of the affine parameter.
We find this to be,

λ0 = − 1
zh

+ zhρ∞e
−2φr/zh +O

( 1
ρ∞

)
. (3.6)

Observe that this intersection point is always near the cutoff surface. To see why, we
find that the radial coordinate of both ropes at λ = λ0 is,

z±(λ0) = 1
√
ρ∞

exp
[
φr
zh

+O

( 1
ρ2
∞

)]
ρ∞→∞−−−−−→ 0. (3.7)
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φ

z

φ = 0
z = zh

z = 0
R(t0)

φr φIR

N

N•

Figure 4. The exterior of the planar BTZ at t = t0 with the horizon at z = zh (in red) and a brane
placed at φ = 0 (in blue), on which the 3-dimensional geometry induces an AdS2 black hole with
the same horizon z = zh. The Hawking radiation (depicted by a wavy arrow) is free to propagate
between the AdS2 black hole and the bath. We are interested in the swing surface corresponding
to the radiation region (in green, but technically including another interval on the other side of
the horizon).

We are ready to discuss the benches. Without a brane present, there are two possi-
bilities — we may either connect ropes on opposite sides of the horizon by two extremal,
spacelike lines, or we may connect the ropes on the same sides by using two copies of the
single-interval bench discussed in section 2.3.1. We refer to the former as the Hartman-
Maldacena swing, in analogy to the Hartman-Maldacena surface of [14] which increases in
area with time and thus gives rise to an information paradox on its own. We refer to the
swing surfaces in the latter case as the exterior swings.

Upon introducing the brane, both candidate swing surfaces are truncated. This is
because the ropes emanating from φr end in the φ < 0 region. For the Hartman-Maldacena
swing, the entire bench sitting in φ < 0 is thus removed with much of the ropes. Meanwhile,
portions of the exterior swings’ benches and ropes (from φr) hit the φ = 0 brane, so they
get cut-off, as well. As we will discuss in section 3.3, this indicates that both surfaces have
entanglement islands.

Because there are two candidates, we must consider both and take the one that gives
a smaller area. We do this below.

3.2.1 Hartman-Maldacena swing

First, starting with the Hartman-Maldacena swing with the brane present, the only space-
like contribution to the area is the line connecting the ropes emanating from φIR. This line
consists of two constant-t, constant-φ intervals from the ropes to the horizon (one in each
exterior region) and a time-dependent piece in the interior.

Using (2.39), the metric, and the Z2-symmetry in figure 3, this area is,

AHM(t0) = 2
∫ zh

z(λb)

dz

z
√
h(z)

+ F (t0) = 2 Tanh−1
[
e−lφ/(2zh)

]
+ F (t0), (3.8)

where F (t0) is the interior contribution for R(t0).
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From (2.39), the exterior portion of this bench resides at the time (neglecting O(1/ρ∞)
terms),

t+(λb) = t0 + zh
2 log

coth
(
lφ

2zh

)
− 1

2z2
h

− zh
2 log ρ∞. (3.9)

So, the bench is technically anchored to the slice at boundary time t→ −∞ (approach-
ing past infinity). However, by time-reversal symmetry of the two-sided BTZ geometry,
this area is equal to that of a surface located at time,

t̃+ = −t+(λb) = −t0 −
zh
2 log

coth
(
lφ

2zh

)
− 1

2z2
h

+ zh
2 log ρ∞. (3.10)

Thus, from the area expression given in [14] (worked out specifically for three dimen-
sions in appendix B), we have that,

F (t0) = 2t̃+
zh

= −2t0
zh
− log

coth
(
lφ

2zh

)
− 1

2z2
h

+ log ρ∞. (3.11)

Expanding the IR-divergent terms about lφ/zh →∞, we write (3.8) as,

AHM(t0) = −2t0
zh

+ 2 log zh + log ρ∞ + lφ
zh

+O

(
zh
lφ

)
. (3.12)

We observe that the Hartman-Maldacena bench has two divergences, with the logarith-
mic UV divergence stemming from its infinite area in the bulk and the linear IR divergence
coming from the length of the boundary interval.

That we have a linearly decreasing area is because the bench sits near past infinity (3.9)
and gets “dragged” forward in time as t0 increases. Put differently, although the area is
formally infinite due to the divergences, the bench is crossing the part of the Einstein-Rosen
bridge which linearly decreases in time.

3.2.2 Exterior swings

The next area to compute is that of the two exterior swings which arise from connecting
ropes in the same exterior regions prior to excision. It is easier to compute the area of
just one of their benches in lightcone coordinates (2.12), double the result, then convert to
AdS-Schwarzschild, with,

u+ = φIR + t0, u− = φr + t0, (3.13)
v+ = φIR − t0, v− = φr − t0. (3.14)

The full bench in question is described in lightcone coordinates by (2.22). Observe
that it is a constant-ρ, constant-u surface. So, when we excise the φ < 0 region, we only
care about the value of v at the φ = 0 brane. This is found by noting,

φ = u+ v

2 = 0 =⇒ u = −v, (3.15)
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which indicates that, when this bench hits φ = 0, the new endpoint remaining after the
excision has the v-value,

v = −u+ + u−
2 . (3.16)

Thus, the combined area of the two exterior surfaces is,

AE = 2
√
ρh
2

(
v+ + v− + ∆v

2 + u+ + u−
2

)
= 2φr

zh
+ 3lφ

2zh
+ log

[
2z2
h sinh

(
lφ

2zh

)]
+ log ρ∞. (3.17)

As in (3.12), we expand the IR-divergent terms about lφ/zh →∞ to rewrite (3.17) as,

AE = 2φr
zh

+ 2 log zh + log ρ∞ + 2lφ
zh

+O

(
zh
lφ

)
. (3.18)

We again have two divergences: a logarithmic UV divergence in ρ∞ and a linear IR
divergence in lφ/zh.

3.2.3 Area difference between swings

We now compare the areas of the two swings (amounting to the areas of their benches) so as
to find the minimal one. Note that the UV divergence, which emerges when ρ∞ →∞, is of
the same order in both (3.12) and (3.18). This also occurs in AdS/CFT and, consequently,
the area difference becomes a UV-finite quantity. The cutoff surface ρ = ρ∞ (and the
corresponding field-theoretic lattice cutoff ε > 0) does not carry any true physical meaning
in the choice of the entanglement surface.

However, the IR divergences, despite being linear in both areas, do not cancel when
we consider the difference. Specifically, we define,

∆A(t0) = AE −AHM(t0)

= 2
zh

(φr + t0) + lφ
zh

+O

(
zh
lφ

)
. (3.19)

Now, we compare the two candidate surfaces more thoroughly, both examining (3.19)
and understanding their islands on the φ = 0 brane.

3.3 Entropy curve and islands

Equipped with the two candidate surfaces and their area difference, we discuss the en-
tanglement entropy of R(t0) as a function of t0, with particular emphasis placed on the
phase transition between the two surfaces. As usual, the appropriate entanglement sur-
face is the smaller one. We still keep lφ/zh large, but we also explicitly work with the
(UV-)renormalized quantities, in which we subtract out the UV divergence,

Aren
HM(t0) = −2t0

zh
+ 2 log zh + lφ

zh
+O

(
zh
lφ

)
, (3.20)

Aren
E = 2φr

zh
+ 2 log zh + 2lφ

zh
+O

(
zh
lφ

)
, (3.21)
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and take ρ∞ → ∞. The difference in these quantities still matches the difference of the
bare areas (3.19).

First, note that the entropies of both swing surfaces include contributions from the
dilaton on the brane, evaluated at the intersection points of the swings with φ = 0. In
particular, both the exterior swings’ ropes and the Hartman-Maldacena swing’s ropes will
hit the brane at its boundary, as shown in (3.7). From the discussion in appendix A, ϕ has
Dirichlet boundary conditions within the brane; denoting its asymptotic values on the left
and right boundaries as ϕL,Rb /δ with δ → 0, both entropies will pick up a term proportional
to (ϕLb + ϕRb )/δ. This term is seen to be a pure IR divergence in the bulk and cancels out
in the difference between the two entropies, so we omit it when writing the renormalized
quantities.

Only the two intersection points of the two exterior swings’ benches with φ = 0, which
we denote as yLb and yRb , will contribute non-divergent terms that appear in the entropy
difference,

4G(3)∆S(t0) = G(3)

G(2)

[
ϕ(yLb ) + ϕ(yRb )

]
+ ∆A(t0) = κ+ ∆A(t0). (3.22)

We have defined κ to encapsulate the dilaton contribution. While κ is technically a
function of t0 since the locations of the benches change with t0, we will soon find that this
dependence is negligible in the large lφ/zh regime. As such, we ignore that dependence
for now.

The area difference defined in (3.19) grows in time — the later the time of the radia-
tion region t0, the larger the area difference between the exterior swings and the Hartman-
Maldacena swing. However, the Hartman-Maldacena swing is the only one which is non-
static. In particular, based on (3.12), we can see that the Hartman-Maldacena area de-
creases linearly with t0.

The time of the phase transition in the generalized entropy, which we call tp, depends
on the interval length lφ. It occurs when the entropy difference (3.22) is 0, so,

tp = −κ− φr −
lφ
2 +O

(
zh
lφ

)
. (3.23)

The larger we take lφ to be, the earlier the phase transition occurs. In other words,
unlike the UV regulator ρ∞, the IR regulator has an explicit effect on the physics of our
configuration.

Next, we define τ as the time when the renormalized Hartman-Maldacena entropy
(which is just the area and does not have any dilaton contribution) reaches 0. From (3.20),
we write,

τ = zh log zh + lφ
2 +O

(
zh
lφ

)
. (3.24)

The positivity of the excluded divergences allows for the bare area and bare entropy
to be positive for all t0. The renormalized entropy curve is depicted in figure 5.

Observe that this is not the Page curve presented in [15] and shown in figure 1. Instead,
it appears to be just the t < 0 part of the Page curve, with the Hartman-Maldacena swing
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Sren
R(t0)

t0

◦

tp τ

Sren
HM(t0)

Sren
E

0

Figure 5. A sketch of the renormalized entanglement entropy of R(t0), Sren
R(t0), as a function of

time t0, with Sren
HM(t0) and Sren

E being the entropies of Aren
HM(t0) and Aren

E , respectively. The entropy
starts at some constant value, then falls after the phase transition in which the entanglement surface
becomes the Hartman-Maldacena swing, reaching 0 at τ .

decreasing for all time, instead of decreasing, reaching the bifurcation surface at t = 0,
then increasing. Even more interestingly, if we take lφ/zh → ∞, then both tp → −∞ and
τ →∞. Thus, in the IR limit, we are left with a strictly decreasing entropy curve.

One can ask why the picture is so different from that of AdS/CFT. In fact, figure 5
appears to indicate that the Hawking radiation is in a mixed state, but becomes more pure
over time. It is tempting to interpret this as an information paradox. Although the entropy
curve gives the appearance of the black hole losing all of its information, the setup is still
eternal, and, because we are in the semiclassical limit, there should be no backreaction.

Leaving this puzzle for section 3.4, we make another observation with regards to the
islands. Note that both the Hartman-Maldacena swing and the exterior swings feature
islands. This is because both are truncated by the φ = 0 brane, so both require islands
to “complete” the homology condition of the respective swing surfaces. We compute the
endpoints of these islands, confirming that the Hartman-Maldacena swing captures interior
degrees of freedom while the exterior swings do not. Our observations here will also prove
the earlier statement we made about the time-dependence of κ being negligible when lφ/zh
is large.

For both candidates, we need to know where the rope emanated from φr on R(t0)
intersects with the brane. The rope’s affine parameter at this point is (3.6), and the radial
coordinate is (3.7). Rephrasing both values by keeping only the terms which dominate in
the UV limit ρ∞ →∞, we write,

λ0 → zhρ∞e
−2φr/zh , (3.25)

z−(λ0)→ 0 (from above). (3.26)
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• •••
RR(t0)RL(t0)

t0t0

t0 + φrt0 + φr

t∗t∗ ••

IREILE

IHM

Figure 6. The 2-dimensional system, consisting of the black hole on the φ = 0 brane coupled to
the bath on the conformal boundary. The radiation region is depicted in green and is the union of
two disconnected pieces. The blue intervals comprise a sketch of the exterior islands, whereas the
orange interval is a sketch of the Hartman-Maldacena island. We have taken ρ∞ → ∞, so both
intervals approach the conformal boundary (a phenomenon represented by open dots) and thus
include near-boundary degrees of freedom.

Thus the intersection point lies just within the interface between the brane and the
bath, i.e. approaching15 the conformal boundary of the induced 2-dimensional black hole.
Furthermore, we use (2.35) to write the time coordinate as,

t−(λ0)→ −zh2 log
(
e−2φr/zh

)
+ t0 = t0 + φr. (3.27)

So, on both sides of the brane’s black hole, the islands corresponding to both candidate
swing surfaces start at t = t0 + φr and z → 0.

The only intersection points of the full Hartman-Maldacena swing with the φ = 0
brane are precisely these points. Thus, the Hartman-Maldacena island, IHM, is the interval
connecting the two. This is shown in figure 6.

Each exterior swing, however, intersects φ = 0 both at the point described above and
at a second point just outside of the horizon. Specifically, using (2.39), we immediately
have that the radial coordinate of this other intersection is,

z∗ = zh

√√√√ 2
1 + coth

(
lφ

2zh

) = zh +O

(
zh
lφ

)
lφ/zh→∞−−−−−−→ zh. (3.28)

In other words, for either of the exterior swings, the deeper intersection point ap-
proaches the horizon in the IR limit, but never enters the interior. Note that we may find
the time coordinate t∗ of these endpoints, as well. From (2.22) and the fact that φ = 0 =⇒
v∗ = −u∗, where v∗ and u∗ are the lightcone coordinates at this point, we deduce,

t∗ = u∗ − v∗
2 = u∗ = u+ + u−

2 . (3.29)

15We are careful to note that, even in the UV limit, the intersection point does not lie on the AdS2

boundary, as this would violate the boundary conditions of the setup. The intersection point must be
strictly in the AdS2 bulk.
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We still have (3.13), which yields,

t∗ = t0 + φr + lφ
2

lφ/zh→∞−−−−−−→∞. (3.30)

These exterior islands IE = IRE ∪ ILE are also shown in figure 6. That z∗ → zh and
t∗ →∞ in the IR limit validates our earlier statement that the dependence of κ on t0 may
be neglected for large lφ/zh, since we deduce that, regardless of t0, the deeper endpoint of
the exterior islands is fixed to be near the horizon in the IR limit.

Additionally, the endpoints of the exterior islands appear to be timelike, as opposed
to spacelike like the Hartman-Maldacena island. This only happens because the exterior
swings, which do not lie on a single time slice, hit the brane at different times. That
the separation is timelike is easily seen in the IR limit, where the differences in the t

and z coordinates between the near-boundary endpoint and near-horizon endpoint are
respectively,

∆t = t∗ − (t0 + φr)
lφ/zh→∞−−−−−−→∞, ∆z = z∗

lφ/zh−−−→ zh. (3.31)

So taking stock, we have done the following: defining constant-time radiation regions
in the bath, we use double holography to compute their entanglement entropies via the
swing surface prescription. In doing so, we find early-time islands which are timelike. That
these exterior islands are timelike is a statement about how early-time information is stored
in our setup — for t0 < tp, a single observer has access to the radiation collected in one
side of the bath.

To elaborate on the physics of this point, we first note that each connected exterior
island IR,LE (approaching the boundary at time t0 + φr) forms in the 3-dimensional bulk
a single connected entanglement wedge ΣR,L

E with the radiation collected in the respective
bath RR,L(t0) and the appropriate exterior swing. Thus, each exterior island IR,LE is
redundant with the corresponding radiation region RR,L(t0) — a stronger statement than
IE being redundant with the full radiation region.

A note of caution. The timelike nature of the islands makes it difficult to assign them
a standard Hilbert-space description. This challenges the premise that the radiation region
is encoded within the island region, or vice versa. It is possible that there is some effective
and finer notion of this encoding at each time slice on the timelike island region, with the
spacelike radiation region, which entanglement entropy itself cannot decipher. However,
we have no sharp and precise statements to make on how this could be true.

With the open and unsettled issues mentioned above, technically we have simply com-
bined various methods, each of which have independent support. The puzzling aspects
of our results could stem from a hitherto unknown limitation or inconsistency in those
methods, or it could be solved by a better understanding of the island description in more
general situations. At this point, we are not sure how to better think about them and we
leave these issues for future.16

16We thank the Referee for extremely useful feedback on the manuscript and bringing these questions to
the spotlight.
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In the following section, leaving the above issues aside, we compare the above state-
ments to the analogous ones in AdS/CFT, in which the RT prescription is what calculates
the entanglement entropy. Furthermore, we discuss the how our model provides insight
into the relationship between islands and unitarity, as well as the role of the IR divergence.

3.4 Differences from AdS/CFT

In appendix C, we review the analogous calculations for the static planar BTZ in
AdS3/CFT2, using the arguments of [16] to arrive at the statements of [15]. Following
this procedure, which roughly relies on the same logic as our analysis using swing surfaces,
we ultimately arrive at three conclusions:

(1) the entanglement entropy of the radiation region follows the eternal Page curve17 of
figure 1,

(2) there are islands (specifically going behind the horizon) only for the exterior surface,
but no islands for the Hartman-Maldacena surface,

(3) there is no field-theoretic IR divergence, since, with the RT prescription, we may take
the boundary interval to start at φr and be infinite in length.

All three of these conclusions change when the matter sector is a holographic WCFT2.
Mathematically, these differences emerge by virtue of using the swing surface prescription.
We elaborate on each of these difference from a physical perspective.

Starting with (1), we have already found the entropy curve, depicted in figure 5.
Essentially, both the phase transition and saturation only occur at some early time (past
infinity in the IR limit). After that, the curve simply decreases, indicating that the Hawking
radiation is becoming more and more pure.

We have already described this as having the appearance of an information paradox,
but recall that holographic WCFT2 is actually non-unitary. From a field theory perspec-
tive, we posit that it is this non-unitarity which leads to an ever-decreasing Page curve,
even though the setup is supposed to be eternal and the Hawking radiation in equilibrium
with the black hole.

Additionally, observe that figure 5 is not even symmetric under time-reversal, even
though the bulk geometry is. This indicates that boundary state living in the WCFT2 is
not invariant under time-reversal.

For (2), as shown in figure 6, both the Hartman-Maldacena swing and the exterior
swings feature islands anchored to the boundary at different time slices from R(t0). Phys-
ically, this means that, no matter what time at which we compute the entanglement of the
Hawking radiation with the black hole, we will always find that there are redundant degrees
of freedom in the gravitating region. Additionally, the exterior islands are strictly in the
exterior regions of the black hole, while the Hartman-Maldacena islands cross the interior.

17We emphasize that, by time-reversal symmetry, the plot for negative times is the mirror image with
respect to vertical axis. In other words, the entanglement entropy is also saturated for sufficiently negative
times.
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That the “late-time” islands cross the interior is an interesting common point between the
warped story and the AdS/CFT story. However, regarding the islands’ locations, that is
where the similarities appear to end.

That being said, however, it is interesting that the islands emerge at all. Essentially,
the warped model tells us that the idea of the island rule and redundant degrees of freedom
existing within the 2-dimensional gravitating region does not necessarily imply unitarity.
Rather, redundancy is a more general idea. In conjunction with past work, we deduce
that the relationship between unitarity and islands is rather subtle — [58] considers two
higher-derivative, non-unitary gravitational theories and finds unitary Page curves and
late-time islands, while we take the matter to be non-unitary in the course of deviating
from this story.

It is perhaps worth emphasizing that the presence of the islands even for the Hartman-
Maldacena surface is strongly suggestive of a deeper connection between the geometric no-
tion of islands and the intrinsic non-local nature of the quantum interaction. In AdS/CFT,
the resolution of the unitary Page curve may be related to the non-locality of quantum
gravity interactions, which are captured in terms of the islands but are unknown to the
Hartman-Maldacena surface. In our case, however, the WCFT2 is inherently non-local and
it is tempting to conclude that, therefore, the Hartman-Maldacena surface cannot evade
islands. To further establish a precise connection between non-locality and the presence of
islands, one at least needs to understand such models in a more controlled manner. For
example, one may attempt to construct a set-up in which a tunable parameter smoothly
interpolates between locality and non-locality, with the hope of attaining an “island-free”
entanglement surface in the local limit. We leave this to future work.

Lastly, regarding (3), we again reiterate that the physics depends on the field-theoretic
IR cutoff lφ which corresponds to the size of the radiation region. Specifically,

lφ
zh
→∞ =⇒


tp → −∞,
τ →∞,
Sren
R(−∞) →∞.

(3.32)

Thus, in the IR limit, the non-unitarity of the entropy curve becomes even more
evident. Not only is there no phase transition, but the entropy is always strictly decreasing,
with the renormalized entanglement entropy always being positive (albeit infinite, since we
have not renormalized with respect to the IR divergence).

In particular, note that these IR divergences are linear. [46] makes the point that the
extra linear term seen in the warped entanglement entropy expression18 are a manifestation
of its non-relativistic nature, stemming from the theory’s lack of Lorentz invariance. As
it is these very terms which give rise to the divergences in the physical quantities above,
one may wonder about how loss of symmetry in the field theory may be related to these
physical divergences. We leave this to future consideration.

18The linear term is an “extra” one when comparing the WCFT2 entanglement entropy to the CFT2

entanglement entropy.
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However, our quantitative results are still expanded around the IR limit, as well. One
could ask what happens when lφ/zh is not sufficiently large for such expressions to be good.
Then, the time-dependence of κ is no longer suppressed, and the result (3.23) would be
modified so as to be dependent on the profile of the JT-like dilaton.

While AdS3/WCFT2 and the swing surface prescription ultimately give a radically
different result from AdS3/CFT2 despite the logic being similar (see appendix C for details),
the moral of the story is that the emergence of entanglement islands are ultimately a “well-
behaved” phenomenon, in that they need not always impose unitarity. In other words,
islands are not too strong. We may claim that when an entropy curve is unitary and thus
described by a Page curve, this is a physical phenomenon informed by the details of the
theory. In conjunction with the results of [58], we deduce that islands are only a necessary
ingredient to obtain a Page curve, but are not powerful enough to overcome all non-unitary
variations of the AdS/CFT doubly holographic models.

4 Conclusions

To summarize, we have used the recently-proposed swing surface prescription [50, 51] for
non-AdS holography in order to compute the entanglement entropy of Hawking radiation
in a doubly holographic, eternal model using AdS3/WCFT2. Our primary goal is two-fold:
to clarify whether the island prescription is “too powerful” and always reproduces a unitary
Page curve even when the system is non-unitary, and to explore further the nature of the
non-locality of the island rule.

By choosing the WCFT2 matter, we explicitly couple gravity to a non-unitary, non-
local system. We find that the corresponding Page curve reflects this non-unitarity, and
that islands are always present. We therefore interpret this as evidence in support of the
following:

(1) the island prescription actually knows about whether the microscopic description is
indeed unitary or non-unitary,

(2) the island prescription also responds to the microscopic non-locality of the system.

The two points are primarily based on plausibility. In other words, we are suggesting
that one should perhaps take the above coincidences seriously, and the islands may carry
further fine-grained details of the gravitational description including the matter field to
which it is coupled. In brief, the pathologies of the class of models seem to be well-captured
by the island rule in the gravitational dual.

In the course of our work, we have learned that entanglement islands are a rather nec-
essary phenomenon in gravitating systems, emerging even when the accompanying entropy
curve is not unitary. There are a number of directions in which one may proceed from here.

• We stress that we have only discussed a single alternative doubly holographic model
to that used in [6]. The work on swing surfaces, however, encompasses other types of
non-AdS holography using 2-dimensional field theories. By restricting to holographic
models in which the swing surface proposal holds, one could perform a similar analysis
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in a much broader class of situations, including WAdS3/WCFT2 (which changes the
black hole to being non-Einsteinian) and flat3/BMFT2 [67, 68].

• One may consider non-AdS doubly holographic models in higher dimensions. For
instance, one may consider non-relativistic Lipshitz theories, for which entanglement
wedges have been studied [69, 70]. Note that [69] mentions the necessity of ropes (or,
in this case, null sheets) in the full entanglement surface.

• Within the confines of AdS3/WCFT2, one may also consider whether there are islands
for radiation emitted by a static AdS3 vacuum. Since this is another vacuum solution,
the swing surfaces computed by [50] should work. Note, however, that factors of i
may need to be carefully considered.

• Also within AdS3/WCFT2, one could consider how to source black hole evaporation
in the semiclassical limit. However, this would not longer be a vacuum solution, so
the swing surfaces would need to be found.

• Although a given WCFT2 is expected to be non-local, we never explicitly used this
property in our work. It would be interesting to study islands in non-local theories.
In order to properly probe any potential effects, our work further indicates that one
would need to employ unitary theories. Another route is to construct a system which
smoothly interpolates between locality and non-locality so as to see if some entangle-
ment surfaces featuring islands in the latter become “island-free” in the former.

• Our calculations were performed completely holographically in the 3-dimensional
braneworld system, but in principle it should be possible to perform these calculations
in the other systems. For example, in the 2-dimensional gravity + bath system, one
could compute the entanglement entropy by first generalizing the expression in [36]
to curved backgrounds. This should provide a consistency check with our holographic
calculations. However this would require knowing more about the JT-like action.

• A field-theoretic IR divergence is itself dual to a UV divergence in the gravity theory
— in other words, a source. While we found a field-theoretic IR divergence in our
work, it is unclear what type of source it may correspond to in the bulk. Furthermore,
from the field-theoretic perspective, the origin of this IR divergence is also unclear.
One possible way of conceptualizing this source is as something which breaks the full
Lorentz invariance of AdS3, tying it to the non-relativistic nature of the boundary
WCFT2. More generally, one may ask about the possible role of IR divergences in
non-relativistic field theories, particularly holographic ones.
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A JT gravity coupled to CFT2 matter

We briefly review JT gravity coupled to conformal matter, starting at the classical level,
then promoting everything to the semiclassical level. This is discussed in [11] in the context
of quantum extremal surfaces. Additionally, it is one of the descriptions for the doubly holo-
graphic model of [6]. When coupling JT gravity to a CFT, classically the matter’s stress
tensor ends up coupled to the dilaton, while the background has a fixed Ricci curvature.
Since we neglect any quantum backreaction on the metric in the semiclassical approxima-
tion, the background remains fixed, and occurrences of the stress tensor are replaced with
its expectation value.

We use the action in [71].19 In particular, we show that the action is extremized
for configurations involving fixed AdS2 backgrounds, with the matter’s stress tensor being
related to the dilaton by an additional set of on-shell constraints. We also specify boundary
conditions on the metric and the dilaton. When considering the JT-like gravity coupled
to WCFT2 in the main text, we assume the same sort of classical configuration, with the
same boundary conditions and coupling to matter for the dilaton.

The action of JT gravity itself consists of two separate parts,

IJT [g(2)
ij , ϕ] = IT [g(2)

ij ] + IG[g(2)
ij , ϕ], (A.1)

where these terms are defined as,

IT [g(2)
ij ] = ϕ0

16πG(2)

(∫
M
d2x
√
−gR+ 2

∫
∂M

dx
√
|γ|K

)
, (A.2)

IG[g(2)
ij , ϕ] = 1

16πG(2)

[∫
M
d2x
√
−gϕ

(
R+ 2

`2

)
+ 2

∫
∂M

dx
√
|γ|ϕ(K − 1)

]
. (A.3)

Here, g(2)
ij is the background metric and ϕ is the dynamical dilaton. We also have

couplings G(2) and ϕ0 � ϕ. However, although IG is a dynamical term, IT is actually
topological. This is seen by the Gauss-Bonnet theorem in the Euclidean sector; for a
2-dimensional orientable, Riemannian manifoldME with Euler characteristic χ(ME),∫

ME

d2x
√
gER+ 2

∫
∂ME

dx
√
γEK = 4πχ(ME). (A.4)

19The action presented by [71] includes a holographic renormalization meant to keep the action finite on
relevant classical configurations.
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Thus, the Euclideanized IT in the JT gravity action is,

IET = −ϕ0χ(MR)
4G(2) = ϕ0

4G(2) (2g + b− 2), (A.5)

where g is genus and b is the number of boundaries.
In the path integral, any term of the form exp

(
−IET

)
corresponding to a configuration

with large g or large b will be exponentially suppressed. Consequently, in the approximation
for which we consider the leading-order term, we take g = 0 and b = 1. As mentioned
in [11], this means that, semiclassically, the topological term yields the following leading-
order contribution to the entropy,

ST ≈ log exp
(

ϕ0
4G(2)

)
= ϕ0

4G(2) . (A.6)

Now, in finding the classical configurations for the 2-dimensional bulk in (3.1), we can
neglect the variation of IT (since it is topological). Furthermore, we apply the Dirichlet
boundary conditions in [11, 71] to fix the boundary metric and the boundary value of the
dilaton,

γuu|∂M = 1
δ2 , ϕ|∂M = ϕb

δ
, (A.7)

taking δ → 0 and ϕb > 0 finite. With these boundary conditions, we can neglect the
variation of the boundary terms in the action.

We now focus on varying just the bulk parts of IG and IW . First, varying by ϕ, we
find that,

δ

δϕ
(IG + IW ) = 1

16πG(2)
√
−g

(
R+ 2

`2

)
. (A.8)

Classically, we thus have that the scalar curvature is fixed. Furthermore, this extends
to the semiclassical regime because we do away with any quantum backreaction in the
metric. Specifically, the background must be locally AdS2,

R = − 2
`2
. (A.9)

Next, we vary with respect to the bulk metric. We use the standard definition for the
matter stress tensor,

Tij = − 2√
−g

δIW
δgij

. (A.10)

Upon computing the variation of (A.3), we find that,

δ

δgij
(IG + IW ) =

√
−g

16πG(2)

[
−1

2gij
(
R+ 2

`2

)
ϕ+Rijϕ−∇i∇jϕ+ gij∇2ϕ

]
−
√
−g
2 Tij . (A.11)

We can apply (A.9) to eliminate the first term in the brackets. Additionally, setting
this to 0 yields the following classical stress tensor,

8πG(2)Tij = (Rij + gij∇2 −∇i∇j)ϕ. (A.12)
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We conclude by showing that this results in the stress tensor equations of [11]. As in
their work, consider a local AdS2 patch of the background in lightcone coordinates,

ds2

`2
= − 4dx+dx−

(x+ − x−)2 . (A.13)

In these coordinates, the three independent components of (A.12) are,

8πG(2)T+− = ∂+∂−ϕ+ 2
(x+ − x−)2ϕ, (A.14)

8πG(2)T++ = − 1
(x+ − x−)2∂+

[
(x+ − x−)2∂+ϕ

]
, (A.15)

8πG(2)T−− = − 1
(x+ − x−)2∂−

[
(x+ − x−)2∂−ϕ

]
. (A.16)

Thus, (A.12) is consistent with [11]. Furthermore, in the semiclassical approximation,
we write,

8πG(2) 〈Tij〉 = (Rij + gij∇2 −∇i∇j)ϕ. (A.17)

B Hartman-Maldacena area in the interior

The analysis performed by [14] uses a (d+ 1)-dimensional metric of the form,

ds2 = −g(ρ)2dt̃2 + f(ρ)2d~x2 + dρ2, (B.1)

where ~x = (x1, . . . , xd−1) and the functions g and h are,

g(ρ) = f(ρ) tanh
(
d

2ρ
)
, f(ρ) = 2

d

[
cosh

(
d

2ρ
)]2/d

(B.2)

The Hartman-Maldacena surface sits at a constant x1, and its ρ-coordinate is parame-
terized as ρ(t̃). Furthermore, in the exterior, it is anchored to a boundary region at t̃ = t̃b.
Denoting the derivative of ρ(t̃) by ρ̇, the induced metric on the surface is,

ds2|HM = [−g(ρ)2 + ρ̇2]dt̃2 + f(ρ)2
d−1∑
i=2

(dxi)2. (B.3)

Thus, we have that the area is,

A =
∫
dx2 · · · dxd−1

∫
dt̃ f(ρ)d−2

√
−g(ρ)2 + ρ̇2

= Vd−2

∫
dt̃ f(ρ)d−2

√
−g(ρ)2 + ρ̇2, (B.4)

where Vd−2 is the volume of the transverse space (x2, . . . , xd−1).
In the interior, the signatures of t̃ and ρ switch, so ρ becomes a timelike coordinate.

In other words, ρ is imaginary in the interior. Bearing this in mind, [14] extremizes (B.4),
defining along the way,

a(ρ) = −ig(ρ)f(ρ)d−2. (B.5)
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For late boundary time t̃b (or by time-reversal symmetry, early boundary time −t̃b), [14]
finds the area of the portion of the extremal surface in the interior to be,

Aint = 2Vd−2amt̃b, (B.6)

where am is the maximum value of the function (B.5) acquired in the interior, when ρ is
imaginary. The exterior portion of the surface is on the t̃ = t̃b slice of the geometry, so it
is constant in time.

For d = 2, we set x1 = φ̃ and rewrite (B.1) as,

ds2 = − sinh2 ρ dt̃2 + cosh2 ρ dφ̃2 + dρ2. (B.7)

Then, we apply the coordinate transformation,

t̃ = t

zh
, φ̃ = φ

zh
, ρ = Sech−1

(
z

zh

)
, (B.8)

under which (B.7) becomes the metric of the exterior (2.32). As there are no additional
transverse coordinates besides φ̃,

V0 = 1. (B.9)

Furthermore, in the interior, if we define ρ = iκ, κ ∈ R, then (B.5) becomes,

a(κ) = −i sinh(iκ) = sin κ. (B.10)

So, as am is the maximum, we deduce that am = 1. We conclude that, in AdS-
Schwarzschild time, the interior contribution to the area of the Hartman-Maldacena surface
anchored to a late-time t = tb slice in the exterior is,

Aint = 2tb
zh
. (B.11)

C Islands in AdS/CFT

We briefly review the island story for the eternal BTZ, but in AdS/CFT. [16] specifically
performs calculations in an AdS5 planar black hole containing a probe brane, but the
general argument is similar for the 3-dimensional planar BTZ. This time, we use the RT
prescription, and the radiation region consists of two intervals of the form,

{t0} × [φr,∞). (C.1)

In other words, we need not bother with a field-theoretic IR regulator. The candidate
RT surfaces in one of the exterior regions are shown in figure 7.

It is straightforward to calculate the area of the Hartman-Maldacena surface in a single
exterior region by using (2.32). However, note that it exhibits a logarithmic boundary
divergence, as is standard for AdS3 geometries.

ÃHM =
∫ zh

0

dz

z
√
h(z)

. (C.2)
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φ

z

φ = 0
z = zh

z = 0
R(t0)

φr

•

Figure 7. The candidate RT surfaces of an infinite-length radiation region confined to a single
exterior region of the two-sided planar BTZ at t = t0. The orange line entering the horizon is the
Hartman-Maldacena surface, whereas the blue arc which ends perpendicularly on the brane is the
island-producing exterior surface.

We parameterize the other RT candidate, which we call the exterior surface, as φ(z).
By definition, it must extremize the area functional,

Ã[φ′] =
∫
dz

z

√
1

h(z) + φ′(z)2. (C.3)

The resulting variational derivative gives us two conditions: (1) any extremal surface
hits the brane orthogonally (as shown in figure 7) and (2) the trajectory must satisfy,

φ′(z) = − z√
h(z)(z2

∗ − z2)
, (C.4)

where z∗ is the turnaround point at which 1/φ′(z∗) = 0. This turnaround point is an
integration constant, defining a class of surfaces which satisfy the bulk equations of motion
but need not satisfy the boundary conditions, and taking z∗ → ∞ yields the Hartman-
Maldacena surface.

While there is formally a positive branch in addition to (C.4), we can show that
φ′ < 0 for any extremal trajectory going from the conformal boundary φ > 0 to the probe
brane φ = 0. Specifically, the orthogonality boundary condition at the brane indicates
that φ(z∗) = 0, i.e. the turnaround point lies on the probe brane. As such, along the
extremal trajectory from the conformal boundary to the probe, z only ever increases while
φ decreases.

To compute the area of the exterior surface, we need to compute the turnaround point
in terms of boundary and geometric parameters. By integrating (C.4) over z ∈ (0, z∗), we
have that,

0 = φ(z∗) = φr −
∫ z∗

0

z√
h(z)(z2

∗ − z2)
= φr − zh log

 zh + z∗√
z2
h − z2

∗

 . (C.5)

Thus, we may write the turnaround point in terms of φr and zh as,

z∗ = zh tanh
(
φr
zh

)
. (C.6)
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Figure 8. A numerical plot of the area difference ∆Ã between the RT candidates shown in figure 7,
as a function of the endpoint of R(t0). We have fixed zh = 2. For sufficiently large φr, this plot
confirms that the Hartman-Maldacena surface is minimal at t0 = 0.

Equipped with (C.6), the area of the exterior surface may be written as a function
of φr.

ÃE =
∫ z∗

0
dz

z∗

z
√
h(z)(z2

∗ − z2)
. (C.7)

At this point, note that the Hartman-Maldacena surface at t0 = 0 consists solely
of two exterior pieces — the interior is simply a point. Consequently, there is no area
contribution from behind the horizon. Furthermore, as discussed in [14], this contribution
grows in time, thus implying a phase transition between the (overall) Hartman-Maldacena
surface and exterior surface, so long as, at t0 = 0,

ÃHM < ÃE . (C.8)

As done in [16], the fastest way to check that this occurs for sufficiently large φr is to
make a numerical plot of the area difference (in which the UV divergences of the two areas
cancel),

∆Ã = ÃE − ÃHM =
∫ z∗

0
dz

z∗ −
√
z2
∗ − z2

z
√
h(z)(z2

∗ − z2)
−
∫ zh

z∗

dz

z
√
h(z)

. (C.9)

We present this plot in figure 8. The Page curve is thus indeed the one depicted in
figure 1. Additionally, this confirms the statement in [15] that, for eternal AdS black holes
in AdS/CFT, there are no islands at t = 0 but, after the phase transition, there are islands
starting in the exterior regions and reaching behind the horizon.
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