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1 Introduction

The dispersion relation for an electromagnetic wave in an optically anisotropic medium
is typically polarisation dependent; this is the phenomenon of birefringence. In theories
of nonlinear electrodynamics (NLED), such as those arising as effective field theories for
QED or SQED, a constant uniform electromagnetic background can be interpreted as
an optical medium for small-amplitude plane-wave disturbances, which typically exhibit
birefringence [1]. However, the Born-Infeld (BI) theory [2] is an exception to the rule [3]; in
fact, Boillat [4] and Plebanski [5] have shown (in the closely related context of shock waves)
that BI is the unique NLED with a weak-field limit for which there is no birefringence. There
are others without a weak-field limit but, in contrast to BI, they are not electromagnetic-
duality invariant [6].

Implicit in the above summary of NLED birefringence results of relevance here is the
choice of a four-dimensional (4D) Minkowski spacetime. In higher dimensions there are more
independent polarisations. In the 5D case, for example, the gauge vector field has three
independent polarisations and one could expect to find three distinct dispersion relations for
small-amplitude plane waves in a generic constant uniform electromagnetic background; i.e.
trirefringence. As far as we are aware, this possibility has not been investigated, presumably
because there is no obvious physical motivation but it is also less interesting from a purely
theoretical perspective since one cannot expect to find any conformal limits of such theories.
However, 5D NLEDs can be obtained by dimensional reduction from nonlinear theories of
6D chiral 2-form electrodynamics, without truncation since the chiral restriction ensures
that there are still only three independent polarisations [7]. In this new context there are
both weak-field and strong-field limits to interacting conformal chiral 2-form theories [8].

We have also shown in [8], extending observations of Perry and Schwarz [9], that there is
a one-to-one correspondence, assuming Lorentz-invariance, between 6D chiral 2-form theories

– 1 –



J
H
E
P
0
6
(
2
0
2
3
)
1
7
1

and 4D NLEDs that are electromagnetic duality invariant. This correspondence suggests
that the 6D partner to the 4D BI theory will have special trirefringence properties. In fact, we
find that it is the unique chiral 2-form electrodynamics theory for which all three dispersion
relations coincide; i.e. the unique “zero-trirefringence” theory. This is an apparently stronger
uniqueness result than could have been expected from the “zero-birefringence” property
of the 4D BI theory because more conditions are needed to ensure coincidence of three
dispersion relations than are needed for two. However, Lorentz invariance is not manifest
in the Hamiltonian formulation used here and, as we shall show, 6D Lorentz invariance
requires, by itself, a coincidence of two of the three dispersion relations.

Previous investigations into bifrefringence in the 4D NLED context have all started with
a manifestly Lorentz invariant Lagrangian function of the electric and magnetic fields. The
analogous starting point for 6D chiral 2-form electrodynamics is not immediately available
because the (nonlinear) chirality condition on the 3-form field strength already implies the
field equations. This difficulty can be circumvented by the inclusion of additional fields,
in various ways but never without the need for some other non-manifest symmetry that
imposes constraints on interactions (see [8] and references therein). As we briefly review
below, chirality is trivially incorporated in the Hamiltonian formulation, which also applies
to any theory with the same phase-space as the free-field theory, irrespective of whether it
is Lorentz invariant.

Our motivation for the investigation leading to these results comes from the importance
of BI and its 6D chiral 2-form partner in String/M-theory. The worldvolume action for
the D3-brane of IIB superstring theory is (for suitable boundary conditions) the N = 4
supersymmetrization of the 4D BI theory [10]. The worldvolume action for the M5-brane of
M-theory [11, 12] can be similarly interpreted as the (2, 0)-supersymmetrization of the 6D
chiral 2-form electrodynamics partner to the 4D BI theory [9]. In this context the 4D/6D
pairing is a reflection of the String/M-theory dualities that relate the D3-brane with the
M5-brane [13, 14]. We leave to the end of this article a discussion of implications of our
results in this domain.

2 Hamiltonian field equations

In the Hamiltonian formulation of 6D chiral 2-form electrodynamics, the only independent
field is a 2-form gauge potential A on the Euclidean 5-space. For time-space coordinates
{t, xi; i = 1, . . . , 5}, the phase-space Lagrangian density takes the form [7, 8]

L = 1
2Ȧ ·B −H(B) , (2.1)

where Ȧ = ∂tA and B is the ‘magnetic’ 2-form field, with components

Bij = (∇×A)ij := 1
2ε

ijklm∂kAlm , (2.2)

and C · C ′ = 1
2C

ijC ′
ij for any two 5-space 2-forms (C,C ′). The Hamiltonian density H and

the 5-vector field-momentum density p, with components

pi := (B ×B)i = 1
8εijklmB

jkBlm , (2.3)
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are the Noether charge densities associated to time and space translation invariance; we
follow here the notation and conventions of [8]:

Ḃ = ∇×H , H := ∂H/∂B . (2.4)

A basis for rotationally invariant functions of B is

s = 1
2 |B|

2 = 1
4B

ijBij , p ≡ |p| = |B ×B| , (2.5)

but it is convenient to impose rotational invariance by requiring H to be a function of
(s, p2), in which case

H = HsB + 2Hp2 (p×B) , (2.6)
where, here and below, subscripts s and p2 denote partial derivatives with respect to these
independent variables.

Lorentz boost invariance remains non-manifest but it is a symmetry iff B×B = H ×H
(assuming unit speed of light) [8], and this is equivalent to

I := H2
s + 4sHsHp2 + 4p2H2

p2 = 1 . (2.7)

The choice H = s yields the free field theory.

2.1 Expansion about a constant background

For any choice of H, the field equations are solved by B = B̄, where B̄ is both uniform
and constant. We may expand the field equation for B about this ‘background’ solution,
which can then be viewed as a stationary homogeneous ‘optical’ fluid medium of energy
density H̄ = H(B̄) and momentum density p̄. We may consider perturbations about this
background by setting A = Ā+ a, where ∇× Ā = B̄ (note that Ā cannot be uniform for
non-zero B̄). This implies that

B = B̄ + b , b = ∇× a , (2.8)

and hence that ∂ibij ≡ 0. Expanding the field equation (2.4) to first order in b we find that

ḃ = ∇× h(b) , (2.9)

where h(b) is a two-form depending linearly on b:

hij = Qbij + 2H̄p2

(
B̄bB̄ + B̄2b+ bB̄2

)
ij

+
[
(Y + 4s̄X)(B̄ · b) + 2X(B̄3 · b)

]
B̄ij

+ 2
[
X(B̄ · b) + 2H̄p2p2(B̄3 · b)

]
(B̄3)ij (2.10)

for coefficient functions
Q = H̄s + 4s̄H̄p2 ,

X = H̄sp2 + 4s̄ H̄p2p2 ,

Y = 4H̄p2 + H̄ss + 4s̄ H̄sp2 .

(2.11)

In what follows we shall omit the bars on the background values of (s, p), and on H and its
derivatives; it should be clear from the context when we are considering a constant uniform
background and when we are considering generic field configurations. However, we will
retain the B̄ notation for the background value of B.
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2.2 Plane waves on the background

For plane-wave solutions of (2.9) with angular frequency ω and wave 5-vector k, the
amplitudes bij satisfy

− ωb = k× h(b) , kibij = 0 , (2.12)

but the second of these equations is implied by the first unless ω = 0. The first equation can
be written as a 10× 10 matrix equation of the form M(ω, k)b = 0, where the components of
b are the ten independent components of the 2-form b. Each non-zero solution corresponds
to a zero of detM(ω, k), a 10th-order polynomial in ω.

Using the O(5) rotation/reflection symmetry, we may choose the 5-space axes such that
the only non-zero components of B̄ are

B̄12 = −B̄21 = B1 , B̄34 = −B̄43 = B2 , (2.13)

for constants B1 ≥ B2 ≥ 0, so that B1B2 = p. This canonical form for B̄ preserves an
SO(2)× SO(2) subgroup of O(5), which we may use to set

k2 = k4 = 0 . (2.14)

The matrix M(ω, k) is now block diagonal if we choose the first four components of b to be
(b24, b13, b15, b35), so its determinant must factorise: detM = ∆4∆6. One finds that

∆4 = ω2P2(ω) , ∆6 = ω2P4(ω) , (2.15)

for polynomials P2 and P4 of, respectively, second and fourth order in ω. The four linearly
independent solutions with ω = 0 are eliminated by the four conditions kibij = 0, so
plane-wave solutions correspond to zeros of either P2 or P4.

A calculation yields
P2 = (ω + 2k5pHp2)2 − χ (2.16)

where
χ = H2

sk
2
5 +Hs

(
Q1k

2
1 +Q2k

2
3

)
, (2.17)

with
Qα = Hs + 2B2

αHp2 (α = 1, 2). (2.18)

The dispersion relation for one polarisation is therefore P2 = 0, with P2 given by (2.16). As
expected, it reduces to ω2 = |k|2 in the free-field limit. More generally, it depends on the
direction of the wave-vector because of the term in (2.16) with the factor of k5p (i.e. k · p).

The remaining two dispersion relations must be obtained from the condition P4 = 0. A
calculation yields

P4 =
{[
ω + k5p

(
2Hp2 + Λ

)]2
− χ′

}
P2 + Υk2

1k
2
3 , (2.19)

where
Λ = 2Hp2 +Hss + 4sHsp2 + 4p2Hp2p2 (2.20)
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and
χ′ = Ξ1Ξ2k

2
5 + Ξ1Q2k

2
1 + Ξ2Q1k

2
3 , (2.21)

for the additional coefficient functions

Ξα = Hs + 2sHss + 4p2Hsp2

+ B2
α(Λ− 4sHsp2 − 2Hss) ,

(2.22)

and finally
Υ = N1N2 −Q1Q2 p

2Λ2 (2.23)

with
N1 = Q2Ξ1 −HsQ1 ,

N2 = Q1Ξ2 −HsQ2 .
(2.24)

2.3 Zero trirefringence conditions

The conditions required for all three dispersion relations to coincide is P4 = P 2
2 . From (2.19)

we see that P2 is a factor of P4 for generic k only if Υ = 0. The other factor is also P2 only
if both Λ = 0 and χ′ = χ for all k, which requires only that N1 = N2 = 0 since these two
relations imply Ξ1Ξ2 = H2

s . Moreover, the three relations

N1 = N2 = Λ = 0 (2.25)

imply Υ = 0, so these three relations are the necessary and sufficient conditions for
coincidence of all three dispersion relations. They may be simplified by the observation that

N1 +N2 = 2
(
sHs + 2p2Hp2

)
Λ− 8

(
s2 − p2

)
Λ1, (2.26)

N1 −N2 = 2
√
s2 − p2

(
4sΛ1 + 8p2Λ2 −HsΛ

)
, (2.27)

where
Λ1 := HsHsp2 −Hp2Hss
Λ2 := HsHp2p2 −Hp2Hsp2 .

(2.28)

This shows that equations (2.25) are jointly equivalent to the following three “zero trirefrin-
gence” conditions:

Λ1 = 0 , Λ2 = 0 , Λ = 0 . (2.29)

The first two of these equations are trivially solved if Hp2 = 0, but then the third requires
H to be a linear function of s. Excluding this free field case, we may assume that Hp2 6= 0
and then define a new function T (s, p2) by the relation

Hs = 2THp2 . (2.30)

Using this in the equations Λ1 = Λ2 = 0 we find that

TsH2
p2 = Tp2H2

p2 = 0 , (2.31)
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from which we conclude that T is a constant. Using this fact to simplify the Λ = 0 condition,
we then find the following simple second-order ODE for H as a function of p2:

Hp2 + 2
(
T 2 + 2Ts+ p2

)
Hp2p2 = 0 . (2.32)

The general solution has two integration constants. One is fixed by requiring positive energy
and a choice of energy scale. The other is then fixed by requiring zero vacuum energy. The
result is

H = HM5 :=
√
T 2 + 2Ts+ p2 − T . (2.33)

This is the Hamiltonian density for the chiral 2-form theory on the M5-brane [15, 16]; for
brevity we shall call it the ‘M5’ theory. It is actually a family of theories labelled by the
constant T (the M5-brane tension) which has dimensions of energy density, and the free-field
theory is included as the T →∞ limit. As already mentioned this ‘M5’ theory is the 6D
partner to the 4D BI theory. It would be of interest to see whether there is a generalisation
to 6D chiral 2-form dynamics of the recent characterisation of zero-birefrigence NLEDs as
those with a Lagrangian satisfying a particular “T T̄ -like flow equation” [17].

To summarise: within the class of chiral 2-form electrodynamics invariant under
rotations and time-space translations, and with the same phase space as the standard
free-field theory, only the one-parameter ‘M5’ family exhibits “zero-trirefringence”. For this
exceptional family, the one dispersion relation for the three independent wave-polarizations
is found from setting H = HM5 in (2.16) and then setting the resulting expression for P2 to
zero; this yields [

ω + k · p
Teff

]2
= T 2|k|2 − T |B̄k|2

T 2
eff

, (2.34)

where
Teff =

√
T 2 + 2T s̄+ p̄2 . (2.35)

Here we revert to the bar notation for background fields as a reminder that Teff (which
will play a role later) is constant. In the T →∞ (weak-field) limit this dispersion relation
reduces to ω2 = |k|2, as expected.

We may also take the T → 0 (strong-field) limit for which H = p. This defines an
interacting conformal 6D chiral 2-form electrodynamics theory [16, 18]; its 4D partner is
Bialynicki-Birula electrodynamics [1, 19]. All constant uniform background solutions now
have p 6= 0, and (2.34) reduces to the linear dispersion relation ω+ k ·n = 0, where n = p/p.
In this case b is a Fourier component of the first term in an expansion about B = B̄ of an
exact solution of the full field equations of the form B = B⊥(t− x ·n,x⊥), where niBij

⊥ = 0
and n · x⊥ = 0 for fixed direction n.

2.4 Lorentz invariance

Surprisingly, the above results were obtained without the use of the Lorentz invariance
condition (2.7), which is actually a consequence of the zero-trirefringence conditions (2.29).
We shall now show that the Lorentz invariance condition by itself restricts trirefringence to
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birefringence; i.e. it implies that two of the three independent dispersion relations coincide.
We begin with the observation that

Is = 2(HsΛ− 2sΛ1 − 4p2Λ2) ,
Ip2 = 2(Hp2Λ + Λ1 + 2sΛ2) . (2.36)

Next, we observe that (2.27) may be rewritten as

N1 −N2 = 2
√
s2 − p2 (HsΛ− Is) . (2.37)

Now, using (2.37) together with (2.26) and (2.36) we obtain

N1N2 ≡
1
4[(N1 +N2)2 − (N1 +N2)2] (2.38)

= 8(s2 − p2)p2
(
Λ2Is − Λ1Ip2

)
+ Ip2Λ2 .

Substituting this expression into (2.23), and using the identity

Q1Q2 ≡ I , (2.39)

where I is the expression defined in (2.7), we deduce that

Υ = 8(s2 − p2)p2
(
Λ2Is − Λ1Ip2

)
. (2.40)

This result shows that Υ = 0 for any H such that I = 1, i.e. any Lorentz invariant theory. It
then follows from (2.19) that Lorentz invariance implies P4 = P ′

2P2, where P ′
2(ω) is another

quadratic polynomial in ω. Thus, two of the three independent polarisations have coincident
dispersion relations for generic (P ′

2 6= P2) Lorentz invariant theories while P ′
2 = P2 uniquely

for the ‘M5’ case.

3 Relation to M-theory

It is natural to wonder whether there is some M-theory explanation for the zero-trirefringence
property of the ‘M5’ chiral 2-form theory. In the context of the M5-brane worldvolume
dynamics, the Minkowski vacuum for the ‘M5’ theory is a planar static M5-brane, and
perturbations about it are propagated by the free-field equations of a (2,0)-supersymmetric
6D field theory; its on-shell supermultiplet includes the three polarisation modes of the ‘M5’
chiral 2-form electrodynamics and five others, one for each of the five scalars representing
transverse fluctuations of the planar M5-brane in an 11-dimensional space-time [20]. It
might appear that some of the 16 supersymmetries of this (2,0)-supermultiplet must be
broken when constant uniform background fields are introduced on the M5-brane, but this
is not necessarily the case, as we now explain.

It was shown in [21] that a static planar M5-brane with constant uniform 3-form field
strength is 1

2 -supersymmetric; i.e. it preserves 16 of the 32 supersymmetries of the M-theory
11D Minkowski vacuum, independently of the strength of the ‘background’ 3-form field. If
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the skew eigenvalues {Bα;α = 1, 2} of the background ‘magnetic’ 2-form are identified as
“dissolved” M2-branes with charges

ζα =
√
T Bα (3.1)

then the 1
2 supersymmetry is also implied by the supertranslation algebra associated to the

M5-brane worldvolume dynamics provided that [21, 22]

P5 = ζ1ζ2/T , (3.2)

which is the background field-momentum. The ‘effective’ M5-brane tension (i.e. total energy
density) of these bound states is

P 0 =
√
T 2 + ζ2

1 + ζ2
2 + P 2

5 . (3.3)

The construction in [22] of 11D supergravity solutions sourced by these M5-M2-M2 “bound
states” (generalizing the simpler M5-M2 1

2 -supersymmetric solution of [23]) confirmed their
1
2 supersymmetry. They are related by String/M dualities to the D2-D0-F1 “supertube”
bound states of IIA superstring theory [24, 25] but with a planar D2-brane for which the
generic 1

4 supersymmetry is enhanced to 1
2 supersymmetry [26].

Using (3.1) and (3.2), and reverting to the bar notation for background fields, we may
rewrite (3.3) as

P 0 =
√
T 2 + 2T s̄+ p̄2 = Teff , (3.4)

which is the expression of (2.35), now interpreted as the effective M5-brane tension for the
M5-brane plus B̄ background, which we can view as a new worldvolume ‘vacuum’ preserving
all 16 supersymmetries. We should then re-normalize the M5-brane vacuum energy to be
zero when B = B̄. This means that we should replace HM5 by

H′
M5 =

√
T 2 + 2Ts+ p2 − Teff . (3.5)

Now, in the expansion about the B = B̄ background, the energy is zero when b = 0. We
thus expect the field equations (2.9) to be part of a larger set of equations for disturbances
of a planar M5-M2-M2 bound state configuration preserving 16 supersymmetries. This
leads us to conjecture that the zero-trirefringence property of the ‘M5’ theory is a conse-
quence of its unique status as a consistent truncation of the maximally-supersymmetric
6D field theory found from expansion of the full M5-brane dynamics about a novel
1/2-supersymmetric vacuum.

4 Implications for 5D and 4D NLED

We conclude with a brief explanation of how our results for 6D chiral 2-form electrodynamics
imply analogous results for 5D and 4D NLEDs by means of dimensional reduction. As we
used symmetries preserved by the 6D B = B̄ background solution to choose the wave-vector
of perturbations to have zero k2 and k4 components, we will first take all fields to be
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independent of x2, to get 5D results, and then of both x2 and x4, to get 4D results. In the
former case the 5-space 2-form A = 1

2dx
i ∧ dxjAij can be written as

1
2dx

a ∧ dxbAab + dx2 ∧ dxaVa , (a, b = 1, 3, 4, 5). (4.1)

Correspondingly,
Bab = 1

2ε
abcdFcd , (Fab = 2∂[aVb])

Ba2 = 1
2ε

abcd∂bAcd =: Da .
(4.2)

The gauge-invariant 4-space fields are therefore the two-form field strength Fab and a
divergence-free 4-vector field Da that can be ‘promoted’ to an unconstrained 4-vector field
by introducing a Lagrange multiplier field V0 to impose the constraint ∂aDa = 0. One then
finds (ignoring total derivative terms) that

1
2Ȧ ·B = EaD

a (Ea = ∂aV0 − V̇a) . (4.3)

This is the ‘symplectic’ term in the phase-space Lagrangian density (2.1) reduced to a 5D
NLED. Its Hamiltonian is a function of (s, p2) but now

s = 1
2
[
|D|2 + |F |2

]
, (4.4)

and, since the components of p in (2.3) are now

p2 = 1
8ε

abcdFabFcd , pa = FabD
b , (4.5)

we also have
p2 = detF + |FD|2 . (4.6)

For the special class of 5D NLEDs with Hamiltonian densities that are functions only of
(s, p2), our 6D results imply that the unique zero-trirefringence family has a Hamiltonian
density that is formally the same as HM5 of (2.33), but this is now equivalent to√

T 2 det
(
I4 + F/

√
T
)

+ T |D|2 + |FD|2 − T . (4.7)

This is the 5D BI Hamiltonian density, as can be seen from previous results on the
Hamiltonian dynamics of the bosonic worldvolume fields for Dp-branes [27, 28].

We may now further dimensionally reduce by taking all fields to be independent of x4.
In this case V4 becomes a scalar field, with canonical conjugate D4, and if we truncate by
setting to zero this conjugate pair then we are left with the 3-vector D (conjugate to V)
and the 3-space restriction of F , which is the Hodge dual of the magnetic 3-vector field B.
The phase space Lagrangian density is now that of a 4D NLED with Hamiltonian density
H that is again a function of (s, p2), but now

s = 1
2

(
|D|2 + |B|2

)
, p2 = |D×B|2 , (4.8)
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which implies that H is electromagnetic duality invariant. Our 6D trirefringence results
now imply that all zero-birefringence 4D NLEDs in this class are members of the family for
which H(s, p2) is formally the same as HM5 of (2.33), but this now defines the 4D BI theory.
In other words, the 4D BI theory is the unique duality invariant zero-birefringence NLED,
in agreement with [6] and with an earlier conclusion of [29] based on (what appear to us
to be) slightly different premises. The main novelty here is that we find it in Hamiltonian
form, and by dimensional reduction of the ‘M5’ theory of 6D chiral 2-form electrodynamics.

From the 6D perspective, the truncation described above (following dimensional re-
duction) amounts to setting to zero the components (B24, B13, B15, B35) of B, only two of
which are independent because of the identity ∂iBij ≡ 0. This truncation also removes the
two linearly independent combinations of the (b24, b13, b15, b35) perturbations of B about
the B̄ background. In 6D these were the amplitudes describing the phase space for the
single polarisation mode with dispersion relation P2 = 0 (as required for consistency of the
truncation). In 4D they are the amplitudes for the ‘extra’ scalar field in the 4D N = 4
Maxwell supermultiplet relative to the 6D (2,0) antisymmetric tensor supermultiplet.

In the String/M-theory context, the ‘dissolved’ pair of orthogonal M2-branes (repre-
senting the B̄ background on a static planar M5-brane) becomes a ‘dissolved’ orthogonal
F1-D1 pair of IIB strings, i.e. a constant uniform background of orthogonal (D,B) fields,
which generate the momentum D×B needed to preserve all 16 supersymmetries of a static
planar D3-brane in the absence of the electromagnetic background fields.
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