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1 Introduction

Black hole thermodynamics has attracted growing attention ever since the discovery
that the mass variation of a black hole resembles that of ordinary thermodynamic sys-
tems [1]. In the semiclassical setting [2, 3], the well-known relations between temperature
T , Bekenstein-Hawking entropy S, surface gravity κ, and horizon area A as given by

T = κ

2π , S = A

4GN
, (1.1)

where GN is Newton’s constant, has triggered an abundance of explorations into the ther-
modynamic properties of the black hole system. The thermodynamics of asymptotically
Anti-de Sitter (AdS) black holes has received special attention, mainly due to their dual
interpretation in terms of thermal states in the dual conformal field theory (CFT) via the
AdS/CFT correspondence [4]. One famous example of this is the Hawking-Page transition
between a large black hole and thermal radiation in the bulk AdS spacetime and its com-
plementary thermalization transition in the boundary strongly coupled dual CFT [5]. In
this way, some indiscernible phases in the CFTs can be probed [6], such as the triple points
in the QCD diagram [7].

In D-dimensional spacetime, due to viewing the negative cosmological constant Λ as
a thermodynamic state variable [8–11], i.e.

P = − Λ
8πGN

, Λ = −(D − 1)(D − 2)
2L2 , (1.2)
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where L is the bulk curvature radius, investigations concerning the phase behavior of
asymptotically AdS black holes have uncovered a wide landscape. This investigation has
included Van der Waals-like phase transition [12–15], superfluid behaviors [16], black hole
microstructures [17], and multicritical phase transitions [18, 19]. Higher-dimensional origin
of the extended black hole thermodynamics was proposed recently [20]. For more details,
refer to [21] and the references therein and thereof. The first law of the extended thermo-
dynamics for black holes and its dimension-dependent integral Smarr relation read

dM = TdS + ΦdQ+ V dP + ΩbdJ, (1.3)

M = D − 2
D − 3(TS + ΩbJ) + ΦQ− 2

D − 3PV, (1.4)

where the mass M is interpreted as thermodynamic enthalpy instead of internal energy, Q
the electric charge, and J the angular momentum. Φ and Ωb are conjugate potentials, and
V is the thermodynamic volume.

Recently, there has been a suggestion in [6, 22, 23] that the Newton’s constant GN
should be considered as a thermodynamic variable in its own right. This idea originated
from the holographic interpretation of black hole chemistry [24–26], which claims that
the bulk thermodynamics of black holes is equivalent to the boundary thermodynamics of
strongly coupled gauge theories in the large-N limit. Specifically, we have the equivalence
of the bulk AdS and boundary CFT partition functions: ZCFT = ZAdS [27, 28]. Therefore,
according to the holographic duality identification [29–31], for the Einstein gravity, we have

C = ΩD−2L
D−2

16πGN
, (1.5)

where ΩD−2 is the volume of a unit D− 2-sphere, C can be viewed as the central charge of
the dual conformally symmetric SU(N) gauge theory at large N which counts the number
of field degrees of freedom [32]. Thus, varying the bulk cosmological constant means that
both the central charge C of the CFT (or the number of colors N) and the boundary volume
V change [31]. If we propose a theory that the Newton’s constant GN is designed to be
dynamic (which from the perspective of quantum field theory is possible), then possibly
the central charge may be kept fixed so that the dual CFT can remain unchanged even if
Λ is rescaled. In this paradigm, the first law of bulk black hole spacetime thermodynamics
should be written in a mixed form [23]

dM = TdS + φdQ+ VCdP + µbdC + ΩbdJ, (1.6)

where φ, VC , µb are the redefined electric potential, thermodynamic volume, and a new
conjugate thermodynamic potential (also named “color susceptibility”). With this first law
of the mixed thermodynamics, one can study the bulk thermodynamics with an invariable
boundary central charge.

The bulk black hole thermodynamics is well developed along the aforementioned line.
On the other hand, we have the CFT thermodynamics first law or the thermodynamic
fundamental equation for the thermal states in the boundary CFT, which reads [22]

dE = T dS − pdV + ϕdQ+ µdC + ΩdJ , (1.7)
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where E is the energy (not enthalpy), and p,V are the CFT pressure and volume (which
are not dual to the bulk pressure P and volume V , respectively [33]). T ,S, ϕ,Q,Ω,J , µ
are boundary quantities corresponding to their bulk counterparts T, S,Φ, Q,Ωb, J, µb, re-
spectively. The variation of C corresponds to a change of the field theory.

In the following, we will first provide compact generalized mass/energy formulas for
the charged AdS black holes in the extended thermodynamics, mixed thermodynamics, and
CFT thermodynamics in section 2. Then, in section 3, we will propose a residue method
for studying the topologies of phase transitions in the extended thermodynamics, mixed
thermodynamics, and CFT thermodynamics for the charged AdS black holes in both the
canonical and grand canonical ensembles. Specifically, we will respectively investigate the
criticalities and first-order phase transitions in the canonical ensemble and the Hawking-
Page(-like) phase transitions in the grand canonical ensemble for the bulk and boundary
of the charged AdS black hole spacetime. Conclusion and discussion will be given in the
last section. We aim to answer the question of whether there is any indication of bulk-
boundary thermodynamic equivalence from the viewpoint of topology. For concreteness,
we consider the four-dimensional (D = 4) charged AdS black hole, and related extensions
are straightforward.

2 Generalized mass/energy formulas of the charged AdS black holes

2.1 Extended thermodynamics

Thermal states in the boundary CFT correspond to the classical black hole solutions. We
here consider the Einstein-Maxwell theory, whose action is

I = 1
16πGN

∫
d4x
√
−g

(
R− 2Λ− F 2

)
. (2.1)

The least action principle yields a charged spherically symmetric Reissner-Nordström-AdS
(RN-AdS) spacetime and its corresponding gauge field as

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
2, (2.2)

A =
(
−GNQ

r
+ Φ

)
dt, (2.3)

f(r) = 1 + r2

L2 −
2GNM

r
+ G2

NQ
2

r2 , (2.4)

where dΩ2
2 is the metric of a unit 2-sphere, and M,Q are the ADM mass and physical

electric charge of the black hole. The event horizon rh of the black hole is the larger real
root of f(r) = 0. By selecting the gauge At (rh) = 0, we have

Φ = GNQ

rh
. (2.5)
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The bulk extended thermodynamics first law and Smarr formula for the black hole, which
includes variations of the parameters GN and Λ, are given by [6]

M = κA

4πGN
+ ΦQ+ V Λ

4πGN
, (2.6)

dM = κ

8πGN
dA+ ΦdQ− V

8πGN
dΛ− (M − ΦQ)dGN

GN
, (2.7)

where
κ = 1

2rh

(
1 + 3r2

h

L2 −
G2
NQ

2

r2
h

)
, A = 4πr2

h, V = 4π
3 r3

h. (2.8)

We propose an alternative mass formula that complements the Smarr mass formula,
which is given by

M = − A3/2Λ
48π3/2GN

+
√
πGNQ

2
√
A

+
√
A

4
√
πGN

, (2.9)

such that
κ

8πGN
=
(
∂M

∂A

)
Q,Λ,GN

, Φ =
(
∂M

∂Q

)
A,Λ,GN

, (2.10)

−V
8πGN

=
(
∂M

∂Λ

)
A,Q,GN

,
ΦQ−M
GN

=
(
∂M

∂GN

)
A,Q,Λ

. (2.11)

The mass formula is a GN -including version of the one proposed in [34]. It can also be
obtained from dimensional analysis. The temperature T , entropy S of the black hole in
the extended thermodynamics can be obtained by applying (1.1).

2.2 Mixed thermodynamics

For the considered Einstein gravity, the AdS/CFT holographic dictionary for the CFT
central charge in terms of the bulk AdS radius, Newton’s constant is given by (1.5). After
incorporating this central charge into the bulk first law (2.7), we have the first law of the
mixed thermodynamics as

dM = TdS + φdQ+ VCdP + µbdC, (2.12)

where the newly defined thermodynamic volume and the chemical potential read

VC = 2M
8P −

√
πGNQ

2

4P
√
S

, µb = 2P (VC − V )
2C . (2.13)

We see that this mixed form of thermodynamics allows us to study the bulk thermody-
namics in the context of fixed boundary central charge. Note that the redefined volume
VC here is a bit different from the one given in [23] since there is a different convention for
the electromagnetic term in the bulk action (2.1). We can also construct a mass formula
encoding the central charge as

M2 =
√
PS3

8
√

6π5/2C3/2 +
√

3πQ4

16
√

2CPS
+

√
PS2

√
6π3/2

√
C

+
√

2
3π
√
CPS + Q2S

8πC + Q2

2 .

(2.14)
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Then T, φ, VC , µb can be obtained via conducting derivatives with respect to their conjugate
thermodynamic quantities as

T =
(
∂M

∂S

)
Q,P,C

, φ =
(
∂M

∂Q

)
S,P,C

, (2.15)

VC =
(
∂M

∂P

)
Q,S,C

, µb =
(
∂M

∂C

)
S,Q,P

. (2.16)

We do not list the specific forms of these quantities for brevity. It is remarkable that this
mass formula makes us convenient to calculate quantities in the mixed thermodynamics,
which employs the boundary central charge to prescribe the bulk thermodynamics.

2.3 CFT thermodynamics

To construct the boundary CFT thermodynamics of the charged AdS black hole, we need
to use more holographic relations between bulk and boundary quantities. We here set the
curvature radius of the boundary to be R, which is different from the bulk AdS radius L.
The metric of the CFT admitting conformal scaling invariance reads [27, 28, 35]

ds2 = ω2
(
−dt2 + L2dΩ2

2

)
. (2.17)

We can choose the conformal gauge as ω = R/L [6, 22] (Other selection of the gauge does
not change our result). Thus the spatial volume of the boundary sphere can be expressed
in terms of boundary curvature radius as

V = Ω2R
2. (2.18)

We can have the holographic dictionary between bulk quantities M,κ,A,Φ, Q and their
boundary CFT counterparts E, T ,S, ϕ,Q as [12, 22, 36]

E = M
L

R
, T = κ

2π
L

R
, S = S = A

4GN
, (2.19)

ϕ = Φ
L

L

R
, Q = QL. (2.20)

Note that the boundary entropy is related to the bulk horizon area. The L/R term arises
as the difference between the bulk time and the boundary time.

The first law and the dimension-independent Euler relation for the boundary CFT
dual to their bulk AdS counterparts (1.3) and (1.4) read [22, 31]

dE = T dS + ϕdQ− pdV + µdC, (2.21)
E = T S + ϕQ+ µC. (2.22)

The Euler relation can be derived from the scaling properties of finite temperature gauge
theories in the large-N ’t Hooft limit [37]. The pressure and chemical potential are con-
strained to be

p = E

2V , (2.23)

µ = E − T S − ϕQ
C

. (2.24)
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The former one is the equation of state for the CFT and the latter one arises as the
proportionality between C and E,S,Q [35].

We find that the mass formula (which can also be named the internal energy formula)
of the boundary field theory can be written in terms of the boundary thermodynamic
quantities as

E = 4πCS + π2Q2 + S2

2π
√
CSV

. (2.25)

Then it is straightforward to show that

T =
(
∂E

∂S

)
Q,V,C

, ϕ =
(
∂E

∂Q

)
S,V,C

, (2.26)

p = −
(
∂E

∂V

)
S,Q,C

, µ =
(
∂E

∂C

)
S,Q,V

. (2.27)

We should point out that the energy formula (2.25), as well as the mass formulas in (2.9)
and (2.14), not only makes us convenient to calculate the full thermodynamic quantities
in the canonical ensemble but also makes us capable of having thermodynamic quantities
in other ensembles. For instance, if we are to consider one other ensemble in the CFT
thermodynamics, say, the one with fixed C,Q, p, we just need to calculate the free energy
Fp = E − T S + pV, and then use the differential relation dFp = −SdT + Vdp+ µdC.

3 Topologies of the phase transitions

3.1 Residue method

To the end of investigating the topologies of the phase transition, we not only need
mass formulas to conveniently calculate the wanted thermodynamic quantities but also
have to choose a method to calculate the topologies. Recently, a topological current [38]
method was proposed for calculating the topology of the criticality and Hawking-Page
phase transition of the bulk thermodynamics of black holes [39–41]. In this method, one
can construct a (somehow arbitrary) two-dimensional vector field and study its winding
number around defect points in some two-dimensional plane where the vector field lies.
Here we introduce a different way to conduct the topology calculation. This way, we
name it the residue method, typically depends on the residue calculation in the complex
analysis. We will now consider a single-valued function F : C → C with a single complex
variable z. We suppose that the complex function is holomorphic on the complex plane
except at some isolated pole points z1, z2, . . . , zn. We can endow topological numbers (or
in other words, topological charges) onto some specific isolated points, say, zk, which can
be either real or complex and it can be a pole point of order n. The topology charge wk
of F(z) at the specific point can be defined as

wk ≡ Sgn
[ 1

2πi

∮
γ
F(z)dz

]
= Sgn[ResF(zk)], (3.1)

where γ is the counter-clockwise oriented boundary of a small region around the pole point
zk, Sgn represents the sign function, and Res denotes the residue. The local topological
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property of the characteristic function F(z) can be reflected by the local topological
charge at its n-order pole point.

In what follows, we will investigate the phase transition of the charged AdS black
hole in the canonical and grand canonical ensembles. In the former ensemble, we can
find the first-order phase transition and criticality phenomenon while the Hawking-Page
phase transition (which is also first-order) can be found in the latter ensemble. To study the
topologies of the criticalities and the first-order phase transitions in the canonical ensemble
as well as the Hawking-Page(-like) phase transitions in the grand canonical ensemble, we
define a universal characteristic function

F(z) = 1
∂zzT(z) , (3.2)

where T is the thermodynamic temperature function of the bulk or the boundary system,
and we will choose the entropy of the bulk or the boundary as the complex variable z. In
the two different ensembles, the temperature functions have different forms. In fact, as
our object is to show the bulk-boundary thermodynamic equivalence from a viewpoint of
topology, a different construction of the characteristic function F does not matter. We
note that recently we have used the residue method to revisit the topologies of the black
hole solutions [42] as thermodynamic defects [43] and kinematic topologies of black holes
were firstly studied in [44].

3.2 Topologies of criticality and first-order phase transition

In our study of the charged AdS black holes, we aim to investigate their topological prop-
erties during phase transitions. Before diving into our analysis, it is worth reviewing some
prior research on black hole phase transitions. Specifically, in the context of extended
thermodynamics, previous studies such as [45, 46] have demonstrated that the charged
AdS black holes exhibit Hawking-Page phase transitions in the grand canonical ensemble,
along with criticality and first-order phase transitions in the canonical ensemble as shown
in [12–15, 47]. Furthermore, the mixed thermodynamics of charged AdS black holes demon-
strates central charge criticality, which was established in [23]. Furthermore, in the CFT
thermodynamics, criticality and (de)confinement phase transitions were analyzed in [6].
Keeping these prior works in mind will help contextualize and inform our investigation of
the topological properties of phase transitions in charged AdS black holes.

3.2.1 Topology of criticality

We will now study the topologies of the criticalities for the charged AdS black hole in the
canonical ensemble, where (Q,Λ) are fixed for the extended thermodynamics, (Q,C, P ) are
fixed for the mixed thermodynamics, and (Q, C,V) are fixed for the CFT thermodynamics.
In the extended thermodynamics, the temperature can be obtained via (1.1) and (2.10).
We now denote the temperature in the extended thermodynamics, mixed thermodynamics,
and CFT thermodynamics as TE , TM , TC , respectively, which, according to (2.10), (2.15),

– 7 –
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and (2.26), are explicitly given by

TE = GN
(
πS −GN

(
π2Q2 + ΛS2))

4π3/2(GNS)3/2 , (3.3)

TM = 1
2M

√P (16π2C2 + 16πCS + 3S2)
8
√

6π5/2C3/2 −
Q2
(√

6π3/2√CQ2 − 4
√
PS2

)
32πC

√
PS2

 , (3.4)

TC = CV
(
4πCS − π2Q2 + 3S2)

4π(CSV)3/2 . (3.5)

Then through the relations

(
∂TE
∂S

)
Q,Λ

= 0 =
(
∂2TE
∂S2

)
Q,Λ

, (3.6)

(
∂TM
∂S

)
Q,C,P

= 0 =
(
∂2TM
∂S2

)
Q,C,P

, (3.7)

(
∂TC
∂S

)
Q,C,V

= 0 =
(
∂2TC
∂S2

)
Q,C,V

, (3.8)

we have the critical points for the three cases as

(SEc,ΛEc) =
(

6πGNQ2,− 1
12G2

NQ
2

)
, (3.9)

(CMc, PMc, SMc) =
(

9GNQ2,
1

96πG3
NQ

2 , 6πGNQ
2
)
, (3.10)

(CCc,SCc) =
(3Q

2 , πQ
)
. (3.11)

After individually setting z = (SEc, 0), (SMc, 0), (SCc, 0) in (3.2), we obtain the topological
charges

ωE = ωM = ωC = 1 (3.12)

for each critical point by (3.1). This equality of the topological charge means that there is a
topological equivalence between the criticality of the bulk and boundary thermodynamics
for the charged AdS black hole in the canonical ensemble.

3.2.2 Topology of first-order phase transition

In the canonical ensemble, the first-order phase transition of the charged AdS black hole
takes place on the coexistence line, where the temperature and the Helmholtz free energy
of two phases (which are small/large black holes in the bulk and low/high entropy states in
the CFT) are equal. The temperature of the charged AdS black holes in the extended ther-
modynamics, mixed thermodynamics, and CFT thermodynamics are given by (3.6), (3.7),

– 8 –
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and (3.8), respectively. The Helmholtz free energy in these systems are individually given by

FE = M − TES = 9π2Q2GN + ΛS2GN + 3πS
12π3/2√SGN

, (3.13)

FM = M − TMS, (3.14)

FC = E − TCS = 4πCS + 3π2Q2 − S2

4π
√
CSV

, (3.15)

where we do not show the explicit expression of FM for simplicity and the mass and
temperature in (3.14) can be found in (2.14) and (3.4).

In the extended thermodynamics, the coexistence line can be determined by TE(SE1 ) =
TE(SE2 ) and FE(SE1 ) = FE(SE2 ). This yields the following expression [21]:

SE1,2 =
π

(
±
√

9− 12QGN
(
3ΛQGN + 2

√
−3Λ

)
+ 4
√
−3ΛQGN − 3

)
2ΛGN

, (3.16)

where Λ ∈ [ΛEc, 0[, SE1 ∈]πGNQ2, SEc], and SE2 ∈ [SEc,∞[. It is worth noting that at the
point TE = TE [SE1 (Λ = ΛEc)], the second-order criticality phase transition takes place.
Using these calculations, we can obtain the formula for the coexistence line in extended
thermodynamics TE(SE1 ) (or alternatively, TE(SE2 )). Similarly, we can obtain the entropies
SM1,2 and SC1,2 corresponding to the points where the first-order phase transitions take place
in the mixed thermodynamics and CFT thermodynamics, respectively. For the mixed
thermodynamics, the entropies are given by

SM1,2 = 2πC −
(

24π3C

P

)1/4

Q∓ 2πC

√
1−

( 3
π

)1/4 Q

P

(2P
C

)3/4
+ 3Q2

8

√
6

πC3 , (3.17)

where C ∈ [CMc,∞[, and P = 3/32πG2
NC (which can be obtained from (1.2) and (1.5)).

For the CFT thermodynamics, the entropies are given by

SC1,2 = 1
3
(
2πC ∓ π

√
4C2 − 9Q2

)
, (3.18)

where C ∈ [CCc,∞[. The coexistence lines for the mixed and CFT thermodynamics are
TM (SM1 ) and TC(SM1 ), respectively. Note that the criticality phase transitions take place
exactly at TM = TM [SM1 (C = CMc)] and TC = TC [SC1 (C = CCc)].

To assign topological charges to the coexistence lines of charged AdS black holes in
extended thermodynamics, mixed thermodynamics, and CFT thermodynamics, we use the
characteristic function (3.2) with T specified as TE(SE1 ), TM (SM1 ), and TC(SM1 ), respec-
tively. This yields

ωE = ωM = ωC = 0 (3.19)

for all points on the coexistence lines where the first-order phase transitions take place.
Mathematically, these zero topological charges can be understood as all first-order phase
transition points on the coexistence lines are not pole points of the characteristic function.
This suggests that topological equivalence exists between bulk and boundary first-order
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phase transitions. Interestingly, comparing (3.12) with (3.19), we can see that there is a
sudden change in topological charge whenever the order of the phase transition of charged
AdS black holes changes in extended thermodynamics, mixed thermodynamics, or CFT
thermodynamics. For a comparable investigation, we refer the readers to [48], which ex-
amined the bulk first-order phase transition of the charged AdS black hole by analyzing
the winding number interchange of the topological defects in the landscape of the off-shell
internal energy.

3.3 Topology of Hawking-Page(-like) phase transition

In the grand canonical ensemble, there are no criticalities for the charged AdS black hole
in all the extended, mixed, and CFT thermodynamics. However, there are Hawking-Page
phase transitions in the bulk and (de)confinement phase transitions in the boundary CFT,
which is Hawking-Page-like [6]. Is there still a topological equivalence between the bulk and
boundary thermodynamics? Here we will investigate this issue, still by the characteristic
function (3.2). In the extended thermodynamics with fixed (Φ,Λ), mixed thermodynamics
with fixed (φ,C, P ), and CFT thermodynamics with fixed (ϕ,C,V), the Gibbs free energy
functions read

GE = M − TS − ΦQ = S
(
GNΛS − 3π

(
Φ2 − 1

))
12π3/2√GNS

, (3.20)

GM = M − TS − φQ, (3.21)

GC = E − T S − ϕQ = −S
(
CVϕ2 − 4πC + S

)
4π
√
CSV

, (3.22)

where we do not show explicitly the thermodynamic potential GM as it is lengthy. The
Hawking-Page(-like) phase transition occurs at the point where the Gibbs free energy
vanishes,

GX = 0, (3.23)

where X = {E,M,C}. We then get the phase transition points as

SEc = π
(
Φ2 − 1

)
GNΛ , (3.24)

SMc = 1
6

√2

√
8π2C2 − 3

√
6π3/2

√
CQ2

√
P

+ 4πC

 , (3.25)

SCc = 1
3C

(
4π − Vϕ2

)
. (3.26)

Here in (3.25), Q should be replaced by φ via the relation (2.15).
Besides, we should have the temperature in the grand canonical ensemble for the

three kinds of thermodynamics, which can be obtained by reexpressing the tempera-
ture (3.3), (3.4), and (3.5) in terms of the electric potential instead of the electric charge by
employing (2.10), (2.15), and (2.26), respectively. Then the characterized function (3.2) can
be calculated through the temperature for the grand canonical ensemble. After denoting
zc = (SEc, 0), (SMc, 0), (SCc, 0) and applying (3.1), we have the topological charges

ωE = ωM = ωC = −1 (3.27)
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for the Hawking-Page(-like) phase transition points in the grand canonical ensembles for
the extended, mixed, and CFT thermodynamics. This topological equality again shows
the definite equivalence between the bulk and boundary thermodynamics for the charged
AdS black hole.

4 Conclusion and discussion

We studied the bulk AdS and boundary CFT thermodynamics for the charged AdS black
hole by applying the topological method. To elucidate the thermodynamics of the black
hole, we obtained the mass/energy formulas (2.9), (2.14), and (2.25) for the extended,
mixed, and CFT thermodynamics, expressed in terms of thermodynamic state functions.
After introducing the residue method to assign the topology charges to the phase transi-
tions, we investigated the topologies of the black hole in the canonical and grand canon-
ical ensembles. We revealed the topological equivalence between the thermodynamics of
the bulk AdS and the boundary CFT through the topological equalities (3.12), (3.19),
and (3.27) for the criticalities and first-order phase transitions in the canonical ensembles
and the Hawking-Page(-like) phase transitions in the grand canonical ensembles, respec-
tively. It is noteworthy that the criticality, first-order phase transition, and the Hawking-
Page(-like) phase transition display dissimilar topological charges. We note that the topo-
logical charge of the Hawking-Page(-like) phase transition is −1, as stipulated by our
definition of the characteristic function (3.2). We have verified that for modified gravity
theories like the AdS black hole in Gauss-Bonnet gravity [49], the topological charge is 0
for the Hawking-Page phase transition in the extended thermodynamics using the charac-
teristic function (3.2). The topological charge −1 for the charged AdS black hole is quite
subtle under the adoption of the characteristic function (3.2), as the characteristic function
F and the Gibbs function in the grand canonical ensemble share the same factor, and this
mutual factor vanishes in a condition of introducing additional parameters, such as the
coupling parameter α in the Gauss-Bonnet-AdS black hole. Our study may inspire further
research on bulk-boundary systems with angular momentum [50, 51], multicritical phase
transitions [18, 19], string theory corrections [52–54], and other topics that complement
the investigation of bulk-boundary thermodynamical equivalence [55–57].

We would like to clarify two issues here. First, the characteristic function chosen to
assign topologies to the phase transitions is not unique. As a principle, a well-defined
characteristic function should be able to encode the phase transition information of the
thermodynamic systems as topological defects, and the phase transition points should be
the pole points of the function. In the canonical ensemble, we choose the characteristic
function (3.2) so that the critical points, where the second-order phase transitions take
place, are pole points for which topological charges can be assigned. The topological
charges in both the extended thermodynamics, mixed thermodynamics, and CFT thermo-
dynamics are ω = 1. On the one hand, this signifies a topological equivalence between
bulk and boundary thermodynamics (phase transitions). On the other hand, referring to
the observation in [39] for the topological charge of the criticality in the bulk extended
thermodynamics for the charged AdS black hole, this topological charge ω = 1 means
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that the second-order phase transitions take place within the extended thermodynamics,
mixed thermodynamics, and CFT thermodynamics, and the first-order phase transitions
can emerge from these critical points. In fact, in the canonical ensemble, we can choose an-
other characteristic function F(z) = 1/∂zT (z,Q), which also encodes the critical points of
the phase transition as pole points. The same topological charges ωE = ωM = ωC = 1 can
be attained. In the grand canonical ensemble, according to the principle, a characteristic
function that one can choose is

F(z) = 1/GX(z), (4.1)

as the first-order Hawking-Page phase transition points in the bulk and the (de)confinement
phase transition points on the boundary are pole points of the function. Alternatively, we
can choose a characteristic function (3.2) in the same form as the one chosen for the
canonical ensemble, but in terms of the (bulk and boundary) electric potentials instead of
the electric charges because we find that the phase transition points in the grand canonical
ensemble are pole points of the function (3.2). Both the two chosen functions yield the same
topological charges ωE = ωM = ωC = −1 for the phase transition points. For black holes in
the modified gravity, such as the Gauss-Bonnet black holes, a more suitable characteristic
function is (4.1) to ensure that the topological charge of the Hawking-Page(-like) phase
transition remains −1, and the differences in the topological charges of the criticalities,
first-order phase transitions in the canonical ensemble, and the Hawking-Page(-like) phase
transitions in the grand canonical ensemble are preserved.

Second, we can observe that in the canonical ensemble, a topological charge was as-
signed to a certain critical point and the same topological charge was assigned to all points
on a coexistence curve of the first-order phase transition. However, in the grand canon-
ical ensemble, one may wonder whether only a “sample point” on the one-dimensional
coexistence line of the first-order Hawking-Page phase transition in the bulk or the
(de)confinement phase transition on the CFT was tested. We have an answer to this ques-
tion. In the bulk extended thermodynamics, for instance, one thing to note when calculat-
ing the topological charge at the critical point is that the characteristic function is given by

F = 8
√
π
√
Gz7/2

z − 6πGQ2 , (4.2)

where Λ is eliminated by the condition ∂zT (z) = 0. This procedure is similar to the one
taken in [39]. On the other hand, for the topology of the Hawking-Page phase transition
in the bulk extended thermodynamics, for instance, the phase transition point is given
by (3.24), which corresponds to a one-dimensional coexistence line

Tc = 1
π

√
Λ
3 (Φ2 − 1), (4.3)

where Tc is the phase transition temperature. We notice that in the grand canonical
ensemble, the characteristic function

F = 1
∂zzT (z,Φ) = 16π3/2z2√Gz

GΛz − 3π (Φ2 − 1) (4.4)
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defined in the same way as (3.2) has a pole point that happens to be the zero point of the
Gibbs free energy (3.20). So this pole point is precisely the Hawking-Page phase transition
point. Substituting this pole point into the bulk temperature in terms of Φ, we obtain the
coexistence line (4.3). Therefore, all points (with different Φ) on the coexistence line were
tested.
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