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1 Introduction

The spectral problem in the three-dimensional N = 6 Chern-Simons-matter theory presented
in [1, 2] (usually known as ABJM) is believed to be integrable. Evidence of integrability
was first discovered in the perturbative regime [3], and then in the dual string theory
description [4–6] (see [7] for a review). The underlying integrable structures are similar to
those of the four-dimensional N = 4 super Yang-Mills (sYM) theory. There exists, however,
a crucial difference: all the exact results that can be extracted using integrability tools are
somehow veiled, as they are expressed in terms of a function h(λ) of the coupling constant
which is in principle unknown.
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The resemblance of the integrability calculation for the slope function of ABJM with
the matrix model integral that gives the expectation value of certain Wilson loops led
the authors of [8] to make a conjecture for the unknown function h(λ). Moreover, this
was later generalized to the ABJ theory in [9]. A direct derivation of h(λ), as it was
several times suggested, could be achieved from an integrability-based computation of the
ABJM’s bremmstrahlung function, as done in the N = 4 sYM theory [10]. Exactly the
same magnitude is explicitly obtained from localization [11–14]. Therefore, the comparison
of these two results would provide a derivation of the unknown function h(λ).

A starting point for this program could then be to determine whether ABJM Wilson
loops set integrable open boundary conditions for insertions along the contour. This
longstanding problem was schematically discussed in [15] and will be revisited here. The
fact that the perturbative anomalous dimensions of operators inserted within Wilson loops
can be described by integrable open spin chain was first observed in [16] for the case of the
1/2 BPS Wilson loop in N = 4 sYM.1 We will study a generalization of this result to the
case of 1/2 BPS Wilson loops in ABJM. To that aim we shall begin with the construction
of an appropriate vacuum reference state for the open spin chain. As we will see, a large
R-charge insertion in the Wilson loop, which will play the role of the vacuum state of the
spin chain, can be at most 1/6 BPS. This is inferred from the existence of 1/6 BPS rotating
folded strings in the dual AdS4×CP3 background. Magnon excitations propagate along the
spin chain vacuum state and their bulk scattering and reflection matrices are determined
upon symmetry considerations. Following this argument, the boundary reflection matrix was
proposed in [15] up to an overall dressing phase. The fact that the (boundary) Yang-Baxter
equations are satisfied is regarded as an indication of the integrability of the system. We
will obtain the corresponding dressing phase non-perturbatively by solving an appropriate
crossing equation and by demanding consistency with explicit weak- and strong-coupling
computations. Interestingly, this phase will be radically different for the two types of
magnons that can propagate in the alternating spin chain.

In the case of the N = 4 sYM theory, the integrability of insertions within Wilson
loops was successfully applied to the computation of the cusp anomalous dimension via a
Boundary Thermodynamic Bethe Ansatz (BTBA) in [18, 19]. In this paper we will extend
these ideas to compute the cusp anomalous dimension Γcusp of ABJM. More precisely, we
will take a Wilson loop with a cusp and we will consider the insertion of a spin-chain vacuum
at the position of the cusp. We will propose a Y -system of equations and we will compute
from it the finite-size correction to the corresponding vacuum energy as a function of its
length. Eventually, the cusp anomalous dimension is obtained by evaluating the vacuum
energy when its length is taken to be zero. As a verification of our proposal, we will show
that it consistently reproduces the one-loop value of Γcusp. In the small cusp angle limit,
Γcusp gives the bremmstrahlung function. Thus, if the Y -system equations that we propose
could be exactly solved in this limit, it would provide a direct derivation of the interpolating
function h(λ) of ABJM.

1As shown in [17], the perturbative anomalous dimensions of operators inserted within the ordinary
Wilson loops are also described by an integrable open spin chain.
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The paper is organized as follows. We begin in section 2 with a short overview of
the main features of integrable spin chains in ABJM, and in section 3 we review the
properties of the 1/2 BPS Wilson loop of ABJM. In section 4 we discuss the construction
of integrable open spin chains to describe the anomalous dimensions of operators inserted
within the 1/2 BPS Wilson loop of ABJM. Section 5 is devoted to the computation of the
boundary dressing phases that describe the reflection of magnons in the open spin chain.
In section 6 we give our proposal for the Y -system and BTBA equations that describe the
finite-size corrections to the vacuum energy of the cusped Wilson line of ABJM, and we
use such equations to reproduce the one-loop cusp anomalous dimension of ABJM from a
leading-order finite-size correction. Finally, we give our conclusions in section 7. We include
three appendices that complement the results presented in the main body of the paper. In
appendix A we give our conventions for the ABJM theory, while in appendix B we propose a
dual string for the vacuum state of the open spin chain. Finally, in appendix C we compute
the dressing phases of bound-state magnons in the mirror theory.

2 Integrable spin chains in ABJM

Since the seminal work of Minahan and Zarembo [20], integrability has played a mayor
role in the computation of anomalous dimensions of operators within the framework of
the AdS/CFT correspondence. More precisely, the matrix of anomalous dimensions of
single-trace operators was identified, first in N = 4 sYM [20] and then in ABJM [3], with
the hamiltonian of an integrable spin chain. In that context, the vacuum state of the spin
chain picture corresponds to a protected operator of the corresponding gauge theory. In
particular, in the ABJM theory (see appendix A for conventions) the corresponding BPS
operator is

Tr
[(
C1C̄

2
)`]

, (2.1)

with ` ∈ N. The presence of the trace in (2.1) implies that the spin chain is periodic. When
considering excited states a novel feature appears in the ABJM theory with respect to the
N = 4 sYM case. More specifically, in the ABJM picture one can construct an excited
state either by replacing a C1 or a C̄2 field with an impurity. Therefore, excitation waves
(i.e. magnons) can be of two types,

type A magnons: (C3, C4|ψ̄2
+, ψ̄

2
−) , (2.2)

type B magnons: (C̄3, C̄4|ψ+
1 , ψ

−
1 ) . (2.3)

From the above, we say that the periodic spin chain of ABJM is alternating, as there are
two distinct sites along which impurities can propagate.

Taking into account the symmetries of the spin-chain system is crucial, as they are
used to determine the scattering properties of the magnons. While in N = 4 sYM the
vacuum state has SU(2|2)2 invariance, in ABJM the corresponding symmetry is reduced to
just one copy of SU(2|2). In the general case, one can consider bound states of Q magnons
propagating along the chain, with the simplest Q = 1 case being a single-particle state. Each
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Q-magnon state accommodates in a representation of the SU(2|2) symmetry group [21],
and each of those representations is labelled by four coefficients (a, b, c, d) that characterize
the action of the fermionic generators over the corresponding states. As an example, for
Q = 1 (i.e. the fundamental representation) one has

Qαa |φb〉 = a δba|ψα〉, Qαa |ψβ〉 = b εαβεab|φb〉,
Saα|φb〉 = c εαβεab|ψβ〉, Saα|ψβ〉 = d δβα|φa〉, (2.4)

with a = 1, 2 and α = 3, 4. In the general case, the labels depend on the magnon momentum
and on an unknown interpolating function h(λ) as2

a =
√
h(λ)
Q

η, b =
√
h(λ)
Q

iζ

η
(x+

x− − 1), c = −
√
h(λ)
Q

η

ζx+ , d = −
√
h(λ)
Q

x+

iη
(x−

x+ − 1) ,

(2.5)
with

x+ + 1
x+ − x

− − 1
x−

= iQ

h(λ) ,
x+

x−
= eip, η(p, ζ) = ζ

1
2 e

ip
4

√
i(x− − x+) , (2.6)

and where p is the magnon momentum and ζ is a phase. The unknown function is also
present in the dispersion relation of magnons,

E(p) = 1
2

√
Q2 + 16h2(λ) sin2(p/2) , (2.7)

and it therefore percolates in all the results obtained with integrability techniques.
Interestingly, as proven in [22] the SU(2|2) symmetry of the spin chain is enough to

bootstrap the all-loop 2→ 2 scattering matrix of the problem, up to an overall coupling-
dependent dressing phase. Moreover, a non-perturbative computation of the latter was
achieved in [23]. Being an integrable system, the previous results determine completely
the full scattering matrix of the theory. To be more specific, the SU(2|2) symmetry of the
reference state fixes the scattering matrices of type A and type B magnons to be [24]

SAA(x1, x2) = SBB(x1, x2) = S0(x1, x2)Ŝ(x1, x2) ,

SAB(x1, x2) = SBA(x1, x2) = S̃0(x1, x2)Ŝ(x1, x2) ,
(2.8)

where Ŝ(x1, x2) is the SU(2|2)-invariant matrix3 given in [25] while S0(x1, x2) and S̃0(x1, x2)
are the dressing phases. The scalar factors can be fixed by demanding crossing symmetry
to be [24, 45]

S̃0(x1, x2) =
√
x−1
x+

1

√
x+

2
x−2

σ(x1, x2) , S0(x1, x2) = x+
1 − x

−
2

x−1 − x
+
2

1− 1
x+

1 x
−
2

1− 1
x−

1 x
+
2

S̃0(x1, x2) ,

(2.9)
where σ(x1, x2) is the BES dressing factor [23].

2We shall focus on the ABJM case, in which both gauge groups have equal ranks.
3We use Ŝ11

11(x1, x2) = 1.
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3 Supersymmetric Wilson loops in ABJM

As symmetries play a central role in fixing the reflection matrix of magnons, we consider con-
venient to provide here a short review of how supersymmetric Wilson loops are constructed
in the ABJM theory.

In N = 4 sYM the construction of 1/2 BPS Wilson loops is achieved simply by
considering a straight (or circular) Wilson loop with a constant coupling to the scalar fields
of the theory. The generalization of this idea to the ABJM case has proven to be more
subtle, as adding a constant coupling to the scalars gives an operator which is at most 1/6
BPS [26]. The construction of 1/2 BPS Wilson loops in ABJM was successfully achieved
in [27] by taking into account the holonomy of a U(N |N) superconnection.4 To be more
specific, let us consider a Wilson loop defined as

W = 1
2N Tr [W(τ1, τ2)] := 1

2N Tr
[
P exp

(
i

∫ τ2

τ1
L(τ)dτ

)]
, (3.1)

with5

L =
(
Aµẋ

µ − i|ẋ|M I
JCIC̄

J −i|ẋ|ηαI ψ̄Iα
−i|ẋ|ψαI η̄Iα Âµẋ

µ − i|ẋ|M I
J C̄

JCI

)
, (3.2)

and where M I
J and ηαI are Grassmann-even couplings. It turns out that the condition

δSUSYL = 0 , (3.3)

is too restrictive to have a 1/2 BPS operator (see appendix A for the supersymmetry
transformations of ABJM). Instead, one should relax the constraint (3.3) by demanding
that supersymmetry translates into a super-gauge transformation for L, i.e.

δSUSYL = DτΛ := ∂τΛ + i{L,Λ] , (3.4)

where Λ is some supermatrix. With this choice, under a finite supersymmetry transformation
one gets6

W(τ1, τ2) = P exp
(
i

∫ τ2

τ1
L(τ)dτ

)
→ U−1(τ1)W(τ1, τ2)U(τ2) , (3.5)

with U(τ) = exp[iΛ(τ)]. In this framework, one can see that by taking the orientations
specified by

xµ = (τ, 0, 0) , M I
J = −δIJ + 2δI1δ1

J , ηαI = η δ1
I δ
α
+ , η̄Iα = η̄ δI1δ

+
α , (3.6)

the resulting Wilson line is 1/2 BPS provided

ηη̄ = −2i . (3.7)
4This is a particular case of the results presented in [27], where the authors studied the more general

picture in which both gauge groups can have different ranks.
5We use conventions in which the usual factor

√
2π
k

has been absorbed into the scalars and fermions of
the theory.

6To construct a Wilson loop invariant under these finite transformations one has to be careful with
the choice of boundary conditions. While a straight contour is compatible with taking the trace in the
definition (3.1), for a closed contour with periodic boundary conditions one should instead consider the
supertrace [28].

– 5 –



J
H
E
P
0
6
(
2
0
2
3
)
1
7
9

In particular, with the choice (3.6), the Wilson loop (3.1) is invariant under the super-
symmetry transformations (A.10) for arbitrary non-vanishing values of Θ̄1J

+ and Θ̄IJ
− with

I, J 6= 1. The corresponding Λ matrix is

Λ =
(

0 g1
ḡ2 0

)
, (3.8)

with [28]
g1 = 2 η Θ̄1ICI , ḡ2 = ε1IJK η̄ Θ̄IJ C̄K . (3.9)

It will prove useful to note that the Wilson loop defined by the parametrization (3.6)
is invariant under an SU(1, 1|3) subgroup of the original OSp(6|4) symmetry of ABJM. For
a detailed discussion on the corresponding representation theory see [29, 30].

Finally, let us take a Wilson loop with a cusp described by an angle θ, given for example
by the parametrization

x0 = 0 , x1 = s cos θ2 , x2 = |s| sin θ2 , −∞ < s <∞ . (3.10)

We will focus on a geometric cusp and we will not consider a cusp in the internal space ori-
entation, described by the couplings M I

J and ηαI . As is well known from the renormalization
theory of Wilson loops [31–34], the presence of a cusp in the contour introduces divergences
that can not be absorbed with a redefinition of the couplings of the theory. More precisely,
when regularizing such divergences one gets

〈W ren(θ)〉 = Zcusp(θ)〈W (θ)〉 , (3.11)

where 〈W ren(θ)〉 is the renormalized v.e.v. of the Wilson loop and Zcusp(θ) is the corre-
sponding renormalization factor. Therefore, one can naturally define a cusp anomalous
dimension as

Γcusp(θ) = µ
∂Zcusp(θ)

∂µ
, (3.12)

where µ is the renormalization scale of the theory. A perturbative computation of Γcusp(θ)
was performed in [35], giving7

Γcusp(θ) = −λ
(

1
cos θ2

− 1
)

+O(λ2) , (3.14)

at leading order. In the following sections we will reproduce the above result using an
integrability approach.

7Taking the limit of θ large and imaginary in the perturbative results of [35] gives

Γcusp,light = λ2 +O(λ3) , (3.13)

for Wilson loops with light-like cusps, in accordance with the all-loop proposal of [8, 36]. Recently, a
geometric approach for the computation of Γcusp,light was studied in [37].
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4 Wilson loop’s open spin chain

In order to compute the cusp anomalous dimension Γcusp(θ) from an integrability approach
we should first study the description of insertions within Wilson loops in terms of open spin
chains. We will devote this section to such goal.

To begin with, we should identify which insertion could serve as the vacuum state of the
Wilson loop spin-chain system. Following the insight obtained from the N = 4 sYM case,
in ABJM one expects that a vacuum state with large R charge should be dual to a BPS
string ending on the Wilson loop’s contour at the boundary of AdS4 and with large angular
momentum in the coordinates of the CP3 compact space. As shown in the appendix B, one
can construct a 1/6 BPS string with those properties which is invariant under a SU(1|2)
supersymmetry. We will therefore search for a vacuum state with the same supersymmetry.

Naively, one might expect that

D :=
(

(C1C̄
2)` 0

0 (C̄2C1)`

)
, (4.1)

could be the vacuum state we are looking for, as it shares some supersymmetry with
the 1/2 BPS Wilson loop. However, the total operator, i.e. the Wilson loop with the
operator (4.1) inserted at a position τ , is not supersymmetric. Because the path-ordered
exponential W(τ1, τ2) is covariant rather than invariant under supersymmetry, studying the
supersymmetry transformations of insertions within Wilson loops is a bit more subtle [30].
To be more specific, let us define OW as the insertion of a generic operator O at the
point τ , i.e.

OW (τ) := 1
2N Tr [PW(−∞, τ)O(τ)W(τ,∞)] . (4.2)

In order to consider the transformation (3.5) of the complete operator OW under supersym-
metry it is instructive to introduce a covariant supersymmetric transformation [38] as

δcovO := δO − i[O,Λ] . (4.3)

In this context, we will say that an insertion is supersymmetric if

δcovO = 0 . (4.4)

Therefore, we see that despite satisfying δD = 0 the operator DW is not supersymmetric,
because the insertion does not commute with the Λ matrix given in (3.8). Instead, it is
straightforward to verify that for

T+ =
(
C1C̄

2 −η
2 ψ̄

2
+

0 C̄2C1

)
, (4.5)

the condition (4.4) is met. An arbitrary power of this operator will be equally BPS and
provides an insertion with a large amount of the corresponding R-charge

T `+ =
(

(C1C̄
2)` −η

2
∑
k(C1C̄

2)kψ̄2
+(C̄2C1)`−k−1

0 (C̄2C1)`

)
. (4.6)
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Although protected, we shall not consider (4.6) as the reference state to formulate
a Bethe Ansatz. Its off-diagonal block looks more like a one-impurity state (with zero
momentum) than a vacuum state. Moreover, as we shall see next, the operator (4.6) can
be regarded as a descendant when considering the covariant action of the supersymmetry
transformations on a certain insertion within the Wilson line.

A more appropriate alternative to play the role of a Bethe Ansatz reference state turns
out to be the off-diagonal insertion

V` =
(

0 (C1C̄
2)`C1

0 0̄

)
. (4.7)

This operator is invariant under the supersymmetries generated by Θ̄13
+ and Θ̄14

+ , for which
the Λ matrix is given by

g1 = 2η
(
Θ̄13

+ C3 + Θ̄14
+ C4

)
, ḡ2 = 0 . (4.8)

Therefore, the insertion (4.7) breaks the SU(1, 1|3) symmetry of the Wilson loop to SU(1|2),
as expected in view of the results coming from the string theory side of the AdS4/CFT3
duality. Moreover, when acting with the supersymmetry transformation generated by Θ̄34

−
on V` one precisely obtains T `+1

+ . Consequently, in what follows we shall consider (4.7) as
our Bethe Ansatz reference state.

Having identified a suitable vacuum state, we can now turn to the analysis of the
impurities that can propagate along the spin chain. From the inspection of the operator (4.7),
one can see that the excited states that propagates over such vacuum are a straightforward
generalization of the type A and type B magnons of the periodic spin chain. Moreover, the
S-matrix is the same SU(2|2)-invariant matrix that governs the scattering of magnons in
the periodic case, as the presence of the boundary (i.e. the Wilson loop) does not affect the
bulk interactions.

In addition to the bulk scattering, for open spin chains one also has to take into account
the reflection of magnons against the boundary, which is characterized by a reflection
matrix. Let us focus now on its computation. As discussed above, there is a SU(1|2) residual
symmetry preserved by the Wilson loop (3.6) with the insertion (4.7). Following [39, 40], one
can use this symmetry to constrain the boundary reflection matrix of magnon excitations.
The action of the right reflection matrix over the quantum numbers of a fundamental
representation can be taken such that (p, ζ) 7→ (p,−ζ). The most general reflection matrix
R would in principle allow for the mixing of magnons of type A and B,

R =
(
RA R̃A
R̃B RB

)
, (4.9)

where RA/B indicates the reflection of a type A/B magnon into a type A/B magnon. On
the contrary, R̃A/B indicates the reflection of a type A/B magnon into a type B/A magnon.
The SU(1|2) residual symmetry constrains the form of each of the blocks to be [15]

RA = R0
A diag(1, 1, e−ip/2,−eip/2) , R̃A = R̃0

A diag(1, 1, e−ip/2,−eip/2) , (4.10)

RB = R0
B diag(1, 1, e−ip/2,−eip/2) , R̃B = R̃0

B diag(1, 1, e−ip/2,−eip/2) , (4.11)
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where R0
A, R

0
B, R̃

0
A, R̃

0
B are dressing factors that can not be fixed with symmetry arguments.

With a reflection matrix of this form, the boundary Yang-Baxter equation is not satisfied
unless R0

A = R0
B = 0 or R̃0

A = R̃0
B = 0. The weak-coupling analysis we will present in

the next section shows that, at least perturbatively, the reflection at the boundaries does
not mix type A and type B magnons. In the following we will consider the validity of
R̃0
A = R̃0

B = 0 at all-loop as a working assumption.

5 Crossing symmetry and boundary dressing factors

Even in the case of no mixing between different types of magnons at the boundary, the
reflection matrix is only known up to two boundary dressing factors R0

A(p) and R0
B(p). In

this section we will focus on their computation, using the standard constraints coming
from boundary crossing-unitary conditions. Among the many solutions to the crossing
equations we shall single the ones that are consistent with explicit weak- and strong-
coupling computations.

5.1 Crossing equation

We will follow the ideas of [40] to derive the boundary crossing equation. More specifically,
we will consider the reflection of a singlet state against the boundary, and we will obtain
the boundary crossing equation by demanding that such reflection must be trivial.

Let us start with the construction of the singlet state, whose defining property is its
trivial interaction with any other particles. Taking this into account, one should look for
a state whose quantum numbers coincide with those of the vacuum. Let us recall that in
ABJM the spin chain has a U(1)extra symmetry under which the fields C̄1, C̄2, C3, C4 have
charge +1 and the fields C1, C2, C̄

3 and C̄4 have charge -1 [7]. Therefore, we should search
for a singlet state with the same U(1)extra charge as the vacuum. With this in mind, we
will consider

|1AB〉(p, p̄) = εab|φaA(p)φbB(p̄)〉+ κ εαβ |ψαA(p)ψβB(p̄)〉 . (5.1)

In (5.1) we have κ ∈ R and the crossing transformation p̄ is defined such that

p→ −p and E → −E ⇔ x± → 1
x±

and ζ̄ → ζ
x+

x−
. (5.2)

For (5.1) to be a singlet state we have to further demand its invariance under all the SU(1|2)
generators, which implies

κ = − ix−

(x− − x+) ζ η(x+, x−, ζ) η
(

1
x+ ,

1
x− , ζ

x+

x−

)
, (5.3)

where η was defined in (2.6).
We will obtain the crossing equation by demanding that, under a sequence of right and

left reflections, the singlet state (5.1) remains invariant, i.e.

RLA(−p)SAB(−p, p̄)RLB(−p̄)RRA(p)SAB(p,−p̄)RRB(p̄)|1AB〉(p, p̄) = |1AB〉(p, p̄) , (5.4)
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where we have introduced the labels R and L to refer to the right- and left- reflection
matrices, respectively. Then, recalling that the action of a reflection is such that

p→ −p and E → E ⇔ x± → −x∓ , (5.5)

we get that for the right reflection

RRA(p)SAB(p,−p̄)RRB(p̄)|1AB〉(p, p̄) = r(p)|1AB〉(−p,−p̄) , (5.6)

where the reflection phase is

r(p) =
1
x− + x−

1
x+ + x+σ (p,−p̄)R0

A(p)R0
B (p̄) . (5.7)

Parity invariance demands that the reflection at the left boundary results in the same
reflection phase [40]. Therefore,

RLA(−p)SAB(−p, p̄)RLB(−p̄)RRA(p)SAB(p,−p̄)RRB(p̄)|1AB〉(p, p̄) = r(p)2|1AB〉(p, p̄) .

By demanding (5.4) we get
r(p)2 = 1 . (5.8)

Between the solutions r(p) = 1 and r(p) = −1, we will see in the next section that only the
latter is compatible with weak-coupling results. Consequently,

R0
A(p)R0

B (p̄) = −
1
x+ + x+

1
x− + x−

1
σ (p,−p̄) . (5.9)

Finally, we have to impose also the unitarity constraints [42]

R0
A(−p)R0

A(p) = 1 ,

R0
B(−p)R0

B(p) = 1 .
(5.10)

5.2 Weak-coupling analysis

In order to get insight towards the construction of an all-loop solution of the crossing
equation, let us focus now on the weak-coupling expansion of the dressing phases R0

A

and R0
B.

Let us begin by studying an SU(2) scalar sub-sector for the odd sites of the chain,
where type A impurities can be allocated. We will consider states of the form

|CI0 , CI1 , · · ·CI`〉 :=
√

2
(2k
N

)`+ 1
2
(

0 CI0C̄
2CI1C̄

2 · · · C̄2CI`
0 0

)
, (5.11)

where k is the Chern-Simons level, N is the number of colors and the CIn fields can be either
C1 or C3. The overall constant in (5.11) has been included to get a trivial normalization in
the tree-level contribution to the two-point functions.

We shall now turn to the computation of the Hamiltonian HA, which governs the
quantum dynamics of the states |CI0 , CI1 , · · ·CI`〉. Let us recall that HA is given by the
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Figure 1. Feynman diagram contributing to HA
bdry at 1-loop. Solid and dashed lines represent

scalar and fermionic propagators respectively. The blue line is the Wilson loop.

perturbative mixing matrix of anomalous dimensions of the corresponding operators, which
can be computed from the correlator between an operator (5.11) inserted at τ2 and a
conjugate operator inserted at τ1. It is useful to distinguish between the two types of
Feynman diagrams contributing to the mixing matrix of anomalous dimensions: those in
which the contribution of the Wilson line is trivial and those including propagators from the
Wilson line. The former give rise to the bulk Hamiltonian HA

bulk. The latter, in contrast,
specify the boundary Hamiltonian HA

bdry.
Since for the moment we are just interested in the computation of the reflection matrix,

we can ignore the right boundary and focus on the left one. Therefore, we will take the
` → ∞ limit and we will deal with a semi-infinite chain whose only boundary is at the
left. As discussed in section 4, HA

bulk should not be different from the periodic spin-chain
Hamiltonian, and so at two-loops we have

HA
bulk = λ2

∞∑
n=0

(1−Pn,n+1) , (5.12)

where Pn,n+1 is the permutation operator between fields at the sites n and n+ 1.
Therefore, we just have to compute the diagrams that give HA

bdry. As customary when
evaluating Feynman diagrams in d = 3− 2ε, the anomalous dimensions can be read from
the residue in the 1/ε divergences. The only diagrams that contribute at 1-loop order are
the ones depicted in figure 1. As anticipated, there is no mixing between type A and B
impurities and the action of HA

bdry is diagonal. When computing the divergence of these
two one-loop diagrams one gets

λ

(τ2 − τ1)2`+1
1
ε

1
2
(
MJ0
I0
− δJ0

I0

)
δJ1
I1
· · · δJ`I` +O(ε) . (5.13)

From (5.13) we see that the diagram for the boundary scalar interaction depends on the
flavor of left-most field, and the total contribution is non-vanishing when the first site is
occupied by a C3. With these results we get that the action of HA

bdry is of the form

HA
bdry = (λ+ λ2 β0) V0 , (5.14)

where
Vn|CI0 , CI1 , · · ·CI`〉 := δ3

In |CI0 , CI1 , · · ·CI`〉 . (5.15)

Diagrams contributing to β0 are more involved, as some of them include integrals over gluon
vertices. Their computation is beyond the scope of our analysis, as we are only interested
in the reflection factor at the leading weak-coupling order.
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Collecting the expressions (5.12) and (5.14) we arrive at

HA = (λ+ λ2 β0)V0 + λ2
∞∑
n=0

(1−Pn,n+1) . (5.16)

The above Hamiltonian can be diagonalized by the standard perturbative methods, taking

H0 = λV0 , δH = λ2β0V0 + λ2
∞∑
n=0

(1−Pn,n+1) . (5.17)

Let us consider single impurity states |n〉, where n indicates the position of the excitation. For
these states the unperturbed energies are simply E0

n = λδn0. However, as the unperturbed
spectrum is degenerate, a good basis |ψ0

n〉 to apply the methods of perturbation theory
should satisfy

〈ψ0
n|δH|ψ0

m〉 = 0 , for n 6= m & E0
n = E0

m . (5.18)

Thus, we will instead consider the basis

|ψ0
0〉 := |0〉 , |ψ0(p)〉 :=

∞∑
n=1

[
e−ipn +R(p) eipn

]
|n〉 , (5.19)

where, in order to satisfy the condition (5.18), one needs to impose

R(p) = −1 . (5.20)

For a magnon state with momentum p the perturbative solution is

|ψ(p)〉 =
∞∑
n=1

(
e−ipn − eipn

)
|n〉+ λ (e−ip − eip) |0〉+O(λ2) , (5.21)

whose energy is
E(p) = 4λ2 sin2 p

2 +O(λ3) , (5.22)

as expected from (2.7). In addition to the magnon states with momentum p we have a state
in which the impurity remains close to the boundary, i.e. a boundary bound state

|B〉 = |0〉 − λ|1〉+O(λ2) , (5.23)

whose energy is
EB(p, λ) = λ+ (1 + β0)λ2 +O(λ3) . (5.24)

One could compute the coefficient β0 to know the two-loop correction to the boundary
bound-state energy given in (5.24), but such computation is not needed to determine the
leading weak-coupling correction to the type A magnon dressing phase. Therefore, we
conclude that

R0
A(p) = −1 +O(λ2) . (5.25)

Finally, let us turn to a weak-coupling analysis of the other dressing factor R0
B . We will

now consider a SU(2) sub-sector for the even sites of the chain, where the type B impurities
can propagate. Therefore, we will work with the states

|C̄I0 , C̄I1 , · · · C̄I`〉 :=
√

2
(2k
N

)`+ 1
2
(

0 C1C̄
I0C1C̄

I1 · · · C̄I`C1
0 0

)
, (5.26)

where the C̄In are taken to be either C̄2 or C̄3.
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A quick diagrammatic analysis shows that the first non-trivial terms in the Hamiltonian
HB appear at two-loop order. Diagrams that could potentially contribute to a one-loop
order, like the ones depicted in figure 1, cancel to each other as we have a C1 field at the
left-most site. At two-loop order the boundary term in the Hamiltonian acts as the identity
operator or it comes with a matrix M I0

J0
. As the latter does not distinguish between C̄2

and C̄3, and since we know that |C̄2, C̄2, · · · C̄I2〉 has vanishing anomalous dimension, the
Hamiltonian in this case must be

HB = λ2
∞∑
n=0

(1−Pn,n+1) . (5.27)

For a single magnon impurity we can diagonalize this Hamiltonian with a usual Bethe
Ansatz wave-function of the form

|ψ(p)〉 =
∞∑
n=0

[
e−ipn +R(p) eipn

]
|n〉 , (5.28)

if we fix R(p) = eip. Therefore, we conclude that the type B right-boundary dressing phase
is, in the weak coupling limit,

R0
B(p) = e−ip +O(λ2) . (5.29)

5.3 All-loop proposal

We will now make an all-loop proposal for the boundary dressing phases, such that they
simultaneously solve the crossing equation discussed in section 5.1 and reproduce the results
of the last section when considered in the weak-coupling limit.

As we have seen, there exists a type A excited state with energy of order λ. The fact
that the dispersion relation (2.7) is expressed as an expansion in even powers of λ indicates
that such state is not an ordinary magnon, but rather it is a boundary bound state. Let us
consider the factor

1
x+ + x+

1
x− + x−

, (5.30)

which appears in the r.h.s. of the crossing equation (5.9). Interestingly, it has precisely a
pole for x− → −i whose energy is8

Epole = λ+O(λ2) , (5.31)

in accordance with (5.24). This suggests that the boundary bound state (5.23) could arise
from a pole if the factor (5.30) is included in R0

A. Moreover, such factor should be absent
in R0

B , as we have not observed boundary bound states associated to type B particles. It is
also useful to note that, for real fixed momentum,

1
x+ + x+

1
x− + x−

= eip +O(λ2) , (5.32)

which could serve to explain the relative factor between (5.25) and (5.29).
8In all the weak coupling expansions we are using that h(λ) = λ+O(λ3).
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Taking all these considerations into account, we propose that the all-loop dressing
factors are

R0
A(p) = − 1

R0(p)

( 1
x+ + x+

1
x− + x−

)(
x−

x+

)
,

R0
B(p) = 1

R0(p)

(
x−

x+

)
,

(5.33)

with
R0(p)R0 (p̄) = σ (p,−p̄) , (5.34)

and
R0(−p)R0(p) = 1 . (5.35)

Equations (5.34) and (5.35) can be solved if we take R0(p) to be the square root of the
dressing phase proposed by [18, 19] for the N = 4 sYM case, replacing g =

√
λYM
4π by

h(λ), i.e.

R0(p) =

 1
σB(p)σ(p,−p)

1 + 1
(x−)2

1 + 1
(x+)2

 1
2

, (5.36)

with
σB(p) = eiχ(x+)−iχ(x−) ,

iχ(x) =


iΦ(x) =

∮
|z|=1

dz
2πi

1
x−z log

{
sinh[2πh(z+ 1

z
)]

2πh(z+ 1
z )

}
if |x| > 1

iΦ(x) + log
{

sinh[2πh(x+ 1
x

)]
2πh(x+ 1

x)

}
if |x| < 1

(5.37)

Using the results of [18, 19] we have

R0(p) = 1 +O(λ2) , (5.38)

and therefore we recover the expressions (5.25) and (5.29) for the weak coupling expansions
of the dressing phases R0

A and R0
B . Let us note that in order to reproduce (5.25) and (5.29)

from (5.33) we have chosen r(p) = −1.
The fact that R0(p) is the square root of the dressing factor proposed for the N = 4 sYM

case can be naturally understood as follows. In the strong-coupling limit, dressing phases
are computed from the scattering of excitations propagating on the worldsheet of strings
carrying large angular momentum. These strings propagate in an AdS2 × S2 sub-space
of the geometry (see appendix B) and, after a Pohlmeyer reduction, the propagation of
excitations in the worldsheet is described in terms of sine/sinh Gordon solitons [41]. Being
the open string restricted to an AdS2×S2 sub-space of the geometry, its classical dynamics
is identical to that of the open string propagating in AdS2×S2 ⊂ AdS5×S5 [16]. Thus, the
reflection of worldsheet excitations is described in exactly the same way as done in [18, 19]

R0
A(p) ' R0

B(p) ' e
−i2T cos p2

[
log
(

1−sin p2
1+sin p2

)
+2 log cos p2

]
, (5.39)

where T is the effective string tension. What changes between one case and the other is how
T is related to the ’t Hooft coupling. In the AdS4 × CP3 background 2T =

√
2λ ' 2h(λ)
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for large λ. Thus, the result (5.39) is in agreement with the strong-coupling limit of our
proposal (5.33). Also note that (5.39) gives the reflection phase for the two types of magnons.
The relative factor in our proposal is an order 1 quantity in the strong-coupling limit and
therefore it is not observed in the semiclassical computation.

As said before, the result (5.39) also holds for the AdS5 × S5 background. However,
the relation between the effective string tension and ’t Hooft coupling is 2T =

√
λYM
π = 4g

in this case, which explains that the same boundary dressing phase appears squared in the
N = 4 sYM case. The fact that bulk S-matrices come with σ(x1, x2) in one case and with
σ(x1, x2)2 in the other is also explained by the same argument.

Let us note that type A and type B magnons reflect differently at the boundaries. This
implies a striking contrast to what is observed for the bulk scattering properties. At weak
coupling one can see this as a straightforward consequence of the fact that type A particles
are in closer interaction with the boundaries than type B particles. The range of the
interactions between the impurities and the boundary is of order λ for type A magnons and
of order λ2 for type B magnons. As an important implication of this, one type of particle
can form a bound state with the boundary while the other can not. Let us also mention
that this is a distinctive property of the open boundary set by Wilson loops. Extending the
ideas of [43], open spin chains for the anomalous dimensions of determinant operators in
ABJM were studied in [44, 45], and no distinction was observed for the reflection of type A
and B magnons in those cases.

To conclude this section, let us comment on the possibility of inserting operators with a
non-trivial lower off-diagonal block. Alternating C̄2 with C1 in the lower off-diagonal block
does not constitute a supersymmetric insertion. Instead, a possible supersymmetric lower
off-diagonal block vacuum, over which magnon excitations can propagate, is the hermitian
conjugate of the upper off-diagonal block

V†` =
(

0 0
(C̄1C2)`C̄1 0

)
. (5.40)

Thus, the spin-chain vacuum states V` and V†` are interchanged under charge conjugation.
Consider for example the U(1)extra symmetry of the ABJM spin chain [7], under which the
fields C̄1, C̄2, C3, C4 have charge +1 and the fields C1, C2, C̄

3 and C̄4 have charge -1: while
V` has charge −1, V†` has charge +1. Similarly, type A magnons in the lower off-diagonal
block are the charge conjugates of type B magnons in the upper off-diagonal block, and
vice-versa. When considering their reflection from the boundaries, type A and B magnons
in the lower block behave as type B and A impurities in the upper block, respectively.
Therefore, their dressing phases are interchanged. This is manifest in the weak-coupling
regime, as type B magnons in the lower block interact with the boundaries at order λ, while
the range of the interaction with the boundaries is of order λ2 for type A magnons in the
same block.

6 Cusp anomalous dimension from a set of BTBA equations

As pointed out in the Introduction, the main goal of this paper is to compute the cusp
anomalous dimension Γcusp of ABJM using an integrability approach. In the previous
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sections we have studied the spin-chain description of the anomalous dimensions of operators
inserted at the 1/2 BPS Wilson line of ABJM. In order to compute Γcusp we shall consider
instead a cusped Wilson loop, which is correspondingly described by an open spin chain with
an appropriate twist in one of its boundaries. We will consider the insertion of the vacuum
V` at the position of the cusp, and we will study the corresponding anomalous dimension as
a function of `. This anomalous dimension is due to finite-size effects, which are included
as corrections to the Asymptotic Bethe Ansatz (ABA). Eventually Γcusp would be obtained
in the limit in which no operator is inserted at the cusp. The leading finite-size corrections
are taken into account by the so called Lüscher corrections and, ultimately, the exact
solution can be obtained by making a Boundary Thermodynamic Bethe Ansatz (BTBA).
The integral BTBA equations that give the finite-size corrections usually can be rewritten
as a set of functional equations, known as Y -system. In this section we will propose a set
of Y -system equations for the cusped Wilson loop of ABJM, which in turn we will use to
compute the one-loop cusp anomalous dimension from a leading-order finite-size correction.

6.1 Y-system for the cusped Wilson line of ABJM

Given a 1+1-dimensional system of size L at temperature 1/R, one can obtain its vacuum
energy E0(L) from the partition function Z(L,R). More precisely, in the large R limit
one has

E0(L) ∼ − logZ(L,R)
R

. (6.1)

The key to compute E0(L) is to make a double Wick rotation of the system [46]. This maps
the physical theory to a mirror theory whose energy ε and momenta q are related to the
physical values E and p by

p→ iε , and E → iq . (6.2)

This transformation takes the original system with finite volume L and low temperature
1/R � 1 into a system with large volume R � 1 and finite temperature 1/L. Crucially,
for integrable systems, the latter can be studied using ABA tools. In cases with periodic
boundary conditions one can use (6.1) to compute E0(L) from the free-energy of the mirror
theory. Alternatively, for open boundary conditions the vacuum energy E0(L) is obtained
from the transition amplitude between two boundary states [47]. In either case one arrives at

E0(L)− E0(∞) = − 1
2π
∑
A

∫ ∞
0

dq log[1 + YA(q)] , (6.3)

where the YA functions are the solutions to a set of integral (B)TBA equations.
The BTBA equations can usually be reformulated as a set of functional equations known

as the Y -system [48–51]. Interestingly, there are many examples, in particular within the
context of the AdS/CFT correspondence, in which the introduction of integrable boundary
conditions in a system modifies the analytical and asymptotic properties of the Y -functions
without changing the Y -system. [18, 19, 52–58]. This could be related to the fact that either
for periodic or open boundary conditions in the physical theory, in the mirror theory one
deals with exactly the same system of mirror excitations. We will follow this insight and
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we will assume that, as it was the case for the N = 4 sYM Wilson loop [18, 19], the same
Y -system that describes the ABJM spectrum with periodic boundary conditions can be
used to describe the spectrum with open boundary conditions set by the ABJM Wilson line.
More specifically, we propose that the Y -system of the cusped line of ABJM is [50, 51, 59]

Y +
a,sY

−
a,s = (1 + Ya,s+1)(1 + Ya,s−1)

(1 + 1/Ya+1,s)(1 + 1/Ya−1,s)
, s > 1, (a, s) 6= (2, 2) , (6.4)

Y +
a,1Y

−
a,1 =

(1 + Ya,2)(1 + Y I
a,0)(1 + Y II

a,0)
(1 + 1/Ya+1,1)(1 + 1/Ya−1,1) , (6.5)

Y α,+
a,0 Y β,−

a,0 = (1 + Ya,1)
(1 + 1/Y β

a+1,0)(1 + 1/Y α
a−1,0)

, a > 1, α 6= β , (6.6)

Y α,+
1,0 Y β,−

1,0 = (1 + Y1,1)
(1 + 1/Y β

2,0)
, α 6= β , (6.7)

where the set of Y -functions is given by

Y α
a,0 , a ≥ 1, α ∈ {I, II} ; Ya,s , (a, s) ∈ N+ × N+, a ≤ 1 or s ≤ 1 ; and Y2,2 .

(6.8)
In (6.4)–(6.7) we are writing the Y -functions as functions of the spectral parameter u,
defined as

x(u) + 1
x(u) = u

h
, (6.9)

and we are using the notation f [±a] = f(u ± ia/2). Moreover, considering a new set of
functions given by

Tαa,s , (a, s) ∈ N× {−1, 0}, α ∈ {I, II} ; Ta,s , (a, s) ∈ N× N+, a ≤ 2 or s ≤ 2 ,
(6.10)

and making the change of variables

Ya,s = Ta,s+1Ta,s−1
Ta+1,sTa−1,s

, s ≥ 2 a ≥ 1 , (6.11)

Ya,1 =
Ta,2T

I
a,0T

II
a,0

Ta+1,1Ta−1,1
, a ≥ 1 , (6.12)

Y α
a,0 =

Ta,1T
β
a,−1

Tαa+1,0T
β
a−1,0

, a ≥ 1 , α, β ∈ {I, II} , α 6= β , (6.13)

one can rewrite the Y -system equations (6.4)–(6.7) in terms of a set of Hirota equations [59],

T+
a,sT

−
a,s = (1−δa,0)Ta+1,sTa−1,s+Ta,s+1Ta,s−1 , s≥ 2 , (6.14)

T+
a,1T

−
a,1 = (1−δa,0)Ta+1,1Ta−1,1+Ta,2T Ia,0T IIa,0 , (6.15)

Tα,+a,0 T β,−a,0 = (1−δa,0)T βa+1,0T
α
a−1,0+Tαa,−1Ta,1 , α,β ∈{I,II} , α 6=β , (6.16)

Tα,+a,−1T
β,−
a,−1 =T βa+1,−1T

α
a−1,−1 , a 6= 0 , α,β ∈{I,II} , α 6=β . (6.17)
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As for the formula (6.3), in the ABJM theory it becomes9

E0(L)−E0(∞) =− 1
4π

∞∑
a=1

∫ ∞
0

dq log[1+Y I
a,0(q)]− 1

4π

∞∑
a=1

∫ ∞
0

dq log[1+Y II
a,0(q)] . (6.18)

6.2 Asymptotic solution of the Y -system

In order to obtain the leading-order contribution to Γcusp from (6.18) we will discuss now
the asymptotic large-volume solution that is obtained from the Y -system of eqs. (6.4)–(6.7).
Following [50], in the asymptotic limit one gets

Y I
a,0 ∼

(
z[−a]

z[+a]

)2L

Ta,1

a−1
2∏

n=−a−1
2

φ
ζ(n,a)
I (u+ in)φ1−ζ(n,a)

II (u+ in) , (6.19)

Y II
a,0 ∼

(
z[−a]

z[+a]

)2L

Ta,1

a−1
2∏

n=−a−1
2

φ
ζ(n,a)
II (u+ in)φ1−ζ(n,a)

I (u+ in) , (6.20)

where the two functions φI and φII will be fixed later by comparison with Lüscher corrections,
and with

ζ(n, a) =
{

1 if n+ a−1
2 is even

0 if n+ a−1
2 is odd

In (6.19) and (6.20) we are using the notation z± for the spectral variables in the mirror
theory. In the particular case in which

φI(u) = φII(u) =
ϕ
(
u− i

2

)
ϕ
(
u+ i

2

) , (6.21)

for some function ϕ, one gets

Y I
a,0 = Y II

a,0 ∼
(
z[−a]

z[+a]

)2L ϕ
(
u− ia

2

)
ϕ
(
u+ ia

2

) Ta,1 . (6.22)

Let us start by discussing the Ta,1 functions that appear in (6.19) and (6.20), which
can be obtained as a solution of the T -system of eqs. (6.14)–(6.17). In principle, one could
determine the asymptotic Ta,1 functions with a computation of the double-row transfer
matrix for a bound state of a magnons. This would require to know the reflection matrix for
bound states with a > 1. Bound states of the mirror theory accommodate in anti-symmetric
representations of SU(2|2) [60] and, unfortunately, the SU(1|2) residual symmetry with the
boundary does not seem to be enough to completely determine the corresponding reflection
matrices. In order to overcome this issue we will follow the ideas of [58], and we will

9Let us note the extra 1/2 factor in the r.h.s. of this equation. This can be explained by taking into
account that the dispersion relation of magnons in the ABJM picture has an overall 1/2 factor with respect
to the similar dispersion relation of N = 4 sYM [50].
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argue that the Ta,1 functions of a system with SU(1|2) symmetry can be obtained from the
corresponding T -functions of a system with SU(2|1) symmetry from the identification

T
SU(1|2)
a,1 ≡ T SU(2|1)

1,a . (6.23)

In the case with SU(2|1) symmetry, the double-row transfer matrix giving the Ta,1 functions
can be easily computed, as the reflection matrix for bound states in anti-symmetric rep-
resentations is simply diagonal [61]. The remaining T -functions in that case are obtained
imposing the T -system equations, as done in [62]. Then, we get [62]

T
SU(1|2)
a,1 = 2(−1)a

[
b0,a

(
1 + u[a]

u[−a]

)
+ 2

a−1∑
k=1

bk,au
[a]

u[a−2k]

]
, a ≥ 1 , (6.24)

with
b0,s = sin2 θ

2 P
(0,1)
s−1

(
1− 2 cos2 θ

2

)
,

bl,s = bs−l,s = b0,lb0,s−l ,

b0,0 = 1 ,

and where P (0,1)
s−1 stands for Jacobi polynomial. For simplicity, from now on we will simply

write T SU(1|2)
a,1 ≡ Ta,1. The asymptotic solution to the T -system proposed in (6.14)–(6.17) is

completed by10

T1,s = (−1)s 4su
u[−s] sin2 θ , s ≥ 1 ; T2,s = Ts,2 = 16u[s]u[−s]

u[−s+1]u[−s−1] sin4 θ , s ≥ 2 ;

T0,s = 1 , s > 0 ; T Ia,0 = 1 , a ≥ 0 ;
T IIa,0 = 1 , a ≥ 0 ; T I0,−1 = 1 ;
T II0,−1 = 1 ; T Ia,−1 = 0 , a ≥ 1 ;
T IIa,−1 = 0 , a ≥ 1 .

(6.25)
Having discussed the asymptotic Ta,1 functions associated with the cusped Wilson line,

let us focus now on the φI and φII functions that appear in the asymptotic solutions (6.19)
and (6.20). We will obtain an expression for these functions from the study of the leading-
order Lüscher correction to the vacuum energy E0. Recalling that in the mirror picture the
partition function of a system with open boundary conditions is obtained as the transition
amplitude between two boundary states, Lüscher corrections are obtained perturbatively
from expanding such boundary states in terms of creation and annihilation operators of
a-magnons (for a discussion on this see for example [61]). For the ABJM cusped Wilson
line the Lüscher corrections are given as

Y I
a,0(q) ∼ e−2L εa(q) Tr

[
Rup
A (q)C Rdown

B,θ (−q̄)C−1
]
, (6.26)

Y II
a,0(q) ∼ e−2L εa(q) Tr

[
Rup
B (q)C Rdown

A,θ (−q̄)C−1
]
. (6.27)

10This solution receives finite-size corrections away from the asymptotic limit. In particular, following (6.13)
we see that the correction to Tαa,−1 with α = I, II and a ≥ 1 gives the leading-order contribution to Y αa,0,
which is presented in (6.19) and (6.20).

– 19 –



J
H
E
P
0
6
(
2
0
2
3
)
1
7
9

Let us comment some details about the above formulas. First, the function εa(q) gives the
energy of an a-magnon of mirror-momentum q, and

C =
(
−iεab

0 εαβ

)
, (6.28)

is the charge-conjugation matrix. Moreover, RA/B is the reflection matrix derived in the
previous sections for a Wilson line along the x1 direction, while RA/B,θ is the corresponding
reflection matrix for a Wilson loop rotated by an angle θ,

RA/B,θ(q) = O(θ)RA/B(q)O−1(θ) , (6.29)

where the rotation matrix O(θ) is given by

O(θ) =


1 0 0 0
0 1 0 0
0 0 cos θ2 sin θ

2
0 0 − sin θ

2 cos θ2

 . (6.30)

The words up and down in (6.26) and (6.27) refer to the reflection matrices of impurities
in the upper or lower off-diagonal blocks of the corresponding supermatrix, respectively.
It is crucial to recall that the charge conjugate of a type A (or B) magnon in the upper
off-diagonal block spin chain is a type B (or A) magnon in the lower off-diagonal block spin
chain. Then, taking into account that

Rdown
A (q) = Rup

B (q) ,

Rdown
B (q) = Rup

A (q) ,
(6.31)

we arrive at

Y I
a,0(q) ∼ e−2L εa(q) Tr

[
Rup
A (q)C Rup

A,θ (−q̄)C−1
]
, (6.32)

Y II
a,0(q) ∼ e−2L εa(q) Tr

[
Rup
B (q)C Rup

B,θ (−q̄)C−1
]
. (6.33)

Otherwise stated, from now on we will return to work only with reflection matrices of
magnons in the upper off-diagonal block. Moreover, to simplify the notation we will again
refer to them simply as RA and RB.

Let us turn now to the explicit computation of (6.32) and (6.33). As discussed previously,
the SU(1|2) symmetry does not seem to be enough to determine (up to overall dressing
phases) the reflection matrices of bound states in the mirror theory. Then, let us focus first
on the computation of Y I

1,0 and Y II
1,0. Using the results of sections 4 and 5 we arrive at

Y I
1,0(z+, z−) = e−2L ε1 sin2 θ

2
(z+ + z−)2

z+z−
R0
A

(
z+, z−

)
R0
A

(
− 1
z− ,− 1

z+

)
, (6.34)

Y II
1,0(z+, z−) = e−2L ε1 sin2 θ

2
(z+ + z−)2

z+z−
R0
B

(
z+, z−

)
R0
B

(
− 1
z− ,− 1

z+

)
. (6.35)
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Moreover, from (5.33) we get

R0
A

(
z+, z−

)
R0
A

(
− 1
z− ,− 1

z+

)
= R0

B

(
z+, z−

)
R0
B

(
− 1
z− ,− 1

z+

)
, (6.36)

which implies

Y I
1,0(z+, z−) = Y II

1,0(z+, z−) = e−2L ε1 sin2 θ

2
(z+ + z−)2

z+z−
R0
A

(
z+, z−

)
R0
A

(
− 1
z− ,− 1

z+

)
.

(6.37)
Suggestively, one can rewrite (6.34) and (6.35) as

Y I
1,0 =Y II

1,0 =−e−2Lε1 (z++z−)2

2z+z−
(

1+ z++ 1
z+

z−+ 1
z−

)R0
A

(
z+,z−

)
R0
A

(
− 1
z− ,− 1

z+

)
T1,1 , (6.38)

where T1,1 is given in (6.24). Therefore, we propose that, for generic a,

Y I
a,0 =Y II

a,0 =−e−2Lεa (z++z−)2

2z+z−
(

1+ z++ 1
z+

z−+ 1
z−

)R0
I,a

(
z+,z−

)
R0
I,a

(
− 1
z− ,− 1

z+

)
Ta,1 . (6.39)

The dressing phases R0
I,a for type I bound states can be computed using fusion rules (see

appendix C). Then, we have

R0
I,a

(
z+,z−

)
R0
I,a

(
− 1
z− ,− 1

z+

)
= 2(−1)a 1+z+z−

z++z−

(
z−

z+

)2
(
z++ 1

z+

)1/2

(
z−+ 1

z−

)3/2 σ
1/2
B (q)σ1/2

B (−q̄) ,

(6.40)
and therefore

Y I
a,0 = Y II

a,0 = (−1)a+1 e−(2L+2) εa(q)
(
z+ + 1

z+

z− + 1
z−

)1/2

σ
1/2
B (q)σ1/2

B (−q̄)Ta,1 , (6.41)

where we have used the identity

(z+ + z−)(1 + z+z−)(
z+ + 1

z+ + z− + 1
z−

)
z+z−

= 1 . (6.42)

Then, taking into account (5.37) we see that the asymptotic solutions we have proposed
behave as in (6.22). Therefore, they constitute an asymptotic solution to the Y -system of
eqs. (6.4)–(6.7), as expected.

6.3 Cusp anomalous dimension from the BTBA formula

Let us focus now on the computation of the leading-order contribution to E0(L)− E0(∞),
that comes from inserting the asymptotic solutions given in (6.41) into the BTBA formula
presented in (6.18). We will compute the finite-size correction at leading weak-coupling
order. As we will see next, the explicit evaluation of (6.41) shows that

Y I
a,0 ∼ Y II

a,0 ∼ O(h4L+4) . (6.43)
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For the leading-order contribution to (6.18) there are two distinct possibilities, depending
on whether each Y -function has a double pole or not as q → 0 [61]. On the one hand, for
Y -functions that are regular as q → 0 one gets

log
(
1 + Y α

a,0

)
∼ Y α

a,0 ∼ O(h4L+4) , (6.44)

which specifies the order of the finite-size correction. This leading asymptotic contribution
is mediated by the exchange of a two-particle state in the mirror theory. On the other hand,
if a Y -function has a double pole in q, i.e.

Y α
a,0 =

C2
α,a

q2 +O(1) , (6.45)

the integral of its contribution to the finite-size correction provides a term proportional to

Cα,a ∼ O(h2L+2) . (6.46)

In this case, the correction is mediated by the exchange of a one-particle state in the
mirror picture.

Let us therefore study the behaviour of the Y -functions given in (6.41) for q → 0 and
in the leading weak-coupling limit. From the results of [18, 19], the factor that includes the
boundary phase σB behaves as

σ
1/2
B (q)σ1/2

B (−q̄) =
(
a

q
+O(q0)

)
+O(h2) . (6.47)

Furthermore, we have

e−(2L+2) εa(q) =
(

4h2

a2 + q2

)2L+2

+O(h4L+6) . (6.48)

It remains to evaluate the T -functions for q → 0 to leading weak-coupling order. For
odd values of a = 2n + 1, the Ta,1 vanish linearly in q. Thus, altogether with the other
factors (6.47) and (6.48), we have regular Y -functions in the limit q → 0,

Y I
2n+1,0 = Y II

2n+1,0 = O(q0) . (6.49)

On the other hand, for even values of a the T -functions present a simple pole(
z+ + 1

z+

z− + 1
z−

)1/2

T2n,1 =
(
−

8nb20,n
q

+O(q0)
)

+O(h2) . (6.50)

Therefore, for even values of a,

Y I
2n,0 = Y II

2n,0 =
(

16 b20,nh2

q2

(
h

n

)4L+2
+O(q0)

)
+O(h4L+6) . (6.51)

Plugging these asymptotic expressions in (6.41) we obtain

E0(L)− E0(∞) = −2h2L+2
∞∑
n=1

b0,n
n2L+1 +O(h2L+3)

= −2h2L+2 sin2 θ
2

∞∑
k=0

P
(0,1)
k (− cos θ)
(k + 1)2L+1 +O(h2L+3) . (6.52)
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Let us comment about the sign of (6.52). The result of the integrals over q that
appear in (6.18) are given by the square root of the coefficient in front of the double poles
in (6.51), which entails an ambiguity in the sign choice of the result. The correct sign can
be determined if we consider the limit θ → π, at which the Wilson loop configuration can
be related to a quark antiquark pair and each term should contribute negatively to the
energy [18]. The Jacobi polynomials are normalized such that P (0,1)

k (1) = 1, and this fixes
the sign to be the one in (6.52).

Eq. (6.52) gives the finite-size correction to the energy of a vacuum state (4.7) inserted
at the position of the cusp. Its evaluation for arbitrary L is rather complicated. If we
identify the TBA-length L with `, the vacuum state insertion is made of 2L + 1 fields.
In order to associate the finite-size correction to this vacuum energy with Γcusp, we need
to consider an insertion with a vanishing number of fields, which requires to analytically
continue the length L such that

2L+ 1 = 0 ⇒ L = −1/2 . (6.53)

Therefore, we are interested in computing

E0(−1/2)− E0(∞) = −2h sin2 θ

2

∞∑
k=0

P
(0,1)
k (− cos θ) +O(h2) . (6.54)

Using the generating function of Jacobi Polynomials

∞∑
k=0

P
(0,1)
k (x) tk = 2

(1 + t+
√

1− 2xt+ t2)
√

1− 2xt+ t2
, (6.55)

it is straightforward to compute the sum that appears in (6.54), which gives

E0(−1/2)− E0(∞) = −h
(

1
cos θ2

− 1
)

+O(h2) . (6.56)

As shown in [63, 64], in the weak-coupling limit the interpolating function behaves as
h(λ) = λ+O(λ2). Consequently, the result (6.56) precisely agrees with the one-loop cusp
anomalous dimension (3.13), computed in [35] from an expansion in Feynman diagrams.

6.4 BTBA equations for the cusped Wilson line of ABJM

Finally, let us write the BTBA equations for the cusped Wilson line of ABJM. To that aim,
we should recall that in the previous sections we used that the Y -system for the cusped
Wilson line of ABJM is the same as the one that describes the corresponding periodic
system (the only changes are in the analytical and asymptotic properties of the solutions).
The same was observed in the N = 4 sYM, and the BTBA equations for the cusped Wilson
line in that case were found to be almost the same as the TBA equations for the periodic
spin chain. To be more precise, one can obtain the BTBA equations by taking the TBA
equations of the periodic system and then subtracting the result of evaluating them in the
leading-order finite-size solution [18]. Assuming that the same holds in the ABJM case and
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using the TBA equations presented in [50, 51] for the periodic spin chain, we propose that
the BTBA equations for the cusped Wilson line of ABJM are

log
(
Y1,1
Y1,1

)
=Km−1?log

(
1+Ȳ1,m
1+Ym,1

1+Ym,1

1+Ȳ1,m

)
+R(01)

1m ?log(1+Y I
m,0)+R(01)

1m ?log(1+Y II
m,0) ,

log
(
Ȳ2,2

Ȳ2,2

)
=Km−1?log

(
1+Ȳ1,m
1+Ym,1

1+Ym,1

1+Ȳ1,m

)
+B(01)

1m ?log(1+Y I
m,0)+B(01)

1m ?log(1+Y II
m,0) ,

log
(
Ȳ1,n

Ȳ1,n

)
=−Kn−1,m−1?log

(
1+Ȳ1,m

1+Ȳ1,m

)
−Kn−1~log

(
1+Y1,1
1+Y1,1

)
,

log
(
Yn,1
Yn,1

)
=−Kn−1,m−1?log

(
1+Ym,1
1+Ym,1

)
−Kn−1~log

(
1+Y1,1
1+Y1,1

)
+

+
(
R(01)
nm +B(01)

n−2,m

)
?log(1+Y I

m,0)+
(
R(01)
nm +B(01)

n−2,m

)
?log(1+Y II

m,0) ,

log
(
Y I
n,0

YI
n,0

)
= T ‖nm?log(1+Y I

m,0)+T ⊥nm?log(1+Y II
m,0)+

+R(10)
n1 ~log

(
1+Y1,1
1+Y1,1

)
+
(
R(10)
nm +B(10)

n,m−2

)
?log

(
1+Ym,1
1+Ym,1

)
,

log
(
Y II
n,0

YII
n,0

)
= T ‖nm?log(1+Y II

m,0)+T ⊥nm?log(1+Y I
m,0)+

+R(10)
n1 ~log

(
1+Y1,1
1+Y1,1

)
+
(
R(10)
nm +B(10)

n,m−2

)
?log

(
1+Ym,1
1+Ym,1

)
.

Above we are following the conventions of [50] for the integral kernels and convolutions,
and we are using the notation Ȳa,s = 1/Ya,s. Moreover, the bold face Y’s are used to
represent the leading-order finite-size solutions, whose explicit expressions can be obtained
from (6.11), (6.12), (6.24), (6.25) and (6.41). Let us note that, working as in [49–51], one
can see that the BTBA equations that we have proposed in this section consistently lead to
the Y -system written in (6.4)–(6.7).

7 Conclusions

In this paper we have proposed a Y -system of equations for the cusped Wilson line of the
three-dimensional N = 6 Chern-Simons-matter (ABJM) theory, and we have shown that
those equations consistently reproduce the one-loop cusp anomalous dimension Γcusp of
ABJM from a leading-order finite-size correction. Moreover, we have proposed a compatible
set of Boundary Thermodynamic Bethe Ansatz (BTBA) equations. To perform the BTBA
analysis we have constructed an integrable open spin chain that allows to describe the
insertion of operators along the contour of the 1/2 BPS Wilson loop of ABJM. Furthermore,
we have computed the corresponding reflection matrices, including an all-loop proposal for
their dressing, and we have shown the consistence of our proposal with the expected weak-
and strong-coupling behaviours.

There are many exciting open questions that arise from our results. In first place, it
would be interesting to use the BTBA equations of the cusped Wilson line to derive the
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bremmstrahlung function of ABJM, as done in [10] for the N = 4 super Yang-Mills (sYM)
theory. A comparison of this result with the localization-based computation of [13, 14]
would allow for a direct derivation of the interpolating function h(λ) of ABJM, in terms
of which every all-loop integrability results are expressed. The result of such computation
could be then compared to the current conjecture given in [8].

Finite-size corrections to the vacuum energy of the cusped Wilson line of N = 4
sYM were reformulated in terms of the Quantum Spectral Curve (QSC) formalism in [65].
There the authors found that the functional relations of the QSC were the same as for
the corresponding periodic system, and only the asymptotic and analytic properties of the
solutions had to be modified. This is suggestively similar to what we have found for the
Y -system in our setup. It would be interesting to follow this insight in order to propose a
Quantum Spectral Curve for the cusped Wilson line in ABJM.

Furthermore, it would be interesting to study the generalization of our results to the
ABJ theory [2], i.e. to the case in which the ranks of the gauge groups are not necessarily
equal. In this picture, evidence of integrability was found in [63] in the weak-coupling
limit, while an all-loop proposal for the interpolating function h was made in [9]. However,
the all-loop integrability of the ABJ theory is not trivially guaranteed from the assumed
integrability of the ABJM limit. It is known that the string sigma model dual to the ABJ
theory contains a theta-angle term proportional to λ− λ̂ [2], where λ and λ̂ are the ’t Hooft
couplings of the ABJ theory. Such term implies a violation of parity, which is sometimes
related to a breakdown of integrability (see for example the discussion in [66]). In this
regard, it is suggestive to note that the generalization of the boundary Hamiltonian HA

bdry
discussed in section 5.2 would have both an order λ and an order λ̂ term when computed
in the ABJ theory, which would also imply a violation of parity.

One crucial ingredient of our results is the all-loop proposal for the boundary dressing
phases. It would be interesting to further check the solutions to the crossing-unitarity
equations that we have given, for example by a two-loop computation of the energy of the
boundary bound states.

Finally, it would also be interesting to extend the TBA-based computation of Γcusp
to the next-to-leading order, as done for the N = 4 sYM case in [67]. This would require
an iteration of the BTBA equations, whose result could eventually be compared with the
Feynman-diagram computation done in [35]. This would constitute a test for the proposed
dressing factors as well as for the BTBA equations.
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A ABJM conventions

The ABJM theory is a three-dimensional N = 6 Chern-Simons-matter theory with gauge
group U(N) × U(N). The field content of the theory is given by gauge fields (Aµ)ij and
(Âµ)î

ĵ
in the adjoint representations of the corresponding gauge groups, bi-fundamental

complex scalar fields (CI)îj and (C̄I)i
ĵ
, and bi-fundamental fermions (ψI)iĵ and (ψ̄I)îj , where

I = 1, . . . , 4 is a SU(4) R-symmetry index. Let us note that we are using a hat to distinguish
the two sets of U(N) indices. The action of the theory is

SABJ(M) = SCS + SMatter + SFint + SBint , (A.1)

with

SCS =−i k4π

∫
d3xεµνρ

[
Tr
(
Aµ∂νAρ+ 2

3 AµAνAρ
)
−Tr

(
Âµ∂νÂρ+ 2

3 ÂµÂνÂρ
)]

,

SMatter = k

2π

∫
d3x

[
Tr
(
DµCID

µC̄I
)

+iTr
(
ψ̄I /DψI

)]
,

SFint =− ik2π

∫
d3x

[
Tr
(
C̄ICIψJ ψ̄

J
)
−Tr

(
CIC̄

I ψ̄JψJ
)

+2Tr
(
CIC̄

J ψ̄IψJ
)
−

−2Tr
(
C̄JCIψJ ψ̄

I
)
−εIJKLTr

(
C̄I ψ̄J C̄K ψ̄L

)
+εIJKLTr(CIψJCKψL)

]
,

SBint =− k

6π

∫
d3x

[
Tr
(
CIC̄

ICJ C̄
JCKC̄

K
)

+Tr
(
C̄ICIC̄

JCJ C̄
KCK

)
+

+4Tr
(
CIC̄

JCKC̄
ICJ C̄

K
)
−6Tr

(
CIC̄

JCJ C̄
ICKC̄

K
)]
,

where ε1234 = ε1234 = 1, k is the Chern-Simons level, and the covariant derivatives are

DµCI = ∂µCI + i
(
AµCI − CIÂµ

)
, DµC̄

I = ∂µC̄
I − i

(
C̄IAµ − ÂµC̄I

)
, (A.2)

DµψI = ∂µψI + i
(
ÂµψI − ψIAµ

)
, Dµψ̄

I = ∂µψ̄
I − i

(
ψ̄IÂµ −Aµψ̄I

)
. (A.3)

In the ABJM theory the Chern-Simons level k plays a the role of the inverse of a coupling
constant. The ’t Hooft coupling constant is defined as

λ := N

k
. (A.4)

In d = 3− 2ε dimensions we get that the correlators are

〈(Aµ)ij (x) (Aν)lm (y)〉 = δimδ
l
j

(2πi
k

)
εµνρ∂

ρ
x∆(x− y) +O

( 1
k2

)
, (A.5)

〈(Âµ)î
ĵ
(x)(Âν)l̂m̂(y)〉 = −δîm̂δ l̂ĵ

(2πi
k

)
εµνρ∂

ρ
x∆(x− y) +O

( 1
k2

)
, (A.6)

〈(CJ)îj (x)(C̄I)i
ĵ
(y)〉 = 2π

k
δIJδ

i
jδ
î
ĵ

∆(x− y) +O
( 1
k2

)
, (A.7)

〈(ψJ)iĵ (x)(ψ̄I)îj(y)〉 = 2π
k
δIJδ

i
jδ
î
ĵ
iγµ

∂

∂xµ
∆(x− y) +O

( 1
k2

)
, (A.8)
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where
∆(x− y) :=

Γ(1
2 − ε)

4π
3
2−ε

1(
(x− y)2

) 1
2−ε

. (A.9)

Finally, the supersymmetry transformations of ABJM are

δAµ = 2i Θ̄IJα (γµ)βα
(
CIψJβ + 1

2εIJKLψ̄
K
β C̄

L
)
, (A.10)

δÂµ = 2i Θ̄IJα (γµ)βα
(
ψJβCI + 1

2εIJKLC̄
Lψ̄Kβ

)
,

δCK = Θ̄IJαεIJKLψ̄
L
α ,

δC̄K = 2 Θ̄KLα ψLα ,

δψβK = −iΘ̄IJαεIJKL (γµ)βαDµC̄
L + i Θ̄IJβεIJKL

(
C̄LCP C̄

P − C̄PCP C̄L
)

+

+ 2i Θ̄IJβεIJMLC̄
MCKC̄

L ,

δψ̄Kβ = −2i Θ̄KLα (γµ)αβ DµCL − 2i Θ̄KL
β

(
CLC̄

MCM − CM C̄MCL
)
− 4iΘ̄IJ

β CIC̄
KCJ ,

where the Killing spinors Θ̄IJ are anti-symmetric in the R-symmetry indices (Θ̄IJ = −Θ̄JI)
and satisfy the reality condition

Θ̄IJ = (ΘIJ)∗ , (A.11)

with
ΘIJ = 1

2εIJKLΘ̄KL . (A.12)

B String theory description

In this section we will propose a string dual to the 1/6 BPS vacuum state described in (4.7).
We acknowledge collaboration of J.Aguilera-Damia for obtaining these results at the early
stages of the project.

B.1 Type IIA string theory on AdS4 × CP3

The ABJM theory is conjectured to be dual to type IIA string theory on AdS4 × CP3 [1].
This background is characterized by the metric

ds2 = R3

4k
(
ds2
AdS4 + 4ds2

CP3

)
, (B.1)

where one can take the coordinates to be such that

ds2
AdS4 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ (dθ2 + sin2 θdψ2) , (B.2)

ds2
CP3 = 1

4
[
dα2 + cos2 α

2 (dϑ2
1 + sin2 ϑ1 dϕ

2
1) + sin2 α

2 (dϑ2
2 + sin2 ϑ2 dϕ

2
2)

+ sin2 α
2 cos2 α

2 (dχ+ cosϑ1 dϕ1 − cosϑ2 dϕ2)2
]
. (B.3)

The other non-vanishing fields that describe the supergravity solution are

e2Φ = R3

k3 , F4 = 3
8R

3dΩAdS4 , F2 = k

4dA , (B.4)
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for
A = cosαdχ+ 2 cos2 α

2 cosϑ1 dϕ1 + 2 sin2 α
2 cosϑ2 dϕ2 . (B.5)

It will prove convenient to write the CP3 in terms of four complex projective coordinates
zi, with i = 1, . . . , 4. When restricted to

∑
i |zi|2 = 1, these complex coordinates parametrize

a 7-dimensional sphere with angles11 α,ϑ1,ϕ1,ϑ2,ϕ2,χ and ξ, according to

z1 = cos α2 cos ϑ1
2 e

i
4 (2ϕ1+χ+ξ) , z2 = cos α2 sin ϑ1

2 e
i
4 (−2ϕ1+χ+ξ) ,

z3 = sin α2 cos ϑ2
2 e

i
4 (2ϕ2−χ+ξ) , z4 = sin α2 sin ϑ2

2 e
i
4 (−2ϕ2−χ+ξ) .

Indeed, the metric of the S7 can be written as a U(1) bundle over CP3,

ds2
S7 = ds2

CP3 + 1
16 (dξ +A)2 , (B.6)

for A defined in (B.5).
We will refer generically to the coordinates of AdS4 × CP3 as Xm. We will change

from spacetime indices m,n, . . . to tangent space indices a, b, . . . with the following vielbein
components

e0 =
√

R3

4k coshρdt , e1 =
√

R3

4k dρ, e2 =
√

R3

4k sinhρdθ , e3 =
√

R3

4k sinhρsinθdψ ,

e4 =
√

R3

4k dα, e5 =
√

R3

4k cos α2 dϑ1 , e6 =
√

R3

4k sin α
2 dϑ2 ,

e7 =
√

R3

4k cos α2 sinϑ1 dϕ1 , e8 =
√

R3

4k sin α
2 sinϑ2 dϕ2 ,

e9 =
√

R3

4k sin α
2 cos α2 (dχ+cosϑ1 dϕ1−cosϑ2 dϕ2) .

(B.7)
The transverse scalar directions (C1, C2, C3, C4) should be identified with the complex

coordinates (z1, z2, z3, z4). For example, the Tr[(C1C̄
2)`] vacuum is the dual operator to a

string moving along the null-geodesic defined by ρ = 0, α = 0 and ϑ1 = π
2 .

B.2 String with large angular momentun in AdS4 × CP3

Let us turn now to the construction of the string solution dual to the vacuum V` presented
in (4.7). To that aim, we should recall that for the 1/2 BPS Wilson line (3.1) the dual open
string worldsheet is an AdS2 ⊂ AdS4 located at a fixed point in the CP3 space [26]. For the
choice (3.6), that singles out I = 1, we should take |z1| = 1, which corresponds to put the
string at α = 0 and ϑ1 = 0 in the CP3. When considering the insertion of the V` vacuum
we will generalize the ideas of [16]. That is, we will consider an open string carrying a large
amount of angular momentum ` in the plane 12. This configuration will be a folded string,
whose folding point will follow the null-geodesic defined by ρ = 0, α = 0 and ϑ1 = π

2 . In
that regard, we will take the ansatz

t = τ , α = 0 , (B.8)
ρ = ρ(σ) , ϑ1 = ϑ1(σ) , (B.9)
θ = 0 , ϕ1 = ωτ , (B.10)

11The ranges of the angular variables are the following: 0 ≤ α, ϑ1, ϑ2 ≤ π, 0 ≤ ϕ1, ϕ2 ≤ 2π and 0 ≤ χ ≤ 4π.
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with all the other coordinates being zero. Our ansatz fits within a AdS2×S2 ⊂ AdS4×CP3

geometry, and therefore the classical motion is the same as the one described in [16]. More
precisely, in terms of a semi-infinite worldsheet spatial parameter σ ∈ [0,∞) we have

ρ = arccosh
(

1
tanhσ

)
, (B.11)

ϑ1 = arccos
(

1
coshσ

)
, (B.12)

ϕ1 = τ . (B.13)

B.3 Supersymmetry of the folded string

We will now discuss the supersymmetry invariance of the dual string solution proposed in
the last section. In order to do so we should first identify the Killing spinors of AdS4×CP3,
which can be given in terms of the Killing spinors of AdS4 × S7. Using the coordinates
given in (B.6) the latter can be written as

ε =Mε0 , (B.14)

with

M = e
α
4 (γ̂γ4−γ9γ∗)e

ϑ1
4 (γ̂γ5−γ7γ∗)e

ϑ2
4 (γ98+γ46)e−

ξ1
2 γ̂γ∗e−

ξ2
2 γ57e−

ξ3
2 γ49e−

ξ4
2 γ68

× e
ρ
2 γ̂γ1e

t
2 γ̂γ0e

θ
2γ12e

ψ
2 γ23 . (B.15)

Above we have used ξi for the phases appearing in the complex coordinates,

ξ1 = 2ϕ1+χ+ξ
4 , ξ2 = −2ϕ1+χ+ξ

4 , ξ3 = 2ϕ2−χ+ξ
4 , ξ4 = −2ϕ2−χ+ξ

4 ,

(B.16)
and we are using the notation γi, i = 0, . . . , 9, for the ten-dimensional Dirac matrices, with
γ̂ = γ0γ1γ2γ3 and γ∗ =

∏9
i=0 γi.

When restricting to the Killing spinors of AdS4 × CP3, we should consider only those
spinors given in (B.14) that are invariant under translations of the variable ξ. Under the
translation ξ → ξ + δξ

4 we get

ε′ =Mei
δξ
8 (iγ̂γ∗+iγ57+iγ49+iγ68)ε0 . (B.17)

For ε′ to be equal to ε, we should take ε0 to be eigenstate of the matrices {iγ̂γ∗, iγ57, iγ49,
iγ68} with eigenvalues {s1, s2, s3, s4}. Furthermore, these eigenvalues can only be +1 or −1,
and they must satisfy the constraint

s1 + s2 + s3 + s4 = 0 . (B.18)

Since in {s1, s2, s3, s4} one can only have even numbers of +1 and −1, there are 8 combina-
tions of eigenvalues in total. However, the condition (B.18) rules out {+1,+1,+1,+1} and
{−1,−1,−1,−1}, and one is therefore left with 3/4 of the 32 supersymmetries, i.e. there
are 24 supersymmetries in AdS4 × CP3.

– 29 –



J
H
E
P
0
6
(
2
0
2
3
)
1
7
9

As is well known, in type IIA string theory a given string configuration is supersym-
metric if

(1− Γ)Mε0 = 0 , (B.19)

where the projector Γ is defined as

Γ = i
∂τX

m∂σX
n

√
−g

Γmnγ∗ , (B.20)

where g is the determinant of the induced metric on the worldsheet. For the family of
solutions presented in (B.11)–(B.13) we have

ε = e
ϑ1
4 (γ̂γ5−γ7γ∗)e−

τ
4 (γ̂γ∗−γ57)e

ρ
2 γ̂γ1e

τ
2 γ̂γ0ε0 . (B.21)

Moreover, the corresponding Γ projector is

Γ = i (ρ′ cosh ρ γ01 + ϑ′1 cosh ρ γ05 − ρ′ sinϑ1 γ17 − ϑ′1 sinϑ1 γ57) γ∗
sinh2 ρ+ cos2 ϑ1

, (B.22)

where we have used that the solution (B.11)–(B.13) implies

√
−g =

√
[(ρ′)2 + (ϑ′1)2](cosh2 ρ− sin2 ϑ1) = sinh2 ρ+ cos2 ϑ1 . (B.23)

The projector equation (B.19) must hold for any value of σ and τ . In particular, the only
dependence on τ comes from the killing spinor (B.21). Since γ̂γ11 and γ57 commute with
γ̂γ1, we can reshuffle factors in (B.21) to have

ε = e
ϑ1
4 (γ̂γ5−γ7γ∗)e

ρ
2 γ̂γ1e−

τ
4 (γ̂γ∗−γ57−2γ̂γ0)ε0 . (B.24)

To eliminate the τ -dependence we impose the following projection condition over the
constant spinor,

(−is1 + is2 − 2γ̂γ0)ε0 = 0 . (B.25)

Since γ̂γ0 does not have any zero eigenvalue, the condition (B.25) is only satisfied if s1 = −s2.
Furthermore, the constraint (B.25) is equivalent to

(1 + γ0γ∗)ε0 = 0 , (1− γ̂γ0γ57)ε0 = 0 . (B.26)

Also, using (B.25) the equation (B.24) can be rewritten as

ε = e
ρ
2 γ̂γ1+ϑ1

2 γ̂γ5ε0 . (B.27)

We still need to impose the kappa symmetry projection (B.19). Moving e
ρ
2 γ̂γ1+ϑ1

2 γ̂γ5 to the
left and using (B.11)–(B.12) we get

ΓMε0 = ie
ρ
2 γ̂γ1+ϑ1

2 γ̂γ5

sinh2 ρ+ cos2 ϑ1

[
e−ϑ1γ̂γ5 (− sinh ρ cosh ρ γ01 + cosϑ1 cosh ρ γ05) +

+ e−ργ̂γ1 (sinh ρ sinϑ1γ17 − cosϑ1 sinϑ1γ57)
]
γ∗ ε0 , (B.28)
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and the projection (B.19) becomes

(sinh2 ρ+ cos2 ϑ1) ε0 =
[
e−ϑ1γ̂γ5 (− sinh ρ cosh ρ γ01 + cosϑ1 cosh ρ γ05) +

+ e−ργ̂γ1 (sinh ρ sinϑ1γ17 − cosϑ1 sinϑ1γ57)
]
γ∗ ε0 . (B.29)

Expanding the exponentials and moving γ∗ to the left we arrive at

(sinh2 ρ+ cos2 ϑ1) ε0 = γ∗ [− cosh ρ sinh ρ cosϑ1γ01 − cosh ρ sinh ρ sinϑ1γ̂γ5γ01+
+ cosh ρ cos2 ϑ1γ05 − cosh ρ cosϑ1 sinϑ1γ̂γ0+
+ cosh ρ sinh ρ sinϑ1γ17 + sinh2 ρ sinϑ1γ̂γ7−
− cosh ρ cosϑ1 sinϑ1γ57 − sinh ρ cosϑ1 sinϑ1γ̂γ1γ57] ε0 ,

(B.30)

which reduces, when replacing with (B.11)–(B.13) and using (B.26), to

(1 + γ1)ε0 = 0 . (B.31)

Therefore, taking into account (B.26) and noticing that γ1 commutes with γ0γ∗ and γ̂γ0γ57
we conclude that the configuration preserves 4 supersymmetries, i.e. corresponds to a 1/6
BPS solution.

C Dressing phases for bound-state magnons

In this section we will discuss the computation of the dressing phases for bound-state
magnons, i.e. for magnon representations with a ≥ 2. In particular, we will study such
dressing phases in the context of the mirror theory, and we will be interested in computing
the contribution of the bound-state dressing phases to the asymptotic Y -functions Y I

a,0 and
Y II
a,0 (see section 6.2). Taking this into account, it is crucial to note that in ABJM we have

two possible types of bound states. On the one hand, one could consider bound states that
do not mix the different types of excitations, i.e. states of the type AA and BB in the case
of a = 2. These are believed to correspond to bound states of magnons in the physical
theory [51]. On the other hand, one can construct bound states that mix different types of
excitations, i.e. states of the type AB and BA. These are associated with bound states in
the mirror theory [51]. Consequently, we will focus only on the latter type of bound states.

As done in [61] for the Z = 0 brane of N = 4 sYM, in order to compute the bound-state
dressing phases we will use fusion rules, i.e. we will decompose an a-magnon in a single-
particle constituents. To be more precise, let us consider an a-magnon whose kinematics is
described by the Zhukowski variables z+ and z− as

z+ + 1
z+ − z

− − 1
z−

= ia

h
. (C.1)

The constraint (C.1) suggests that we can consider the a-magnon as a superposition of a
fundamental magnons with kinematic coordinates z±i , i = 1, . . . , a such that

z−1 = z− , z+
1 = z−2 , . . . , z

+
a = z+ , (C.2)
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Figure 2. Reflection of a two-particle bound state |XA(z1)XB(z2)〉. We use a thick red line to
represent the boundary of the spin chain, and grey lines for the single-particle constituents of the
bound-state.

where
z+
j + 1

z+
j

− z−j −
1
z−j

= i

h
, for j = 1, . . . , a . (C.3)

Then, we can describe the reflection of an a-magnon as a sequence of reflections and
scatterings processes of the corresponding single-particle constituents.

To illustrate the above ideas, let us focus on the a = 2 case. We have now two types
of bound states: |XA(z1)XB(z2)〉 and |XB(z1)XA(z2)〉. We will arbitrarily take the former
state to be the one whose dressing phase R0

I,2 contributes to the Y -function Y I
2,0, while

the latter state contributes with R0
II,2 to Y II

2,0. As an example, the reflection process of the
|XA(z1)XB(z2)〉 magnon is described in figure 2. Let us turn to the computation of R0

I,2
and R0

II,2. We will take the single-particle constituents to be the |φ1〉 scalars of the a = 1
representation of SU(2|2), see (2.4). Then,

R0
I,2

(
z+, z−

)
= R0

A(z+
1 , z

−
1 )R0

B(z+
2 , z

−
2 )SAB0

(
−z−2 ,−z

+
2 ; z+

1 , z
−
1

)
,

R0
II,2

(
z+, z−

)
= R0

B(z+
1 , z

−
1 )R0

A(z+
2 , z

−
2 )SAB0

(
−z−2 ,−z

+
2 ; z+

1 , z
−
1

)
.

(C.4)

As we want to use the dressing phases to compute the asymptotic values of Y I
2,0 and Y II

2,0,
we will be interested in the products

R0
I,2

(
z+, z−

)
R0
I,2

(
− 1
z− ,− 1

z+

)
, and R0

II,2

(
z+, z−

)
R0
II,2

(
− 1
z− ,− 1

z+

)
. (C.5)

Using (6.36) we arrive at

R0
I,2

(
z+, z−

)
R0
I,2

(
− 1
z− ,− 1

z+

)
= R0

II,2

(
z+, z−

)
R0
II,2

(
− 1
z− ,− 1

z+

)
=

=
( 2∏
i=1

R0
A

(
z+
i , z

−
i

)
R0
A

(
− 1
z−
i

,− 1
z+
i

))
×

SAB0

(
−z−2 ,−z

+
2 ; z+

1 , z
−
1

)
SAB0

(
1
z+

2
, 1
z−

2
;− 1

z−
1
,− 1

z+
1

)
.
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For higher-order bound states, one similarly has

R0
I,a

(
z+, z−

)
R0
I,a

(
− 1
z− ,− 1

z+

)
= R0

II,a

(
z+, z−

)
R0
II,a

(
− 1
z− ,− 1

z+

)
=

=
a∏
i=1

R0
A

(
z+
i , z

−
i

)
R0
A

(
− 1
z−
i

,− 1
z+
i

)
×

a∏
i<j

SAB0

(
−z−j ,−z

+
j ; z+

i , z
−
i

)
SAB0

(
1
z+
j

, 1
z−
j

;− 1
z−
i

,− 1
z+
i

)
.

(C.6)
Let us focus now on the computation of the different factors of (C.6). Using the

definitions (C.2) and (5.37) we get
a∏
i=1

R0
A(qi)R0

A(−q̄i) = (−1)a
(
z−

z+

)3(
z+ + 1

z+

z− + 1
z−

)
σ

1/2
B (q)σ1/2

B (−q̄)×

a∏
i=1

σ1/2(qi,−qi)σ1/2(−q̄i, q̄i) .
(C.7)

On the other hand, using (2.8) and (2.9) we get
a∏
i<j

SAB0 (−qj , qi) SAB0 (q̄j ,−q̄i) =
a∏
i<j

g(−qj , qi)g(q̄j ,−q̄i)σ(−qj , qi)σ(q̄j ,−q̄i) , (C.8)

with

g(x1, x2) :=
√
x−1
x+

1

√
x+

2
x−2

. (C.9)

In order to simplify the expressions containing products of σ functions we should use the
properties of the BES dressing phase, see for example [61]. In particular, we have

σ(qi,−qj)σ(−q̄i, q̄j) = z+
i

z−i

z+
j

z−j

f(qj ,−qi)
f(qj ,−q̄i)

,

with
f(z1, z2) := z−1 − z

+
2

z−1 − z
−
2

1− 1/z+
1 z

+
2

1− 1/z+
1 z
−
2

= z−1 − z
+
2

z+
1 − z

+
2

1− 1/z−1 z
−
2

1− 1/z+
1 z
−
2
, (C.10)

and therefore
a∏
i=1

σ1/2(qi,−qi)σ1/2(−q̄i, q̄i)
a∏
k<l

σ(−qk, ql)σ(q̄k,−q̄l)

=

(z−
z+

)2a−4 4(1 + z+z−)2(
z+ + 1

z+

) (
z− + 1

z−

)
(z+ + z−)2

1/2

.

(C.11)

Consequently, using (C.6), (C.7) and (C.11) we arrive at

R0
I,a

(
z+, z−

)
R0
I,a

(
− 1
z− ,− 1

z+

)
= R0

II,a

(
z+, z−

)
R0
II,a

(
− 1
z− ,− 1

z+

)
=

= 2(−1)a 1 + z+z−

z+ + z−

(
z−

z+

)2
(
z+ + 1

z+

)1/2

(
z− + 1

z−

)3/2 σ
1/2
B (q)σ1/2

B (−q̄) .

(C.12)
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