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1 Introduction

Despite the overwhelming success of the Standard Model (SM) by discovering the 125GeV
Higgs boson at the Large Hadron Collider (LHC) in 2012 [1, 2], it has been widely believed
that new physics is required to explain various phenomena beyond the SM, such as tiny
neutrino masses [3], the nature of dark matter [4], and the origin of matter-antimatter
asymmetry in the Universe [5]. One of the promising directions for resolving these puzzles is
to extend the minimal SM Higgs sector by including additional scalars. Note that the shape
of the SM Higgs potential is fully determined by the vacuum expectation value (VEV),
v, and the quartic self-coupling, λH . However, in the non-minimal extension of the Higgs
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section, there will be inevitable deviations of the Higgs self-couplings with respect to the
SM predictions. Therefore, the precise measurement of the Higgs self-couplings can help us
to probe the new physics and to understand the electroweak symmetry breaking mechanism.
Until now, the determination of the trilinear Higgs coupling has been performed at the
LHC Run 2 and will be further searched for at the Run 3, by directly detecting the single
and double Higgs boson productions [6] and other indirect probes [7–10]. In addition to the
above experimental endeavors, there has already been considerable theoretical explorations
in order to constrain the Higgs sector, such as the perturbative unitarity [11–14], vacuum
stability and triviality [15, 16].

In this work, we shall focus on the systematic derivation of the perturbative unitarity
bounds on the non-minimal Higgs sector with two or three Higgs multiplets. As early as 1977,
Lee, Quigg, and Thacker [13, 14] made use of the perturbative unitarity and found the Higgs
boson mass upper bound mh < 870GeV in the minimal SM. The perturbative unitarity
has recently been calculated in various extensions of the Higgs sector and been identified
as a significant constraint on the new physics. One of the most popular extensions is the
two-Higgs-doublet model (2HDM) (see refs. [17, 18] for recent reviews) whose perturbative
unitarity was firstly calculated in refs. [19–23] with the assumptions of softly broken Z2
symmetry and CP-conservation. The perturbative unitarity for the most general 2HDM
was given in ref. [24] and the associated numerical investigationwas carried out in detail in
ref. [25]. For other Beyond-SM theories, the unitarity bounds have been explored for the
Georgi-Machacek model [26] in ref. [27], for the Type-II seesaw model [28–33] in ref. [34], for
extended scalar sector with a real triplet scalar in ref. [35], for a complex triplet extension of
the 2HDM with CP conservation and a softly broken Z2 symmetry in ref. [36], and for the
extension of SM with color-octet scalars in ref. [37], respectively. Some other applications
of the unitarity bounds on new physics have been studied in refs. [38, 39].

In this paper, we systematically study the unitarity bounds in extensions of the 2HDM
by including an additional real Higgs triplet Σ with hypercharge Y = 0 or a complex Higgs
triplet scalar ∆ with Y = 2 in the most general setup, in order to ensure the validity of
perturbation theory. Here we only concentrate on the high-energy limit where the SM
gauge symmetry effects can be ignored. Thus, we can classify the two-scalar-particle states
according to their conserved isospin and hypercharge quantum numbers, and construct the
associated 2-to-2 scattering amplitude matrices in terms of the bases of SU(2)L ×U(1)Y
irreducible representations. Then we will consider the unitarity bounds in a few special
cases, including the extensions of the SM or 2HDM by one additional real or complex scalar
triplet, with or without a softly broken Z2 symmetry. Finally, we will numerically apply
our derived perturbative unitarity bounds to the complex triplet extension of the 2HDM,
and show the corresponding constraints on model parameter spaces.

This work is organized as follows. In section 2, we provide the two-particle state
eigenbasis according to the irreducible representations of given hypercharges and isospins.
In sections 3 and 4, we present the scattering amplitude matrices in extensions of the 2HDM
by including an additional real triplet and complex triplet, respectively. In section 5, we
show the constraints of unitarity bounds on model parameters in the extension of 2HDM
with a complex triplet scalar. The conclusions are summarized in section 6. In appendix A,
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we provide the analytical solutions for a dimensional-five scattering matrix appearing in
the real or complex triplet augment of the 2HDM with a softly broken Z2 symmetry. The
analytic relations between parameters in the generic scalar basis and the Higgs basis in
the complex triplet extension of 2HDM are provided in appendix B. In appendix C, we
provide elements of the scalar mass matrices in this model. Finally, the trilinear couplings
of a neutral scalar with two charged Higgs particles are summarized in appendix D.

2 Two-particle eigenstates and unitarity bounds on scattering matrices

The calculation of the unitarity bounds in the minimal SM was firstly investigated in
refs. [13, 14] and has been applied to various extensions of the SM. It requires that the
eigenvalues of this scattering matrix should be less than the unitarity limit [11, 12, 24],
otherwise the perturbative calculation of scattering amplitudes at tree level is no more
reliable. From another perspective, one can make a partial wave expansion of the scattering
amplitudes for the interaction channels and put the unitarity bounds on the partial wave
amplitudes. Concretely, the cross section of scalar scattering processes s1s2 → s3s4 can be
expressed in terms of the partial wave decomposition as

σ = 16π
s

∞∑
l=1

(2l + 1)|al(s)|2, (2.1)

where s is the Mandelstam variable and al is the partial wave coefficients with the specific
angular momenta l. Together with the optical theorem one finds the following bound of
unitarity:

|Re(al)| <
1
2 , for all l. (2.2)

In the high energy limit, it is found that the s-wave amplitude a0(s) is dominated by the
point vertex processes since the s-, t-, u-channel processes are suppressed by the scattering
energy. Furthermore, the equivalence theorem [40–44] declares that at very high energy,
the amplitudes of scattering processes involving longitudinal gauge bosons in the initial and
final states are equivalent to those in which gauge bosons are replaced by the corresponding
Nambu-Goldstone bosons. Thus, in the high energy limit a0(s) is fully determined by the
quartic couplings of the scalar potential.

Using the equivalence theorem, we can write down the two-particle state bases in terms
of the components of the Higgs multiplets. Once given the scalar potential, we can determine
the amplitudes for the 2→ 2 scattering processes with the bases. This largely simplifies the
calculations for scattering amplitudes. In refs. [23–25, 27], the bases are further classified
according to their electroweak (EW) charges, i.e., total hypercharge Y and total isospin I,
since the EW SU(2)L×U(1)Y gauge symmetries are recovered at high energies so that their
associated quantum numbers becomes conserved again. In this approach, we decompose the
direct product of two Higgs multiplets into the direct sums of irreducible representations
under EW gauge symmetries.

In this work, we adopt an intermediate route for the classification of the bases. Firstly,
we classify the direct product of the two Higgs multiplets according to their total hypercharge,
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Field Φ Φ̃ Σ ∆ ∆̃
SU(2)L isospin 2 2 3 3 3
Hypercharge 1 −1 0 2 −2

Table 1. A summary of the quantum numbers of the Higgs multiplets. Φ, Σ, and ∆ denotes
the SU(2)L doublet, real triplet, and complex triplet, respectively. We define Φ̃ = iτ2Φ∗ and
∆̃ab = (iτ2)ac(iτ2)bd(∆†)cd, which have negative hypercharge.

I = 0 I = 1

Y = 0 1√
2

(
w+
i w
−
j +H0

i H
0∗
j

) w+
i H

0∗
j

1√
2

(
−w+

i w
−
j +H0

i H
0∗
j

)
−H0

i w
−
j

Y = 2 1√
2

(
−w+

i H
0
j +H0

i w
+
j

) w+
i w

+
j

(
× 1√

2 for i = j
)

1√
2

(
w+
i H

0
j +H0

i w
+
j

)
H0
i H

0
j

(
× 1√

2 for i = j
)

Table 2. The bases of the irreducible representation for the two Higgs doublets direct product.
The bases in the first and second row are corresponding to the direct product Φi × Φ̃j (Y = 0) and
Φi × Φj (Y = 2), respectively. Note that i and j indicate the Higgs doublet. We observe that the
bases with (Y = 2, I = 2) vanish when the two Higgs doublets are identical, i.e., i = j.

where the isospins and hypercharges of the Higgs multiplets considered in the present work
are summarized in table 1. Then we decompose the direct product into direct sums of the
irreducible representations of the EW SU(2)L symmetry. There are three types of direct
products of Higgs multiplets we are concerned about, which are given as follows:

2⊗ 2 = 1⊕ 3, 2⊗ 3 = 2⊕ 4, and 3⊗ 3 = 1⊕ 3⊕ 5. (2.3)

In this way, we classify the two-particle bases according to their total isospins and hyper-
charges of the two Higgs multiplets. Furthermore, we express the bases of the irreducible
representation in terms of components in the multiplets. The results are summarized in
tables 2–7, in which the eigenstates are rescaled so that they are normalized. Moreover,
due to the symmetry property when exchanging two identical bosons, some representations
of the two-particle eigenstates vanish, e.g., the (Y, I) = (2, 0) state in the Φi × Φj when
i = j in table 2, the (Y, I) = (0, 1) state from Σ× Σ in table 5, and the (Y, I) = (4, 0) state
from ∆×∆ in table 6.

Based on the above two-particle basis, we can determine the 2→ 2 scattering amplitudes
as follows [24]

S(Y,I) =
〈

(φφ)fY,I |Ŝ|(φφ)iY,I
〉
, (2.4)

in the sector with definite EW charges (Y, I) with Y and I as the total hypercharge and
isospin, respectively. We do not distinguish states by the third components of isospin I3,
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I = 1
2 I = 3

2

Y = 1

√
2
3

(
− i√

2w
+σ0 +H0σ+

)
√

2
3

(
−w+σ− + i√

2H
0σ0

)
w+σ+

1√
3

(
i
√

2w+σ0 +H0σ+
)

1√
3

(
w+σ− + i

√
2H0σ0

)
H0σ−

Table 3. The bases of the irreducible representation for the direct product of a Higgs doublet and
a real Higgs triplet scalar, Φ× Σ.

I = 1
2 I = 3

2

Y = 1

√
2
3

(
− 1√

2H
0∗δ+ + w−δ++

)
√

2
3

(
−H0∗δ0 − 1√

2w
−δ+

)
−H0∗δ++

1√
3

(√
2H0∗δ+ + w−δ++

)
1√
3

(
H0∗δ0 −

√
2w−δ+

)
−w−δ0

Y = 3

√
2
3

(
− 1√

2w
+δ+ −H0δ++

)
√

2
3

(
−w+δ0 + 1√

2H
0δ+

)
−w+δ++

1√
3

(√
2w+δ+ −H0δ++

)
1√
3

(
w+δ0 +

√
2H0δ+

)
H0δ0

Table 4. The bases of the irreducible representation for the direct product of a Higgs doublet and
a complex Higgs triplet scalar. The bases in the first and second row are corresponding to the direct
product Φ̃×∆ (Y = 1) and Φ×∆ (Y = 3), respectively.

I = 0 I = 1 I = 2

Y = 0
√

2
3

(
σ+σ− + 1

2σ
0σ0

)
0

1√
2σ

+σ+

iσ+σ0

1√
3
(
σ+σ− − σ0σ0)
iσ−σ0

1√
2σ
−σ−

Table 5. The bases of the irreducible representation for the two real Higgs triplets direct product,
Σ× Σ. We only consider the case of the direct product of two identical triplet scalar (i.e., i = j).
We find the bases with I = 1 vanish in this case.
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I = 0 I = 1 I = 2

Y = 0 1√
3
(
δ++δ−− + δ+δ− + δ0δ0∗)

1√
2
(
−δ++δ− + δ+δ0∗)

− 1√
2
(
δ++δ−− − δ0δ0∗)

− 1√
2
(
−δ+δ−− + δ−δ0)

−δ++δ0∗

1√
2
(
δ++δ− + δ+δ0∗)

1√
6
(
−2δ+δ− + δ++δ−− + δ0δ0∗)

1√
2
(
−δ+δ−− − δ0δ−

)
−δ−−δ0

Y = 4
√

2
3

(
−δ++δ0 − 1

2δ
+δ+

)
0

1√
2δ

++δ++

−δ++δ+

1√
3
(
δ+δ+ − δ++δ0)

δ0δ+

1√
2δ

0δ0

Table 6. The bases of the irreducible representation for the direct product of two complex Higgs
triplet scalars. The bases in the first and second row are corresponding to the direct product ∆× ∆̃
(Y = 0) and ∆ ×∆ (Y = 4), respectively. We observe again that the bases with (Y = 4, I = 1)
vanish because the two triplets are identical.

I = 0 I = 1 I = 2

Y = 2 1√
3
(
σ+δ0 − iσ0δ+ − σ−δ++)

− 1√
2
(
σ+δ+ + iσ0δ++)

− 1√
2
(
σ+δ0 + σ−δ++)

− 1√
2
(
iσ0δ0 − σ−δ+)

σ−δ++

1√
2
(
σ+δ+ − iσ0δ++)

1√
6
(
σ+δ0 + i2σ0δ+ − σ−δ++)

1√
2
(
iσ0δ0 + σ−δ+)
σ−σ0

Table 7. The bases of the irreducible representation for the direct product of a real Higgs triplet
and a complex Higgs triplet, Σ×∆.

since the states with same (Y, I) but different I3 would lead to exactly the same scattering
matrix. In the tree-level approximation, the elements of the scattering matrix among scalars
are determined by the quartic couplings in the scalar potential. Here we do not decompose
a complex scalar field into its real and imaginary parts either in the external state basis or
in the scalar potential due to the recovered SU(2)L ×U(1)Y symmetry at high energies.

As argued before, the unitarity of scattering amplitudes requires that the s-wave
amplitude a0(s) in the partial-wave expansion should fulfill the bound in eq. (2.2). Note
that the amplitude of two scalar scatterings is dominated by the s-wave one at the tree
level, so that the unitarity bounds can be transformed into the following condition on the
eigenvalues Λ(Y,I) of the scattering matrices 16πS(Y,I) as follows

|Λ(Y,I)| ≤ 8π . (2.5)
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3 Two-Higgs-doublet model plus a real triplet

In this section, we will focus on the model that contains two Higgs doublets and a real
Higgs triplet scalar. The scattering matrix for the scalar potential is provided in section 3.2.
Using these results, we consider the perturbative unitarity constraints on two simplified
cases: the model with a softly broken Z2 symmetry and the ΣSM model [45].

3.1 The scalar potential

The scalar potential for the extension of the 2HDM with an additional real Higgs triplet
field Σ is given by

Vr = V (Φ1,Φ2) + V (Σ) + V (Φ1,Φ2,Σ), (3.1)

where the Higgs doublet and real triplet scalar are

Φi =
(
w+
i

H0
i

)
, and Σ =

(
σ0/
√

2 σ+

σ− −σ0/
√

2

)
, (3.2)

where we can further expand the H0
i = 1√

2(ϕi + izi). The most general renormalizable
scalar potential for the 2HDM in the generic basis {Φ1,Φ2} is commonly written as [100]

V (Φ1,Φ2) = m2
1Φ†1Φ1 +m2

2Φ†2Φ2 −
(
m2

12Φ†1Φ2 + H.c.
)

+ 1
2λ1

(
Φ†1Φ1

)2

+ 1
2λ2

(
Φ†2Φ2

)2
+ λ3Φ†1Φ1Φ†2Φ2 + λ4Φ†1Φ2Φ†2Φ1 +

[1
2λ5

(
Φ†1Φ2

)2

+λ6
(
Φ†1Φ1

)(
Φ†2Φ1

)
+ λ7

(
Φ†2Φ2

)(
Φ†2Φ1

)
+ H.c.

]
.

(3.3)

The parameters m2
12, λ5, λ6, and λ7 should be real if we impose the CP conservation on

the potential. If the Z2 symmetry with Φ1 → Φ1 and Φ2 → −Φ2 is only softly broken by
the term proportional to m2

12, we should require λ6 = λ7 = 0. The potential for the real
Higgs triplet scalar is given by

V (Σ) = 1
2m

2
Σ Tr Σ2 + 1

4λΣ Tr Σ4 , (3.4)

while the interactions between the Higgs doublets and the real triplet read as follows

V (Φ1,Φ2,Σ) = 1√
2

[
a1Φ†1ΣΦ1 + a2Φ†2ΣΦ2 +

(
a12Φ†1ΣΦ2 + H.c.

)]
+ 1

2 Tr Σ2
[
λ8Φ†1Φ1 + λ9Φ†2Φ2 +

(
λ10Φ†1Φ2 + H.c.

)]
. (3.5)

For a real triplet, the possible terms Tr
(
Σ4) and Φ†Σ2Φ are not independent since they can

be expressed as the combination of
[
Tr
(
Σ2)]2 and Tr

(
Σ2)Φ†Φ. Also, the potential cubic

terms in the first line of eq. (3.5) break the ZΣ
2 symmetry: Σ→ −Σ, and are negligible for

the 2→ 2 scalar scattering in the high energy limit. Therefore, these terms play no roles in
deriving the perturbative unitarity bounds. Furthermore, λ10 can be a complex parameter
and should vanish when the Z2 symmetry involving the two Higgs doublets, softly-broken
or not, is imposed.
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3.2 Scattering matrix

Based on the two-particle bases given in tables 2, 3, and 5 classified according to the
conserved quantum numbers (Y, I), we can expand the general potential in eq. (3.1) with
the scalar components defined in eq. (3.2) and obtain the following scattering matrices of
given (Y, I):

16πS(0,0) =


3λ1 2λ3 + λ4 3λ6 3λ∗6

√
3λ8

2λ3 + λ4 3λ2 3λ7 3λ∗7
√

3λ9
3λ∗6 3λ∗7 λ3 + 2λ4 3λ∗5

√
3λ∗10

3λ6 3λ7 3λ5 λ3 + 2λ4
√

3λ10√
3λ8

√
3λ9

√
3λ10

√
3λ∗10 5λΣ

 (3.6)

16πS(0,1) =


λ1 λ4 λ6 λ

∗
6

λ4 λ2 λ7 λ
∗
7

λ∗6 λ
∗
7 λ3 λ

∗
5

λ6 λ7 λ5 λ3

 (3.7)

16πS(0,2) = 2λΣ (3.8)

16πS(1, 1
2 ) = 16πS(1, 3

2 ) =
(
λ8 λ∗10
λ10 λ9

)
(3.9)

16πS(2,0) = λ3 − λ4 (3.10)

16πS(2,1) =

 λ1 λ∗5
√

2λ∗6
λ5 λ2

√
2λ7√

2λ6
√

2λ∗7 λ3 + λ4

 (3.11)

Comparing with the 2HDM results in ref. [24], the scattering matrix 16πS(0,0) now
becomes 5-dimensional, since there is an additional state with (Y, I) = (0, 0) composed
solely by components in the triplet Σ. Furthermore, the scattering processes in the sectors
with (Y, I) = (0, 2), (1, 1

2), and (1, 3
2) take place only between two scalar triplets.

3.3 Z2 symmetry

Now we simplify our discussion by imposing the softly broken Z2 symmetry with Φ1 → Φ1
and Φ2 → −Φ2 on the scalar potential (3.1), so that we have λ6 = λ7 = λ10 = 0 but
leaving a nonzero m2

12. Such a model is phenomenologically important because it protects
the theory from flavor changing neutral currents at tree level. Using the results given in
appendix A, the matrix (3.6) can be block diagonalized into a 2× 2 matrix 16πS(2)

(0,0) and a
3× 3 one 16πS(3)

(0,0) as follows

16πS(2)
(0,0) =

(
λ3 + 2λ4 3λ∗5

3λ5 λ3 + 2λ4

)
, 16πS(3)

(0,0) =

 3λ1 2λ3 + λ4
√

3λ8
2λ3 + λ4 3λ2

√
3λ9√

3λ8
√

3λ9 5λΣ

 . (3.12)

The eigenvalues for 16πS(3)
(0,0) can be found numerically or analytically by applying eq. (A.8).

Furthermore, the matrix 16πS(0,1) in eq. (3.7) can also be decomposed into the following
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two matrices,

16πSu
(0,1) =

(
λ1 λ4
λ4 λ1

)
, 16πSd

(0,1) =
(
λ3 λ

∗
5

λ5 λ3

)
. (3.13)

Apart from 16πS(3)
(0,0), the eigenvalues for the scattering matrices are summarized as follows:

Λ(2)±
(0,0) = λ3 + 2λ4 ± 3|λ5|,

Λu±
(0,1) = 1

2

(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ2

4

)
,

Λd±
(0,1) = λ3 ± |λ5|,

Λ(2,0) = λ3 − λ4, Λ(2,1) = λ3 + λ4,

Λ±(2,1) = 1
2

(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4|λ5|2

)
,

Λ(0,2) = 2λΣ, Λ1
(1, 1

2 ) = Λ1
(1, 3

2 ) = λ8, Λ2
(1, 1

2 ) = Λ2
(1, 3

2 ) = λ9,

(3.14)

where Λ2±
(0,0), Λu±

(0,1), and Λd±
(0,1) are the eigenvalues for 16πS(2)

(0,0), 16πSu
(0,1), and 16πSd

(0,1). By
further assuming λ8 = λ9 = λΣ = 0 in the matrix S(3)

(0,0), we can reproduce the eigenvalues
Λeven

00± in eq. (10) of ref. [24]. The last line of eq. (3.14) gives the eigenvalues for the scattering
matrices involving only components of the real triplet. Together with numerical eigenvalues
of 16πS(3)

(0,0), we have provided all eigenvalues for the model (3.1) with the softly broken Z2
symmetry.

3.4 The ΣSM model

The ΣSM model is a simple extension of the SM by a real triplet scalar, many aspects
of which has been extensively investigated in the literature, such as the dark matter
phenomenology [45–47], the LHC searches [48, 49], and the strongly first-order EW phase
transition [50, 51]. The potential of ΣSM can be reproduced by setting all the couplings
in the 2HDM scalar potential eq. (3.1) involving the second Higgs doublet Φ2 to vanish,
which is given by

VΣSM = V (Φ) + V (Σ) + V (Φ,Σ) , (3.15)

where Φ is the SM Higgs doublet, V (Σ) is given in eq. (3.4), and

V (Φ) = µ2Φ†Φ + λΦ
(
Φ†Φ

)2
, (3.16)

V (Φ,Σ) = 1√
2
a1Φ†ΣΦ + λ8

2
(
TrΣ2

)
Φ†Φ . (3.17)

By using eqs. (3.12) and (3.14), the unitarity bounds on the ΣSM are then found to be

|λΦ| ≤ 4π, |λΣ| ≤ 4π, |λ8| ≤ 8π,

|6λΦ + 5λΣ ±
√

(6λΦ − 5λΣ)2 + 12λ8| ≤ 16π ,
(3.18)

which confirm the unitarity bounds provided in ref. [35].

– 9 –



J
H
E
P
0
6
(
2
0
2
3
)
2
0
9

4 Two-Higgs-doublet model plus a complex triplet

In this section, we will consider the extension of 2HDM by a complex Higgs triplet ∆ with
Y = 2 [52]. By using the state bases provided in section 2, we shall calculate the scattering
matrix for the most general case of the model. We shall then impose the perturbative
unitarity constraints on the eigenvalues of the scattering matrix for several simplified models,
such as the one with a softly broken Z2 symmetry and the Type-II seesaw model [28–33, 53].

4.1 The general scalar potential

The general scalar potential for the model with two Higgs doublets and a complex Higgs
triplet scalar ∆ is given by

Vc = V (Φ1,Φ2) + V (∆) + V (Φ1,Φ2,∆), (4.1)

where the complex Higgs triplet is written as

∆ =
(
δ+/
√

2 δ++

δ0 −δ+/
√

2

)
. (4.2)

Note that the neutral component δ0 is a complex scalar. The 2HDM potential V (Φ1,Φ2)
has been provided in eq. (3.3), while the part related to the self-interactions of the complex
Higgs triplet is given by

V (∆) = m2
∆ Tr ∆†∆ + λ∆1

(
Tr ∆†∆

)2
+ λ∆2 Tr

(
∆†∆

)2
. (4.3)

The third part in eq. (4.1) gives the interactions among the Higgs doublets and the triplet [52]

V (Φ1,Φ2,∆) =
(
µ1ΦT

1 iτ2∆†Φ1 + µ2ΦT
2 iτ2∆†Φ2 + µ3ΦT

1 iτ2∆†Φ2 + H.c.
)

+
[
λ8Φ†1Φ1 + λ9Φ†2Φ2 +

(
λ10Φ†1Φ2 + H.c.

)]
Tr ∆†∆

+ λ11Φ†1∆∆†Φ1 + λ12Φ†2∆∆†Φ2 +
(
λ13Φ†1∆∆†Φ2 + H.c.

)
.

(4.4)

The Z∆
2 symmetry of the transformation ∆→ −∆ is only softly broken by the cubic terms

in the first line of eq. (4.4), which are negligible for the 2→ 2 scalar scatterings in the high
energy limit, so that they cannot be constrained by the unitarity bounds. Note that there
are possibly additional cubic interactions like ∆a

b∆b
c∆c

a. But we ignore them since they
do not contribute to the unitarity bounds. The parameters λ10 and λ13 can be complex,
and the associated interactions explicitly break the Z2 symmetry involved in the two Higgs
doublets.

4.2 Scattering matrix

We expand the scalar potential (4.1) in terms of components in the two doublets and the
triplet. With the two-particle eigenstates given in tables. 2, 4, and 6, we can determine the
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scattering matrices for different conserved quantum numbers (Y, I), which are summarized
as follows:

16πS(0,0) =


3λ1 2λ3 + λ4 3λ6 3λ∗6 λa

2λ3 + λ4 3λ2 3λ7 3λ∗7 λb
3λ∗6 3λ∗7 λ3 + 2λ4 3λ∗5 λ∗c
3λ6 3λ7 3λ5 λ3 + 2λ4 λc
λa λb λc λ∗c λ∆

 with


λa =

√
3
2(2λ8 + λ11)

λb =
√

3
2(2λ9 + λ12)

λc =
√

3
2(2λ10 + λ13)

λ∆ = 2(4λ∆1 + 3λ∆2)
(4.5)

16πS(0,1) =


λ1 λ4 λ6 λ∗6 λ11
λ4 λ2 λ7 λ∗7 λ12
λ∗6 λ∗7 λ3 λ∗5 λ∗13
λ6 λ7 λ5 λ3 λ13
λ11 λ12 λ13 λ

∗
13 2λ∆1 + 4λ∆2

 (4.6)

16πS(0,2) = 2λ∆1 (4.7)

16πS(1, 1
2 ) =

(
λ8 + 3λ11/2 λ10 + 3λ13/2
λ∗10 + 3λ∗13/2 λ9 + 3λ12/2

)
(4.8)

16πS(1, 3
2 ) =

(
λ8 λ10
λ∗10 λ9

)
(4.9)

16πS(2,0) = λ3 − λ4 (4.10)

16πS2,1 =

 λ1 λ∗5
√

2λ6
λ5 λ2

√
2λ∗7√

2λ∗6
√

2λ7 λ3 + λ4

 (4.11)

16πS(3, 1
2 ) =

(
λ8 − λ11/2 λ∗10 − λ∗13/2
λ10 − λ13/2 λ9 − λ12/2

)
(4.12)

16πS(3, 3
2 ) =

(
λ8 + λ11 λ∗10 + λ∗13
λ10 + λ13 λ9 + λ12

)
(4.13)

16πS(4,0) = 2λ∆1 − λ∆2 (4.14)
16πS(4,2) = 2(λ∆1 + λ∆2) (4.15)

We observe that the scattering matrices 16πS(0,0) and 16πS(0,1) are now five-dimensional,
which is compared with the four-dimensional matrices in the 2HDM. This is caused by
the fact that irreducible representations of the product of two Higgs triplets contain the
states with (Y, I) = (0, 0) and (0, 1), which can scatter into two components of Higgs
doublets with the same quantum numbers. On the other hand, the scattering processes
with (Y, I) = (0, 2), (1, 1

2), (1, 3
2), (3, 1

2), (3, 3
2), (4, 0), and (4, 2) take place only among the

complex Higgs triplets.

4.3 Special case with a softly broken Z2 symmetry

Now we consider some simplified models in the above complex triplet extension of the
2HDM, which may allow us to obtain the eigenvalues of scattering matrices analytically.
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The first example is to impose a softly broken Z2 symmetry on the potential of the two
Higgs doublets in eq. (4.1) so that we have the condition λ6 = λ7 = λ10 = λ13 = 0 for
the potential. In this case, the 5× 5 scattering matrix (4.5) and (4.6) can be decomposed
into a 2-dimensional (which is correspondingly denoted as 16πS(2)

(0,0) and 16πS(2)
(0,1)) and a

3-dimensional matrices. The corresponding 2-dimensional and 3-dimensional matrices are
given by

16πS(2)
(0,0) =

(
λ3 + 2λ4 3λ∗5

3λ5 λ3 + 2λ4

)
, 16πS(2)

(0,1) =
(
λ3 λ

∗
5

λ5 λ3

)
. (4.16)

16πS(3)
(0,0) =

 3λ1 2λ3 + λ4 λa
2λ3 + λ4 3λ2 λb

λa λb λ∆

, 16πS(3)
(0,1) =

 λ1 λ4 λ11
λ4 λ2 λ12
λ11 λ12 2λ∆1 + 4λ∆2

. (4.17)

It is convenient to find the eigenvalues for 16πS(3)
(0,0) and 16πS(3)

(0,1) numerically, we also
provide the analytical solutions in eq. (A.8). We collect the eigenvalues for the remaining
scattering matrices as follows:

Λ2±
(0,0) = λ3 + 2λ4 ± 3|λ5|,

Λ2±
(0,1) = λ3 ± |λ5|,

Λ(0,2) = 2λ∆1,

Λ1
(1, 1

2 ) = λ8 + 3λ11/2, Λ2
(1, 1

2 ) = λ9 + 3λ12/2,

Λ1
(1, 3

2 ) = λ8, Λ2
(1, 3

2 ) = λ9,

Λ(2,0) = λ3 − λ4, Λ1
(2,1) = λ3 + λ4,

Λ2±
(2,1) = 1

2

(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4|λ5|2

)
,

Λ1
(3, 1

2 ) = λ8 − λ11/2, Λ2
(3, 1

2 ) = λ9 − λ12/2,

Λ1
(3, 3

2 ) = λ8 + λ11, Λ2
(3, 3

2 ) = λ9 + λ12,

Λ(4,0) = 2λ∆1 − λ∆2, Λ(4,2) = 2(λ∆1 + λ∆2),

(4.18)

where Λ2±
(0,0) and Λ2±

(0,1) are the eigenvalues for 16πS(2)
(0,0) and 16πS(2)

(0,1), respectively. The
remaining results in eq. (4.18) represent the eigenvalues for the matrices (4.7)–(4.15).
Combining with numerical eigenvalues of the matrices 16πS(3)

(0,0) and 16πS(3)
(0,1), we have

provided all eigenvalues for the scattering matrices in the model (4.1) with a softly broken
Z2 symmetry. Note that the unitarity bounds of the same model was already considered
in ref. [36]. Although we have used different notations to parametrize the scalar potential
from ref. [36], a careful comparison of their eigenvalues of the scattering matrices given in
eqs. (40) and (41) of ref. [36] with the counterparts in eqs. (4.17) and (4.18) shows that
most of them are actually exactly the same. The only exception is that authors of ref. [36]
seemed to miss the cubic equation that corresponds to the first matrix in eq. (4.17) of
our work.
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4.4 The ∆SM

Another simple example belonging the present class is to consider a model with only one
Higgs doublet and one complex triplet, the so-called ∆SM, which has been widely employed
to explain the tiny neutrino masses by the type-II seesaw mechanism [28–33, 53–56]. The
investigations of this model are extended to the searches at colliders [57–62], dark matter [63]
and electroweak phase transition (EWPT) phenomena [34, 64, 65]. The scalar potential for
∆SM is given by

V∆SM = V (Φ) + V (∆) + V (Φ,∆) , (4.19)

where V (Φ) is the SM Higgs potential in eq. (3.16), V (∆) is given by eq. (4.3), and

V (Φ,∆) =
(
µ1ΦT iτ2∆†Φ + H.c.

)
+ λ8Φ†Φ Tr ∆†∆ + λ11Φ†∆∆†Φ. (4.20)

By using the matrices in eq. (4.17) and the eigenvalues in eq. (4.18), the unitarity
bounds for the ∆SM are given by

|λΦ| ≤ 4π, |λ∆1| ≤ 4π, |λ8| ≤ 8π
|2λ∆1 − λ∆2| ≤ 8π, |λ∆1 + λ∆2| ≤ 4π,
|λ8 + 3λ11/2| ≤ 8π, |λ8 − λ11/2| ≤ 8π, |λ8 + λ11| ≤ 8π,

|λΦ + λ∆1 + 2λ∆2 ±
√

(λΦ − λ∆1 − 2λ∆2) + λ2
11| ≤ 8π,

|6λΦ + 8λ∆1 + 6λ∆2 ±
√

(6λΦ − 8λ∆1 − 6λ∆2)2 + 6(2λ8 + λ11)2| ≤ 16π ,

(4.21)

which are in agreement with the results given in ref. [34].

5 Applications

The unitarity constraint on the quartic couplings can be translated into the upper bounds
on the Higgs boson masses if

√
λiv dominates the masses of the associated Higgs bosons.

The unitarity bound as well as other constraints on the 2HDM have been fully explored in
previous literature (see e.g. ref. [17] for a review and references there in). Moreover, we
would like to mention that it is valuable to investigate the phenomenology of the real triplet
extension of the 2HDM, which has been somewhat less explored in the literature. However,
the careful study requires not only the unitarity bounds derived in section 3 but also many
other theoretical and experimental constraints, which are obviously beyond the scope of the
present work. Thus, in this section, we shall focus on the perturbative unitarity bounds to
the complex triplet extension of the 2HDM, and show the quantitative constraints on the
model parameters. Note that this model was recently proposed to explain the muon g − 2
anomaly in ref. [52].

The muon anomalous magnetic dipole moment (denoted by (g− 2)µ) is one of the long-
standing anomalies in the particle physics. This discrepancy has further been confirmed by
the recent muon g− 2 measurement performed by the Muon experiment at Fermilab, which
has yielded the most precise experimental muon g − 2 value aExp

µ = (116 592 061± 41)×
10−11 [66] by combining the Brookhaven data [67]. On the other hand, the state-of-the-art
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Figure 1. The Barr-Zee type Feynman diagrams for the muon g − 2, with charged scalars δ± and
δ±± running in the loops.

calculations of various SM contributions [68–87] predict aSM
µ = (116 591 810± 43)× 10−11

(see e.g. ref. [88] for a recent review and reference therein). As a result, the discrepancy
between the SM and experimental values of aµ is given by [66]

∆aµ = aExp
µ − aSM

µ = (251± 59)× 10−11 , (5.1)

with the significance reaching 4.25σ. Possible solutions to the muon g − 2 anomaly has
been widely discussed in the 2HDM content in refs. [89–94]. At one-loop level, both the
charged and neutral Higgs bosons in the 2HDM contribute to the muon g − 2, but it is
found that these corrections are too small to explain the observed deviation. On the other
hand, the two-loop Barr-Zee diagrams can give rise to the dominant contribution to the
muon g − 2 in some parameter space. However, it has been shown that the explanation of
the muon g − 2 anomaly with the Barr-Zee mechanism requires a light pseudo-scalar mass
with mA . 100GeV and tβ ∼ 50 when various constraints are imposed [90, 95, 96]. Note
that one class of the strictest constraints is provided by the unitarity bounds in the theory.
In particular, ref. [95] has shown that most of the parameter space with mA & 100GeV in
the typical 2HDM is already excluded by the unitarity alone.

The recent work in ref. [52] shows that if a complex Higgs triplet is added to the 2HDM,
the charged components of the Higgs triplet can induce new Barr-Zee-type contributions illus-
trated in figure 1, which may explain the muon g−2 while easily evading other experimental
constraints. From these Feynman diagrams, it is clear that the new contribution to muon
g− 2 is proportional to the trilinear scalar couplings λiv which might be well constrained by
the perturbative unitarity. However, ref. [52] only applied the approximate unitarity bounds
from the aligned two-Higgs doublet model (A2HDM) [97] to constrain the parameter space.
It is more appropriate to apply the exact unitarity bounds derived in the previous section for
this complex triplet extension of the 2HDM, which is the main motivation for this section.

Following ref. [52], we will consider the decoupling limit of the model. By using the
minimization conditions for the scalar potential in eq. (4.1) and the mass matrices provided
in appendix C, we find that the decoupling between components in Higgs doublets and
those in the triplet can be achieved when v∆, µ̃3 � 1GeV. In the two-Higgs-doublet sector,
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we consider the case with a softly broken Z2 symmetry and CP conservation, in which all
parameters in the scalar potential are real. Also, following ref. [52], we shall consider the
aligned limit of the two Higgs doublets, i.e., cβ−α ≈ 0. In this case, the mass eigenstates h
and H are almost h0

1 and h0
2, so that the trilinear scalar couplings are given by eq. (D.1) in

appendix D.
To calculate the Barr-Zee diagram shown in figure 1, we need to know the coupling

between muons and H . As in ref. [52], we shall consider the A2HDM case [97] (see ref. [98]
for the recent global fit of A2HDM), in which the lepton Yukawa couplings with H are
given by

− LY =
∑
f

yHf
Mf

v
f̄LfRH + H.c., (5.2)

where Mf is the mass of the lepton flavor f and

yHf = (sβ−αζf − cβ−α) . (5.3)

Here ζf is a parameter in the A2HDM, whose benchmark value is taken to be ζf = −100
following ref. [52].

The contribution to the muon (g − 2) from the Barr-Zee diagrams is given by [99]

∆aµ =
∑
φi

αm2
µ

8π3m2
H

Re
(
yHf

)
λHφiφ∗

i
F
(
m2
φi

m2
H

)
, (5.4)

where φi = δ±, δ±±, the trilinear couplings λHφiφ∗
i
are given in eq. (D.1), and the loop

function is given by

F(ω) = 1
2

∫ 1

0
dx

x(x− 1)
ω − x(1− x) ln

(
ω

x(1− x)

)
. (5.5)

Since the Barr-Zee diagrams in figure 1 dominate the anomalous muon g− 2, we can ignore
other one- or two-loop (g − 2)µ contributions in our following numerical calculations.

In order to search for the parameter space allowed by the perturbative unitarity, we
scan over the quartic couplings λ8, λ9, λ11, and λ12 in the range of (−8π − 8π) and the
doubly-charged scalar mass mδ±± in the range of (10–1000)GeV. For the 2HDM sector,
we take λ1,2,...,5 = 0.2, tβ = 5, and mH = 300GeV for conservative estimations. The other
parameters in the model are set to zero. The relations among various parameters in the
generic scalar basis and the Higgs basis are summarized in appendix B, while the masses of
scalars are determined in appendix C.

We show the scan results in figure 2. From the upper two plots, we observe that the
mass squared difference between the singly-charged and doubly-charged scalars in the triplet
should be |m2

δ± − m2
δ±± |/v2 . 6, which is restricted by unitarity bound on the quartic

coupling λ̃11 as seen in eqs. (C.4) and (C.5). Furthermore, for mδ±± . 200GeV we have
m2
δ± −m2

δ±± > 0. The colorbar of this figure represents the distribution of the predicted
∆aµ values. The lower two plots of figure 2 show that large values of |∆aµ| prefer large
values of trilinear scalar couplings, |λHδ±δ± | and |λHδ±±δ±± |, as well as small values of
mδ±± . Note that if ∆aµ is positive as required by experiments, it picks the parameter
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Figure 2. Unitarity bounds on the relevant parameter spaces of the complex triplet extension of
the 2HDM. The colorbar represents the values of ∆aµ/10−9.

space with negative values of λHδ±δ± and/or λHδ±±δ±± , which are well constrained by the
unitarity consideration with |λHδ±δ± | . 2.6 and |λHδ±±δ±± | . 5.0. From the Barr-Zee
Feynman diagrams and their expressions in eq. (5.4), the trilinear couplings are directly
related to the dominant contribution to the muon g − 2, and perturbative unitarity can
thus put very useful constraints on this model. Finally, we note that the unitarity bounds
given in this section are rather conservative since the doublet-triplet mixings are ignored
due to the nearly vanishing triplet VEV. In the case with v∆ ∼ 1GeV, the mixings between
Higgs doublet and triplet components can become significant, which would further enhance
the unitarity bounds on the scalar masses.

We make several final remarks before closing this subsection. The difference between
ref. [52] and ours is obvious. Ref. [52] aims to explain the muon g − 2 in the context of the
extension 2HDM with a complex triplet scalar. Our work focus on the derivations of the
unitarity bounds for this specific extension of 2HDM. In this section, we have applied the
unitarity bounds to constrain the trilinear scalar couplings λHδ±δ± and λHδ±±δ±± , which
has not been done in ref. [52]. Our new findings are depicted in figure 2, which indicates
that the following parameter regions

|λHδ±δ± | & 2.6, |λHδ±±δ±± | & 5.0, and |m2
δ± −m2

δ±± | & 6v2 (5.6)
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have been excluded by perturbative unitarity. We also note that ref. [52] applied the value
λHδ±±δ±± = 5 for their estimations of muon g − 2. This value just lies at the λHδ±±δ±±

upper limit allowed by the unitarity bounds in eq. (5.6). Therefore, we conclude that the
main conclusion drawn by ref. [52] that the 2HDM with a complex triplet can explain the
muon g − 2 does not change dramatically even if the unitarity bounds are appropriately
addressed.

6 Conclusions

The perturbative unitarity is one of the most significant theoretical constraints on the Higgs
sector, beyond which the perturbation calculation in the theory breaks down. It has proven
to be successful in predicting the upper limit on the Higgs boson mass in the minimal SM,
and applying to constrain many new physics models such the 2HDM. In this work, we
focus on deriving the perturbative unitarity bounds on the extension of the 2HDM with an
additional real or complex Higgs scalar triplet. Since the total hypercharge and isospin are
conserved in the high-energy limit of scatterings, we explicitly give the two-particle state
basis according to their SU(2)L × U(1)Y charges by decomposing the direct product of two
Higgs multiplets into direct sums of irreducible representations under electroweak gauge
groups. The classification of the two-particle state basis is summarized in tables 2–7, in
which the states are expressed in terms of component fields. With these two-particle bases,
the 2→ 2 scattering amplitudes among scalars can be simplified into the block-diagonal
forms, which are easily determined by expanding the quartic scalar terms in the potential.
We then impose the unitarity bound on the eigenvalues of the scattering matrices. The
associated analytical results are summarized in sections 3.2 and 4.2.

We then numerically apply our derived unitarity bounds to the extension of 2HDM
with a complex Higgs triplet, which was recently shown to be of great phenomenological
interest. We have shown that the unitarity can put strong upper limits on the trilinear scalar
couplings and the mass differences of the charged triplet scalars. Since the contributions to
the muon g − 2 from the Barr-Zee diagrams with a charged scalar running in the loop are
proportional to the trilinear scalar couplings, the unitarity bounds on these couplings can
also constrain new solutions to the long-standing muon g − 2 anomaly. In the near future,
together with the experimental measurements of the Higgs trilinear coupling and the Higgs
signal strengths of different channels at the LHC Run 3, we hope that the unitarity bounds
would help us to understand the structure of Higgs sector more deeply.

Acknowledgments

BQL is supported in part by Zhejiang Provincial Natural Science Foundation of China under
Grant No. LQ23A050002 and National Natural Science Foundation of China (NSFC) under
Grant No. 12147219. DH is supported in part by the National Natural Science Foundation
of China (NSFC) under Grant No. 12005254, the National Key Research and Development
Program of China under Grant No. 2021YFC2203003, and the Key Research Program of
Chinese Academy of Sciences under grant No. XDPB15

– 17 –



J
H
E
P
0
6
(
2
0
2
3
)
2
0
9

A Eigenvalues of the (Y, I) = (0, 0) scattering matrix in the triplet
extension of the 2HDM with a Z2 symmetry

In this section we analytically solve the eigenvalues for the 5-dimensional scattering matrix,
which appears in the (Y, I) = (0, 0) sector of the extension of 2HDM with a softly-broken Z2
symmetry. By imposing the Z2 symmetry, the 5-dimensional scattering matrix in eq. (4.5)
can be simplified into the following form

X =


a1 a2 0 0 c5
a3 a4 0 0 c6
0 0 b1 b2 0
0 0 b3 b4 0
c5 c6 0 0 c7

 , (A.1)

which can be further decomposed into a 2× 2 matrix and a 3× 3 one as follows

X(2) =
(
b1 b2
b3 b4

)
, X(3) =

 a1 a2 c5
a3 a4 c6
c5 c6 c7

. (A.2)

The eigenvalues for X(2) and X(3) are the same as that directly obtained from the 5-
dimensional matrix X. Note that, for a general matrix A, the eigenvalue f can be obtained
by solving the equation

|fI −A| = 0 . (A.3)

For X(2) and X(3), the eigenvalue equation can be transformed into the following equations

(f−b1)(f−b4)−b2b3 = 0 (A.4)
(f−a1)(f−a4)(f−c7)−(f−a1)c2

6−a2a3(f−c7)−a2c5c6−a3c5c6−(f−a4)c2
5 = 0 , (A.5)

respectively. The solutions for eq. (A.4) can be easily solved by

f1,2 = 1
2

(
b1 + b4 ±

√
(b1 − b4)2 + 4b2b3

)
. (A.6)

For the case with b1 = b4 and b2 = b∗3, we have

f1,2 = b1 ± |b2|. (A.7)

Note that the scattering matrix should be Hermitian, which means a2 = a∗3 and b2 = b∗3.
Furthermore, the eigenvalues for the Hermitian matrix are always real. Note that, for a
general cubic equation f3 +bf2 +cf+d = 0, one representations of the three roots is given by

f3 = − b3 + 2 3√r cos θ ,

f4 = − b3 + 2 3√r cos
(
θ + 2

3π
)
,

f5 = − b3 + 2 3√r cos
(
θ + 4

3π
)
,

(A.8)
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where

r =

√
−
(
p

3

)3
, θ = 1

3 arccos
(
− q

2r

)
, with p = 3c− b2

3 , q = 27d− 9bc+ 2b3

27 . (A.9)

By comparing eq. (A.5) with the general cubic equation, it is found that

b = −(a1 + a4 + c7) ,
c = a1a4 + a1c7 + a4c7 − a2a3 − c2

5 − c2
6 ,

d = a1c
2
6 + a2a3c7 + a4c

2
5 − a2c5c6 − a3c5c6 .

(A.10)

In this way, we give the analytic solutions to the eigenvalues for the three-rank scattering
matrix X(3).

B Parameters in the Higgs basis for the complex triplet extension
of 2HDM

The electroweak gauge symmetry is spontaneously broken when the neutral components of
the Higgs multiplets obtain VEVs. The VEVs can be complex and there may be a relative
phase between them. Here we use ξ to denote the phase between the VEVs of doublets Φ1
and Φ2 in the triplet extension of the 2HDM. Concretely, one assumes real v1 and complex
v2e

iξ. Such a phase can be absorbed by the following phase redefinitions of the complex
parameters:

λ5 → e2iξλ5 and m2
12, λ6, λ7, λ10, λ13 → eiξ

{
m2

12, λ6, λ7, λ10, λ13
}
, (B.1)

so that the form of the potential keeps unchanged. Thus, we can start with real VEVs for
scalars. We can rotate the generic scalar basis {Φ1,Φ2} into the Higgs basis {H1, H2} via
the transformation (

H1
H2

)
=
(

cosβ sin β
− sin β cosβ

)(
Φ1
Φ2

)
(B.2)

so that only H1 has a non-vanishing VEV v =
√
v2

1 + v2
2 ' 246GeV. Here the quantity

tan β is defined by the ratio of two Higgs field VEVs, i.e., tan β ≡ tβ = v2/v1. In the
following, we summarize the parameters of the potential in the Higgs basis as functions of
those defined in the generic basis. For the parameters with mass dimensions, we have

m̃2
11 = c2

βm
2
11 + s2

βm
2
2 − cβsβ

(
m2

12 +m2∗
12

)
,

m̃2
22 = s2

βm
2
11 + c2

βm
2
2 + cβsβ

(
m2

12 +m2∗
12

)
,

m̃2
12 = cβsβ

(
m2

11 −m2
22

)
+
(
c2
βm

2
12 − s2

βm
2∗
12

)
,

m̃2
∆ = m2

∆,

µ̃1 = µ1c
2
β + µ3cβsβ + µ2s

2
β ,

µ̃2 = µ2c
2
β − µ3cβsβ + µ1s

2
β ,

µ̃3 = µ3
(
c2
β − s2

β

)
+ 2(µ2 − µ1)cβsβ . (B.3)
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The quartic couplings that relate only to the two Higgs doublets are given by

λ̃1 = λ1c
4
β + λ2s

4
β + 2(λ3 + λ4 + Reλ5)c2

βs
2
β + 4Reλ6c

3
βsβ + 4Reλ7cβs

3
β ,

λ̃2 = λ1s
4
β + λ2c

4
β + 2(λ3 + λ4 + Reλ5)c2

βs
2
β − 4Reλ6cβs

3
β − 4Reλ7c

3
βsβ ,

λ̃3 = 1
4s

2
2β [λ1 + λ2 − 2(λ3 + λ4 + Reλ5)] + λ3 − (Reλ6 − Reλ7)c2βs2β ,

λ̃4 = 1
4s

2
2β [λ1 + λ2 − 2(λ3 + λ4 + Reλ5)] + λ4 − (Reλ6 − Reλ7)c2βs2β ,

λ̃5 = [λ1 + λ2 − 2(λ3 + λ4)]c2
βs

2
β + λ5c

4
β + λ∗5s

4
β − 2(λ6 − λ7)c3

βsβ

+ 2(λ∗6 − λ∗7)cβs3
β ,

λ̃6 = (−λ1 + λ3 + λ4 + λ∗5)c3
βsβ + (λ2 − λ3 − λ4 − λ5)cβs3

β + λ∗6c
4
β − λ7s

4
β

− (λ∗6 − 2λ∗7 + 2λ6 − λ7)c2
βs

2
β ,

λ̃7 = (−λ1 + λ3 + λ4 + λ5)cβs3
β − (−λ2 + λ3 + λ4 + λ∗5)c3

βsβ − λ6s
4
β + λ∗7c

4
β

+ (2λ∗6 − λ∗7 + λ6 − 2λ7)c2
βs

2
β . (B.4)

Finally, the quartic couplings involving the complex Higgs triplet are give by

λ̃8 = λ8c
2
β + λ9s

2
β + 2Reλ10cβsβ ,

λ̃9 = λ8s
2
β + λ9c

2
β − 2Reλ10cβsβ ,

λ̃10 = (−λ8 + λ9)cβsβ + λ10c
2
β − λ∗10s

2
β ,

λ̃11 = λ11c
2
β + λ12s

2
β + 2Reλ13s2β ,

λ̃12 = λ11s
2
β + λ12c

2
β − 2Reλ13s2β ,

λ̃13 = (−λ11 + λ12)cβsβ + λ13c
2
β − λ∗13s

2
β ,

λ̃∆1 = λ∆1, λ̃∆2 = λ∆2. (B.5)

Note that under the U(1) transformation H1 → eiχH1 and H2 → e−iχH2, the scalar
potential remains unchanged if the complex parameters of the scalar potential in the Higgs
basis are transformed by the corresponding phase rotation [100]:

λ̃5 → e4iχλ̃5 and m̃2
12, λ̃6, λ̃7, λ̃10, λ̃13 → e2iχ

{
m̃2

12, λ̃6, λ̃7, λ̃10, λ̃13
}
. (B.6)

Therefore, beginning with the eqs. (B.3)–(B.5) in the phase {ξ = 0, χ = 0}, we can obtain
the relations between the two sets of parameters with arbitrary phases {ξ, χ} by applying the
replacements (B.1) and (B.6) to the eqs. (B.3)–(B.5). Finally, The inversion of eqs. (B.3)–
(B.5) can be obtained by making the replacements m̃2

12 → m2
12, λ̃i → λi, and β → −β.

C Mass matrices in the complex triplet extension of 2HDM

Here we provide some of the mass matrices elements for the extension of 2HDM with an
additional complex Higgs triplet. In this appendix we express the neutral scalar in the
triplet (4.2) as δ0 = 1√

2(d0 + iη0). The two doublet scalars in the Higgs basis can be
expressed in components as follows,

H1 =
(

H+
1

1√
2
(
v + h0

1 + iA1
) ), and H2 =

(
H+

1√
2
(
h0

2 + iA2
)
,

)
(C.1)
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where h0
1 and h0

2 are CP-even neutral Higgs bosons, A2 and H+ are the physical neutral
pseudoscalar and the charged scalar, respectively, while H±1 and A1 are the Goldstone bosons
associated with the W± and Z gauge bosons.

The mass matrix elements for the CP -even components of the neutral scalars in the
model are given by

m2
h0

1h
0
1

= 3λ̃1v
2

2 + v2
∆λ̃8
2 + v2

∆λ̃11
2 −

√
2v∆µ̃1 + m̃2

1,

m2
h0

2h
0
2

= λ̃3v
2

2 + λ̃4v
2

2 + 1
4v

2Reλ̃5 + v2
∆λ̃9
2 + v2

∆λ̃12
2 −

√
2v∆µ̃2 + m̃2

2,

m2
d0d0 = 3v2

∆λ̃∆1 + 3v2
∆λ̃∆2 + m̃2

∆ + λ̃8v
2

2 + λ̃11v
2

2 ,

m2
h0

1h
0
2

= 3
4v

2Reλ̃6 + 1
4v

2
∆Reλ̃10 + 1

4v
2
∆Reλ̃13 −

v∆Reµ̃3

2
√

2
− Rem̃2

12
2 ,

m2
h0

1d
0 = v∆λ̃8v + v∆λ̃11v −

√
2µ̃1v,

m2
h0

2d
0 = 1

2v∆vReλ̃10 + 1
2v∆vReλ̃13 −

vReµ̃3

2
√

2
, (C.2)

while the mass matrix elements for the CP -odd components are shown as follows

m2
A0

1A
0
1

= λ̃1v
2

2 + v2
∆λ̃8
2 + v2

∆λ̃11
2 +

√
2v∆µ̃1 + m̃2

1,

m2
A0

2A
0
2

= λ̃3v
2

2 + λ̃4v
2

2 − 1
4v

2Reλ̃5 + v2
∆λ̃9
2 + v2

∆λ̃12
2 +

√
2v∆µ̃2 + m̃2

2,

m2
η0η0 = v2

∆λ̃∆1 + v2
∆λ̃∆2 + m̃2

∆ + λ̃8v
2

2 + λ̃11v
2

2 ,

m2
A0

1A
0
2

= v2
∆Reλ̃10

4 + v2
∆Reλ̃13

4 + v∆Reµ̃3

2
√

2
− Rem̃2

12
2 + Reλ̃6v

2

4 ,

m2
A0

1η
0 = −

√
2µ̃1v,

m2
A0

2η
0 = −Reµ̃3v

2
√

2
. (C.3)

The mass matrix elements for the singly-charged scalars are

m2
H+

1 H
−
1

= λ̃1v
2

2 + v2
∆λ̃8
2 + m̃2

1,

m2
H+

2 H
−
2

= λ̃3v
2

2 + v2
∆λ̃9
2 + m̃2

2,

m2
δ+δ− = λ̃8v

2

2 + λ̃11v
2

4 + v2
∆λ̃∆1 + v2

∆λ̃∆2 + m̃2
∆,

m2
H+

1 H
−
2

= 1
2v

2λ̃∗6 + 1
2v

2
∆λ̃
∗
10 − m̃2∗

12 = m2∗
H−

1 H
+
2
,

m2
H+

1 δ
− = v∆λ̃11v

2
√

2
− µ̃1v = m2∗

H−
1 δ

+ ,

m2
H+

2 δ
− = v∆λ̃13v

2
√

2
− µ̃3v

2 = m2∗
H−

2 δ
+ . (C.4)
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Since there is only one doubly-charged scalar in the model, so there is not any mixing
and its mass is simply given by

m2
δ++δ−− = v2

∆λ̃∆1 + m̃2
∆ + λ̃8v

2

2 (C.5)

The parameters with tilde denote those in the Higgs basis, with the transformation
relation to the parameters in the generic basis given in appendix B. Due to CP -violating
effects, there may exist mixings between the CP -even and CP -odd components in the
neutral scalars. Since we do not use them in our work, we do not provide their explicit
formulae here.

D Trilinear couplings in the complex triplet extension of 2HDM

The trilinear couplings between a neutral scalar and a pair of charged scalars in the triplet
extension of the 2HDM are summarized as follows:

λh0
1H

+
2 H

−
2

= λ̃3, λh0
2H

+
2 H

−
2

= Reλ̃7,

λh0
1δ

+δ− = λ̃8 + 1
2 λ̃11, λh0

2δ
+δ− = Reλ̃10 + 1

2Reλ̃13,

λh0
1δ

++δ−− = λ̃8, λh0
2δ

++δ−− = Reλ̃10. (D.1)

Note that in the aligned and decoupling limits, we have h0
1 ≡ h and h0

2 ≡ H.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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