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1 Introduction

Asymptotically anti-de Sitter (AdS) spacetime offers diverse gravitational dynamics. In
contrast to asymptotically flat spacetime, black hole geometry can be considered in the
canonical ensemble, where asymptotically global AdS experiences the first order phase
transition between horizonless and black hole spacetimes [1, 2]. Through the AdS/CFT du-
ality [3–5], it is interpreted as the confinement/deconfinement phase transition in strongly
coupled Yang-Mills theory. When the gravitational theory has U(1) gauge field and charged
scalar field, the spontaneous breaking of the gauge symmetry is discussed as the appearance
of the superfluid/superconducting phase [6–8].

Aforementioned phenomena are often considered with the Dirichlet boundary condi-
tions imposed on the asymptotic behavior of the scalar field at the AdS boundary. However,
general conditions known as the Robin boundary conditions (also called mixed boundary
conditions) are allowed [9–13] if the field in AdS has a mass close to the Breitenlohner-
Freedman bound [14, 15]. When the parameter for the Robin boundary conditions exceeds
a critical value and the deviation from the Dirichlet boundary condition becomes suffi-
ciently large, the AdS spacetime becomes unstable [11]. The Robin (or mixed) boundary
conditions are related to multitrace deformation in the dual field theory in the AdS/CFT
interpretation [16–18]. Not only for scalar field considered in these literature, but also the
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Robin boundary conditions can be imposed for vector field and discussed in the context
of introducing dynamical gauge field on the AdS boundary [11, 19, 20]. Robin boundary
conditions have also been considered for metric field so as to promote the boundary metric
dynamical [21].

In [22], two of the authors studied the linear mode stability of the four-dimensional
Reissner-Nordström AdS (RNAdS) spacetime with global AdS asymptotics for neutral and
charged complex scalar field perturbations with Robin boundary conditions.1 The neutral
field shows an instability for the Robin boundary conditions with parameters greater than
a critical value. The charged scalar field suffers another type of instability due to the
electromagnetic interaction with the black hole, which is known as superradiance [25–29].2
With the imposition of the Robin boundary conditions, superradiance and the boundary
contribution interplay with each other, potentially enhancing the instability caused by
the superradiance depending on the parameters of the scalar field and the background
spacetime. It was argued in [22] that the instability would change the RNAdS to charged
hairy black hole solutions with a nontrivial scalar field satisfying the Robin boundary
conditions, which are a candidate for the final fate of the instability. First studied for
neutral scalar, the presence of hairy solutions with the Robin boundary conditions has been
known; see [31–33] for early works. Motivated by [22], we study charged hairy solutions in
four dimensional global AdS spacetime in detail.

In this paper, we study hairy black holes that branch at the onset of instability of the
charged scalar field with the Robin boundary conditions on the four-dimensional RNAdS,
and obtain results that agree with the expectation of [22] explained above. Following [7, 8],
hairy black holes have been widely studied in Einstein-Maxwell-complex scalar theory in
asymptotically AdS spacetime, in both Poincaré and global AdS spacetimes and in various
dimensions. In studies of this sort, the Dirichlet (and Neumann) boundary conditions are
often considered. For example, the phase diagram in asymptotically global AdS4 in the
grand canonical ensemble was explored in [34].3 In this paper, we conduct a comprehensive
study on the phase structures realized under the Robin boundary conditions in the grand
canonical ensemble. Within the four dimensional global AdS spacetime, charged scalar
solitons (boson stars) and hairy black holes in setups including the same model as ours
have been considered in [41].4 Our work may be viewed as a generalization of this work,
clarifying the full phase structure of such solutions under the Robin boundary conditions.

This paper is organized as follows. In section 2, we prepare the setup for constructing
boson stars and hairy black holes with the Robin boundary conditions. In particular, we
study the onset of instability of the four dimensional RNAdS spacetime with respect to the

1There is a recent work on the quasinormal mode spectrum of a scalar field with the Robin boundary
conditions in Schwarzschild AdS4 spacetime [23]. See also superradiance in BTZ black holes with the Robin
boundary conditions [24].

2Instability of RNAdS can be associated with the violation of near horizon AdS2 BF bound, but it is a
necessary condition. For charged scalar, superradiance occurs regardless [30], so here we simply describe
the cause of this charged instability as superradiance.

3Hairy black holes have been also considered in global AdS5 [35–38]. See also [39, 40].
4See also prior works in three dimensions [42, 43]. See also a recent study of boson stars of mixed

boundary conditions deformation [44, 45] motivated by the analysis on the large charge limit in CFT [46].

– 2 –



J
H
E
P
0
6
(
2
0
2
3
)
1
0
6

charged scalar field perturbations with the Robin boundary conditions. In section 3, we
show results of the phase diagram for our setup under the Robin boundary conditions. Sec-
tion 4 concludes the paper. In appendix A, we summarize holographic renormalization for
the Robin boundary conditions. In appendix B, we discuss the first law of thermodynamics.
In appendix C, we comment on entropies in microcanonical ensemble.

2 Setup

2.1 Reissner-Nordström AdS black hole

We consider Einstein-Maxwell-complex scalar theory in four-dimensional asymptotically
global AdS spacetime. The action is

S = 1
8πGN

∫
d4x
√
−g

(1
2 (R− 2Λ)− 1

4FµνF
µν − |Dφ|2 −m2|φ|2

)
, (2.1)

where Fµν = ∂µAν − ∂νAµ, and Dµφ = ∂µφ − iqAµφ. The gauge coupling constant is
written by q. We use units in which Λ = −3 so that the AdS radius can be set to unity.
The mass of the scalar is related to the conformal dimension of the scalar operator in the
dual field theory as m2 = ∆(∆ − 3). We set m2 = −2 in this paper. Then, this equation
is solved by ∆ = 1, 2. The equations of motion are

Gµν + Λgµν = Tµν , ∇µFµν = Jν ,
(
DµD

µ −m2
)
φ = 0, (2.2)

where

Tµν = FµλFν
λ + (Dµφ)∗Dνφ+ (Dνφ)∗Dµφ+ gµνL,

L = −1
4FµνF

µν − |Dφ|2 −m2|φ|2,

Jµ = 2q2|φ|2Aµ + iq(φ∗∂µφ− φ∂µφ∗).

(2.3)

We study spherically symmetric static solutions in the spherical AdS boundary. The
ansatz can be given by

ds2 = −
(
1 + r2

)
f(r)e−χ(r)dt2 + dr2

(1 + r2) f(r) + r2dΩ2
2, (2.4)

A = At(r)dt, φ = φ(r). (2.5)

The conformal boundary of the AdS is R× S2 and located at r =∞. When f(r) = 1 and
χ(r) = 0 (as well as A = φ = 0), the empty AdS is obtained. For horizonless geometries,
r = 0 is the center of the AdS.

The RNAdS black hole is given by

(
1 + r2

)
f(r) = 1 + r2 −

(
1 + r2

h + Q2

2r2
h

)
rh
r

+ Q2

2r2 ,

At(r) = µ− Q

r
, χ(r) = φ(r) = 0,

(2.6)
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where rh denotes the location of the outermost horizon, satisfying f(rh) = 0, and Q is the
charge of the black hole per solid angle. The total charge is given by Q = 4πQ. We choose
the gauge as At(rh) = 0, and then we obtain µ = Q/rh, where µ is identified as the chemical
potential of the gauge field. For the diagonal metric (2.4), the Hawking temperature and
the Bekenstein-Hawking entropy are given by

TH = 1
4π (1 + r2

h)f ′(rh)e−χ(rh)/2, (2.7)

SBH = 8π2r2
h

8πGN
. (2.8)

For the RNAdS, the temperature is

TH = 2(1 + 3r2
h)− µ2

8πrh
. (2.9)

If µ2 < 2, the temperature has the minimum TH = T0, when

rh =
√

2− µ2
√

6
≡ r0, T0 =

√
3(2− µ2)
2
√

2π
= 3r0

2π . (2.10)

Black holes with rh > r0 are called large black holes, while those with rh < r0 are small.
In the grand canonical ensemble, the first order transition known as the Hawking-Page
transition occurs between the RNAdS and AdS when [1, 2, 47]

rh =
√

2− µ2
√

2
≡ rHP, THP =

√
2− µ2
√

2π
= rHP

π
. (2.11)

The horizon radius, or temperature, of this transition can be determined by comparing
grand potentials between Euclidean RNAdS (A.62) and thermal AdS geometries. The
solution with the lower grand potential is identified to be realized physically. The RNAdS
is favored over the thermal AdS in r > rHP, and vice versa. Note that rHP > r0. In the
grand canonical ensemble, the phase in T > TH is the RNAdS black hole phase. The phase
in T < TH corresponds to horizonless AdS geometry, which we refer to as the thermal AdS
phase. If µ2 > 2, the temperature (2.9) becomes zero when

µ =
√

2(1 + 3r2
h) ≡ µext. (2.12)

This is when the RNAdS black hole becomes extremal. For fixed rh, the range of µ is
bounded from above as µ ≤ µext. Note that both THP and T0 become zero at the borderline
value µ2 = 2. Therefore, for µ2 > 2, the Hawking-Page transition does not appear in the
phase diagram, and the zero temperature geometry is the extremal RNAdS.

To solve the equations of motion, it is convenient to use the z-coordinate defined by
z ≡ 1/r. In this coordinate, the AdS boundary is located at z = 0. By the coordinate
change, the metric (2.4) can be rewritten as

ds2 = 1
z2

[
−
(
1 + z2

)
f(z)e−χ(z)dt2 + dz2

(1 + z2) f(z) + dΩ2
2

]
. (2.13)
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The RNAdS black hole solution (2.6) becomes

(
1 + z2

)
f(z) = 1 + z2 −

(
1 + z2

h + Q2z4
h

2

)
z3

z3
h

+ Q2z4

2 , At = µ

(
1− z

zh

)
, (2.14)

where zh ≡ 1/rh.

2.2 Instability of RNAdS

We consider spherically symmetric scalar field perturbations of the RNAdS, φ(z)e−iωt. The
Klein-Gordon equation takes the form

φ′′ +
(
F ′

F
− 2
z

)
φ′ −

(
m2

z2F
− (ω + qAt)2

F 2

)
φ = 0, (2.15)

where ′ ≡ ∂z, F = (1+z2)f ,m2 = −2, and f,At are given by the RNAdS background (2.14).
Because of the presence of the horizon, the frequency ω is complex in general. The imag-
inary part of the frequency is negative Imω < 0 if the perturbation is stable, and posi-
tive Imω > 0 if instability is induced in the RNAdS background. The border Imω = 0
is the onset of instability. In the gauge we use, At(zh) = 0, both the real and imaginary
parts of ω become zero simultaneously at the onset of instability, Reω = Imω = 0.5 This
means that, to search the onset of instability of φ, it is sufficient to assume the static
perturbation φ(z) and find nontrivial normal modes.

At the onset of instability ω = 0, (2.15) is reduced to a static perturbation equation,

φ′′ +
(
F ′

F
− 2
z

)
φ′ −

(
m2

z2F
− q2A2

t

F 2

)
φ = 0, (2.16)

which depends on three parameters (rh, µ, q) for given m. For the onset of instability, we
search normal mode solutions to (2.16) when boundary conditions are imposed at z = 0
and z = zh. On the horizon z = zh, we impose regularity (which used to be the ingoing
wave boundary condition if ω 6= 0, away from the onset of instability).

We impose Robin boundary conditions at the AdS boundary z = 0. For m2 = −2, the
asymptotic behavior of φ in z → 0 takes the form

φ = φ1z + φ2z
2 + · · · , (2.17)

where φ1 and φ2 are integration constants. Because the scalar mass is in the range −9/4 ≤
m2 ≤ −5/4, both asymptotic behaviors φ ∼ z and φ ∼ z2 are normalizable [48]. This
means that both coefficients φ1 and φ2 can be nonzero for normalizable normal modes.
The boundary conditions with φ1 = 0 and φ2 6= 0 are called Dirichlet, and those with
φ1 6= 0 and φ2 = 0 are Neumann. The case with general values of φ1 6= 0 and φ2 6= 0 is

5Another gauge is often used that the gauge field vanishes asymptotically while it is nonzero on the
horizon, At → 0 (z → 0) and At(zh) 6= 0. In that gauge, the perturbation φ = e−iωtφ(z) has a nonzero real
part Reω 6= 0 at the onset of instability Imω = 0 [22]. However, this frequency-dependence in the real part
can be absorbed by the gauge choice. In this paper, we use a gauge where Reω = Imω = 0 at the onset of
instability.
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called the Robin boundary conditions. The Robin boundary conditions can be specified by
a parameter ζ defined by

cot ζ = φ2
φ1
. (2.18)

We choose the domain of ζ to be periodic in 0 ≤ ζ < π. The points ζ = 0 and ζ = π/2
correspond to the Dirichlet and Neumann boundary conditions, respectively.

Under the Robin boundary conditions, we search the onset of instability for the scalar
field perturbation in the four-dimensional parameter space (ζ, rh, µ, q). Technically, for a
set of three parameters (rh, µ, q), we integrate the perturbation equation (2.16) from the
horizon to the AdS boundary and read off the asymptotic coefficients φ1 and φ2 in (2.17),
from which ζ can be obtained. This procedure gives a location of the onset of instability
in the (ζ, rh, µ, q) parameter space. Iterating this procedure while varying the values for
the three parameters (rh, µ, q), we obtain a relation among the four parameters (ζ, rh, µ, q).
Thus, for instance, fixing (rh, q), we obtain the onset of instability is given as a curve in
(µ, ζ) plane.

In the horizonless limit rh = 0, the perturbation equation (2.16) can be solved analyt-
ically. The background is the global AdS f = 1 with a constant gauge field At = µ. The
perturbation equation (2.16) then becomes

φ′′ − 2
z(1 + z2)φ

′ −
(

m2

z2(1 + z2) −
µ2q2

(1 + z2)2

)
φ = 0. (2.19)

When the horizon is absent, we impose φ′(z)|z=∞ = 0 at the center of the AdS. With this
boundary condition and m2 = −2, (2.19) is solved by

φ(z) = z

µq
sin
(
µq cot−1 z

)
, (2.20)

which is normalized as φ(z)|z=∞ = 1. Expanding this around z = 0, we find [11, 22]

cot ζ = − µq

tan(πµq/2) . (2.21)

For rh = 0, µ and q always show up in a pair µq. The set of the parameters (ζ, µ, q)
satisfying the above relation gives a normal mode in the global AdS. While the global AdS
is stable against linear perturbations, nontrivial scalar solutions branch from the AdS at
the normal modes. For this reason, with a slight abuse of terminology, we also refer to the
location of the AdS normal modes as the onset of instability.

In figure 1, we show (a) the location of the AdS charged scalar field normal modes (rh =
0) and (b) the onset of instability of the RNAdS for rh = 0.1, 0.5, 1 at q = 1. In figure 1(b),
the value of µ is bounded from above by extremality as µ ≤ µext (2.12), which is marked
by the vertical red dashed line for each rh. In the same figure, the RNAdS is unstable to
the charged scalar field perturbation above each curve, which can be found by studying full
quasinormal modes by including nonzero frequencies ω (see also [22]). Correspondingly,
also in figure 1(a), the scalar field will be nonzero in the region upper from the curve.

In figure 1(a), we emphasize that the normal modes can be characterized by the number
of nodes in the radial direction, which increases as the curve reaches ζ = 0. The solution
without a node is called the fundamental mode, and the solution with nodes are called
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(a) rh = 0 (b) q = 1

Figure 1. (a) The charged scalar field normal modes of global AdS with constant At = µ. (b) The
onset of instability of the RNAdS for rh = 0.1, 0.5, 1 at q = 1.

overtones. Because overtones cost more energy than the fundamental mode, later in the
paper, we consider only the backreacted solutions as a fully nonlinear extension of the
fundamental mode.

In figure 1(b), the data for rh = 0.1 shows that, when the coupling q is small, the
onset of instability terminates at the extremality before reaching the Dirichlet boundary
conditions (ζ = 0). For the Dirichlet boundary conditions to be unstable, a larger rh is
necessary.

In figure 2, the onset of instability in the Schwarzschild AdS limit (µ = 0) is shown.
The value in the horizonless limit (rh = 0) is analytically given by

ζc = π − tan−1(π/2) ' 0.6805π. (2.22)

In figure 2(a), the curve has the minimum at rh ' 0.4807(< r0) with ζmin ' 0.6728π and
approaches ζ → π as rh →∞. There are hence no overtones for the Schwarzschild AdS.

In figures 3, 4, 5, we show the onset of instability of the RNAdS for the fundamental
modes with different ζ at q = 1,

√
2, 2, respectively. The same onset results are shown in

the (µ, rh) and (µ, TH) planes. We do so because we will discuss the phase structure in
the (µ, TH) plane of the phase diagram later in the paper, and it will be instructive to have
the location of the instability both in the (µ, rh) and (µ, TH) planes. In each figure, we
show the locations of the onset of instability for 8 parameter values ζ/π = 0, 0.1, . . . , 0.7.
(Among the 8 color lines, the lightest color is ζ = 0 and the darkest ζ/π = 0.7.) The
red dashed line denotes the extremal RNAdS, below which no regular RNAdS exist. The
arc by the thin black line (rh = rHP and TH = THP) is the Hawking-Page transition of
the RNAdS (2.11). Inside the arc, the thermal AdS is thermodynamically favored over
the RNAdS. In figures (a), the gray dashed line (rh = r0) separates the small and large
black holes (2.10), and small black holes are inside the arc. In figures (b), the gray dashed
line (TH = T0) denotes the minimal temperature T0, which is realized when rh = r0. In
figures (a), the RNAdS is unstable below each onset curve. In the grand canonical ensemble,
we are interested in the onset of instability outside the arc given by rh = rHP or TH = THP.
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(a) (rh, ζ) (b) (ζ, TH)

Figure 2. The onset of instability of the Schwarzschild AdS (µ = 0). The blue and orange parts
are respectively in the large and small black hole branches of the Schwarzschild AdS. Combining
with the analysis of quasinormal modes [22], we find that, in (a), the Schwarzschild AdS is unstable
above the curve, and correspondingly in (b), it is unstable to the right of each of the blue and
orange curves.

(a) (µ, rh) (b) (µ, TH)

Figure 3. The onset of instability of the RNAdS for q = 1. Color lines show the locations of the
onset of instability for ζ/π = 0, 0.1, . . . , 0.7 from bottom to top (lighter to darker). For each value
of ζ, instability occurs in the region below the corresponding curve. Panel (a): phase diagram on
the (µ, rH) plane. The red dashed line corresponds to the extremal solutions, below which no black
hole solutions exist. The curves for rh = rHP (black solid) and rh = r0 (gray dashed) denote the
Hawking-Page transition and the transition between the small/large black holes. Panel (b): phase
diagram on the (µ, TH) plane. The curve for TH = T0 (gray dashed) denote the minimum horizon
temperature, which corresponds to rH = r0 and no black hole solutions with T < TH exist. Note
that rh = 0 on the (µ, rh) plane is mapped to TH → ∞ on the (µ, TH) plane. The red dashed line
at TH = 0 corresponds to the extremal solutions.
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(a) (µ, rh) (b) (µ, TH)

Figure 4. Same as figure 3 but for q =
√

2.

(a) (µ, rh) (b) (µ, TH)

Figure 5. Same as figure 3 but for q = 2.

Instability can be understood in terms of superradiance [22].6 With the imposition
of the Robin boundary condition, superradiance and the boundary contribution interplay
with each other, potentially enhancing instability caused by superradiance depending on
the parameters of the scalar field and the background spacetime. It is demonstrated in
figures (a) that, for fixed q and rh, the value of ζ at the onset increases as µ is decreased.
That is, the parameter range of µ for instability is wider as ζ is increased (see also figure 8
in [22]).

In figure 3, we can see that the extremal RNAdS are stable if ζ is small and µ is
not sufficiently large, while in figures 4 and 5, the extremal RNAdS are unstable to all ζ.

6For charged scalar fields in non-rotating charged black hole spacetimes, superradiance is an amplified
scattering of the scalar field around the black hole if its frequency ω̃ satisfies ω̃ < qµ [25, 26, 29]. In the
context of linear modal stability analysis, the frequency ω̃ is replaced by a real part of the quasinormal
mode frequency, Re[ω̃QNM], which is a function of ζ under the Robin boundary condition. The condition
for instability is then Re[ω̃QNM] < qµ; therefore, instability caused by superradiance is controlled by ζ (see
the details in [22]).
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The critical value for the instability of the Dirichlet boundary condition ζ = 0 is q =
√

2,
that is, on the phase diagrams on the (µ, rh) plane (see Panel (a) of figures 3, 4, 5), the
onset curve for ζ = 0 ends on the (red dashed) curve of the extremal black hole solutions
when q <

√
2, while it ends on the rh = 0 axis when q >

√
2.7 On the phase diagrams

on the (µ, TH) plane, the extremal black hole solutions correspond to the µ ≥
√

2 part of
the TH = 0 axis, and only a part of it is covered by the instability region for ζ = 0 when
q <
√

2, while it is wholly covered by the instability region when q >
√

2.

2.3 Hairy black holes

Knowing the onset of instability for the charged scalar field perturbation of the RNAdS, we
will construct backreacted hairy black hole solutions branching at the onset of instability.
With the ansatz (2.13), the equations of motion (2.2) are reduced to coupled ODEs for
f(z), χ(z), φ(z), At(z) as

F ′ −
(3
z

+ zφ′2
)
F − eχ

(
z3A′2t

2 + zq2A2
tφ

2

F

)
+ z + 3

z
+ 2φ2

z
= 0, (2.23)

χ′ − 2zφ′2 − 2zeχq2A2
tφ

2

F 2 = 0, (2.24)

φ′′ +
(
F ′

F
− χ′

2 −
2
z

)
+
(

2
z2F

+ eχq2A2
t

z2F

)
φ = 0, (2.25)

A′′t + χ′

2 A
′
t −

2q2φ2

z2F
At = 0, (2.26)

where F = (1 + z2)f .
We need the asymptotic behavior of the field variables in z = 0 and z = zh or z →∞.

In the AdS boundary z = 0, the asymptotic solutions are given by

f(z) = 1 + φ2
1z

2 + f3z
3 +

(
2φ4

1 + 2φ2
2 + a2

1e
χ0

2

)
z4 + · · · , (2.27)

χ(z) = χ0 + φ2
1z

2 + 8
3φ1φ2z

3 +
(3

2φ
4
1 + 2φ2

2 − q2a2
0φ

2
1e
χ0

)
z4 + · · · , (2.28)

φ(z) = φ1z + φ2z
2 + 1

2φ1
(
φ2

1 − q2a2
0e
χ0
)
z3 + · · · , (2.29)

At(z) = a0 + a1z + q2a0φ
2
1z

2 + 1
6φ1

(
4q2a0φ2 + (2q2 − 1)a1φ1

)
z3 + · · · , (2.30)

where (f3, χ0, φ1, φ2, a0, a1) are six integration coefficients not determined in the asymptotic
analysis. We read off them from the asymptotic form of numerical solutions. With these
asymptotic behavior, the metric (2.13) in z → 0 naively becomes

ds2|z→0 = 1
z2

(
−e−χ0dt2 + dz2 + dΩ2

2

)
. (2.31)

7See [34] for an earlier discussion on the phase diagram for the Dirichlet boundary condition. Note that
the Hawking-Page transition occurs at µ = 1 in this reference due to the normalization different from ours.
See also [29], which studied massless scalar but observations given there can be easily generalized to massive
cases.
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This can be rescaled to χ0 = 0 by the scaling symmetry (redefinition of t) as we will see
shortly.

In the presence of the black hole horizon, the regular asymptotic solutions near the
horizon z = zh = 1/rh are given by

f(z) = −3 + z2
h + 2φ2

h − eχhA2
hz

3
h

zh(1 + z2
h) (z − zh) + · · · , (2.32)

χ(z) = χh + · · · , (2.33)
φ(z) = φh + · · · , (2.34)
At(z) = Ah(z − zh) + · · · , (2.35)

where (χh, φh, Ah) are integration constants, and the higher order coefficients are deter-
mined fully in terms of them. Two degrees of freedom are considered to be correlated to
physical parameters, while the remaining one can be fixed by the scaling symmetry dis-
cussed below. In the absence of the horizon, the solutions (2.32)–(2.35) are replaced with
the following series in z →∞,

f(z) = 1 +O(z−2), (2.36)
χ(z) = χh +O(z−2), (2.37)
φ(z) = φh +O(z−2), (2.38)
At(z) = Ah +O(z−2). (2.39)

There are again three integration constants.
Our ansatz, (2.4) and (2.5), has the following scaling symmetry:

t→ e−c/2t, χ→ χ− c, At → ec/2At, (2.40)

where c is an arbitrary constant. By this scaling, solutions with χ0 6= 0 can be rescaled
to those with canonical boundary metric satisfying χ0 = 0. This means that, in numerical
calculations, we can set the normalization of χ to an arbitrary value convenient for us
without loss of generality. We fix χh = 0 when we compute and then rescale numerical
results by (2.40) to satisfy χ|z=0 = 0.

From numerical results, we construct thermodynamic quantities. Carrying out the
holographic renormalization as will be described in appendix A, we obtain the expressions
of the thermodynamic quantities in terms of the asymptotic coefficients given in (2.27)–
(2.30). For the Robin boundary conditions, the scalar field is dual to the dimension 1
operator O1. After rescaling to χ0 = 0, the expression of the total energy, charge, and scalar
expectation value for the Robin boundary conditions are obtained in (A.52) and (A.56) as
(the subscript R is removed here)

E = 4π(−f3 + 3φ2
1 cot ζ) = 4π(−f3 + 3φ1φ2),

Q = −4πa1, 〈O1〉 = 4π
√

2φ1.
(2.41)

We also have the temperature TH through (2.7) and entropy SBH ≡ 8πGNSBH = 8π2r2
h

through (2.8).
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We consider the grand canonical ensemble to discuss the phase structure. The grand
potential is given by

Ω = E − THSBH − µQ, (2.42)

where µ = a0. The grand potential Ω can be evaluated in two different expressions. One
is by the combination of thermodynamic quantities as in the r.h.s. of (2.42), and the other
is directly by a bulk integral (A.60). These give the same physical quantity. In practice,
the latter is less convenient and costly because of the necessity of numerically cancelling
the divergent terms in the integrand. Hence, we use Ω given by (2.42) when we evaluate
the phase structure.

Numerical solutions to (2.23)–(2.26) satisfying the Robin boundary conditions can
be obtained simply by integrating the equations of motion. Specifying (φh, Ah, q, rh), we
integrate (2.23)–(2.26) from the horizon z = zh (or AdS center z =∞) to the boundary z =
0 and read off (f3, χ0, φ1, φ2, a0, a1) in the asymptotic boundary behavior (2.27)–(2.30).
After the rescaling to set χ0 → 0, we calculate the thermodynamic quantities and ζ (2.18).
By these quantities, the grand canonical phase diagram is given as a four-dimensional
space (µ, TH, ζ, q). When we present our results, we use data slices in the four dimensional
parameter space.

To check numerical results, we can evaluate first-law-like relations generalizing the first
law of thermodynamics/black hole mechanics to the case with a nontrivial scalar field. The
expressions are discussed in appendix B. For our solutions in the presence of the scalar field
satisfying the Robin boundary conditions, we can use (B.4),

dE = THdSBH + µdQ+ 1
8π 〈O1〉2d(cot ζ). (2.43)

Note that this contains an atypical variation with respect to cot ζ = φ1/φ2, which is not a
thermodynamic quantity but is a parameter in the model. However, if we compare between
numerical solutions where both φ1 and φ2 vary while their ratio is not fixed, the first-law-
like equation (2.43) is useful. We find that the above relation is satisfied within numerical
errors.

3 Results

3.1 Neutral boson stars and black holes

First, we consider neutral solutions.8 Here, we focus on the phase transition in the canonical
ensemble.9

8See also [31–33] for neutral scalar hair solutions with the Robin boundary conditions (in the presence
of nonlinear scalar potential).

9In a recent work [49], Hawking-Page transition was discussed for neutral black holes with scalar field
in the Dirichlet (Neumann) theory when the scalar source was nonzero. Here, this gravitational setup is
studied as the double trace deformation with zero scalar source. As we will explain, using the free energy
formula for the Robin boundary conditions, we obtain the phase structure comprehensively. Qualitatively
similar to [49], we also observe that the Hawking-Page transition temperature increases when the scalar
field is nonzero.
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(a) E (b) 〈O1〉

Figure 6. Neutral Robin boson stars.

Before discussing the black holes, let us recall the basic features of the horizonless
solutions (see also [50]). In figure 6, we show the energy and expectation value of neutral
horizonless solutions branching at the appearance of the zero normal mode of AdS. Because
the scalar field is subject to the Robin boundary conditions, we call the horizonless solutions
Robin boson stars. These are a one-parameter family of solutions parametrized by ζ. Scalar
hair grows in ζ > ζc ' 0.6805π, where the phase transition is of second order. The
quantities in the figure approach 〈O1〉 → +∞ and E → −∞ in ζ → π. In the following, we
will consider two kinds of generalization: black holes by introducing temperature TH, and
gauge field by adding (µ, q).

Without the gauge field, the phase structure is specified by two parameters (TH, ζ). In
this situation, the free energy we compare for determining the phase structure is nothing
but the grand potential (2.42) with µ = 0, Ω|µ=0 = (E − THSBH)µ=0. We compare free
energies among thermal AdS, Schwarzschild AdS, Robin boson stars, and black holes with
neutral scalar hair, which we call Robin black holes. The free energy for the thermal AdS
is zero, and that for the Schwarzschild AdS is given by (A.62) with µ = 0.

In figure 7(a), we show an example of the comparison of free energies among neutral
solutions. For rh . 1, the two solutions experience the first order phase transition. In the
figure, the lines of the rh = 0.9 Robin black holes (blue) and boson stars (black dashed)
cross around ζ/π ∼ 0.8. For rh & 1, the free energy of the Robin black holes is always
lower than that of the Robin boson stars. The free energy for rh = 1.1 (orange) is shown
in the figure.

The phase diagram for the neutral solutions is summarized in figure 7(b). The vertical
green line at ζ = ζc is the second order phase transition from thermal AdS to Robin boson
stars. The blue line in ζ ≥ ζt at the border of the Schwarzschild AdS and hairy Robin
black holes is the second order phase transition for growing scalar hair, where

ζt ' 0.6847π. (3.1)

Because the source of the scalar field is assumed to be zero, the scalar becomes nonzero
spotaneously when the temperature is decreased [51, 52]. As ζ increases, the critical tem-
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(a) Free energy (b) Phase diagram

Figure 7. (a) Comparison of free energies between Robin black holes with rh = 0.9 (top, blue) and
1.1 (bottom, orange) and boson stars (black dashed). (b) The phase diagram for neutral solutions.

perature for this scalar hair formation rises, and in the limit ζ → π (cot ζ → −∞), the
Robin black holes dominate at any high temperatures. The red line in ζ ≥ ζt marks the
first order Hawking-Page transition between Robin black holes and Robin boson stars.
The short orange segment in ζc ≤ ζ ≤ ζt (see the inset) is the first order phase transition
between Schwarzschild AdS and Robin boson stars; for ζ in this region, Robin black holes
have the higher free energy than these two, and hence the first order phase transition is
between the Schwarzschild AdS and Robin boson stars. The three lines (red, orange, blue)
merge at ζ = ζt and

TH ' 0.3184, (3.2)

which corresponds to the triple point at which the Schwarzschild AdS black hole, Robin
black hole, and the Robin boson star have the same free energy. The temperature (3.2) at
the triple point is slightly higher than the transition temperature THP for the Schwarzschild
AdS and thermal AdS phases (2.11), THP|µ=0 = 1/π ' 0.3183.

We find that the Hawking-Page transition temperature depends on ζ very mildly. We
were not able to pin down the line of the Hawking-Page transition up to ζ → π because of
numerical limitations. But, as long as we could confirm, the transition temperature (red
line) behaves as

TH ' 0.03(ζ − ζt)/π + 0.3184, (3.3)

which is close to THP|µ=0 ' 0.3183 and is mostly insensitive to ζ. Thus, for the Hawking-
Page transition temperature of neutral geometries, the effect of the Robin boundary con-
ditions on the free energy is minor. This behavior suggests that the free energies of the
Robin boson star and the Robin black hole changes by almost the same amount when ζ

changes.

3.2 Charged boson stars

To proceed with the reduced number of parameters, we discuss charged but horizonless
solutions with the Robin boundary conditions, which we call charged Robin boson stars.
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(a) q = 1 (b) q = 2

Figure 8. 〈O1〉 of charged Robin boson stars for ζ > ζc, ζ = ζc, ζ < ζc at q = 1 and 2.

Features of these solutions have been explored in [41] in the same setup as ours, but here
we discuss the solutions in the phase space parametrized by (µ, ζ, q).

In figure 8, the expectation value 〈O1〉 is compared for three cases with ζ > ζc, ζ = ζc,
and ζ < ζc for q = 1, 2. Recall that AdS at µ = 0 is unstable for ζ ≥ ζc ' 0.6805π for
forming neutral boson stars. This implies that, for ζ > ζc, charged Robin boson stars are
connected to neutral Robin boson stars (with µ = 0) by turning on finite µ. Meanwhile,
for ζ < ζc, they branch at the appearance of the zero normal mode of AdS with finite µ.
For example, when ζ/π = 0.6, the value of µ at the branching point of the condensed
solution in figures 8(a) and 8(b) (i.e. the limit of 〈O1〉 → 0) corresponds to µ in the rh = 0
limit in figures 3(a) and 5(a), respectively. The boundary between these two families of
the solutions is ζ = ζc. In addition, in figure 8(a), these charged Robin boson stars have
the maximal µ above which solutions do not exist. In the inset, the data region near
the maximal µ for ζ/π = 0.6 is enlarged. While it might be visually unclear even in the
inset, the region near the largest µ has a spiral structure, corresponding to the attractor
solutions discussed in [41]. In figure 8(b), the expectation value can be arbitrarily large.
This corresponds to solutions allowing the planar limit discussed in [41].

The boundary between these two distinct behaviors depends both on ζ and q. The
tendency is that the spiral structure disappears (moves to infinity on the (µ, 〈O1〉) plane)
as q and ζ are increased. Not only 〈O1〉 but also the energy E shows a qualitatively similar
behavior. This tendency can be qualitatively understood as an outcome of the balance
between the gravitational attraction, scalar field pressure and the electric repulsion. When
q is small, the electric repulsion is weak and then there is a critical mass (and 〈O1〉) for a
boson star beyond which the boson star cannot exist. When q is large, the electric repulsion
becomes strong enough to sustain the boson star against the gravitational collapse, and
correspondingly the mass and 〈O1〉 can become arbitrarily large.

The grand potential of charged Robin boson stars always satisfy Ω < 0, where thermal
AdS has Ω = 0. Therefore, when the charged Robin boson stars exist, they are always
preferred over the thermal AdS. This feature is the same as that in the neutral case, in
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which the boson stars have the smaller free energy than the thermal AdS (see section 3.1
and figure 7(a)).

3.3 Charged black holes

Finally, we consider black holes with nontrivial charged scalar field with the Robin bound-
ary conditions. We call these hairy Robin black holes. The phase space depends on the all
four parameters (µ, TH, ζ, q).

In figure 9, phase diagrams for q = 1 are shown for different ζ. In each figure, the
blue line on the border between the RNAdS and hairy Robin black holes denotes the
second-order phase transition below which the scalar hair forms. The red line is the first
order Hawking-Page transition between hairy Robin black holes and charged Robin boson
stars. The orange segment denotes the first order phase transition between the RNAdS and
charged Robin boson stars. The black dashed line is plotted for reference of the Hawking-
Page transition between the thermal AdS and RNAdS (2.11), although it is not physically
dominant because it is superseded by the charged Robin boson star phase.

Starting from a large value of ζ, we browse notable features in the phase structure by
decreasing ζ.

• ζ > ζt ' 0.6847π: in figure 9(a) (see eq. (3.1) for the definition of ζt), neutral solutions
(µ = 0) can have nontrivial scalar hair. Thermal AdS does not appear because its
free energy is always higher than Robin boson stars when the latter exist as solutions.
Hence, the phase diagram contains three phases: zero scalar RNAdS, hairy Robin
black holes, and charged Robin boson stars. By decreasing the temperature, the
RNAdS spontaneously grows the scalar hair, and then the hairy Robin black hole
transitions to the charged Robin boson stars. This feature is common to all µ.

• ζt > ζ > ζc ' 0.6805π: in figure 9(b), the phase structure for this parameter region is
shown for ζ/π = 0.682. When ζ is decreased to ζt, the two phase transition lines (blue
and red) first meet at µ = 0. As shown in figure 7(b), ζ = ζt is bigger than ζ = ζc
where the thermal AdS phase shows up. This means that, in ζ < ζt, the phase
transition from the RNAdS to charged Robin boson stars (orange line) appears.

• ζc > ζ & 0.24π: in ζ < ζc, the thermal AdS phase can be present as µ is increased
from 0 until the charged Robin boson stars branch from thermal AdS as discussed
in figure 8. The phase diagram in this parameter region is shown in figure 9(c). The
vertical green line is the second order phase transition between thermal AdS and
charged Robin boson stars.

• In figures 9(a)–9(c), the Hawking-Page transition (red line) will approach TH → 0 as
µ is increased. We were not able to compute until this limit due to tough numerics,
but we can see that the transition line will go down towards TH → 0 for a wide
parameter range (in ζ/π & 0.24). We also expect that the Hawking-Page transition
should go to THP → 0 before boson star solutions disappear at the upper limit in µ
for Robin boson stars with small q (discussed in section 3.2).
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(a) ζ/π = 0.7 (b) ζ/π = 0.682

(c) ζ/π = 0.6 (d) ζ/π = 0.239

(e) ζ/π = 0.2

Figure 9. Phase diagram for q = 1 and ζ/π = 0.7, 0.682, 0.6, 0.239, 0.2. The dashed and solid
black curves denote the Hawking-Page transition temperature THP (eq. 2.10) between the RN AdS
black holes and the thermal AdS. When the grand potential of these two solutions are bigger than
that of the charged Robin boson star, the corresponding part of this curve is irrelevant and does not
represent a physical phase boundary, but we added it with a dashed line for reader’s convenience.
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• ζ ' 0.24π: when ζ is decreased further, the Hawking-Page transition between hairy
Robin black holes and charged Robin boson stars reaches zero temperature and dis-
appears. For q = 1, this occurs in a small parameter window of ζ near ζ/π ' 0.24.
Figure 9(d) is the phase diagram for ζ/π = 0.239. This has four phases, but the
charged Robin boson stars and hairy Robin black holes are separated by the RNAdS,
and correspondingly there is a small gap of µ where the extremal RNAdS survives
in the phase diagram at zero temperature. The hairy Robin black holes branch from
the extremal RNAdS.

• ζ . 0.24π: the charged Robin boson star phase then disappears when ζ is decreased
further. In figure 9(e), the phase diagram at ζ/π = 0.2 is shown. While charged Robin
boson stars also exist as solutions in this parameter region, their grand potential is
always bigger than that of hairy Robin black holes, and hence they do not show up
in the grand canonical phase diagram.

When the coupling q is increased, the ζ dependence of the phase structure can be
different.

• For q =
√

2, the phase structures of figures 9(a), 9(b), and 9(c) are observed for
ζ > 0, but those of figures 9(d) and 9(e) are absent because no stable extremal
RNAdS exist even for the Dirichlet boundary condition ζ = 0. Instead, at ζ = 0, a
phase structure not shown here appears (see figure 7(a) in [34]). It contains three
phases, where thermal AdS and hairy Robin BH are separated by the RN AdS BH
reaching sufficiently low temperature. There, the phase of the charged boson stars
also disappears because the onset is exactly on the TH = 0 axis [34].

• For q >
√

2, the scalar hair grows at finite temperatures before extremality is reached,
because all the extremal solutions with TH = 0 are unstable toward scalar hair for-
mation when q >

√
2, as explained in section 2.2. Therefore, the phase structures

depicted in figures 9(d) and 9(e) are absent in q >
√

2.

There is qualitative difference for the phase structures of the Robin boundary condi-
tions from those for the Dirichlet boundary condition (see [34]) that some of the phase
structures in figure 9 are absent in the same system under the Dirichlet boundary con-
dition. The structures of figures 9(a) and 9(b) do not exist for the Dirichlet boundary
condition, because thermal AdS phase should appear in small µ region when ζ < ζc and
particularly in the Dirichlet case (ζ = 0). Adding to that, the presence of neutral Robin
black hole phase (with µ = 0) for ζ > ζt observed in figure 9(a) is another unique feature
of the Robin boundary condition. The structure of figure 9(c) is observed for the Dirichlet
boundary condition with a gauge coupling q >

√
2 (in our normalization) [34]. For the

Robin boundary condition, however, this phase structure can be seen even for small q if
ζ is sufficiently large. The structure of figure 9(d) is not seen for the Dirichlet boundary
condition because the charged boson star phase disappears at the same time as THP → 0
at q =

√
2 (see [34]). The structure of figure 9(e) is typical in q <

√
2.
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4 Conclusion

We considered charged boson stars and black holes in four-dimensional Einstein-Maxwell-
complex scalar theory with the Robin boundary conditions for the charged scalar field in
asymptotically global AdS spacetime. This setup is dual to the double trace deformation
of three-dimensional dual field theory on R × S2 with a dimension 1 charged scalar op-
erator. The current setup has the four-dimensional parameter space (TH, µ, q, ζ), and the
consideration of the Robin boundary conditions offers the most general solutions in the
four-dimensional Einstein-Maxwell-complex scalar theory. The phase structure and phase
transition are studied in the grand canonical ensemble. There are four phases characterized
by the presence and absence of the black hole horizon and nontrivial scalar hair. There is
an interplay between two kinds of instability on the formation of a charged scalar hair, the
one caused by the Robin boundary conditions and the other by the chemical potential or
the black hole charge. These introduce the richer phase structure compared with the case
of the Dirichlet boundary condition, as explained in section 3.

We considered the Robin boundary conditions for scalar field in this paper. This type
of boundary conditions can be also imposed on vector and metric fields [11, 19–21]. It
will be interesting to consider phases of gravitational solutions where the Robin boundary
conditions are imposed on such different kinds of field. Rather recently, the Robin boundary
conditions are utilized for studies in various context including the holography and also the
supergravity (see e.g. [53–55]). Our study would provide useful information to clarify
various properties in these cases, such as the thermodynamical phase structures and also
the dynamical (in)stabilities.
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A Holographic renormalization

We carry out holographic renormalization in the asymptotically global AdS spacetime with
the Robin boundary conditions (also called the mixed boundary conditions) [56]. We follow
the calculations in [57], the application of which to complex scalar theory in global AdS is
straightforward.
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We use the r-coordinate in calculation. The asymptotic solutions near the AdS bound-
ary (2.27)–(2.30) take the form

f(r) = 1 + φ2
1
r2 + f3

r3 +
(

2φ4
1 + 2φ2

2 + a2
1e
χ0

2

)
1
r4 + · · · , (A.1)

χ(r) = χ0 + φ2
1
r2 + 8

3
φ1φ2
r3 +

(3
2φ

4
1 + 2φ2

2 − q2a2
0φ

2
1e
χ0

) 1
r4 + · · · , (A.2)

φ(r) = φ1
r

+ φ2
r2 + φ1

2
(
φ2

1 − q2a2
0e
χ0
) 1
r3 + · · · , (A.3)

At(r) = a0 + a1
r

+ q2a0φ
2
1

r2 + 1
6φ1

(
4q2a0φ2 + (2q2 − 1)a1φ1

) 1
r3 + · · · . (A.4)

In the following, we assume that the scaling (2.40) has been applied so that χ0 = 0.
The action is regularized by introducing a cutoff surface at r = rΛ. Let M denote the

regularized spacetime manifold defined in r ≤ rΛ and ∂M the cutoff surface at r = rΛ.
The bulk action (2.1) accompanied by the Gibbons-Hawking term can be regularized as

Sreg = 1
8πGN

∫
M

d4x
√
−g

(1
2 (R− 2Λ)− 1

4FµνF
µν − |Dφ|2 −m2|φ|2

)
+ SGH, (A.5)

where
SGH = 1

8πGN

∫
∂M

d3x
√
−γ K (A.6)

with K ≡ Kijγ
ij being the trace of the extrinsic curvature Kij with respect to the induced

metric γij on ∂M (i, j run over the three-dimensional coordinates on ∂M). The extrinsic
curvature is given by

Kij = 1
2δ

µ
i δ

ν
j (∇µnν +∇νnµ) , (A.7)

where nµ is an outward unit normal gµνnµnν = 1. However, the “bare” action (A.5)
diverges when the cutoff is simply removed by taking the limit of rΛ →∞.

This divergence can be cancelled by counterterms Sct. Including Sct formally, we can
define a subtracted action that is finite in the limit rΛ →∞ as

Ssub = Sreg + Sct. (A.8)

Then, removing the cutoff gives a renormalized action,

Sren = lim
rΛ→∞

Ssub. (A.9)

The form of Sct depends on the boundary conditions at the AdS boundary. We will discuss
the cases of the Dirichlet theory, Neumann theory, and double trace deformation in turn.

Dirichlet theory. When ζ = 0, our Einstein-Maxwell complex scalar system is treated
as the Dirichlet theory that has a dimension 2 operator O2 in the dual field theory on the
AdS boundary. This is also called the standard quantization. The counterterms for this
case can be given by [57–59]

Sct = − 1
8πGN

∫
∂M

d3x
√
−γ

[
2 + Rγ

2 + φ2
]
, (A.10)
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where Rγ is the Ricci scalar for γij , and we ignored derivative terms of the scalar field that
do not contribute in our spherically symmetric static solutions. With these counterterms,
let SDren denote the renormalized action for the Dirichlet theory.

The expectation values of field theory operators can be obtained through variation as

δSDren =
∫

d3x
√
−h

(1
2〈T

ij〉δhij + 〈J i〉δΨi + 〈O2〉δΦD

)
, (A.11)

where ΦD =
√

2φ1 is the source of the scalar operator, Ψi denotes that of the gauge field,
and hij are the metric components of the boundary R × S2. For the gauge field, we turn
on the chemical potential Ψt = µ = a0.

The boundary stress energy tensor can be practically calculated as follows. From the
subtracted action, the stress energy tensor on the cutoff surface can be obtained as

(Tγ)ij = − 2√
−γ

δSDsub
δγij

= 1
8πGN

(
−Kij +Kγij − 2γij + (Gγ)ij − φ2γij

)
, (A.12)

where (Gγ)ij = (Rγ)ij − 1
2Rγγij is the Einstein tensor for the induced metric. This scales

as (Tγ)ij ∼ 1/rΛ because γij ∼ 1/r2
Λ and √−γ ∼ r3

Λ. Hence, by switching from γij to hij ,
the expectation value of the boundary stress energy tensor (A.11) reads

〈Tij〉 = lim
rΛ→∞

rΛ(Tγ)ij . (A.13)

Explicitly, the components are given by

8πGN 〈Ttt〉 = −f3 + 2φ1φ2, (A.14)

8πGN 〈Tθθ〉 = −f3
2 + 2φ1φ2, (A.15)

8πGN 〈Tψψ〉 = sin2 θ

(
−f3

2 + 2φ1φ2

)
, (A.16)

where (θ, ψ) denote the coordinates on S2 introduced as dΩ2
2 = dθ2 + sin2θdψ2. From the

stress energy tensor, the total energy (also called the total mass) of the Dirichlet theory is
expressed as

ED ≡ 8πGN
∫

dΩ2〈Ttt〉 = 4π(−f3 + 2φ1φ2), (A.17)

where 8πGN is included in the definition of the l.h.s. .
The expectation values for the matter fields are

8πGN 〈J t〉 = −a1, 8πGN 〈O2〉 =
√

2φ2. (A.18)

These quantities are the densities per solid angle. The total charge is given by

Q ≡ 4π · 8πGN 〈J t〉 = −4πa1. (A.19)

Similarly, the scalar expectation value integrated over the sphere is

〈O2〉 ≡ 4π · 8πGN 〈O2〉 = 4π
√

2φ2. (A.20)
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The trace of the stress energy tensor satisfies

〈T ii〉 = 2φ1φ2
8πGN

= ΦD〈O2〉. (A.21)

If both φ1 and φ2 are nonzero, the theory that gives the variation (A.11) can be interpreted
as Dirichlet theory in the presence of a nonzero source ΦD. The nonzero trace (A.21)
then indicates that the conformal symmetry is explicitly broken by the source. When
the source is absent ΦD = 0, i.e. ζ = 0, the expression of the energy (A.17) reduces to
ED|φ1=0 = −4πf3.

We can also calculate the finite Euclidean on-shell action when the counterterms are
added.10 Using the equations of motion, we obtain (see section 3.4 in [8])

1
2 (R− 2Λ) + L = −1

2
(
Gtt +Grr

)
= − 1√

−g

(
(1 + r2)f√−g

r

)′
+ 1
r2 , (A.22)

where the last term, which is not a total derivative, is due to the spherical topology of the
global AdS. By this relation, the bulk action (2.1) is simplified to

Sbulk = 4π
8πGN

∫
dtdr

[(
−r(1 + r2)fe−

χ
2
)′

+ e−
χ
2

]
= 4π

8πGN

∫
dt
[
−r3

Λ −
(

1 + φ2
1

2

)
rΛ − f3 + 4φ1φ2

3 +O

( 1
rΛ

)
+
∫ rΛ

rh

dr e−
χ
2

]
,

(A.23)

where (A.1)–(A.4) were used. This diverges for rΛ →∞. The divergence can be cancelled
by adding the counterterms as well as the Gibbons-Hawking term,

SGH + Sct = 4π
8πGN

∫
dt
[
r3

Λ + φ2
1

2 rΛ + f3
2 + 2φ1φ2

3 +O

( 1
rΛ

)]
. (A.24)

Combining (A.23) and (A.24), we obtain the finite Lorentzian renormalized on-shell action,

SL = SDren = lim
rΛ→∞

(Sbulk + SGH + Sct) . (A.25)

The Euclidean on-shell action SE can be obtained by replacing
∫

dt→ −
∫ 1/TH

0 dτ where τ
denotes the Euclidean time. It is related to the grand potential for the Dirichlet theory as
ΩD ≡ 8πGNTHSE . The expression of the grand potential in terms of the bulk integral is
hence given by

ΩD = 4π
∫ ∞
rh

dr(1− e−
χ
2 ) + 4π

(
f3
2 − 2φ1φ2 + rh

)
, (A.26)

where we used rΛ =
∫ rΛ
rh

dr + rh to rewrite the cutoff dependence for numerical evaluation
of the r-integral.

10We thank Li Li for discussions on this calculation.
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Neumann theory. For ζ 6= 0, the bulk theory is considered to be dual to the boundary
field theory with a dimension 1 scalar operator O1. This is known as the alternative
quantization. The case of ζ = π/2 is the Neumann theory. It turns out that the source of
the scalar operator is identified as ΦN = −

√
2φ2, and the expectation value of the scalar

operator is 8πGN 〈O1〉 =
√

2φ1. The renormalized action is modified from the Dirichlet
theory as follows.

The Neumann theory is the Legendre transform of the Dirichlet theory [16],

SNren = SDren + SLT, (A.27)

where N denotes the Neumann theory, and

SLT = − 2
8πGN

∫
d3x
√
−hφ1φ2. (A.28)

The variation with respect to the scalar field gives

δφSLT = − 2
8πGN

∫
d3x
√
−h (φ2δφ1 + φ1δφ2) =

∫
d3x
√
−h (−〈O2〉δΦD + 〈O1〉δΦN ) .

(A.29)
The variation of the renormalized Neumann action hence takes the form

δSNren =
∫

d3x
√
−h

(1
2〈T

ij〉δhij + 〈J i〉δΨi + 〈O1〉δΦN

)
. (A.30)

In the above equation, 〈T ij〉δhij contains the contribution from the variation of (A.28) by
hij , which shifts (A.14)–(A.16). The stress energy tensor for the Neumann theory is thus
given by

8πGN 〈Ttt〉 = −f3 + 4φ1φ2, (A.31)

8πGN 〈Tθθ〉 = −f3
2 , (A.32)

8πGN 〈Tψψ〉 = − sin2 θ
f3
2 . (A.33)

The trace of the stress energy tensor is

〈T ii〉 = −4φ1φ2
8πGN

= 2ΦN 〈O1〉. (A.34)

Correspondingly, the total energy is

EN = 4π(−f3 + 4φ1φ2) = ED + ELT, (A.35)

and so is the grand potential, ΩN = ΩD + ΩLT, where ELT = ΩLT = 8πφ1φ2. When the
source is absent ΦN = 0, i.e. ζ = π/2, the energy is given by EN |φ2=0 = −4f3.
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Double trace deformation. For ζ 6= 0 nor π/2, the theory is interpreted as double
trace deformation of the Neumann theory. For this, we need to include additional finite
boundary terms in order for consistent variation with respect to the source in the deformed
theory. We give the source in the form

ΦR = −
√

2 (φ2 + αφ1) , (A.36)

where α is a real parameter. The undeformed Neumann theory corresponds to α = 0. For
this source, we need an additional finite boundary term,

SDtr = − α

8πGN

∫
d3x
√
−hφ2

1. (A.37)

This term corresponds to the relevant double trace deformation of the dual field theory.
The renormalized action is modified to

SRren = SNren + SDtr = SDren + SLT + SDtr. (A.38)

The renormalized action equipped with the finite term SDtr gives the correct variation
with respect to the source ΦR. The scalar field variation of (A.38) is

δφS
R
ren = 1

8πGN

∫
d3x
√
−h (−2φ1δφ2 − 2αφ1δφ1) =

∫
d3x
√
−h〈O1〉δΦR. (A.39)

The full variation of SRren takes the form

δSRren =
∫

d3x
√
−h

(1
2〈T

ij〉δhij + 〈J i〉δΨi + 〈O1〉δΦR

)
. (A.40)

The above stress energy tensor 〈T ij〉 contains finite contribution from the variation of SDtr
with respect to hij , shifting the expressions of the Neumann theory (A.31)–(A.33). The
expectation values in (A.40) are given by

8πGN 〈Ttt〉 = −f3 + 4φ1φ2 + αφ2
1, (A.41)

8πGN 〈Tθθ〉 = −f3
2 − αφ

2
1, (A.42)

8πGN 〈Tψψ〉 = sin2 θ

(
−f3

2 − αφ
2
1

)
, (A.43)

8πGN 〈J t〉 = −a1, (A.44)
8πGN 〈O1〉 =

√
2φ1. (A.45)

In our setup, we consider the Robin boundary conditions (2.18) as the double trace
deformation with vanishing source ΦR = 0. From (2.18), we choose α = − cot ζ, and the
condition for the source is reduced to

ΦR = −
√

2 (φ2 − φ1 cot ζ) = 0. (A.46)
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Under this condition, the components of the stress energy tensor (A.41)–(A.43) become

8πGN 〈Ttt〉 = −f3 + 4φ1φ2 − φ2
1 cot ζ, (A.47)

8πGN 〈Tθθ〉 = −f3
2 + φ2

1 cot ζ, (A.48)

8πGN 〈Tψψ〉 = sin2 θ

(
−f3

2 + φ2
1 cot ζ

)
. (A.49)

When ζ = π/2, these expressions reduce to those for the Neumann boundary condi-
tions (A.31)–(A.33). The total energy is given by

ER ≡ 8πGN
∫

dΩ2〈Ttt〉 = 4π(−f3 + 4φ1φ2 − φ2
1 cot ζ). (A.50)

This can be decomposed into individual contributions as

ER = EN + EDtr = ED + ELT + EDtr, (A.51)

where EDtr = −4πφ2
1 cot ζ is the contribution of SDtr. Among these, ELT+EDtr is interpreted

as the energy stored on the AdS boundary.11 Note that ELT +EDtr = 0 when ζ = π/2, while
it is not when ζ 6= π/2 (and ζ 6= 0, of course). The total charge and scalar expectation
value are given by

Q ≡ −4πa1, 〈O1〉 ≡ 4π
√

2φ1. (A.52)

Using cot ζ = φ2/φ1, we can rewrite (A.47)–(A.49) as

8πGN 〈Ttt〉 = −f3 + 3φ1φ2, (A.53)

8πGN 〈Tθθ〉 = −f3
2 + φ1φ2, (A.54)

8πGN 〈Tψψ〉 = sin2 θ

(
−f3

2 + φ1φ2

)
. (A.55)

The total energy is expressed as

ER = 4π(−f3 + 3φ1φ2). (A.56)

The trace of the energy momentum tensor can be written in the form

8πGN 〈T ii〉 = −φ1φ2 = − cot ζ φ2
1 = −cot ζ

2 (8πGN )2〈O1〉2. (A.57)

This implies the spontaneous breaking of the conformal symmetry in the double trace
deformed theory when the scalar operator acquires an expectation value.

The grand potential of the double trace deformed theory is also shifted from the Dirich-
let and Neumann theories by a finite term as

ΩR = ΩN + ΩDtr = ΩD + ΩLT + ΩDtr, (A.58)
11See also [60] for the relationship between the Robin boundary condition and the modification of the

potential energy near a boundary, which may suggest that the parameter ζ for the Robin boundary condition
controls the amount of the energy stored in the near-boundary region.
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where
ΩDtr = EDtr = −4π cot ζ φ2

1 = −4πφ1φ2. (A.59)

The expression of the grand potential in terms of the bulk integral is shifted from (A.26) as

ΩR = 4π
∫ ∞
rh

dr(1− e−
χ
2 ) + 4π

(
f3
2 − φ1φ2 + rh

)
. (A.60)

RNAdS. For the RNAdS black holes (eqs. (2.4)–(2.6)), we have (the label of D,N,R is
removed because the scalar field is zero)

E = 4πrh
(

1 + r2
h + µ2

2

)
. (A.61)

The grand potential is

Ω = 2πrh
(

1− r2
h −

µ2

2

)
. (A.62)

In thermal AdS, rh = 0, we obtain E = Ω = 0. The Hawking-Page transition between the
RNAdS and thermal AdS phases (2.11) occurs when the black hole reaches Ω = 0. The
grand potential of the RNAdS (A.62) is Ω > 0 for rh < rHP and Ω < 0 for rh > rHP (2.11).
For the RNAdS, we can analytically check that (2.42) is satisfied, where Q = 4πQ = 4πµrh
for the RNAdS.

B First law of thermodynamics

To check numerical results, we wish to evaluate the first law of thermodynamics/black hole
mechanics. If we regard solutions with nonzero φ1 and φ2 as the Dirichlet theory with
explicit scalar source, the generalization of the first law of thermodynamics to the presence
of nonzero scalar source and expectation values is given by12

dED = THdSBH + µdQ− 〈O2〉dΦD. (B.1)

By the Legendre transform (A.35), this can be rewritten for the Neumann theory as

dEN = THdSBH + µdQ− 〈O1〉dΦN . (B.2)

Adding the double trace deformation (A.37), we can rewrite this for the double trace
deformed theory. In this step, we can treat also α (defined by eq. (A.36)) as an independent
variable. By doing this, we can compare solutions with different values of α. We obtain

dER = THdSBH + µdQ− 〈O1〉dΦR −
1

8π 〈O1〉2dα, (B.3)

12On general grounds, this first law in the presence of a nonzero scalar source follows from the fact
that the grand potential is the generating function for responses of sources. In [61], this was discussed for
the holographic superconductor model same as this paper except in the probe limit with the planar AdS
boundary. Recently in [62], this scalar source contribution to the first law was derived by using Wald’s
formalism [63, 64]. See also [65–67] for earlier discussions.
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Figure 10. Comparison of entropies in the microcanonical ensemble for E = 10, ζ/π = 0.6, and
q = 1. The end point of the blue line is at (SBH,Q) = (0, 9.955), and it corresponds to a charged
Robin boson star.

where dΦR = −
√

2(dφ2+αdφ1+φ1dα). The coefficient of the last term 1/(8π) = 1/(2·4π) is
due to the normalization of 〈O1〉 (A.52). When we impose the Robin boundary conditions,
i.e. α = − cot ζ and ΦR = 0 (A.46), this equation reduces to

dER = THdSBH + µdQ+ 1
8π 〈O1〉2d(cot ζ). (B.4)

If we consider the family of solutions for fixed ζ (together with no source ΦR = 0), the
last term drops, and we obtain the first law of thermodynamics that contains the variation
only of thermodynamic variables as

dER = THdSBH + µdQ. (B.5)

However, if the last term is taken into account, we can use (B.4) as a relation useful to
compare solutions where ζ varies in general. We can use any of the above equations to
check numerical results because these are rewriting of the same relation.

C Comparison of entropy in microcanonical ensemble

In the main text, we have seen the phase structures in the grand canonical ensemble.
We can also consider the microcanonical ensemble where the total energy (mass) E and
charge Q are treated as independent variables. In this ensemble, we can argue the fate
of an unstable RNAdS black hole by comparing the entropies between solutions with and
without scalar at the same (E ,Q) (see also Dirichlet boundary condition [35, 36]).

In figure 10, we show the entropies of the two kinds of the solutions in the (Q,SBH)
plane for E = 10, ζ/π = 0.6 and q = 1. The black curve is the entropy of the RNAdS with
E = 10. The extremal RNAdS is marked by the red dot, and the onset of instability for the
branching of the hairy black holes is shown by the blue dot. When the RNAdS and hairy
Robin black hole both exist at the same parameters (E ,Q, ζ, q), the latter has the higher
entropy than the former. We also examined other values of the parameters (E ,Q, ζ, q) and
found that hairy black holes have higher entropy than RNAdS when solutions overlap (see
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also the same comparison in the Dirichlet boundary condition [35, 36]). This implies that
an unstable RNAdS can dynamically evolve into a hairy black hole in the microcanonical
ensemble when it is perturbed and nonlinear time evolution is considered. In figure 10, the
zero entropy limit of the hairy Robin black hole is the zero size limit rh → 0 with diverging
temperature TH → ∞. The profile of the field variables (f, χ, φ,At) approaches that of a
charged Robin boson star.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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