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1 Introduction

Be it phase transitions [1–3]; baryon number violation [4, 5]; photon emission from heavy-
ion collisions [6, 7]; or axion production [8–10]; thermal field theory is indispensable all
the same. Whilst the picture is quite complicated for generic systems, the physics is
considerably simpler if we look at length-scales of the order L�T−1. For in that case
high-energy modes with E∼T behave as quasiparticles [11, 12]. And much intuition from
plasma physics directly carries over. So as charged particles move in, say an electric field,
they redistribute themselves to screen the field. Likewise, free charges resist a changing
magnetic field in accordance with Lenz’s law. In both cases the field is screened by high-
energy modes.

The best way to incorporate this screening depends on the situation. In equilibrium,
for example, the scalar potential (A0) effectively obtains a thermal Debye mass [1]. Since
there is no time dependence, it is useful to describe such systems with a three-dimensional
field theory [13, 14]. A different effective description, known as hard thermal loops, can be
used when fields vary slowly in time.

These hard thermal loops are particularly important when the system is pushed from
equilibrium. This is because deviations from equilibrium are driven back by scattering
processes; and the characteristic momentum transfer, and thus the cross-section, is set
by the screening length. As such hard thermal loops are key for calculating transport
coefficients [15–19], particle production [20–22], and colour conductivity [23–25].

Though hard thermal loops are important, little is known about them beyond leading
order. Existing studies are limited to quantum electrodynamics at high temperatures [26,
27] and at finite chemical potential [28]. Reason being that direct evaluations are hampered
by an increased complexity at two loops. Nevertheless, in this paper we use kinetic theory
to simplify the calculations. Our method of choice is rather compact and admits neat
expressions for generic model — including non-abelian theories.

The first section of the paper describes the calculation; section 3 provides results for
general models; section 4 provides higher-point correlators; and additional details are given
in the appendices.

2 The real-time formalism

Throughout this article we use the mostly-plus metric: P 2 =−(p0)2+~p2, and all four-
vectors are denoted by capitalized letters, while spatial vectors are denoted by lowercase
ones. To save ink we also use the notation p2≡ ~p2.

Because we are interested in real-time dynamics we have to double the field content [29,
30]: here we follow [6, 31, 32] and use retarded and advanced fields, otherwise known as
the r/a basis. In this basis there are three propagators for each field. For a free theory
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these are1

∆rr
B/F (P ) = 2πδ(P 2)

{
θ(p0)N+

B/F (p0, ~p)+θ(−p0)N−B/F (−p0,−~p)
}
, (2.1)

∆R(P ) = −i
P 2−iηp0 , ∆A(P ) = −i

P 2+iηp0 , NB/F (p0, ~p) = 1
2±nB/F (p0). (2.2)

To condense the notation we denote rr propagators by

∆X(P ) = 2πδ(P 2)
{
θ(p0)NX(p0, ~p)+θ(−p0)NX(−p0,−~p)

}
, (2.3)

where X =V,F,S depending on the particle. In this case the rr propagator for vectors,
fermions, and scalars is

Drr
µν(P ) = gµν∆V (P ), SrrF =−/P∆F (P ), Drr

S (P ) = ∆S(P ), (2.4)

where we have used Feynman gauge.
To handle divergences we use dimensional regularization. This means that our inte-

gration measures are∫
P
≡
(
µ2eγ

4π

)ε ∫
dDP

(2π)D ,
∫
p
≡
(
µ2eγ

4π

)ε ∫
ddp

(2π)d , (2.5)

where D= 4−2ε and d= 3−2ε.

2.1 Hard thermal loops from transport equations

As of yet, two-loop hard thermal loops are only known for quantum electrodynamics [26–
28]. These calculations are quite involved and have so far been done using Feynman
diagrams.2 To make our calculations tractable, we instead use transport equations. This
method is well-known, and is a clean way to derive hard thermal loops at leading order [12,
35–37]. Here we extend the method to the next order. Essentially we use that fields with
typical momenta p∼T can be treated as quasiparticles. For example, we can describe
electrons with the Vlasov equation:

Ṅ±F +~v ·~∇N±F ±e
(
~E+~v× ~B

)
·~∇pN±F = 0. (2.6)

If we now assume that the electrons are driven slightly away from equilibrium by the electric
field, we can expand the electron distribution as

N±F = 1
2−nF−δn

±
F , v ·∂δn±F (~p,x) =∓e~v · ~E d

dp
nF (p), (2.7)

vµ = (1,~v ), ~v ≡ ~p

p0 , nF (p) =
(
ep/T +1

)−1
. (2.8)

The photon self-energy then follows from the electron current [12, 35]:

∂µF
νµ = e

〈
Ψ̄γνΨ

〉
∼ e

∫
p
vµ(N+

F −N
−
F ), (2.9)

1See [32, 33] for a clear diagrammatic representation of Feynman rules in this basis.
2See [34] for results with general external momenta.
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where 〈., .〉 denotes the average over hard modes with characteristic momenta p∼T . That is

∂µF
νµ =−e

∫
d4p

(2π)4Tr
[
/pγ

ν
]
∆F (p) = 2e

∫
d3p

(2π)3 v
ν
[
N+(p,x)−N−(p,x)

]
(2.10)

= 4e2
∫

d3p

(2π)3
vν~v · ~E (x)
v ·K

n′F (p) =−e
2T 2

3

∫
dΩv

4π
vν~v · ~E (x)
v ·K

≡ΠνµAµ, (2.11)

where ~E =−~∇A0− ~̇A.
Note that the kinetic approach works because quantum fields with p∼ eT behave

classically at high temperatures. In generic situations we have no right to expect classical
equations of motion. We should also remember that scattering processes become important
at time scales of order t∼ (e4T )−1 [11, 23–25], and that our results only hold for soft fields:
Ȧ∼ ~∇A∼ (eT )A.

2.2 Using kinetic theory beyond leading order

There are two ways that we can go about applying the kinetic approach at two loops.
First, we can include resummed self-energies directly in the transport equations and use
this to derive effective particle distributions [37]. While possible, this approach involves
evaluating self-energies at finite external momentum. Instead we elect to only use leading-
order transport equations — two-loop results are then obtained by calculating corrections
to the fermion current

〈
Ψ̄γνΨ

〉
. At first glance it seems like we are back to brute-force

evaluating diagrams. Be that as it may, working with currents is considerably easier than
calculating self energies. And as we shall see, the results for different kinds of particles
involve the same compact expressions.

2.3 Two-loop hard thermal loops

Let us demonstrate our approach for quantum electrodynamics. The two-loop contribution
to the electron current is shown in figure 1a:〈

Ψ̄γµΨ
〉

2-loop
= e2

∫
PQ

Fµ
{

∆F (P )∆V (Q)
[
∆R(P )∆R(P+Q)+∆A(P )∆A(P+Q)

]
+∆F (P )∆F (P+Q)

[
∆R(P )∆A(Q)+∆A(P )∆R(Q)

]
+∆F (P+Q)∆V (Q)

[
∆R(P )∆A(P )

]}
, (2.12)

where Fµ =Tr/Pγµ /Pγα
(
/P+ /Q

)
γα =−4(D−2)

[
(P+Q)2pµ−P 2qµ−Q2pµ

]
.

To evaluate the integrals we have to define

δ(p2)∆R/A(P ). (2.13)

This expression contains terms with two delta functions — these must be regulated. To
do so we use the original approach [30]:

πδ(P 2)∆R/A(P ) = −i
P 2∓iηp0

η

P 4+η2 =±p0
[

η

P 4+η2

]2
−i P 2η

(P 4+η2)2 (2.14)

=±p0
[
πδ(P 2)

]2
− i2

∂

∂p2
0

[
πδ(P 2)

]
. (2.15)
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For a given topology all
[
πδ(P 2)

]2 terms cancel, while the remaining pieces can be handled
by integration-by-parts.

As an example, consider∫
PQ

Fµ∆F (P )∆V (Q)
[
∆R(P )∆R(P+Q)+∆A(P )∆A(P+Q)

]
. (2.16)

After using equation (2.14) we find

πδ(P 2)
[
∆R(P )∆R(P+Q)+∆A(P )∆A(P+Q)

]
(2.17)

= p0
[
πδ(P 2)

]2 [
∆R(P+Q)−∆A(P+Q)

]
− i2

∂

∂p2
0

[
πδ(P 2)

][
∆R(P+Q)+∆A(P+Q)

]
.

The first term vanishes, so we are left with the second term. Now, for the P 2qµ term to
contribute, the ∂

∂p2
0
derivative must hit P 2. So this term is proportional to∫

PQ
qµ∆F (P )∆V (Q)

[ 1
(P+Q)2

]
. (2.18)

Naively we expect a collinear (~p ‖ ~q ) divergence from the angular integration, but these
cancel once we sum all contributions.

The pµ(P+Q)2 factor results in a term proportional to∫
PQ

NV (q)
qp

{[
∂p0NF−∂p0NF

]
vµp−

vµp−nµ

p
(NF−NF )

}
, nµ =

(
1,~0

)
. (2.19)

Finally, the Q2pµ term does not contribute as ∆V (Q) sets Q2 = 0.
The remaining terms in

〈
Ψ̄γµΨ

〉
2-loop

are obtained in the same way. After performing
the integrals and using the formulas in appendix A, we find

Πµν
NLO(K) =−e

4T 2

8π2

∫
dΩv

4π

{
vµvν

[
(k0)2

(v ·K)2−
2k0

v ·K

]
+[vµnν+nµvν ] k0

v ·K
−nµnν

}
, (2.20)

which can be compared with the leading-order self-energy

Πµν
LO(K) =−e

2T 2

3

∫
dΩv

4π

[
nµnν+vµvν k0

v ·K

]
. (2.21)

This result is in agreement with previous calculations [27, 28]. For completeness we have
to add power-corrections. This is done in section 3.4.

2.4 Procedure for general diagrams

Irrespective of the diagram or particle, the only terms that contribute are of the form∫
PQ

(apµ+bqµ)(P+Q)2∆X(P )∆Y (Q)
[
∆R(P )∆R(P+Q)+∆A(P )∆A(P+Q)

]
. (2.22)

The piece going with pµ give terms proportional to∫
PQ

NY (q)
qp

{[
∂p0NX(p)−∂p0NX(p)

]
vµp−

vµp−nµ

p
(NX(p)−NX(p))

}
, (2.23)
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and the term multiplying qµ give terms of the form∫
PQ

vµq

(
NY (q)−NY (q)

) 1
p2

{
∂p0

[
NX(p)+NX(p)

]
− 1
p

(
NX(p)+NX(p)

)}
. (2.24)

In our example we only had the first type, but the second type of terms appears in non-
abelian theories. Physically the first Lorentz structure corresponds to deviations from the
ballistic approximation:

vµp = pµ

p0 → vµp−
m2

2p2

[
vµp−nµ

]
+. . . , (2.25)

where m2∼
∫
p−1nB/F (p) represents hard charges obtaining a thermal mass.

The second structure, on the other hand, represents a renormalization of the hard
distributions themselves. Connected with this the momentum integral in equation (2.24)
contain divergences.3

We also note that the calculation is simpler in Feynman gauge. In particular, scalar
and vector currents contain terms of the form〈

AaµR
iRj

〉
,
〈
AaµA

b,νAcν

〉
, (2.26)

which at two loops give the diagrams shown in figures 2a and 2b. However, in Feynman
gauge these diagrams vanish. In addition, the ghost-current shown in figure 1d does not
contribute at two loops in Feynman gauge.

3 Generic models

We denote scalar particles by i, j,k, . . .; vector particles by a,b,c, . . .; and fermions by
I,J,K, . . .. To parametrize a general model we use the Lagrangian [38–41]

L=−1
2Ri(−δij∂µ∂

µ+µij)Rj−
1
4F

a
µνF

µν,bδab−
1

2ξa
(∂µAa,µ)2

−∂µηa∂µηa+iψ†,Iσµ∂µψI−
1
2(M IJψIψJ+h.c.)+Lint

Lint =− 1
4!λ

ijkmRiRjRkRm−
1
2(Y iIJRiψIψJ+h.c) (3.1)

+ga,IJ Aaµψ
†,JσµψI−gajkAaµRj∂µRk−

1
2g

a
jng

b
knA

a
µA

µ,bRjRk−gabcAµ,aAν,b∂µAcν

− 1
4g

abegcdeAµaAνbAcµA
d
ν+gabcAaµηb∂µηc.

In this notation Ri are scalar fields in a real basis; Aaµ are vector bosons; ηa are ghosts;
and ψI are Weyl fermions [42]. The sigma matrices are defined as

σµ =
(
1,σi

)
, σµ =

(
−1,σi

)
, (3.2)

3These cancel once counter-term insertions are added. Note that there is a subtlety with treating this
divergence as discussed in appendix B.
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and satisfy

{σµ,σν}=−2gµν , gµν = diag
(
−1,~1

)
. (3.3)

The couplings are normalized such that for the Standard-model we have

δabTr
[
gaV g

b
V

]
=−24g2

s−6g2
w, δabTr

[
gaSg

b
S

]
=−3g2

w−g2
Y ,

δabTr
[
gaF g

b
F

]
=NF

(
16g2

s+6g2
w+ 10

3 g
2
Y

)
.

For a generic model these coupling tensors can be calculated by hand, but they are also
straightforward to find from GroupMath [43].

To calculate hard thermal loops we use resummed distributions. For a general model
these are [12, 44]

N±V →Nab,±
V = δab

[1
2 +nB(p0)

]
+δNab,±

V (p0, ~p), (3.4)

N±S →N ij,±
S = δij

[1
2 +nB(p0)

]
+δN ij,±

S (p0, ~p), (3.5)

N±F →N I,±
F,J = δIJ

[1
2−nF (p0)

]
−δN I,±

F,J (p0, ~p), (3.6)

where

nB(p) =
(
ep/T−1

)−1
, nF (p) =

(
ep/T +1

)−1
. (3.7)

We can condense the notation further:

δNab
V ≡−igabcδN c

V , δN ij
S ≡−ig

c
ijδN

c
S , δN I

F,J ≡ g
c,I
J δN c

F , (3.8)

where the distributions satisfy4

v ·∂δN±,aX =∓~v · ~E an′X(p), ~E a =− ~̇Aa−~∇A0,a. (3.9)

4We are for the moment omitting higher-point functions. These are calculated in section 4.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m)

Figure 1. Figures (a) and (i) represent corrections to the fermion current; figures (b), (c), (e),
(k), (j), and (e) represent corrections to the vector current; figure (d) represents corrections to the
ghost current; figures (f), (l), (m), and (h) represent corrections to the scalar current.

(a) (b) (c) (d)

Figure 2. Additional diagrams that contribute to the vector self-energy at next-to-leading order.
Diagrams (c) and (d) correspond to mass insertions, and diagrams (a) and (b) vanish in Feynman
gauge.
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3.1 Conventions and structure of the calculation

All correlators that contribute at next-to-leading order are shown in figures 1 and 2, and
the details are given in appendices B, C, D, and E. We use

Πµν
1 =

∫
dΩv

4π

(
nµnν+k0 v

µvν

v ·K

)
, nµ =

(
1,~0

)
(3.10)

Πµν
2 =

∫
dΩv

4π

{
vµvν

[
(k0)2

(v ·K)2−
2k0

v ·K

]
+[vµnν+nµvν ] k0

v ·K
−nµnν

}
, (3.11)

to signify the two Lorentz structures that appear. Note that these satisfy KµΠµν = 0, so
the self-energy is automatically transverse.

To derive the self-energy we need various currents:

∂µF
νµ,a = ja,νF +ja,νS +ja,νg +ja,νV . (3.12)

The fermion current is given by

ja,νF = ga,JI

〈
ψ†,IσνψJ

〉
. (3.13)

The scalar current is

ja,νS = 1
2!g

a
ij 〈∂νRiRj−Ri∂νRj〉 . (3.14)

The ghost current is

ja,νg = gabc
〈
ηb∂µηc

〉
. (3.15)

Finally, the vector current is

ja,νV =−gabc
〈
∂µA

ν,bAµ,c+Aν,b∂ ·Ac+Abµ∂νAµ,c−Ab ·∂Aν,c
〉
. (3.16)

3.2 One-loop hard thermal loops

As mentioned, one-loop results are well known [12, 35, 45, 46]. With our notation the
results are

Πµν
LO = Πµν

V +Πµν
F +Πµν

S , (3.17)

where

Πµν
V =−(D−2)Tr

[
gaV g

b
V

]∫
p
n′B(p)Πµν

1 = T 2

3 Tr
[
gaV g

b
V

]
Πµν

1 +O(ε), (3.18)

Πµν
F = 2Tr

[
gaF g

b
F

]∫
p
n′F (p)Πµν

1 =−T
2

6 Tr
[
gaF g

b
F

]
Πµν

1 +O(ε), (3.19)

Πµν
S =−Tr

[
gaSg

b
S

]∫
p
n′B(p)Πµν

1 = T 2

6 Tr
[
gaSg

b
S

]
Πµν

1 +O(ε). (3.20)
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3.3 Two-loop hard thermal loops

At two loops various diagrams introduce factors of D= 4−2ε; below we have only kept
the O(ε0) contribution, but the full results are given in the appendices. We separate the
result as

Πµν,ab
NLO =−

[
Πµν,ab

V +Πµν,ab
SV +Πµν,ab

FV +Πµν,ab
SF

]
, (3.21)

signifying pure vector, scalar-vector, fermion-vector, and scalar-fermion-vector type inter-
actions respectively. All repeated indices are summed.

Let us start with the pure-vector contribution:

Πµν,ab
V =T 2 11log( µe

γ

4πT )+6k0L[k]− 1
2

36π2 gadcV gcefV gdfnV genbV Πµν
1 −

T 2

12π2 g
adc
V gcefV gdfnV genbV Πµν

2 .

(3.22)

The scalar-vector contribution is

Πµν,ab
SV = T 2

192π2Tr
[
gaSg

b
S

]
jl
λjlnnΠµν

2 + 1
8π2Tr

[
gaSg

b
S

]
ij
µijΠµν

2

−T 2 log µeγ

4πT +1
288π2 Tr [gaSgcS ]Tr

[
gcSg

b
S

]
Πµν

1 −
T 2

32π2Tr
[
gaSg

b
Sg

c
Sg

c
S

]
Πµν

2

−T 2 log µeγ

4πT +k0L[K]
24π2 gaecV gbdcV Tr

[
gdSg

e
S

]
Πµν

1 + T 2

48π2 g
aec
V gbdcV Tr

[
gdSg

e
S

]
Πµν

2

+T 2 log µeγ

4πT −3
72π2

{
Tr [gaSgcS ]Tr

[
gcV g

b
V

]
+Tr [gaV gcV ]Tr

[
gcSg

b
S

]}
Πµν

1 . (3.23)

The fermion-vector contribution is

Πµν,ab
FV =T 2 log µeγ

4πT +k0L[K]
24π2 gaceV gbcdV Tr

[
gdF g

e
F

]
Πµν

1

−T 2 log µeγ

4πT −
1
2 +log(4)

72π2 TrgaF gcFTrgcF gbFΠµν
1

−T 2 log µeγ

4πT + 3
2−8log(2)

288π2

{
Tr [gaF gcF ]Tr

[
gcV g

b
V

]
+Tr [gaV gcV ]Tr

[
gcF g

b
F

]}
Πµν

1

+ T 2

16π2Trg
c
F g

c
F g

a
F g

b
FΠµν

2 −
T 2

48π2 g
ace
V gbcdV Tr

[
gdF g

e
F

]
Πµν

2 + 1
8π2Tr

[
gaFMFM

†
F g

b
F

]
Πµν

2 .

(3.24)

And finally, the mixed fermion-scalar contribution is

Πµν,ab
SF =T 2 5log µeγ

4πT −1+8log(2)
576π2

{
Tr [gaSgcS ]Tr

[
gcF g

b
F

]
+Tr [gaF gcF ]Tr

[
gcSg

b
S

]}
Πµν

1

+ T 2

32π2

[
gaF g

b
F

]I
J

(Y Y c)JI Πµν
2 + T 2

192π2

[
gaSg

b
S

]
ij

(Y Y c+Y cY )ijΠµν
2 . (3.25)

In the traces over generators the contractions are made with the conventions

Tr
[
gaV g

b
V

]
= gacdgbdc, Tr

[
gaSg

b
S

]
= gaijg

b
ji, Tr

[
gaF g

b
F

]
= ga,IJ gb,JI . (3.26)
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Note that our two-loop results in equation (3.22) ensures that

Πµν = Πµν
LO+Πµν

NLO, (3.27)

is renormalization-scale invariant. As such one should choose µ∼T to ensure that no large
logarithms are present.

3.4 Power corrections from one-loop diagrams

Power corrections modify the kinetic terms and are, for example, responsible for anomalous
dimensions. We forgo using transport equations since the diagrams are straightforward to
evaluate [27, 28, 47].

We use a convention where the Debye mass is given by

(m2
D)ab =− lim

k0→0
Πµν,ab

NLO , (3.28)

with Πµν;ab
NLO defined by equation (3.21). This means that we have rescaled our vector

fields to make the A0 kinetic term canonical when k0 = 0. To wit, we have moved all
renormalization-scale dependence (and some finite pieces) away from the power correc-
tions.5 The original results — before field-redefinitions — are given in appendix E.4.

That said, the scalar loop gives

Πµν,ab
S (K) =−Tr

[
gaSg

b
S

]∫
P

(2P+K)µ (2P+K)ν ∆S(P )∆R(P+K). (3.29)

We are only interested in the sub-leading correction scaling as K2∼ k2∼ (gT )2. After
expanding the integral, and adding counter-terms, we find

gµνΠµν,ab
S (K) =Tr

[
gaSg

b
S

] K2

16π2

{
k0L(K)− 3

3

}
, (3.30)

Π00,ab
S (K) =−Tr

[
gaSg

b
S

] k2

16π2

{
1
3

(k0)2

k2 (k0L(K)−1)
}

(3.31)

The fermion loop gives

Πµν,ab
F (K) =Tr

[
gaF g

b
F

]∫
P
Fµν∆F (P )∆R(P+K), (3.32)

Fµν = 2
[
−gµν

(
K ·P+P 2

)
+2pµpν+kµpν+kνpµ

]
. (3.33)

After expanding the integral, and adding counter-terms, we find

gµνΠµν,ab
F (K) =Tr

[
gaF g

b
F

] K2

16π2

{
4k0L(K)+ 4

3

}
, (3.34)

Π00,ab
F (K) =−Tr

[
gaF g

b
F

] k2

16π2

{
2
3k

0
(

3− (k0)2

k2

)
L(K)+ 2

3
(k0)2

k2

}
.

5Our convention makes the Lorentz structure easy at two loops, in addition, the result is manifestly
renormalization-scale invariant.
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For non-abelian diagrams we group ghosts and vectors together. After adding counter-
terms we find

gµνΠµν,ab
V (K) =Tr

[
gaV g

b
V

] K2

16π2

{
10k0L(K)+ 4

3

}
, (3.35)

Π00,ab
V (K) =−Tr

[
gaV g

b
V

] k2

16π2

{
2
3k

0
(

6− (k0)2

k2

)
L(K)+ 2(k0)2

3k2

}
.

3.5 Transverse and longitudinal self-energies

It is useful to write the vector self-energy in terms of transverse and longitudinal compo-
nents [48]:

Πµν = ΠTP
µν
T +ΠLP

µν
L , P ijT = δij− p

ipj

p2 , PµνL = gµν−K
µKν

K2 −PµνT . (3.36)

We then find

ΠT = 1
d−1

[
gµνΠµν+K2

k2 Π00
]
, ΠL =−K

2

k2 Π00. (3.37)

Since our results are built from the Lorentz structures Πµν
1 and Πµν

2 defined in equa-
tion (3.10), we only need to find the traces of these. To wit

Π00
1 = 1−k0L[K], gµνΠµν

1 =−1, (3.38)

Π00
2 =−1− (k0)2

K2 , gµνΠµν
2 = 1+2k0L[K], (3.39)

L[K]≡ 1
2k log k

0+k+iη
k0−k+η , η= 0+, (3.40)

where we have used known results for the angular integrals [28, 49].

3.6 Examples

Consider now the gluon self-energy with Nq fundamental quarks:6

Πµν
NLO =

g4
s(Nq+6)T 2

[
(4Nq−66) log µeγ

4πT −2Nq+8Nq log(2)+3−32k0L[K]
]

288π2 Πµν
1 (3.41)

− g
4
s(Nq−18)T 2

48π2 Πµν
2 . (3.42)

Next, the Standard-Model. The gluon self-energy is

Πµν
NLO =−

g4
sT

2
[
14log µeγ

4πT +3−16log(2)+12k0L[K]
]

8π2 Πµν
1 (3.43)

− g
2
sT

2 [−48g2
s+27g2

w+11g2
Y +12y2

t

]
192π2 Πµν

2 . (3.44)

6This result agrees with a recent independent calculation [50].
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Here gs is the strong coupling constant, gw the weak one, gY is the hypercharge coupling,
and yt is the top-Yukawa coupling.

Finally, take an SO(10) gauge theory with NF fermions in the spinor (16) representa-
tion, and a 45⊕16 Higgs. The gauge self-energy is

Πµν
NLO =

g4
x(NF +14)T 2

[
(2NF−41) log µeγ

4πT +NF (log(16)−1)+5−24k0L[K]
]

36π2 Πµν
1 (3.45)

− g
4
x(71NF−1415)T 2

192π2 Πµν
2 . (3.46)

4 Higher-point hard thermal loops

So far we have focused on the self-energy, but higher-point correlators can be extracted from
the results in section 3.3. In particular, it is well-known that at one loop all higher-point
functions can be derived by using [12, 35, 44][

v ·D,δN±X
]a

=∓~v · ~E an′X(p), (4.1)

where the covariant derivative is [DµN ]a = ∂µN
a+gabcAbµN c. We can then expand the

currents as

jaµ = Πab
µνA

ν,b+ 1
2ΓabcµνρAν,bAρ,c+. . . (4.2)

To find these higher-point functions we can use the results in section 3.1 together with the
replacements:

CabΠµν
1 →Cab

∫
dΩv

4π

[
vµ~v · ~E
v ·D

]b
, (4.3)

DabΠµν
2 →Dab

∫
dΩv

4π

{
vµ
(
− D0

(v ·D)2−
1
v ·D

)
~v · ~E− v

µ−nµ

v ·D
~v · ~E

}b
, (4.4)

where now Ea,i = ∂iA0,a−∂0Ai,a+gabcAi,bA0,c.
Consider the first Lorentz-structure, which coincides with the one-loop one. The cor-

responding three-point vertex is well-known [35, 45, 51]:

CabΠµν
1 →−iC

aegebcΓµνρ1 (P,Q,R), Γµνρ1 (P,Q,R) =
∫
dΩv

4π
vµvνvρ

v ·P

[
q0

v ·Q
− r0

v ·R

]
. (4.5)

Likewise, it is possible to find the three-point vertex corresponding to Πµν
2 by expanding

the covariant derivatives. Yet it is easier to exploit that this new Lorentz structure arises
because the ballistic approximation ceases to hold:

vµp → vµp−
m2

2p2 (vµp−nµ)+. . . (4.6)
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As such we can use equation (4.5) — together with the correction above7 — and collect
all terms proportional to m2:

DabΠµν
2 →−iD

aegebcΓµνρ2 (P,Q,R), (4.7)

Γµνρ2 (P,Q,R) =
∫
dΩv

4π
−2vµvνvρ+(nµvνvρ+perm)

v ·P

[
q0

v ·Q
− r0

v ·R

]
(4.8)

+
∫
dΩv

4π
vµvνvρ

v ·P

[
p0

v ·P

(
q0

v ·Q
− r0

v ·R

)
+
(

(q0)2

(v ·Q)2−
(r0)2

(v ·R)2

)]
. (4.9)

Note that the Ward identity is automatically satisfied since

PµΓµνρ1 (P,Q,R) = Πνρ
1 (Q)−Πνρ

1 (R), (4.10)
PµΓµνρ2 (P,Q,R) = Πνρ

2 (Q)−Πνρ
2 (R). (4.11)

The same procedure can be applied to four-point interactions, which at one-loop are
given in [45, 51].

5 Conclusions

In this paper we have provided hard thermal loops, for vector boson self-energies, at two-
loops for any renormalizable model. This was made possible by using transport equations
to simplify the calculations — thus extending known one-loop methods [12, 35–37]. In
particular, this approach provides compact expression for each particle type; the result is
independent of the matching scale; and known results for Debye masses are reproduced in
the appropriate limit. We also demonstrated how higher-point functions can be extracted
from the results.

The results of this paper can be used to study particle production in the early universe;
transport coefficients; and wall speeds in first-order phase transitions [52]. The effect of
including two-loop contributions is likely significant for the strong interaction, since the
coupling constant is rather large NαS ∼ 0.3 when T ∼ 100 GeV.

The next step is to provide two-loop hard thermal loops for fermion propagators.
Performing these calculations for quarks, by using Feynman diagrams, is likely arduous
beyond leading order. However, we expect that similar methods as used in this paper will
prove useful in this endeavour.
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A Derivatives of resummed distributions

The distributions satisfy

δN±X =∓epαF
αβ

p·∂
∂βp nX(p0). (A.1)

So taking the derivative ∂
∂p0 and going to momentum space we find∫

pdp
∂

∂p0 δN
±
X→∓

∫
dp

[
k0

(v ·K)2−
1

v ·K

]
~v · ~E (K)n′X(p). (A.2)

A.1 Momentum integrals

We use dimensional regularization where d= 3−2ε. When evaluating the self-energy we
encounter the integrals

T 2ε
∫
dppd−1n′B(p) =−1

3π
2T 2+ 1

3π
2T 2(−24log(A)+3+log(4)+2log(π))ε, (A.3)

T 2ε
∫
dppd−1n′F (p) =−1

6π
2T 2+ 1

6π
2T 2(−24log(A)+3+log(16)+2log(π))ε, (A.4)

T 2ε
∫
dppd−3nB(p) =− T2ε+O (ε) , T 2ε

∫
dppd−3nF (p) =T log(2)+O (ε) , (A.5)

T 2ε
∫
dppd−3n′B(p) = 1

2 +O (ε) , T 2ε
∫
dppd−3n′F (p) =−1

2 +O (ε) (A.6)

Here A≈ 1.28243 is the Glaisher constant.

B Non-abelian gauge theories

Note that all (collinear) divergences resulting from angular integrations cancel. We will
however obtain divergences — real ones — from radial integrations:

∫
p
nB(p)
p2 ∼− T

2ε . The ε
poles from these terms cancel once zero-temperature counterterms are used.

Throughout this and the following sections we keep factors of D= 4−2ε explicit. There
are four contributions. Corrections to the vector current are shown in figures 1c, 1e, and 1j;
sunset corrections to the ghost current are shown in figure 1d. We also note that diagram 2b
vanishes.

B.1 Vector current

We start with the vector current. The sunset diagram gives

Πµ
1c =−1

4g
abcghgngdef

∫
PQ
Fµ
{
δenδcd∆bh

V (P )∆gf
V (Q)

[
∆R(P )∆R(P+Q)+∆A(P )∆A(P+Q)

]
δcdδgf∆bh

V (P )∆en
V (P+Q)

[
∆R(P )∆A(Q)+∆A(P )∆R(Q)

]
δcdδbh∆gf

V (Q)∆en
V (P+Q)∆A(P )∆R(P )

}
(B.1)
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where

Fµ(P,Q) =(P+Q)2 [(5−4D)pµ+2(2D−3)qµ]+P 2 [(5−6D)pµ]
+Q2 [(11−8D)pµ+2(3−2D)qµ] . (B.2)

We can rewrite the terms so that they all multiply Λab = gancV gcefV gnfnV genbV . Explicitly,

Πµ
1c =Λab (4D−5)

4

∫
PQ

nB(q) 1
pq

{
∂p0

[
N(p)V −NV (p)

]
vµp−

vµp−nµ

p

(
NV (p)−NV (p)

)}b
+Λab (2D−3)

4

∫
PQ

vµp
1
q2
(
nB(q)−qn′B(q)

)(
NV (p)−NV (p)

)b
(B.3)

We now turn to the bubble diagram. We find

Πµ
1j = 1

4g
abl
V gecgV gfdgV δdl

∫
PQ

Fµ∆bc
V (P )

(
∆R(P )+∆A(p)

)
∆fg
V (Q), Fµ =−4(D−1)2pµ.

The result is

Πµ
1j =−(D−1)2

2 Λab
∫
PQ

nB(q) 1
pq

{
∂p0

[
NV (p)−NV (p)

]
vµp−

vµp−nµ

p

(
NV (p)−NV (p)

)}b
.

B.2 Ghost diagrams

We now consider diagrams with internal ghosts. There are two contributions: the ghost-
current with an internal vector and the vector current with a ghost loop — shown in
figures 1d and 1e respectively. The latter diagram vanish, so we only need the former one:

Πµ
1e = 1

2g
abc
V ghgnV gdefV

∫
PQ

Fµ
{
δenδcd∆bh

V (P )∆,gf
V (Q)

[
∆R(P )∆R(P+Q)+∆A(P )∆A(P+Q)

]
δcdδgf∆bh

V (P )∆en
V (P+Q)

[
∆R(P )∆A(Q)+∆A(P )∆R(Q)

]
δcdδbh∆gf

V (Q)∆en
V (P+Q)∆A(P )∆R(P )

}
, (B.4)

Fµ =(P+Q)2(qµ−pµ/2)+P 2pµ/2−Q2
(
qµ+ 3

2p
µ
)
.

We find

Πµ
1e =−Λab 1

4

∫
PQ

nB(q)
pq

{
∂p0

[
NV (p)−NV (p)

]
vµp−

vµp−nµ

p

(
NV (p)−NV (p)

)}b
− 1

4Λab
∫
PQ

vµp
nB(q)−qn′B(q)

q2

(
NV (p)−NV (p)

)b
. (B.5)

B.3 Total contribution from non-abelian diagrams

We find

Πµν
1c +Πµν

1j +Πµν
1e =T 2 (D−2)2

48π2 ΛabΠµν
2 −2(D−2)ΛabIVVΠµν

1 , (B.6)
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where

IVV =
∫
PQ

n′B(q) 1
p2

(
n′B(p)−nB(p)

p

)
=T 2

{
1

48π2ε
+

(24log(A)+4log µ
4πT +2γ−1)

48π2

}
,

and Λab = gancV gcefV gnfnV genbV .
Besides the above terms, the term going with IV V produces an additional term. In

particular, the terms proportional to IV V involves momenta flowing through the diagram
before it is absorbed by the resummed distribution. So formally we have to use retarded
and advanced propagators that depend on the background field. However, in practice it
is much easier to just shift ∆R/A(P )→∆R/A(P+K). Essentially the only change is that
log µ

4πT → log µ
4πT +k0L[K] for this contribution. The same replacement holds for all other

divergent terms of this type.

C Fermion diagrams

C.1 Fermion current

We now turn diagrams with fermions. We will omit collinear divergences as they cancel
once we sum fermion and vector currents. The fermion current gives

Πµ
1a =

gaNI gcJK g
dL
M

∫
PQ

Fµ(P,Q)
{
δMN δ

K
L ∆I

F,J(P )∆cd
V (Q)

[
∆R(P )∆R(P+Q)+∆A(P )∆A(P+Q)

]
δcdδMN ∆I

F,J(P )∆K
F,L(P+Q)

[
∆R(P )∆A(Q)+∆A(P )∆R(Q)

]
δMN δ

I
J∆K

F,L(P+Q)∆cd
V (Q)

[
∆R(P )∆A(P )

]}
,

Fµ = 2(D−2)
[
(P+Q)2pµ−P 2qµ−Q2pµ

]
(C.1)

We find

Πµ
1a =−D−2

2 TrgcF gcF gaF gbF∫
PQ

NB(q)−NF (q)
pq

{
∂p0

[
N+
F (p)−N−F (p)

]
vµp−

vµp−nµ

p
(N+

F (p)−N−F (p))
}b
.

Here we should use the leading-order relation: NB(q)−NF (q) =nB(q)+nF (q). After in-
serting the resummed propagators and performing the integrals we find

Πµν
1a =−(D−2)T 2

32π2 TrgcF gcF gaF gbFΠµν
2 . (C.2)

C.2 Vector current

Consider now fermion corrections to the vector current:

Πµ
1b =− 1

2g
ace
V gd,IJ gf,KL

∫
PQ

FµδJKδ
ef∆cd

V (P )∆L
F,I(Q)

[
∆R(P )∆R(P+Q)+∆A(P )∆A(P+Q)

]
+δILδef∆cd

V (P )∆J
F,K(P+Q)

[
∆R(P )∆A(Q)+∆A(P )∆R(Q)

]
+δefδcd∆J

F,K(P+Q)∆L
F,I(Q)

[
∆R(P )∆A(P )

]
, (C.3)
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where

Fµ =−2i
{

(P+Q)2 [(D−2)pµ+2qµ]−(D−2)P 2pµ+Q2 [(D−4)pµ−2qµ]
}
. (C.4)

We are left with

Πµ
1b =− (D−2)

2 gaceV gbcdV Tr
[
gdF g

e
F

]∫
PQ

nF (q)
qp{

∂p0

[
NV (p)−NV (p)

]
vµp−

(vµp−nµ)
p

(
NV (p)−NV (p)

)}b

+igaceV Tr
[
(gcF geF−geF gcF )gbF

]∫
PQ

(NF (q)−NF (q))b
vµq
p2

{
n′B(p)−nB(p)

p

}
(C.5)

This result can be further simplified because −igaceV Tr
[
(gcF gbF−gbF gcF )geF

]
= gaceV gcbdV Tr

[
gdF g

e
F

]
,

so the entire diagram is proportional to the structure gaceV gbcdV Tr
[
gdF g

e
F

]
. In any case, after

inserting the resummed propagators and performing the integrals we find

Πµν
1b = (D−2) T 2

96π2 g
ace
V gbcdV Tr

[
gdF g

e
F

]
Πµν

2 +T 2gaceV gbcdV Tr
[
gdF g

e
F

]
IFVΠµν

1 , (C.6)

where

IFV =
∫
PQ

n′F (q) 1
p2

(
n′B(p)−nB(p)

p

)
=T 2

{
1

96π2ε
−
−24logA−4log µ

4πT −2γ+1+log(4)
96π2

}
,

(C.7)
contains divergences that cancel against counter-term insertions.

C.3 Yukawa diagrams

There are two diagrams with Yukawa couplings, one from the fermion current and one
from the scalar current. The sum of the two gives

Πµν
1h+Πµν

1i =− T 2

32π2

[
gaF g

b
F

]I
J

(Y Y c)JI Πµν
2 −

T 2

192π2

[
gaSg

b
S

]
ij

(Y Y c+Y cY )ijΠµν
2 (C.8)

D Scalar Diagrams

D.1 Scalar current

The vector sunset gives

Πµ
1f = 1

2g
a
nig

c
jkg

d
lm

∫
PQ

Fµ
{
δklδmn∆ij

S (P )∆cd
V (Q)

[
∆R(P )∆R(P+Q)+∆A(P )∆A(P+Q)

]
+δmnδcd∆ij

S (P )∆kl
S (P+Q)

[
∆R(P )∆A(Q)+∆A(P )∆R(Q)

]
+δijδnm∆cd

V (Q)∆kl
S (P+Q)

[
∆R(P )∆A(P )

]}
, (D.1)

Fµ = 4ipµ
{

(P+Q)2+P 2− 1
2Q

2
}
.
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Since the scalar-vector bubble give the same combination of couplings we can group the
diagrams together. We find

Πµ
1f+Πµ

1l =−
D+2

8 Tr
[
gaSg

b
Sg

c
Sg

c
S

]
∫
PQ

nB(q)
qp

{
∂p0

[
NS(p)−NS(p)

]
vµp−

(vµp−nµ)
p

(
NS(p)−NS(p)

)}b
.

After performing the integrals we obtain

Πµν
1f +Πµν

1l =T 2(D+2)
192π2 Tr

[
gaSg

b
Sg

c
Sg

c
S

]
Πµν

2 . (D.2)

The scalar-bubble gives

Πµ
1m = 1

4g
a
liλ

jlmn
∫
PQ

Fµδkl∆ij
S (P )∆mn

S (Q)
[
∆R(P )+∆A(P )

]
Fµ = 2pµ, (D.3)

which simplify to

Πµ
1m = 1

8
[
gaSg

b
S

]
jl
λjlnn

∫
PQ

nB(q)
qp

{
∂p0

[
NS(p)−NS(p)

]
vµp−

(vµp−nµ)
p

(
NS(p)−NS(p)

)}b
.

After performing the integrals we find

Πµν
1m =− T 2

192π2Tr
[
gaSg

b
S

]
jl
λjlnnΠµν

2 . (D.4)

We can also have scalar-mass insertions from one loop diagrams:

Πµ
2d = igakiµ

jk
∫
P

∆ij
S (P )

(
∆R(P )+∆R(P )

)
, (D.5)

which gives

Πµ
2d =

[
gaSg

b
S

]
ij
µjj

∫
P

1
p

{
∂p0

[
NS(p)−NS(p)

]
vµp−

(vµp−nµ)
p

(
NS(p)−NS(p)

)}b
.

After performing the integral we find

Πµν
2d =− 1

8π2Tr
[
gaSg

b
S

]
ij
µjjΠµν

2 . (D.6)

D.2 Vector current

The scalar sunset gives

Πµ
1g = 1

2g
ace
V gdjng

f
mi

∫
PQ

Fµ
{
δnmδef∆cd

V (P )∆ij
S (Q)

[
∆R(P )∆R(P+Q)+∆A(P )∆A(P+Q)

]
+δefδij∆cd

V (P )∆nm
S (P+Q)

[
∆R(P )∆A(Q)+∆A(P )∆R(Q)

]
+δefδcd∆ij

S (Q)∆nm
S (P+Q)

[
∆R(P )∆A(P )

]}
, (D.7)

Fµ = i
[
(4qµ−2pµ)(P+Q)2+2P 2pµ−Q2(6pµ+2qµ)

]
,
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or after simplifying

Πµν
1g =−gaecV gbdcV Tr

[
gdSg

f
S

]∫
PQ

nB(q)
qp

{
∂p0

[
NS(p)−NS(p)

]
vµp−

(vµp−nµ)
p

(
NS(p)−NS(p)

)}b

+ 1
4g

aec
V gbdcV Tr

[
gdSg

f
S

]∫
PQ

(NV (q)−NV (q))b
vµq
p2

{
d0(NS+NS)− 1

p
(NS+NS)

}
(D.8)

After performing the integrals we find

Πµν
1g = T 2

24π2 g
aec
V gbdcV Tr

[
gdSg

e
S

]
Πµν

2 −T
2ISVg

aec
V gbdcV Tr

[
gdSg

e
S

]
Πµν

1 , (D.9)

where

ISV =
∫
PQ

n′B(q) 1
p2

(
n′B(p)−nB(p)

p

)
=
{

1
48π2ε

+
T 2(24log(A)+4log µ

4πT +2γ−1)
48π2

}
,

(D.10)

Finally, the scalar bubble gives

Πµ
1k = 1

2g
ace
V Hdf

V,ij

∫
PQ

Fµδef∆cd
V (P )∆ij

S (Q)
[
∆R(P )+∆A(P )

]
, Fµ =−2(D−1)pµ,

which after simplifying gives

Πµ
1k = (D−1)

2 gaecV gbdcV Tr
[
gdSg

e
S

]
∫
PQ

nB(q)
qp

{
∂p0

[
NV (p)−NV (p)

]
vµp−

(vµp−nµ)
p

(
NV (p)−NV (p)

)}b
.

After doing the integrals we find

Πµν
1g +Πµν

1k =−T 2 (D−3)
48π2 gaecV gbdcV Tr

[
gdSg

e
S

]
Πµν

2 −T
2ISVg

aec
V gbdcV Tr

[
gdSg

e
S

]
Πµν

1 . (D.11)

E Counter-term contributions

To renormalize we need wave-function and coupling counter-terms. These are all well
known [38–40]. The anomalous dimensions are8

γIJ = 1
16π2

{
− [gcF gcF ]IJ

}
, (E.1)

γabV = 1
16π2

{
−5

3Tr[g
a
V g

b
V ]− 2

3Tr[g
a
F g

b
F ]+ 1

6Tr
[
gaSg

b
S

]}
, (E.2)

γabg =− 1
16π2

{1
2Tr

[
gaV g

b
V

]}
, γijS = 1

16π2

{
−2[gcgc]ij

}
. (E.3)

8We here omit all Yukawa couplings since their counter-term contributions cancel.
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Next the vector and fermion-vector trilinear couplings:

δga,IJ = 1
32π2ε

{
−2[gcF gaF gcF ]IJ+6igabcV

[
gbF g

c
F

]I
J
−γabV g

b,I
F,J−g

a,I
F,Kγ

K
J −g

a,K
F,J γ

∗,I
K

}
. (E.4)

δgabc = 1
32π2ε

{
−2Tr

[
gaV g

b
V g

c
V

]
−gabeV γecV −γaeg gebcV −γbeg gaecV

}
. (E.5)

For the scalar-coupling we only need the combination Hab
ij = gaikg

b
kj+gbikgakj . The counter-

term is

δHab
ij =− 1

16π2ε

{8
3g

ace
V gbefV Hcf

ij +2
[
gcS(gaSgbS+gbSgaS)gcS

]
ij

(E.6)

−1
2
[
γin
S H

ab
nj+γ

jn
S H

ab
in +γacV Hcb

ij +γbcV Hac
ij

]}
(E.7)

E.1 Vector loops

Using the counter-terms from section E we find

Πµν
CT,V =−(D−2)

4π2ε
gacdgdefgcfngbnx

∫
P
n′B(p)Πµν

1 , (E.8)

where ∫
P
n′B(p) =−T

2

6 −
T 2

6

(
24log(A)+2log µ

4πT −1
)
ε+O(ε2). (E.9)

E.2 Fermion loops

Using the counter-terms from section E we find

Πµν
CT,F =− 1

4π2ε
gaceV gbcdV Tr

[
gdF g

e
F

]∫
P
n′F (p)Πµν

1 , (E.10)

where ∫
P
n′F (p) =−T

2

12 −
T 2

12

(
24log(A)+2log µ

4πT −1−log4
)
ε+O(ε2). (E.11)

E.3 Scalar loops

Using the counter-terms from appendix E we find

Πµν
CT,S = 1

8π2ε
gaecV gbdcV Tr

[
gdSg

e
S

]∫
P
n′B(p)Πµν

1 . (E.12)

E.4 Power corrections before field redefinitions

The scalar loop gives

gµνΠµν,ab
S (K) =Tr

[
gaSg

b
S

] K2

16π2

{ 1
2ε+log µe

γ

4πT +k0L(K)
}
, (E.13)

Π00,ab
S (K) =−Tr

[
gaSg

b
S

] 1
3
k2

16π2

{
1
2ε+log µe

γ

4πT +1+ (k0)2

k2 (k0L(K)−1)
}

(E.14)

– 20 –



J
H
E
P
0
6
(
2
0
2
3
)
1
3
5

The fermion loop gives

gµνΠµν,ab
F (K) =Tr

[
gaF g

b
F

] K2

16π2

{
2
ε

+4
(

log µe
γ

4πT +log4
)
−2+4k0L(K)

}
, (E.15)

Π00,ab
F (K) =−Tr

[
gaF g

b
F

] 1
3
k2

16π2

{
2
ε

+4
(

log µe
γ

4πT +log4
)
−2

+2k0
(

3− (k0)2

k2

)
L(K)+2(k0)2

k2

}
.

For non-abelian diagrams we group ghosts and vectors together, the result is

gµνΠµν,ab
V (K) =Tr

[
gaV g

b
V

] K2

16π2

{
5
ε

+10log µe
γ

4πT −3+10k0L(K)
}
, (E.16)

Π00,ab
V (K) =−Tr

[
gaV g

b
V

] 1
3
k2

16π2

{
5
ε

+10log µe
γ

4πT −1+2k0
(

6− (k0)2

k2

)
L(K)+2(k0)2

k2

}
.
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