
J
H
E
P
0
6
(
2
0
2
3
)
1
6
3

Published for SISSA by Springer

Received: January 26, 2023
Revised: May 22, 2023

Accepted: June 5, 2023
Published: June 26, 2023

Accommodating muon (g − 2) and leptogenesis in a
scotogenic model

A. Alvarez,a A. Banik,a R. Cepedello,a B. Herrmann,b W. Porod,a M. Sarazinb
and M. Schnelkea
aInstitut für Theoretische Physik und Astrophysik, Universität Würzburg,
Emil-Hilb-Weg 22, D-97074 Würzburg, Germany
bLAPTh, Université Savoie Mont Blanc, CNRS,
F-74000 Annecy, France
E-mail: alexandre.alvarez@physik.uni-wuerzburg.de,
amitayus.banik@physik.uni-wuerzburg.de,
ricardo.cepedello@physik.uni-wuerzburg.de, herrmann@lapth.cnrs.fr,
porod@physik.uni-wuerzburg.de, sarazin@lapth.cnrs.fr,
moritz.schnelke@stud-mail.uni-wuerzburg.de

Abstract: We present a detailed study of a scotogenic model accommodating dark matter,
neutrino masses and the anomalous magnetic moment of the muon while being consistent
with the existing constraints on flavour violating decays of the leptons. Moreover, this model
offers the possibility to explain the baryon asymmetry of the Universe via leptogenesis. We
determine the viable regions of the model’s parameter space in view of dark matter and
flavour constraints using a Markov Chain Monte Carlo setup combined with a particular
procedure to accommodate neutrino masses and the anomalous magnetic moment of the
muon at the same time. We also discuss briefly the resulting collider phenomenology.

Keywords: Baryo-and Leptogenesis, Models for Dark Matter, Particle Nature of Dark
Matter, Lepton Flavour Violation (charged)

ArXiv ePrint: 2301.08485

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP06(2023)163

mailto:alexandre.alvarez@physik.uni-wuerzburg.de
mailto:amitayus.banik@physik.uni-wuerzburg.de
mailto:ricardo.cepedello@physik.uni-wuerzburg.de
mailto:herrmann@lapth.cnrs.fr
mailto:porod@physik.uni-wuerzburg.de
mailto:sarazin@lapth.cnrs.fr
mailto:moritz.schnelke@stud-mail.uni-wuerzburg.de
https://arxiv.org/abs/2301.08485
https://doi.org/10.1007/JHEP06(2023)163


J
H
E
P
0
6
(
2
0
2
3
)
1
6
3

Contents

1 Introduction 1

2 Model 2
2.1 The scalar sector 3
2.2 The fermion sector 4
2.3 Neutrino masses 5

3 The anomalous magnetic moment of the muon 6

4 Constraints and observables 8

5 Results 10
5.1 Couplings 11
5.2 Charged lepton flavour violating decays 12
5.3 Dark matter observables 13
5.4 Collider aspects 17

6 Leptogenesis 19

7 Conclusion 22

A New contributions to the electromagnetic dipole moment operator 24

B Details on the calculation of the baryon asymmetry 25
B.1 Boltzmann equations for leptogenesis 25
B.2 Computation of εi 26

B.2.1 Wave function diagrams 27
B.2.2 Vertex diagrams 28

1 Introduction

The Standard Model (SM) gives an accurate description for most of the data up to the
TeV scale. Despite its successes, it should nevertheless be considered as an effective theory,
which has to be embedded in a more fundamental framework. One reason is the flavour
hierarchies in the fermion sector for which we do not know the underlying principle governing
its structures. Moreover, there are several experimental observations which require an
extension of the SM. This includes neutrinos, which are massless in the SM, but need to be
massive in view of neutrino oscillations experiments [1]. Strong arguments from cosmology
underline the call for new physics beyond the Standard Model (BSM), such as the presence
of dark matter (DM) [2], as well as the baryon asymmetry observed in the Universe [2].
The SM is also challenged by precision measurements of the anomalous magnetic moment
of the muon [3–5].
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Most of these deviations are located in the lepton sector. Moreover, despite the fact
that it ultimately concerns the hadronic sector, the baryon asymmetry can be explained
through leptogenesis [6–8], a mechanism stemming from the leptonic sector and translating
the generated lepton asymmetry to the hadronic sector through the sphaleron processes.
Finally, it is worth noting that generating neutrino masses generally leads to the opening
of lepton flavour violating processes, involving, for example, transitions from electronic to
muonic states, which are strongly constrained by very precise experimental data. We take
this as a motivation to consider models featuring new contributions to the lepton sector,
while the hadronic sector may be less relevant to explain the above shortcomings of the SM.

One potential class of such frameworks are the so-called scotogenic models, originally
aiming at the simultaneous explanation of neutrino masses and cold dark matter. The two
are linked in the sense that neutrino masses are generated radiatively through particles and
couplings from the dark sector. After the first works on minimal scotogenic realisation [9–13],
more complex models have emerged in recent years, studied mainly at the level of dark
matter phenomenology and lepton flavour violating observables, see for example [10, 14–18].
A general classification of viable scotogenic frameworks can be found in ref. [19]. Recently,
two of us have studied a particular framework, the so-called ‘T1-2-A’ model, where the SM
is extended by a scalar doublet, a scalar singlet, a fermionic Dirac doublet, and a fermionic
singlet [20, 21]. This setup features a very predictive dark matter phenomenology, especially
for fermionic dark matter [21] and, in principle, it can explain the recent measurements
of the anomalous magnetic moment of the muon. However, the corresponding region in
parameter space is excluded by the constraints on flavour violating decays of the leptons.
Moreover, the ‘T1-2-A’ setup fails to accommodate leptogenesis as an explanation for the
observed baryon asymmetry.

In the present work, we extend the ‘T1-2-A’ setup by adding an additional fermionic
singlet. The additional degrees of freedom allow for the successful generation of three
non-zero neutrino masses, while the couplings can be chosen such that the deviation
related to the anomalous magnetic moment of the muon can be accommodated while
being consistent with the bounds on flavour violating lepton decays. Moreover, this set-up
allows for an explanation of the observed baryon asymmetry via leptogenesis, as we will
demonstrate below.

Our paper is organised as follows: in section 2, we start by introducing the scotogenic
model under consideration. section 3 is then devoted to a discussion of the anomalous
magnetic moment within our model and the required coupling hierarchies. In section 4, we
discuss the applied constraints and the observables of our interest. The results from our
Markov Chain Monte Carlo (MCMC) analysis are presented in section 5, where we analyse
the parameter space, charged lepton flavour violating decays, dark matter observables and
discuss collider-related aspects. In section 6, we present our findings concerning leptogenesis
as a means to generate the baryon asymmetry. Conclusions are drawn in section 7.

2 Model

We consider a scotogenic framework extending the SM by two Weyl fermion SU(2)L doublets,
Ψ1 and Ψ2, two Majorana fermion singlets, F1 and F2, a scalar SU(2)L doublet, η, and a
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Ψ1 Ψ2 F1 F2 η S

SU(2)L 2 2 1 1 2 1
U(1)Y -1 1 0 0 1 0

Table 1. Field content of the scotogenic model under consideration beyond the Standard Model fields.

real scalar singlet, S. In addition, we assume a Z2-symmetry under which the SM fields
are even and the additional ones are odd. This ensures neutrino mass generation at the
one-loop level together with the existence of a stable dark matter candidate. We note for
completeness that the additional fields are singlets with respect to SU(3)C .

The new field content including their respective representations under SU(2)L × U(1)Y
is summarised in table 1. In the following subsections, we briefly summarise the different
sectors, present the corresponding Lagrangian, and set the notation.

2.1 The scalar sector

The scalar sector of the model consists of the SM Higgs doublet H , an additional real singlet
S, and a SU(2)L doublet η. Their charges are given in table 1. Upon electroweak symmetry
breaking (EWSB), which involves the Higgs doublet only, the doublets can be expanded
into components according to

H =
(

G+

1√
2
[
v + h0 + iG0]

)
, η =

(
η+

1√
2
[
η0 + iA0]

)
. (2.1)

Here, h0 is the SM Higgs boson, G0 and G+ are the would-be Goldstone bosons, and
v =
√

2〈H〉 ≈ 246GeV denotes the vacuum expectation value (VEV). Moreover, η0 and A0

are CP -even and CP -odd neutral scalars, and η+ is a charged scalar. Neither S nor η may
obtain a VEV due to the assumed Z2-symmetry.

The scalar potential of the model is given by

Vscalar =M2
H

∣∣H∣∣2 + λH
∣∣H∣∣4 + 1

2M
2
SS

2 + 1
2λ4SS

4 +M2
η

∣∣η∣∣2 + λ4η
∣∣η∣∣4

+ 1
2λSS

2∣∣H∣∣2 + 1
2λSηS

2∣∣η∣∣2 + λη
∣∣η∣∣2∣∣H∣∣2 + λ′η

∣∣Hη†∣∣2
+ 1

2λ
′′
η

[(
Hη†

)2 + h.c.
]

+ α
[
SHη† + h.c.

]
.

(2.2)

The first two terms are the SM part related to the Higgs doublet H. We assume here for
simplicity that λ′′η and α are real. After EWSB, the usual minimisation relation in the
Higgs sector,

m2
h0 = −2M2

H = 2λHv2 , (2.3)

allows to eliminate the mass parameterM2
H in favour of the Higgs self-coupling λH . Imposing

mh0 ≈ 125GeV leads to a tree-level value of λH ≈ 0.13.
The mass matrix of the neutral scalars in the basis {S, η0, A0} reads as

M2
φ =

M
2
S + 1

2v
2λS vα 0

vα M2
η + 1

2v
2λL 0

0 0 M2
η + 1

2v
2λA

 , (2.4)
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after EWSB. Here, we have defined λL,A = λη + λ′η ± λ′′η. We order the mass eigenstates
as follows

(
φ0

1, φ
0
2, A

0)T = Uφ
(
S, η0, A0)T . (2.5)

The corresponding squared masses at tree-level read as

m2
φ0

1,2
= 1

2

M2
S +M2

η + 1
2v

2 (λS + λL)∓

√[
M2
S −M2

η + 1
2v

2 (λS − λL)
]2

+ 4v2α2

 ,
m2
A0 = M2

η + 1
2v

2λA , (2.6)

where mφ0
1
< mφ0

2
. Finally, the tree-level mass of the charged scalars is given by

m2
η± = M2

η + 1
2v

2λη . (2.7)

2.2 The fermion sector

The Lagrangian for the additional fermions presented in table 1 reads

Lfermion =i
(
Ψjσ

µDµΨj + 1
2F jσ

µ∂µFj
)
− 1

2MFijFiFj

−MΨΨ1Ψ2 − y1iΨ1HFi − y2iΨ2H̃Fi

− gkΨΨ2LkS − gkFjηLkFj − g
k
Re

c
kη̃Ψ1 + h.c.

(2.8)

with i, j = 1, 2 and k = 1, 2, 3. Lk and eck denote the left-handed and right-handed leptons,
respectively. Moreover, we have introduced the notation φ̃ = iσ2φ

∗ for φ = H, η. Without
loss of generality we work in a basis where MF12 = 0. Moreover, we impose |M1| ≤ |M2|,
where we have simplified the notation by setting Mi = MFii for i = 1, 2. Finally, we adopt
the phase-convention Ψ1 = (Ψ0

1,Ψ−1 ) and Ψ2 = (Ψ+
2 ,−Ψ0

2) for the SU(2)L doublets.
After EWSB, we have a charged heavy Dirac state Ψ+ with mass MΨ and four neutral

Majorana fermions. Their mass matrix is given in the basis {F1, F2,Ψ0
1,Ψ0

2} as

Mχ0 =


M1 0 v√

2 y11
v√
2 y21

0 M2
v√
2 y12

v√
2 y22

v√
2y11

v√
2 y12 0 MΨ

v√
2y21

v√
2y22 MΨ 0

 . (2.9)

This matrix is diagonalised by a unitary matrix Uχ according to

diag
(
mχ0

1
,mχ0

2
,mχ0

3
,mχ0

4

)
= UχMχ0U−1

χ , (2.10)

with the convention mχ0
i
≤ mχ0

j
for i < j.

– 4 –



J
H
E
P
0
6
(
2
0
2
3
)
1
6
3

2.3 Neutrino masses

The main difference with respect to the T1-2-A model discussed in refs. [20, 21] is the extra
copy of the singlet fermion. Although the mechanism is very similar, in this case, due
to the extra degree of freedom, the neutrino mass matrix has rank three instead of two,
and consequently, all three active neutrinos will acquire a non-zero mass. After EWSB,
rotating to the mass eigenbasis, a Majorana mass term is generated at the one-loop level
via the diagram

νi
χ0
k

νj

φ0
n

≡ νcj
(
Mν

)
ji
νi , (2.11)

where the neutrino mass matrix can be expressed as

Mν = GT ML G . (2.12)

This is a well-known structure common to most of the scotogenic models and similar to the
type-I seesaw, where the matrix G contains the couplings defined in eq. (2.8) ordered as

G =

g
1
Ψ g2

Ψ g3
Ψ

g1
F1
g2
F1
g3
F1

g1
F2
g2
F2
g3
F2

 , (2.13)

and ML is a 3× 3 symmetric matrix which encodes the information of the loop function,
and the mixing in the neutral scalar and fermion sectors, defined in eqs. (2.5) and (2.10),
respectively. For completeness, we explicitly write the expressions for the components
of ML,

(ML)11 =
∑
k,n

bkn(U †χ)2
4k(U

†
φ)2

1n , (2.14)

(ML)22 = 1
2
∑
k,n

bkn(U †χ)2
1k

[
(U †φ)2

2n − (U †φ)2
3n

]
, (2.15)

(ML)33 = 1
2
∑
k,n

bkn(U †χ)2
2k

[
(U †φ)2

2n − (U †φ)2
3n

]
, (2.16)

(ML)12 = (ML)21 = 1√
2
∑
k,n

bkn(U †χ)1k(U †χ)4k(U †φ)1n(U †φ)2n , (2.17)

(ML)13 = (ML)31 = 1√
2
∑
k,n

bkn(U †χ)2k(U †χ)4k(U †φ)1n(U †φ)2n , (2.18)

(ML)23 = (ML)32 = 1
2
∑
k,n

bkn(U †χ)2k(U †χ)1k
[
(U †φ)2

2n − (U †φ)2
3n

]
, (2.19)

where k = 1, 2, 3, 4 and n = 1, 2, 3. Moreover, the loop integrals are encompassed in
the functions

bkn = 1
16π2

mχ0
k

m2
φ0
n
−m2

χ0
k

[
m2
χ0
k

logm2
χ0
k
−m2

φ0
n

logm2
φ0
n

]
. (2.20)
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We make use of the Casas-Ibarra parametrisation [22, 23] to express the couplings in
eq. (2.13) in terms of neutrino oscillation data [1, 24] according to

G = ULD
−1/2
L RD1/2

ν U∗PMNS , (2.21)

where DL is the diagonal matrix defined by

DL = UTL ML UL , (2.22)

and Dν is the diagonal matrix containing the neutrino mass eigenvalues. Finally, UPMNS is
the usual unitary matrix relating neutrino flavours to their mass eigenstates, assuming that
the charged leptons are already in their mass eigenbasis.

Moreover, as even a precise knowledge of all the parameters and observables in ML

and Mν does not univocally define G, the extra degrees of freedom are encoded in the
orthogonal 3× 3 matrix R. This matrix can be parameterised as

R =

c2c3 −c1s3 − s1s2c3 s1s3 − c1s2c3
c2s3 c1c3 − s1s2s3 −s1c3 − c1s2s3
s2 s1c2 c1c2

 , (2.23)

depending on three complex angles θi with si = sin θi and ci =
√

1− s2
i . Note the

importance of these degrees of freedom, since they modify the flavour structure of the
Yukawa matrix. The latter is of great relevance when considering charged lepton flavour
violation and the anomalous magnetic moment, as we will show in the next sections.

3 The anomalous magnetic moment of the muon

As mentioned in the introduction, a deviation persists between the SM prediction and
the experimental value of the anomalous magnetic moment of the muon, defined as aµ =
(g − 2)µ/2. The discrepancy amounts to a significance of 4.2σ, and leads to the following
range for the new physics contribution to aµ [4, 5],1

aBSM
µ = aexp

µ − aSM
µ =

(
251± 59

)
× 10−11 . (3.1)

In general, every scotogenic-like model will contribute to the anomalous magnetic
moment of leptons at one-loop level. These contributions can be encoded in the effective
electromagnetic (EM) dipole moment operator cijR ¯̀

iσµνPR`jF
µν , coming from the operator

OeB ≡ (L̄σµνeR)HBµν before EWSB [31]. The diagonal part of the Wilson coefficient cR
is related to (g − 2) and the electric dipole moment (EDM), and the off-diagonal part is
associated with charged lepton flavour violating (cLFV) processes [32]. For more details see
appendix A.

The contribution to (g−2)µ is generally suppressed by the muon mass. Moreover, as the
EM dipole operator connects the left- and right-handed parts of the leptons, while neutrino

1We note here that the SM calculation is currently under discussion due to recent lattice results that
weaken the anomaly [25–27]. However, these results are still in tension with e+e− → hadrons cross-section
data and EW precision observables [28–30].
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S η

Li Ψ2

×
MΨ

Ψ1 ecj

H†

giΨ gjR

α η

Li Fk Ψ1 ecj

H†

giFk
gjR

y∗1k

Figure 1. Dominant one-loop contributions to (g − 2) and charged LFV processes before EWSB.
Arrows indicate the flow of quantum numbers. Couplings are given for clarity, see their explicit
definitions in section 2. A photon should be attached to the respective charged components.

mass models contain usually only couplings of BSM fields to the left-handed components,
such an operator will always be chirally suppressed. Consequently, new physics explanations
of (g − 2)µ are pushed towards low mass scales and large non-perturbative couplings. A
possible way out is to add new fields outside the neutrino mass mechanism, that couple to
µR, in order to enhance the contribution to (g − 2)µ and be able to fit the anomaly within
a phenomenologically reasonable parameter space [33]. Note that this situation is realised
in the T1-2-A model [19], and consequently its extension under consideration here. In both
models, there is a coupling gR of the lepton singlets to η and Ψ1, see eq. (2.8). The latter
two also participate in the generation of the neutrino mass matrix. Note that in this way
no extra BSM field is needed on top of those involved in the neutrino mass mechanism to
have a chirally enhanced contribution to (g − 2). The new leading contributions to the
anomalous magnetic moment are shown in figure 1.

We note for completeness, that in the original T1-2-A framework the coupling matrix
G, see eq. (2.13), is a 2× 3 matrix, where the relative sizes between the various entries are
fixed by the neutrino mixing angles up to one complex angle. An explanation of the muon
(g− 2) in this model implies large couplings which in turn lead to too large flavour violating
decays of the leptons. In our extension of this model, we have more freedom allowing us to
circumvent this problem, as we will show in section 5.2.

Both diagrams depicted in figure 1 also generate a sizeable contribution to strongly
constrained LFV processes in the charged sector, in particular µ→ eγ with an upper limit
to its branching ratio of 4.2× 10−13 from the MEG collaboration [34]. Although they seem
unavoidable, given that the off-diagonal part of the Yukawa matrix G is connected to the
neutrino mixing (see eq. (2.21)) there are several strategies to get a sizeable contribution to
(g− 2)µ while keeping charged LFV under control. For example, cancellations can be found
among the several independent contributions to the EM dipole operator. However, such a
scenario is not very appealing, as one should reproduce a difference of more than five orders
of magnitude between the diagonal and off-diagonal components of the Wilson coefficient
cR [32]. Another possibility is to assume certain flavour structures for the Yukawa couplings,
which suppress the off-diagonal components in favour of the diagonal [35].

Following the latter approach, we focus for simplicity on a region of the parameter space
where the first diagram in figure 1 dominates over the second, as the flavour structure of the

– 7 –
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Figure 2. Hierarchy of the Yukawa matrix G of eq. (2.13) that generates the neutrino masses. This
hierarchy is realised for y1,2 small and solving for the angles defining the rotation matrix R, such
that (g − 2)µ is maximised while charged lepton flavour violating decays are kept under control. See
text for more details.

diagram is simpler having just two three-component Yukawa vectors involved. We extend
the usual Casas-Ibarra parameterisation by the following elements so that these constraints
can be easily fulfilled. To do so, we consider y1,2 to be small and push the trilinear coupling
α to larger values, i.e. we suppress the mixing in the neutral fermion sector, while enhancing
the one in the neutral scalar sector. Note that, while gR is mainly free, gF and gΨ are
constrained by the fit to neutrino oscillation data, see eq. (2.21). This means that changing
y1,2 and α not only directly modifies the dominant contributions depicted in figure 1, but
also indirectly suppresses gF and enhances gΨ through the neutrino fit. We are looking
for a Yukawa matrix G featuring a coupling hierarchy as shown in figure 2. Making use of
the freedom on the components of gR as well as on the remaining degrees of freedom in
gψ, stemming from the rotation matrix R appearing in eq. (2.21), we fit the value of aBSM

µ

while keeping the contributions to the lepton flavour violating decays µ→ eγ and τ → µγ

under control.
In practice, for each point of our numerical scan, in the region of the parameter

space where y1,2 are small, we use the angles of the matrix R given in (2.23) to suppress
the dominant contribution to cLFV processes while enhancing the diagonal contribution
associated to (g − 2)µ.2 Ultimately, we fit the experimental value of the muon (g − 2)
within its limits by solving for g2

R. With this method, we obtain for each point the correct
anomalous magnetic moment, while fulfilling the current limits for charged LFV decays.
In this way we can account for the fact that the neutrino masses, muon (g − 2) and the
constraint from the cLFV decays pull the parameters in different directions, which requires
a certain tuning of the underlying parameters.

We note that this is not the most general approach, as we are selecting a specific region
of the parameter space. However, given the complexity of the system, we were not able
to find a more general approach that could deliver results within a reasonable computing
time. Moreover, the parameter space discussed previously is also preferred for low-scale
leptogenesis, as we will show later in the paper.

4 Constraints and observables

In the spirit of the analysis presented in ref. [21], we use an MCMC scan [36] based on
the Metropolis-Hastings algorithm [37, 38] to efficiently scrutinise the parameter space of

2Actually, solving for two angles is sufficient, such that one angle is left as a free parameter and scanned
over for generality.
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Observable Constraint
mH 125.25 ± 1.0GeV

ΩCDMh
2 0.120 ± 0.012

BR( µ− → e−γ ) < 4.2× 10−13

BR( τ− → e−γ ) < 3.3× 10−8

BR( τ− → µ−γ ) < 4.2× 10−8

BR( µ− → e−e+e− ) < 1.0× 10−12

BR( τ− → e−e+e− ) < 2.7× 10−8

BR( τ− → µ−µ+µ− ) < 2.1× 10−8

BR( τ− → e−µ+µ− ) < 2.7× 10−8

BR( τ− → µ−e+e− ) < 1.8× 10−8

BR( τ− → µ−e+µ− ) < 1.7× 10−8

BR( τ− → µ+e−e− ) < 1.5× 10−8

Observable Constraint
BR( τ− → e−π ) < 8.0× 10−8

BR( τ− → e−η ) < 9.2× 10−8

BR( τ− → e−η′ ) < 1.6× 10−7

BR( τ− → µ−π ) < 1.1× 10−7

BR( τ− → µ−η ) < 6.5× 10−8

BR( τ− → µ−η′ ) < 1.3× 10−7

CRµ→e(Ti) < 4.3× 10−12

CRµ→e(Pb) < 4.3× 10−11

CRµ→e(Au) < 7.0× 10−13

BR( Z0 → e±µ∓ ) < 7.5× 10−7

BR( Z0 → e±τ∓ ) < 5.0× 10−6

BR( Z0 → µ±τ∓ ) < 6.5× 10−6

Table 2. Constraints considered in the MCMC analysis: Higgs mass and cLFV observables [44] and
DM relic density [2]. The limits from LUX-ZEPLIN (LZ) [48] to the direct detection cross-section
are also taken into account. Note that the errors given for mH and ΩCDMh

2 are not the experimental
uncertainties but estimates of the theoretical ones, see text for details. We implement 1σ intervals
using a Gaussian function and 90% C.L. for the limits via a single-sided Gaussian, allowing for a
10% uncertainty.

the model in view of the numerous constraints presented above. This technique, especially
powerful for high-dimensional spaces, explores the parameter space iteratively, restricted
by a set of constraints through the computation of the likelihood. We refer the reader to
ref. [21] for further details about the implementation of the MCMC.

In addition to implicitly satisfying the constraints from neutrino masses and the
anomalous magnetic moment of the muon (see above), we explicitly impose constraints
coming from various sectors, comprising dark matter, lepton flavour violating processes,
and the mass of the Higgs boson, which is calculated at the one-loop level. All constraints
are listed in table 2 together with their associated experimental limits, as well as applied
uncertainties applied in our study. Note that for the Higgs mass mH and the dark matter
relic density ΩCDMh

2, the theory uncertainties3 [39–43] are larger than the experimental
ones, and, consequently, we apply the theory uncertainties. We also ensure that the lightest
Z2-odd particle, is electrically neutral in order to have a viable, stable DM candidate and to
avoid stable charged relics, essentially excluded in the mass range of

[
1, 105]GeV [44–47].

In total, our MCMC scan runs over 20 free parameters: eight couplings in the scalar
potential, six Yukawa couplings, five masses, the lightest neutrino mass, and the uncon-
strained angle of the rotation matrix R, which is assumed to be real. The ranges of the
scalar and fermion mass parameters are chosen such, that they could be in principle in the
reach of high luminosity LHC. The exception is those for the singlet fermions for which we
allow a larger range. The reason is that this model can also explain the baryon asymmetry

3We estimate those on mH to be of similar size as those in supersymmetric models due to electroweak cor-
rections.
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Parameter Interval
λH [0.1; 0.4]

λ4S , λ4η [10−7; 1]
λSη, λS [-1; 1]
λη, λ′η, λ′′η [-1; 1]

α [−104; 104]

Parameter Interval
M2
S , M2

η [5× 105; 5× 106]
M1, M2 [100; 2× 104]
MΨ [700; 2000]

y11, y12, y21, y22 [−10−4; 10−4]
mν1 [10−32; 10−10]

Table 3. Input parameter for the MCMC scan. All dimensionful quantities are given in GeV.

of the Universe via the leptogenesis mechanism as discussed in section 6. The sign of the
quartic couplings λH , λ4S and λ4η is fixed from the requirement that the scalar potential is
bounded from below. We vary all parameters on a logarithmic scale and assign possible
signs on a random basis.

The scan is performed over the parameter ranges specified in table 2 with 75 chains of
200 points each. The first 35 points of each chain have been deleted in order to keep only the
points for which the chains were already well initialised, i.e. presenting a phenomenologically
viable likelihood value. For the scan we implemented the model in SARAH-4.14. [49]
and generate code for SPheno-4.0.4 [50], FlavorKit [51] and micrOMEGAS-5.2.7 [52].
The former two compute the mass spectrum and low energy observables, while the latter
evaluates the DM relic density and the direct detection (DD) cross-sections.

Assuming a Gaussian likelihood of uncorrelated observables, the likelihood associated
with a given parameter point n is computed as

Ln =
∏
i

Lni , (4.1)

where the product runs over the imposed constraints and individual likelihood value Lni
associated to each constraint. In the case of a two-sided limit, i.e. for the Higgs mass mH

and the DM relic density ΩCDMh
2, the likelihood is computed following

lnLin = −
(
Oni −O

exp
i

)2
2σ2

i

, (4.2)

where Oni is the calculated value of the considered observable for the parameter point
n, Oexp

i is the associated experimental value given in table 2, and σi is the associated
uncertainty. The likelihood computation for upper limits is implemented as a step function,
which is smeared as a single-sided Gaussian with a width of 10% of the value corresponding
to the experimental upper limit. In this case, we have Lni = 1 if the predicted value Oni is
below the upper limit Oexp

i . In the opposite case, Lni is computed according to eq. (4.2)
with Oexp

i being the upper limit and σi = 0.1Oexp
i .

5 Results

In this section, we present the main outcome of our MCMC analysis. We shall first show
the resulting parameter space for the couplings and then discuss certain observables of
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Figure 3. Distributions of the absolute values of the components of the Yukawa couplings gF1

(upper left), gF2 (upper right), gΨ (lower left) and gR (lower right) obtained from the MCMC
scan. The plots show the hierarchy among the components enforced by the neutrino mass fit, the
accommodation of (g − 2)µ, and the constraints coming from charged LFV processes.

interest. In addition, we will discuss possibilities to test part of the available parameter
space at the LHC.

5.1 Couplings

We are interested mainly in the Yukawa couplings that connect the SM particles with the new
fields, i.e. gF1 , gF2 , gΨ, and gR, which are all three-component vectors, see eq. (2.13). These
are relevant for neutrino masses, the anomalous magnetic moment and flavour violating
decays of the leptons. figure 3 shows the correlations among the different components for
each coupling vector, while in figure 4 we show the correlation of selected components with
the trilinear coupling α.

We clearly see that all components of gF1,2 behave in a similar way, with an approximate
upper limit of |giF1,2

| . 10−3 for i = 1, 2, 3. As already explained in section 3, this upper
limit is due to our fit of neutrino masses together with the anomalous magnetic moment
(g − 2)µ and the constraints coming from µ→ e transitions. At the same time, the overall
scaling behaviour of all the components of gF1,2 is caused by the trilinear coupling α, as
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Figure 4. Correlation of selected Yukawa couplings with the trilinear coupling α. The couplings
gΨ and gF1 are connected to the trilinear couplings α through the fit of the neutrino masses, while
the connection of g2

Ψ and g2
R with α stems from the fit of the anomalous magnetic moment (g − 2)µ.

shown in the left plot of figure 4 for gF1 . An analogous behaviour is found for gF2 (not
shown). Larger values of α imply a larger scalar mixing, which then suppresses the scale of
gF1,2 via the neutrino mass fit.

For gΨ, as already described in section 3 and depicted in figure 2, a specific hierarchy
among its components is realised to fit the muon anomalous magnetic moment and be below
the limits of charged LFV searches. This hierarchy is linked to that of gR, as both contribute
equally to these processes, see appendix A. While both g2

Ψ and g2
R have to be large to fit

(g − 2)µ, g1
Ψ and g1

R must remain small to not exceed the current limit of BR(µ→ eγ). On
the same grounds, g3

Ψ and g3
R are similarly constrained by the upper limit on BR(τ → µγ).

It is worth noting that the fit of (g − 2)µ links the components of gR and gΨ with
the trilinear coupling α, as can be seen in figure 4 (right). As discussed in section 3, the
dominant contribution to (g − 2)µ and charged LFV decays comes from the left diagram in
figure 1, proportional to α. For example, smaller values of α imply larger values of g2

Ψ and
g2
R in order to fit the anomalous magnetic moment (g − 2)µ, as can be seen in the upper
corner on the right panel of figure 4.

The perturbativity requirement for both the Yukawa couplings and α sets then a lower
and upper limit on the trilinear coupling of roughly 30 GeV . α . 4mφ0

1
. Note, that the

upper bound is actually given for α/Mφ where Mφ is the average masses of the scalars
involved in this coupling.

5.2 Charged lepton flavour violating decays

Charged lepton flavour violating decays rank among the most stringent constraints for
neutrino mass models, as fitting the neutrino mixing angles, in general, requires non-
diagonal Yukawa matrices that connect also to the charged leptons and allow for transitions
between different lepton flavours. While the limits to the branching ratios of these processes
are already remarkable, especially for the limit on the decay µ → eγ from the MEG
collaboration [34], there is a renovate interest with new experiments expected to take place
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Figure 5. Results for the relevant cLFV decays with the current limits from MEG collaboration [34]
and Belle [56, 57] (full lines) and expected sensitivities (dashed lines) from MEGII [53], Mu3e [54]
and Belle II [58]. The other decays not shown here lay below the expected future bounds.

in the near future, such as MEGII [53], Mu3e [54], or COMET [55], with an expected
improvement on the sensitivity of even four orders of magnitude for certain processes like
µ→ 3e, or Belle and Belle II for the tau decays [56–58].

Although the charged LFV decays are considered as constraints in our analysis, see
table 2, it is worth checking how these processes behave in the present model and exploring
to which extent future experiments may restrict the parameter space. In figure 5 we show
the branching ratios of the most relevant charged LFV decay channels for the muon and the
tau, together with their current limits and future expected sensitivities. Note that the muon
decays are completely dominated by the dipole contribution, i.e. the diagrams depicted
in figure 1, while there is an important contribution from box diagrams to the tau decays
τ → 3µ. This is due to the large values for g2

Ψ and g2
R needed to the fit of (g − 2)µ, which

makes the box diagram proportional to g3
R g

2∗
Ψ g

2∗
R g

2
Ψ dominate over the dipole contribution

with the off-shell photon.
For conciseness, we do not show the results for the charged LFV decays of the tau to

electrons. For these, we find that, in the best case, the branching ratio of τ → µe+e− is of
the order of 10−9, just on the border of the future expected sensitivity. For the remaining
processes τ → eγ and τ → 3e, we obtain branching ratios below 10−17, not observable in
the foreseeable future. The same holds true for the other LFV observables listed in table 2.

5.3 Dark matter observables

Let us recall that the model under consideration includes three possible candidates for cold
dark matter (CDM), the lightest Z2-odd neutral fermion χ0

1, the lighter scalar φ0
1, and the

pseudo-scalar A0, depending on the mass hierarchies in a given parameter configuration.
The dark matter relic density is taken as a constraint in our MCMC analysis, with a theory
uncertainty of 10%, such that ΩCDMh

2 = 0.120± 0.012 [2].
Starting with the overall situation, figure 6 shows the obtained distribution for the DM

mass, separating fermionic (χ0
1) and scalar (φ0

1) DM. The shown results exhibit similar
behaviour to that found in ref. [21] for the simpler T1-2-A scotogenic model. Fermionic DM
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Figure 6. Histograms of the mass and nature of the dark matter candidate. The separation into
fermionic and scalar dark matter candidates clearly exhibits a preference for fermionic dark matter
with a mass around 1100GeV.
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Figure 7. Left: distribution of the masses in case of fermionic DM candidates, separating the
scenarios where the DM candidate is doublet-dominated (blue line) from those where it is singlet-
dominated (orange line). Right: singlet content of the DM candidate as a function of the DM mass.

dominates the model parameter space, with a preferred mass of around 1100GeV. Scalar
DM accounts for about 30% of the viable parameter points, with a preferred masses of
roughly 600GeV to 1000GeV.

As in the T1-2-A model [21], fermionic DM is essentially doublet-dominated. This can
be seen from figure 7 showing the split into doublet and singlet-dominated DM candidates
together with the singlet content of the fermionic DM. This feature can be traced to
necessary co-annihilations which occur naturally in the doublet case between χ0

1 and χ±

and χ0
2 due to the very small mass splitting between these states. The (co-)annihilation

processes are dominated by gauge interactions similar to the case of pure higgsinos in
supersymmetric models. As already mentioned, sizeable Yukawa couplings to the muons
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Figure 8. Left: distribution of the masses in case of scalar DM candidates, separating the scenarios
where the DM candidate is doublet-dominated (blue line) from those where it is singlet-dominated
(orange line). Right: singlet content of the DM as a function of the DM mass.

are necessary to explain the potential deviation of its anomalous magnetic moment. This
gives additional annihilation channels into muons via scalars, stemming from the doublet η,
in the t-channel.

In the case of a fermionic singlet-dominated state χ0
1, it is much harder to satisfy the

relic density requirement from Planck data [11]. While singlet fermions Fi are produced
thermally, they can only annihilate via the Yukawa gFi or through the mixing with Ψ1,2,
both small because of the charged LFV constraints and our fit of (g − 2)µ.

In the case of scalar DM, there is no clear preference for doublet or singlet-like states
within the phenomenologically viable parameter regions, where the preferred masses are
typically around 800GeV. The situation in the scalar sector is more involved compared
to fermionic DM. Multiple co-annihilation channels are actively competing, including the
Higgs channel, which is significantly constrained by direct-detection limits, as we will discuss
subsequently. Additionally, it is worth noting that the associated mass peak exhibits a
broader width in the scalar case due to the possibility of larger mass splittings, in contrast
to the fermionic case.

Finally, we note that we do not find any pseudoscalar DM in this model in contrast
to ref. [21]. The reason can be easily understood by inspecting the mass matrix given in
eq. (2.4). The mass splitting between the scalar doublet component and the pseudoscalar is
given by 1

2λ
′′
ηv

2 and the mixing between the doublet scalar and the singlet is given by |αv|.
For a pseudoscalar DM candidate, one needs the doublet to be lighter than the singlet. As
can be seen in figure 9 the mixing between the scalar components is always larger than the
mass splitting between scalar and pseudoscalar implying that the scalar will be lighter than
the pseudoscalar. Note that this feature is less pronounced in the T1-2-A model studied in
ref. [21], as in their study the trilinear coupling α is rather restricted and, in addition, the
constraint from (g − 2)µ has not been taken into account.

In figure 10 we show the results for the spin-independent direct detection cross-section
for the scalar DM case. As already said in section 4, the LZ limit [48] is taken as a constraint,
such that points not satisfying the current limits are excluded. Most of the remaining
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Figure 10. Spin-independent direct detection cross-section versus the mass of the DM in the
scalar case, differentiating between singlet (orange) and double-like (blue). The current limit from
LUX-ZEPLIN (LZ) [48], as well as the future limits from XENONnT [59] and DARWIN [60] are
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shown as the DD cross-section lays below the neutrino floor, around 10−60 cm2. See text for details.
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Figure 11. Mass of the charged fermion χ± as function of the mass of the neutral fermion in the
scenarios with a fermionic DM candidate.

viable points can be tested by future experiments like DARWIN [60]. On the other hand,
we do not find any constraints in the case of fermionic dark matter. The reason is that
our scan requires the modulus of the relevant Yukawa couplings, |yij |, to be smaller than
10−4, suppressing the dominant contribution and pushing the cross-sections well below the
neutrino floor.

We note that, in both cases, the direct detection cross-section is mainly dominated by
Higgs exchange, since we actually have an inelastic dark matter candidate. Inelastic dark
matter refers to DM candidates with a mass splitting between the CP -even and CP -odd
components of a neutral state. As the Z-boson couples always between the CP -even and
CP -odd components, for the part of the parameter space where the mass splitting between
these two states is larger than the kinetic energy of the DM, the contribution from Z

channel to the DD cross-section is kinematically forbidden. Since the coupling of the DM to
the Z-boson has typically gauge strength, if it is active, then it will be excluded by direct
detection. We note here that this contribution was added by hand as micrOMEGAS does not
include inelastic channels. Nevertheless, this excluded very few points, as in practice given
the typical DM average relative velocity, the mass splitting needs to be only larger than
O(100) keV to kinematically close the Z-channel [62].

5.4 Collider aspects

We have seen in section 5.3 that the preferred range for fermionic DM is between 700GeV
and 1.4TeV with most of the points having a mass between 1 and 1.2TeV. Moreover, they
are essentially always SU(2)L doublets with the same quantum numbers as higgsinos in
supersymmetric models. From ref. [63] we can thus infer that the cross-section σ(pp→ χ+χ0)
at the LHC with

√
s = 14TeV varies between 0.43 fb (1TeV) and 0.14 fb (1.2TeV) assuming

that both states have the same mass. The signatures depend on the mass difference between
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Figure 12. Scalar DM mass versus the mass of the charged fermion χ± (left) or the mass of the
charged scalar φ± (right).

the charged and the neutral state which is displayed in figure 11. In case the DM candidate
stems from SU(2)L, one finds only a small difference and the dominant decay mode is
χ+ → π+χ0. We can infer from the corresponding supersymmetric scenarios that the LHC
will not be able to discover the corresponding states, see for example [64] and references
therein. In case the DM candidate is singlet-like we find mass splittings between 10 and
150GeV. The main decay modes are via off-shell neutral scalars

χ+ → `+Rνχ
0
1 . (5.1)

The interesting point is that the requirement of explaining the (g − 2) of the muon implies
that nearly all cases one has a muon in the final state. While this is a potentially interesting
final state, one should keep in mind that the case of singlet fermionic DM seems to be rarely
realised in this model, see section 5.3.

In scenarios with a scalar DM candidate, the situation looks somewhat more promising.
We see from the left of figure 12 that in a large portion of the corresponding parameter space
the charged fermion has a significantly larger mass than the DM candidate. Note, that the
SU(2)L have a similar mass as the charged fermion. Both will decay into SM-leptons and a
Z2-odd scalar,

χ+ → νL η
+, `+φ0

i (5.2)
χ0
j → νL φ

0
i , `

±η∓ (5.3)

where the j corresponds mainly to the mass eigenstates which are dominantly SU(2)L
fermions. As above, we expect the decays into muons to be dominant. Thus, the signal will
dominantly consist of muons in combination with missing transverse energy.

We note for completeness, that one has of course also direct production of scalar
doublets. However, already with a mass of about 700GeV the cross-section is about 0.1 fb
as can be inferred from the production of left-sleptons [63] which have the same quantum
numbers. We see from the left of figure 12 that mη± >∼ 700GeV in scenarios with a sizeable
mass splitting in the scalar sector. Thus, the direct production will hardly contribute to an
LHC signal for this model.
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6 Leptogenesis

This model features heavy Majorana fermions, lepton number violation and complex
couplings which are all ingredients for leptogenesis. In this section, we investigate to which
extent one could also explain the observed baryon asymmetry of the Universe via the
leptogenesis mechanism,4 in the region of parameter space discussed in the previous section.
We present here the main results and collect in appendix B further details.

We are in a region of parameter space where the couplings yij , which determine the
mixing between the SU(2)L doublet and singlet fermions in eq. (2.9), are small. Thus,
in practice, only the singlet-like fermions will contribute to a possible lepton asymmetry.
These states decay dominantly according to

Fi → ηL , η†L̄ and Fi → HΨ , H†Ψ̄ . (6.1)

The decays will occur at a mass scale which is significantly above the scale of electroweak
symmetry breaking and, thus, it is more convenient to work in the gauge basis. At tree-level
the former is governed by the couplings giF and the latter by the couplings yij ,

Γ(Fi → Lη) = Γ(Fi → L̄ η†) =
∑
j

|gjFi |
2

32π Mi

(
1−

M2
η

M2
i

)2

(6.2)

Γ(Fi → ψH) = Γ(Fi → ψ̄ H†) = Mi

32π

(|y1i|2 + |y2i|2)

1−
(
M2

Ψ
M2
i

)2


−4Re[(y1i)∗y2i]
MΨ
Mi

(
1− M2

Ψ
M2
i

)}
, (6.3)

where we have neglected the masses of the SM leptons and Higgs boson. The asymmetry
is generated at the one-loop level [6] by the diagrams displayed in figure 13. Similar to
the type-I seesaw model [7, 65], there are the typical wave-function and vertex diagrams
depicted in the upper row involving the other singlet fermion in the loop. Moreover, there
are additional possible vertex diagrams, which are depicted in the lower row. These involve
additional couplings like gkR and α which turn out to be important.

The CP asymmetry parameters εi are given by

εi = Γ(Fi → Lη) + Γ(Fi → ψH)− Γ(Fi → L̄ η†)− Γ(Fi → ψ̄ H†)
Γ(Fi → Lη) + Γ(Fi → ψH) + Γ(Fi → L̄ η†) + Γ(Fi → ψ̄ H†)

. (6.4)

Explicit expressions for the various contributions to εi in this model may be found in
appendix B.

The MCMC yields that in general max(|gkFi |)� max(|yij |) in most of the parameter
space and in the remaining part, they are of equal size. Thus, we will base our estimations
in the text below on gkFi , but we stress that all parameters were properly taken into account
in the numerics.

4For a review see, for example, [7].
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Figure 13. Diagrams contributing to the CP asymmetry generated in the decays of Fi (i = 1, 2).
Upper row: diagrams that are similar to the ones obtained in the type-I seesaw model. The arrows
indicate the flow of lepton number. Note that another self-energy diagram exists with the mass
flip in the internal F and reversing the arrow of Lm (Ψ). Lower row: additional vertex diagrams
contributing to the CP asymmetry generated in the decays of the singlet fermions Fi. These
diagrams in the lower row feature the couplings giR (left) and giΨ and the trilinear coupling α (right)
which plays an important role in contributing to (g − 2)µ, as discussed in section 3.

An important question is to which extent a generated asymmetry gets washed out in
the thermal history of the Universe. To answer this, one defines the decay parameters

Ki ≡
Γitot.

H(T = Mi)
' 7× 106

(max{|gFi |}
10−3

)2 (TeV
Mi

)
, (6.5)

with H being the Hubble parameter. The weak washout regime is realised for Ki . 1, the
strong washout regime for Ki & 3, and an intermediate regime in between these values [7, 8].
In the parameter space discussed in section 5, we are always in the strong washout regime,
as can be seen from the second part of eq. (6.5). As an example we display K1 in figure 14.

The very large values of the decay parameter allow us to neglect washout through
scattering processes, as the inverse decays are the dominant sources of the washout. Thus,
we may treat leptogenesis as competition between decays and inverse decays [7], with the
B − L asymmetry being generated when the inverse decays freeze out and the surviving
number density NFi of the Fi decays.

We solve numerically the corresponding Boltzmann equations given in appendix B with
the following initial conditions at high temperatures,

NF1 = N eq.
F1
, NF2 = N eq.

F2
, NB−L = 0 , (6.6)

and track these number densities down to lower temperatures. As mentioned earlier, we do
not assume a large hierarchy between the masses of F1 and F2. Consequently, we take into
account both contributions.

Note that the inverse decays of the singlet fermions must freeze-out at a temperature
before the sphalerons fall out of equilibrium (T ∼ 100 GeV), otherwise, the B−L asymmetry
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Figure 14. Left: resulting baryon-to-photon ratio ηB plotted against the mass of the lighter singlet
fermion driving leptogenesis. The solid grey line denotes the observed value of ηB from Planck. The
CP asymmetry generated in the decays of the singlet fermion is indicated by the hue. Right: decay
parameter K1 of the lighter singlet fermion versus the absolute value of the trilinear coupling α.
The value of ηB is indicated by the hue. The points in red are within the grey band on the plot to
the right.

generated in its decay is not converted into baryon asymmetry. As we are in the strong
washout regime, we can estimate the freeze-out temperature for the inverse decays as [66],

T ID
F.O. ≈

Mi

5
√

log(Ki)
. (6.7)

This gives an approximate lower bound on the mass of the lightest decaying singlet Mi &
2TeV for which the sphalerons remain active. At lower temperatures, T � min{M1,M2},
we obtain the final B − L asymmetry, Nfin.

B−L, which is converted to the baryon-to-photon
ratio, ηB, via the sphaleron process [67, 68] using

ηB ≡
nB
nγ
≈ 3

4Csphal.
g0
∗
g∗
|Nfin.

B−L| ' 8× 10−3 |Nfin.
B−L| . (6.8)

Csphal. = 8/23 is the sphaleron conversion factor [69], g0
∗ = 43/11 the present value of the

number of relativistic degrees of freedom (DOF) and g∗ the relativistic DOF of the full
model at high temperatures.

Figure 14 depicts the final baryon-to-photon ratio obtained from solving the Boltzmann
equations, using the sets of parameters mentioned before, against the mass of the singlet
fermion driving leptogenesis. We observe that in contrast to the typical case of strong
washout in the type-I seesaw model and the ‘classic’ scotogenic model [70], the final value
of ηB has a tendency to decrease with increasing M1. Besides, we also find that the
CP asymmetries generated in the decays of lighter F1 are much larger. We note large
contributions to εi come from the loop diagrams in the lower row of figure 13.

In the minimal scotogenic model, it is possible to express the decay parameter (6.5)
as a function of the lightest neutrino mass and the λ′′η parameter [70]. In our model, the
link is not so direct due to the additional couplings and particle states present. Moreover,
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the requirement to explain the potential deviation of the (g − 2) of the muon while being
consistent with the bounds on the LFV lepton decays requires, for example, larger values of
the trilinear coupling α. As can be seen from the left plot in figure 14, the decay parameter
decreases with increasing |α|. Note that this coupling does not appear directly in the
calculation of the decay parameter (6.5), but reduces the value of the coupling gF through
the neutrino fit, which in turn decreases the tree-level decay width and, hence, lowers the
value of Ki.

We also see from the right plot in figure 14 that only a few points are able to explain
the observed baryon asymmetry. Investigating the details of the required parameter
combinations to obtain the correct baryon asymmetry would be highly interesting, but
is beyond the scope of this paper and left for a future publication. However, one feature
that we have observed is that nearly all points present a fermionic doublet as dark matter
candidate. Only one out of 25 points in parameter space contains a singlet scalar dark
matter candidate.

7 Conclusion

We have investigated a scotogenic model with a very rich phenomenology. We have presented
a complete analysis of the associated parameter space, taking into account constraints
from the Higgs sector, the neutrino sector, lepton flavour violating processes, the muon
anomalous magnetic moment and dark matter observables.

Neutrino data governs the couplings of the new particles to the left-handed leptons and
the requirement of explaining the observed deviation of the anomalous magnetic moment of
the muon (g − 2) requires that couplings to muons are sizeable. This in turn implies that
the decays µ→ eγ, µ→ 3e, τ → µγ and τ → 3µ are in the reach of upcoming experiments
in a sizeable part of the parameter space.

We have found that the dark matter relic density constraint leads to a preference of
fermionic dark matter candidates, in most cases the neutral component of an SU(2) doublet
in the mass range 1 to 1.2TeV. Scenarios featuring a scalar dark matter candidate can
be tested by future direct detection experiments like XENONnT or DARWIN, whereas
the corresponding cross-sections for fermionic dark matter are well below the so-called
neutrino-floor.

We have also briefly discussed the LHC phenomenology in the relevant parameter space.
The requirement of explaining the observed deviation in (g − 2) leads to a preference for
decays into final states containing muons. In particular, in case of a scalar dark matter
candidate, we expect muons plus missing transverse energy as dominating signal at the
LHC. This signal is also expected in case of supersymmetric models due to the decays of the
so-called smuons. However, in our case final states with other leptons or jets in combination
with missing transverse energy will be (strongly) suppressed. In case of fermionic dark
matter, the mass differences are so small that the charged fermion will decay into a pion
and the neutral fermion. The discovery of this final state will be very challenging at the
LHC as the required mass imply a relatively low cross-section and, thus, it is likely that the
LHC will not be able to observe these particles even in the high luminosity phase.
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Finally, we have seen that the available parameter space gets severely constrained if
one requires in addition an explanation of the observed baryon asymmetry of the Universe
via leptogenesis. We have found that nearly all viable points in the parameter space feature
a fermionic dark matter candidate. A detailed analysis of the features of the relevant part
in the parameter space will be presented in a future work.
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A New contributions to the electromagnetic dipole moment operator

In this appendix, we collect the additional contributions to the Wilson coefficients of
the dipole operator using the notation of ref. [32]. The anomalous magnetic moment, as
well as other observables like the electric dipole moment (EDM) and the charged lepton
flavour violating (cLFV) decays, is directly connected to the electromagnetic dipole moment
operator, i.e.

cijR`jσµνPR`iF
µν + h.c. . (A.1)

As already explained in section 3, the diagonal of the Wilson coefficient cR is linked to the
(g − 2) and the EDM by

`iσµν

[
ciiR + cii∗R

2︸ ︷︷ ︸
Re(ciiR)

+ γ5 c
ii
R − cii∗R

2︸ ︷︷ ︸
γ5Im(ciiR)

]
`iF

µν . (A.2)

The real part of the Wilson coefficient will contribute to the anomalous magnetic moment
(g− 2), whereas the imaginary part is a contribution to the electronic part, the EDM. With
this, the anomalous magnetic moment is defined as,

ai = −4m`i

e
Re(ciiR) . (A.3)

On the other hand, cLFV decays can be computed directly from eq. (A.1), for which
their branching ratio is given by,

BR(`i → `jγ) = m3
i

4πΓ`i

[
|cijR|

2 + |cjiR|
2
]
, (A.4)

valid for mi � mj and where Γ`i is the total decay width of `i.
In a general framework, we can consider a coupling between new fermions Ψ, new

scalars Φ, with the Standard Model lepton `i. In this scenario, we have the Lagrangian,

L = Ψ
(
ΓiLPL + ΓiRPR

)
`iΦ + h.c. . (A.5)

The associated Wilson coefficients are given by,

cijR = e

16π2 Γi∗LΓjRMΨ
f(M

2
Ψ

M2
Φ

) +Qg(M
2
Ψ

M2
Φ

)

M2
Φ

+ e

16π2 (m`jΓi∗LΓjL +m`iΓi∗RΓjR)
f̃
(M2

Ψ
M2

Φ

)
+Qf̃

(M2
Ψ

M2
Φ

)
M2

Φ

(A.6)

where Q is the electric charge of the fermion in the loop. The functions f, g, f̃ , g̃ are
defined as,

f(x) = x2 − 1− 2xlog(x)
4(x− 1)3 = 2g̃(x) , (A.7)

g(x) = x− 1− log(x)
2(x− 1)2 , (A.8)
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f̃(x) = 2x3 + 3x2 − 6x+ 1− 6x2log(x)
24(x− 1)4 , (A.9)

g̃(x) = x2 − 1− 2xlog(x)
8(x− 1)3 . (A.10)

In order to compute cR, we need to determine the vertices ΓiL and ΓiR. In our model,
as described in section 2, there are two contributions depicted in figure 1. The Wilson
coefficient cR is then the sum of these two contributions.

For the first diagram (left) in figure 1, after EWSB the fields in eq. (A.5) correspond to
Ψ ≡ χ+ and Φ ≡ φ0

k, with couplings

ΓiL = −giΨ(Uφ)1k , (A.11)

ΓiR = gi∗R√
2

[(Uφ)2k + i (Uφ)3k] . (A.12)

We note here that for simplicity we assumed a sum over the new fields Ψ and Φ in eq. (A.6).
Here, a sum over the index k = 1, 2, 3 must be performed when computing cR, taking into
account that several scalars participate in the diagram, i.e. one should replace MΦ by mφ0

k
.

Also, given our definition of the neutral scalar basis and their mixing as defined in eq. (2.5),
where for conciseness we included the pseudo-scalar A0, here the third φ0 eigenstate should
be considered as φ0

3 ≡ A0.
For the second diagram (right) in figure 1, after EWSB Ψ ≡ χ0

k and Φ ≡ η−,
with couplings

ΓiL =
2∑
j=1

giFj (U
†
χ)jk , (A.13)

ΓiR = gi∗R (U †χ)3k . (A.14)

Again, a sum over the index k = 1, 2, 3, 4 must be performed in eq. (A.6) with MΨ ≡ mχ0
k
.

B Details on the calculation of the baryon asymmetry

We collect here details of the calculation of the baryon asymmetry of the Universe which
has been presented in section 6. We largely follow the convention used in [7].

B.1 Boltzmann equations for leptogenesis

As a starting point, we write down the Boltzmann equations for thermal leptogenesis,

dNFi

dzi
= −Ki

ziK1(zi)
K2(zi)

(
NFi −N

eq.
Fi

)
, (B.1)

dNB−L
dz1

= −
2∑
i=1

εiKi
ziK1(zi)
K2(zi)

(NFi −N
eq.
Fi

)− (WID +WS)NB−L , (B.2)

with N eq.
Fi

= z2
i

2 K2(zi) , WID =
2∑
i=1

1
4Ki z

3
i K2(zi) , (B.3)
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which track the number densities per co-moving volume NFi and NB−L of the singlet
fermions and the B − L asymmetry. Here, we have defined the dimensionless variables
zi = Mi/T where T is the temperature. As the variables are related by z2 = z1 (M2/M1),
we solve the above equations in terms of z1. Here we take the contributions of both singlet
fermions into account as we do not necessarily have a large mass hierarchy between the two
states, see e.g. refs. [8, 71]. The quantities K1,2(zi) refer to the modified Bessel functions
of the second kind and N eq.

Fi
refer to the equilibrium distributions of the Fi. The term

proportional to NB−L in the second equation is the washout term, and contributions to
it are from the inverse decays of the Fi, WID, and ∆L 6= 0 scattering processes, WS . The
remaining quantities are the decay parameters Ki, see eq. (6.5), of the Fi and the CP
asymmetry parameters εi, see eq. (6.4). The Hubble parameter H enters the calculation of
Ki. H is given as a function of temperature T

H(T ) =

√
8π3g∗

90
T 2

MPl
= H(T = Mi)

z2
i

, (B.4)

where MPl = 1.22× 1019 GeV is the Planck mass. The quantity g∗ refers to the effective
number of relativistic degrees of freedom. With the additional particle content, we have
g∗ = 122.25 compared to the SM value of gSM∗ = 106.75 [72].

We solve the set of coupled Boltzmann equations (B.1) and (B.2) numerically with the
following initial conditions at T = 105M2 implying z1 � 1

NF1 = N eq.
F1
, NF2 = N eq.

F2
, NB−L = 0 (B.5)

The sphaleron conversion factor enters the calculation of the baryon asymmetry which
is given according to ref. [69] as

Csphal. = 24 + 4nD
66 + 13nD

(B.6)

where nD is the number of scalar SU(2)L doublets in the model.

B.2 Computation of εi
Here we collect the expressions for the various diagrams that contribute to the CP asymmetry
parameter εi:

εi =
∑
j

WF(i)
j +

∑
j

V(i)
j . (B.7)

Evaluation of the Dirac traces and the required Passarino Veltman reduction of the loop
integrals was carried out using FeynCalc [73–75]. The imaginary part of the B0 function is
given by

Im
[
B0(p2,m2

1,m
2
2)
]

= π
λ

1
2
(
p2,m2

1,m
2
2
)

p2 Θ
(
p2 − (m1 +m2)2

)
, (B.8)

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx is the Källén function and Θ(x) is the
Heaviside-step function, which enforces the fact that the imaginary part exists only when
particles in the loop can go on-shell. The imaginary part of the C0 function was calculated
numerically using PackageX [76]. We indicate all possible sums over the particles in the
loop and have summed over the final leptonic states, i.e. we do not consider flavour effects.
Finally, we have defined

Γitot. = Γ(Fi → Lη) + Γ(Fi → ψH) + Γ(Fi → L̄ η†) + Γ(Fi → ψ̄ H†) . (B.9)

– 26 –



J
H
E
P
0
6
(
2
0
2
3
)
1
6
3

B.2.1 Wave function diagrams

WF(i)
1 = 1

128π2
Mi

Γitot.

(
1−

M2
η

M2
i

)4

Θ
(
M2
i −M2

η

)∑
k 6=i

Im


 3∑
j=1

gjFi(g
j
Fk

)∗
2
 MiMk

M2
i −M2

k

(B.10a)

WF(i)
2 = 1

128π2

Mi

(
1−M2

η

M2
i

)2

Γitot.

(
1−M

2
Ψ

M2
i

)
Θ
(
M2
i −M2

Ψ
)

∑
k 6=i

3∑
j=1

1
M2
i −M2

k

{
M2
i

[
Im
[
gjFi (gjFk)∗ y1k y

∗
1i

](
1+M2

Ψ
M2
i

)
+Im

[
gjFi (gjFk)∗ y1k y

∗
2i

]MΨ

Mi

]

+MiMk

[
Im
[
gjFi (gjFk)∗ y2k y

∗
2i

](
1+M2

Ψ
M2
i

)
+Im

[
gjFi (gjFk)∗ y2k y

∗
1i

]MΨ

Mi

]

+M2
i

[
Im
[
gjFi (gjFk)∗ y2k y

∗
2i

](
1+M2

Ψ
M2
i

)
+Im

[
gjFi (gjFk)∗ y1k y

∗
2i

]MΨ

Mi

]

+MiMk

[
Im
[
gjFi (gjFk)∗ y1k y

∗
1i

](
1+M2

Ψ
M2
i

)
+Im

[
gjFi (gjFk)∗ y2k y

∗
1i

]MΨ

Mi

]}
(B.10b)

WF(i)
3 = 1

128π2
Mi

Γitot.

(
1−M

2
Ψ

M2
i

)2

Θ
(
M2
i −M2

Ψ
)

∑
k 6=i

1
M2
i −M2

k

{
M2
i

[
Im [y1i y2i y

∗
1k y
∗
2k]
(

1+M2
Ψ

M2
i

)
−2 Im

[
(y2

1i+y2
2i)y∗1k y∗2k

]MΨ

Mi

]

+MΨMi

[
Im
[
(y2

1i+y2
2i)y∗1k y∗2k

](
1+M2

Ψ
M2
i

)
−2 Im [y1i y2i y

∗
1k y
∗
2k]MΨ

Mi

]

+MkMi

[
Im
[
y2

1i (y∗1k)2+y2
1i (y∗2k)2](1+M2

Ψ
M2
i

)
−2 Im

[
[(y∗1k)2+(y∗2k)2]yi1 yi2

]MΨ

Mi

]

+MkMΨ

[
Im
[
[(y∗1k)2+(y∗2k)2]y1i y2i

](
1+M2

Ψ
M2
i

)
−2 Im

[
y2

1i (y∗1k)2+y2
1i (y∗2k)2]MΨ

Mi

]}
(B.10c)

WF(i)
4 = 1

128π2

Mi

(
1−M2

Ψ
M2
i

)
Γitot.

(
1−

M2
η

M2
i

)2

Θ
(
M2
i −M2

η

)
∑
k 6=i

3∑
j=1

1
M2
i −M2

k

{
M2
i

[
Im
[
gjFk (gjFi)

∗ y1i y
∗
1k

](
1+M2

Ψ
M2
i

)
−2 Im

[
gjFk (gjFi)

∗ y2i y
∗
1k

]MΨ

Mi

]

+MiMk

[
Im
[
gjFk (gjFi)

∗ y2i y
∗
2k

](
1+M2

Ψ
M2
i

)
−2 Im

[
gjFk (gjFi)

∗ y1i y
∗
2k

]MΨ

Mi

]

+M2
i

[
Im
[
gjFi (gjFk)∗ y1i y

∗
1k

](
1+M2

Ψ
M2
i

)
−2 Im

[
gjFi (gjFk)∗ y2i y

∗
1k

]MΨ

Mi

]

+MiMk

[
Im
[
gjFi (gjFk)∗ y2i y

∗
2k

](
1+M2

Ψ
M2
i

)
−2 Im

[
gjFi (gjFk)∗ y1i y

∗
2k

]MΨ

Mi

]}
(B.10d)

– 27 –



J
H
E
P
0
6
(
2
0
2
3
)
1
6
3

B.2.2 Vertex diagrams

V(i)
1 = 1

128π2

Mi

(
1−M2

η

M2
i

)2

Γitot.∑
k 6=i

Im


 3∑
j=1

gjFi(g
j
Fk

)∗
2
MkMi

{Θ
(
M2
i −M2

η

)
M2
i

−
M2
η−M2

k

M2
i −M2

η

Θ
(
M2
η−M2

k

)
M2
η

+2
(

1−
M2
η−M2

k

M2
i −M2

η

)
Im
[
C0(0,M2

η ,M
2
i ,M

2
η ,M

2
k ,0)

π

]}
(B.11)

V(i)
2 = 1

128π2

Mi

(
1−M2

Ψ
M2
i

)
Γitot.

∑
k 6=i

1
(M2

i −M2
Ψ)2

{(
1+M2

Ψ
M2
i

)
(F1a+F1b)+2MΨ

Mi
(F2a+F2b)

}
(B.12)

where

F1a =

−
(

1−M
2
Ψ

M2
i

)
Θ
(
M2
i −M2

Ψ
){
−2M2

kMiMΨ Im
[
y1i y2i (y∗2k)2

]
−MkMi

(
M2
i +M2

Ψ
)
Im
[
y2

1i (y∗1k)2
]

−M4
i Im [(y1i y2i y

∗
1k y
∗
2k)]−M3
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[
y2

1i y
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iM
2
Ψ Im [y1i y2i y
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+2MiM
3
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+
(
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2
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Ψ
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Θ
(
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k
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Ψ
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(B.13)
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where
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In V(3,4), ySM refers to the Standard Model lepton-Higgs Yukawa couplings.
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(B.15)
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where

F5 (Mi,MΨ,Mη,MS) =
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S
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We have verified that the expressions WF(i)
1 and V(i)

1 reproduce the known results [65] in
the limiting case of Mη → 0.
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