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Figure 1. Schematic of the gap and selection algorithm in rapidity-azimuthal space.

1 Introduction

In the high-energy regime, when the center-of-mass energy
√
s greatly surpasses the typi-

cal transverse scale
√
−t (s� −t), QCD is predicted to exhibit new dynamical behaviors.

Provided that the scale driving the strong coupling αs(−t) is well within the perturbative
domain, i.e., −t� Λ2

QCD, the high-energy limit can be understood under the framework of
the Balitsky-Fadin-Kuraev-Lipatov (BFKL) expansion [1, 2]: a reformulation of the QCD
perturbative series following a modified hierarchy where the discrimination of the approx-
imation order cannot be relegated to mere coupling counting. Scattering amplitudes and
cross-sections can involve large logarithms of the ratio s/(−t) � 1 which can compensate
the smallness of the strong coupling αs � 1. The perturbative series is thus affected by
large coefficients, so that all perturbative orders are important. The BFKL framework con-
sists precisely of the resummation of the leading logarithmic (LL) terms of order (αs log s)n

and possibly of the next-to-leading logarithmic (NLL) terms of order ∼ αs(αs log s)n.
Since the advent of modern colliders, great interest has been dedicated towards the

search of a process able to clearly give away the influence of underlining BFKL dynamics. In
the context of hadron-hadron colliders, Mueller and Tang (MT) [3] proposed to investigate
particular dijet processes where the interaction is conveyed by a color-singlet exchange.
These events are characterized by two hard jets which are essentially back to back in the
transverse (with respect to the beam axis) plane (pj1 ' −pj2 & 40 GeV) and have a large
(pseudo-)rapidity separation Yj12 ≡ yj1 − yj2 , with a sizable part of this rapidity interval
— the so called gap — devoid of any detectable activity as shown in figure 1. More
precisely, MT argued that the colourless BFKL hard pomeron becomes the favored mean
of interaction to produce jets at large rapidity separation (Yj12 & 3) when no emission
is allowed between them. On the contrary, exchanges of coloured objects are very rarely
associated with a rapidity gap, tending to emit conspicuously in the central region. For
such reason, jet-gap-jet events are good candidates for the observation of BFKL dynamics.

The jet-gap-jet process is a very clean observable in the sense that there are very few
background events. Its experimental signature has been searched for in hadron collisions
by the CDF and D0 Collaborations at the

√
s = 1.8TeV Tevatron [4], the D0 Collaboration

at the
√
s = 630GeV Tevatron [5], the joint CMS and TOTEM Collaborations at the

√
s =

2.76TeV LHC [6] and the
√
s = 13TeV LHC [7], and finally by the CMS Collaboration at

the
√
s = 7TeV LHC [8]. However, since the first experimental studies at the Tevatron [4,

5], the LL predictions failed to accurately reproduce the observed cross-sections. Including

– 1 –



J
H
E
P
0
6
(
2
0
2
3
)
0
9
1

the corrections to the gluon Green’s function (GGF) at NLL shows an improved agreement
with data from D0, CDF at the Tevatron, and at the 7TeV LHC [9, 10]—but substantial
discrepancies still exist. However, the original Mueller-Tang description does not seem to
describe the most recent measurements by the CMS Collaboration at 13TeV [7], especially
the dependence on the difference in rapidity between the two jets. It was recently shown [11]
that Monte-Carlo implementations of the MT predictions can be very sensitive to the gap
definition.

With this paper we aim at refining the theoretical predictions by including the next-
to-leading order (NLO) impact factors (IF)1 and, thus, completing the BFKL predictions
of the Mueller Tang (MT) processes at NLL accuracy. The goal of our study is thus
to complete the phenomenological analysis in the NLL approximation (NLLA). We thus
present an improved NLL analysis of jet-gap-jet cross-sections by including contributions
from the recently calculated NLO impact factors [12, 13] on top of the usual approximated
treatment of the NLL GGF.2

In order to comply with the actual experimental procedure of jet-gap-jet event selection
where low and non-detectable energy can flow into the gap, the original NLO impact
factor [12, 13] has to be modified. As a result, additional logarithmic terms appear which
are formally not expected as part of the BFKL factorization structure. As we will discuss,
this fact can be interpreted as a breakdown of BFKL factorization for MT jets in NLLA.
Although it represents a major theoretical issue, which deserves a separate study [14], we
will show that such logarithmic terms are relatively small from the phenomenological point
of view, so that the overall quantitative description of the jet-gap-jet observables remains
reliable.

Another issue is that exact theoretical descriptions of jet-gap-jet events are rather
sensitive to the soft rescattering of proton remnants. This, and other non-perturbative
phenomena (e.g., for instance the soft color interaction model [15]), tends to contaminate
the gap. These soft interactions are often expected to suppress the overall jet-gap-jet rate
without much effect on the shapes of the distributions. Nonetheless, models that contradict
that expectation have been proposed [16].

This paper is organized as follows: in section 2 we define the conventions and set up
the general framework. In section 3 we describe the LL solution and identify the lowest
order IFs and GGFs. In section 4 we describe the NLL contributions. This section is mainly
devoted to examining the NLO IFs and adapting them to the jet-gap-jet observable. We
identify the “anomalous” log(s) enhanced contributions responsible for the violation of
BFKL factorization. In section 5 we describe additional possible theoretical sources of
jet-gap-jet-like events, which could affect our predictions. Finally, in section 6 we define
the relevant experimental parameters and present the numerical results relevant at LHC
energies.

1We use the notation LL and NLL for the degree of accuracy of the GGF which resums the logarithms
of the energy, while we use LO and NLO for impact factors which are computed as an ordinary expansion
in αs.

2The exact description of the NLL BFKL GGF in the non-forward case has not been achieved yet.
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2 Mueller-Tang jets: definitions and conventions

Our main aim is to describe the semi-inclusive dijet hadro-production

h(pa) + h(pb)→ J1 +X1 + gap +X2 + J2 , (2.1)

where two hadrons (h) with momentum pa/b scatter to jets J1/2.3 We denote with Ji =
(yji ,pji) the rapidity and transverse momentum of each jet.4 The two jets are required
to be “hard”, i.e., with |pji | � ΛQCD, and to have a large rapidity difference Yj12 which
encompasses the rapidity gap, a central region devoid of radiation with an extension of
at least Ygap.5 The dijet emission is “semi-inclusive” because any radiation X1/2 outside
the central rapidity gap, in addition to the two jets, is permitted in both longitudinal
hemispheres. By definition, Yj12 > Ygap since the gap stands between the edges of the
jets. More precisely, a dijet scattering event recorded at the LHC is considered to be a
Mueller-Tang process if it passes the following selection algorithm [7] (see figure 1):

1. Tag the hardest among all the jets in each longitudinal hemisphere fulfilling

pj{1,2} > 40 GeV , |yj{1,2} | > yjmin = 1.4 , yj1yj2 < 0.

The minimum allowed jet rapidity is yjmin > ygap to leave enough room between the
“jet cone” edge (as defined by the jet radius) and the gap region.

2. Reject the event if any radiation, hadronic, electromagnetic, etc., is found in the
prohibited gap region

|k| >Eth ≈ 1 GeV, |y| < ygap = 1 (→ Ygap = 2ygap = 2) .

Note that the gap is a fixed domain in rapidity in the central region (as it is the case
at the Tevatron and the LHC), between −1 and 1 units in rapidity.

The role of a finite energy threshold is twofold: firstly, it reflects the finite resolution
of the detector; secondly, prerequisite to the cancellation of the singularities in the
theoretical analysis, it leaves the soft emission unconstrained.6

These types of jet-gap-jet events are predominantly generated through color-singlet
exchange. Other color representations tend to populate the final state with a lot of central
radiation [3] which destroys the rapidity gap. Due to the large scales provided by the jet

3All definitions and expressions are taken from refs. [12, 13]. To avoid repetitions many details will be
omitted but can be found in those references. The reader should assume that all arguments and relations
developed there continue to be valid throughout the present analysis if not explicitly stated otherwise.

4We use bold fonts to indicate Euclidean 2-dimensional transverse vectors, and also explicitly label the
integration dimension to avoid any confusion.

5No radiation is allowed in the gap region. Naturally, events where the void region extends beyond the
prohibited gap region are perfectly valid and very common.

6The choice of a value larger than the experiment reference Eth ≈ 200MeV [7] is motivated considering
that the hadronization process, here absent, would spread the parent energy among its spawn hence reducing
the energy density. Other choices of the Eth value are explored in the following.

– 3 –



J
H
E
P
0
6
(
2
0
2
3
)
0
9
1

pB

fb

G∗

`2 k−`2

G

`1k−`1

V
pA

fa

Figure 2. Schematic of the Mueller-Tang cross-section. The red disks denote the GGFs, the green
blobs the impact factors, the small violet blobs the PDFs.
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Figure 3. Schematics of the BFKL recursive integro-differential equation.

transverse momenta, QCD perturbation theory is effective in describing the cross-section
of these processes. In addition, the large rapidity separation insures that the center-of-
mass energy

√
ŝ of the interacting system is much larger than the momentum transferred√

−t ' |pji |, so that the process is governed by BFKL dynamics.
As implied by the structure shown in figure 2, the working hypothesis is that the jet-

gap-jet cross-section is mostly determined by a hard partonic cross section convoluted with
the corresponding parton distribution functions (PDF) fa,b according to standard collinear
factorization. In turn, the partonic cross section can be factorized into process-dependent
impact factors (IFs) Va,b — which, in this case, are also called “jet vertices”, one for each
hadron — and the universal non-forward colour-singlet gluonic Green-function (GGF) G
together with its complex-conjugate G∗.

Each GGF resums to all orders the logarithmically-enhanced energy-dependent terms
∼ (αs log(s))n in the perturbative expansion of the amplitude, which arise in the Regge
limit s � (−t) � ΛQCD. In this limit, due to the extreme Lorentz contraction, the
dynamics is essentially transverse, and therefore the GGF depends only on the partonic
center of mass energy squared ŝ = x1x2s and on the transverse momenta of its legs ` and
k−`, where k is the overall momentum transferred between the subsystems on the opposite
sides of the gap, such that k ' pj1 ' −pj2 and t = −k2.

According to the BFKL framework, the GGF is the solution of an integral equation
(see figure 3) whose kernel can be computed in perturbation theory:

∂

∂ log sG(`, `′,k, s) = δ2(`− `′) +
∫

d`′′K(`, `′′,k)G(`′, `′′,k, s) . (2.2)
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Currently, the kernel K = K(0)+αsK(1) is known at leading [1, 17] and next-to-leading [18]
order. The solution of the BFKL equation with only the leading kernel K0 determines the
leading-log GGF, denoted as GLL (while GNLL denotes the solution with the full, leading
and next-to-leading, kernel). The jet vertex couples the external probe with the pomeron,
here represented by the GGF in the color singlet representation, and dresses the emission
in terms of jets.

In practice, the maximally differential jet-gap-jet cross-section can be written as

dσ
dJ1 dJ2 d2k =

∑
a,b

∫ 1

0
dx1 fa(x1)

∫ 1

0
dx2 fb(x2) dσ̂ab

dJ1 dJ2 d2k (2.3)

dσ̂ab
dJ1 dJ2 d2k = 1

π2

∫ [ ∏
i=1,2

d2`i d2`′i

]
dVa(x1, `1, `2,k)

dJ1

dVb(x2, `
′
1, `
′
2,k)

dJ2
(2.4)

×G(`1, `
′
1,k, ŝ/s0)G(`2, `

′
2,k, ŝ/s0) ,

where x1/2 is the momentum fraction and a/b the active parton (q, q̄ with their flavors or
g) in hadron hA/B. The jet vertices, unintegrated in the jet variables, are here denoted
by dVa/b

dJ .
The various factors depend also on the choice of renormalization scale µR, factorization

scale µF , and energy scale s0. The latter is introduced to define the energy logarithms as
log(ŝ/s0) which stand at the basis of the BFKL factorization. By construction, changing
the value of s0 alters both GGFs and jet vertices in such a way that their product is left
unchanged up to terms in the current approximation.

The very existence of such a hybrid factorization formula at NLL level relies on two
properties of the partonic cross-sections:

(i) All infrared divergencies cancel in the sum of real and virtual contributions, after the
initial state collinear singularities are absorbed via collinear factorization into the
projectile parton densities.

(ii) All log(s) enhanced terms are incorporated into the GGFs.

Property (i) has been demonstrated in refs. [12, 13], provided the jets are defined through
an infrared-safe algorithm. Property (ii) is valid at LL for any kind of jets but at NLL it
crucially depends on the treatment of radiation X1/2 outside the jets or, equivalently, on
the definition of the gap. As we will show in section 4.2.1, property (ii) is violated with
the standard gap definition presented above. Nevertheless, the size of such violation turns
out to be smaller than the overall theoretical uncertainties (stemming from the physical
scale variations). Therefore, from a practical point of view, we consider phenomenologically
adequate the factorization formula presented above.

Having laid out the foundation of the description, we proceed to discuss the lowest
approximation first and successively build our way up to the complexity needed for the
NLL case.

– 5 –
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Figure 4. Geometric picture of a 2→ 2 scattering process. The two incoming partons move along
the z axis before colliding and being deflected, giving rise to two outgoing jets.

3 Leading-log approximation

At LL the interaction is purely elastic and involves the scattering of a single constituent
parton (quark/gluon)

p(pa) + p(pb)→ p(p1) + p(p2)

where p ∈ {q, g} are partons, a/b and 1/2 label the incoming and outgoing particles
respectively. As shown in figure 4, the gap spans the whole range between the partons.
The rapidity ordering emerging in the high-energy regime assures that each interacting
parton forms an independent jet with no overlapping between the two (ji = pi : i ∈ {1, 2})
after being slightly deflected in the scattering.

At LO, the IFs corresponding to quark and gluon initiated scattering (Vq/g) differ by a
mere multiplicative factor: Vq/Vg = CF /CA, where CF = (N2

c − 1)/2Nc and CA = Nc = 3
are the quark and gluon color factors respectively. Their explicit expressions are

dV LO(k, x)
dJ = V

(0)
q/g S

(2)
J (k;x), (3.1)

V
(0)
q/g =

α2
sC

2
F/A

N2
c − 1 , S

(2)
J (k;x) = xδ(x− xj)δ(2)(k− pj). (3.2)

As for the LL GGF, the solution of the BFKL equation at arbitrary values of the momentum
transfer, the so called non-forward BFKL equation (k > 0) was computed in ref. [19] for
the case of colorless particle scattering. Mueller and Tang [3] adapted the solution to
(colorful) partonic scattering. We adopt the MT prescription in our analysis. More details
on the origin of the MT prescription are given in appendix A. The result is a complicated
expression for the GGF once projected back to momentum space.

Since the LO IFs carry no dependence on the reggeon momenta `i, the integration over
such variables in eq. (2.4) reduces to the integral average of the GGF over external legs:

G(k2, ŝ/s0) =
∫

d2` d2`′G(`, `′,k, ŝ/s0) . (3.3)

– 6 –
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It turns out that in LLA only the non-analytic contribution — the Mueller-Tang “subtrac-
tion” — survives the average operation, greatly simplifying the form of the GGF:

GLL(k2, ŝ/s0) =
(
k

2

)−2 ∑
n∈Z

∫ ∞
−∞

dν
(
ŝ

s0

)ω(n,ν)
R(n, ν) (3.4)

where ω(n, ν) is the eigenvalue function of the LL BFKL kernel:7

ω(n, ν) = ᾱs [2ψ(1)− ψ(1/2 + |n|+ iν)− ψ(1/2 + |n| − iν)] (3.5)

R(n, ν) = ν2 + n2

[ν2 + (n− 1/2)2][ν2 + (n+ 1/2)2] , ᾱs = Nc

π
αs (3.6)

In conclusion, at LL level, the master formula of eq. (2.4) becomes

dσ̂LL
ab

dJ1 dJ2 d2k = dV LO(k, x1)
dJ1

dV LO(−k, x2)
dJ2

(GLL(k2, ŝ/s0)
π

)2
. (3.7)

The same formula (3.7) holds for the LO impact factors with the NLL GGF (3.3) with
GLL → GNLL. On the other hand, when coupled with NLO IFs, the GGF must retain its
full form as explained in detail in appendix A.

4 Beyond LLA

In the spirit of the BFKL approach, all the radiative corrections accompanied by one less
log(s) factor (relative to the LL approximation) must be retained to refine the precision of
the prediction by one (logarithmic) approximation order. This can be achieved by using
in eq. (2.4) the next-to-leading version of the jet vertices [12, 13, 20, 21] and the GGFs.
However, the large number of integrations in the factorization formula and inside the NLO
jet vertices V (1) causes the computation of the cross-section to be a formidable numerical
task. We can simplify the computation, while retaining the requested NLL accuracy,
by perturbatively expanding the jet vertices V = V (0) + αsV

(1) and thereby splitting the
cross-section into two contributions. The first one combines the NLL gluon Green functions
GNLL with the lowest-order jet vertices V (0) and the other one contains the next-to-leading
corrections of the vertices V (1) convoluted with the leading-log Green functions GLL. More
precisely8

dσ̂FULL
ab 'V (0)

a ⊗GNLL(`1,2)⊗GNLL(`′1,2)⊗V (0)
b (LO⊗NLL)

+αsV (1)
a (`1,`

′
1)⊗GLL(`1,2)⊗GLL(`′1,2)⊗V (0)

b (`2,`
′
2)+{Va↔Vb} (NLO⊗LL)

+α2
sV

(1)
a ⊗GLL⊗GLL⊗V (1)

b +αsV (1)
a ⊗GNLL⊗GNLL⊗V (0)

b . . . , (4.1)

where in the last line we show, for the sake of clarity, some contributions that we neglect,
being formally NNLL. Eq. (4.1) also shows on the right the notation that will be used
throughout this analysis: LO vertices and NLL GGFs (first line); one NLO vertex V (1) and
LL GGFs (second line); “FULL” for their sum.

7ψ(z) = d
dz log Γ(z) is the digamma function.

8In our equations and plots the label NLL means NLL accuracy, i.e., both leading-log and next-to-
leading-log terms are included. [NLO⊗ . . . ] means that one of the vertices has only the NLO term V (1),
the other vertex being at LO.

– 7 –
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4.1 Effective NLL GGF

One of the major tasks in computing the MT jet cross-section in NLLA is the calculation
of the NLL GGF. In the LLA, the calculation of the GGF is considerably simplified by
exploiting the conformal properties of the LL kernel. This allows the explicit determination
of the eigenvalues and eigenfunctions. At NLLA, such properties are no longer true because
of running-coupling effects.9 While waiting for a breakthrough towards the search for a
solution of the BFKL equation at NLLA, a partial account of the NLL corrections has
already been pursued [9]. It is based on the assumption that the forward NLL eigenvalue
in place of its LL equivalent should capture the bulk of the corrections.

Proceeding along the lines of ref. [9], we adopt an effective (averaged) GGF at NLL
level by replacing in eq. (3.4) the LL eigenvalue ω(n, ν) of eq. (3.5) with the forward NLL
eigenvalue ωf−NLL of eq. (A.14), keeping all the rest unchanged:

GNLL = GLL∣∣
ω→ωf−NLL .

It is known that both the zero conformal spin (n = 0) component of the NLL eigenfunc-
tion and, to a lesser extent, the higher conformal spin components are sensitive to collinear
corrections. These corrections, albeit formally subleading, can be large and should be taken
into account [23]. The collinear improvement [24] developed to account for these correc-
tions, introduces a scheme dependence in the upgraded NLL kernel. We adopt scheme
(4) of refs. [23, 25] and indicate this contribution simply as NLL in the following. Other
schemes, which were tested, give very similar predictions and will be omitted.

We note that a fully correct account of the NLL corrections can only come from the
solution of the NLL GGF equation. However, the non-forward NLL eigenfunction are not
known at present. Therefore, following previous analyses, we approximate its computation
by keeping the eigenfunction at LL while upgrading only the eigenvalue to NLL.

4.2 NLO impact factors

The other fundamental ingredient of the BFKL factorization formula for MT jets is the
so-called jet vertex, i.e., the impact factor for the production of a jet stemming from the
interaction of a parton with a pomeron. The quark-induced and gluon-induced impact
factors at NLO were computed in [12, 13]. They are considerably more complicated then
their LO siblings, both in the analytical structure and in the kinematical configuration of
the final state particles. In fact, while at LO a vertex emits only one parton (necessarily
to be identified as one of the jets), two partons can be emitted from each NLO vertex,
thus causing the QCD matrix elements and the jet configurations to acquire a nontrivial
structure. In order to explain these points and their main consequences, let us refer, for
definiteness, to the quark-induced vertex where an incoming quark of momentum nµ =
xpµq (pµq being the parent proton momentum) interacts with a pomeron (two gluons with
momenta `µ and kµ − `µ in the colour singlet channel at lowest order) emitting a quark of
momentum pµ and a gluon of momentum qµ, as depicted in figure 5 at amplitude level.

9It is also not clear what would be the role of the Mueller-Tang prescription at NLLA. See ref. [22] for
a discussion in that direction.
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Figure 5. Structure of the quark-induced NLO impact factor.

In the high-energy limit, the t-channel gluons are essentially transverse, while the
outgoing quark and gluon carry away all the longitudinal momentum of the incoming
parton:10

` ' ` , k ' k
q = zn+ z̄qpb + q , p = (1− z)n+ z̄ppb + p , (4.2)

z̄p,q being very small components along the backward hadron’s momentum pµb and deter-
mined by the mass-shell conditions. The structure of the NLO jet vertex is then given by

dV NLO

dJ (`1, `2,k, x) = α3
s

2π(N2
c − 1)

∫ 1

0
dz
∫

d2q SJ(k,q, z)CF
1 + (1− z)2

z

×
{
C2
F

z2q2

k2(k− zq)2 + CFCA zJ1(`1,2,k,q, z) + C2
A J2(`1,2,k,q)

}
,

(4.3)

where J1, J2 are given in section B.2. The NLO jet vertex contains both real and virtual
contributions, the latter being included as delta-function contributions at z = 0 and q = 0.
The Pqg(z) = CF (1 + (1− z)2)/z splitting function (last factor in the first line of eq. (4.3))
stands as an overall factor of the integrand, which presents three different colour structures.
The distribution SJ selects the final states contributing to the observables, i.e., it embodies
the jet algorithm and the gap restriction.

According to the kt jet algorithm applied to two outgoing particles, the jet clustering
may end up into three, mutually exclusive, configurations: (i) the two partons are clustered
into a composite jet; (ii) the two partons are not clustered, and the quark is the jet; (iii) the
two partons are not clustered and the gluon is the jet. In the composite jet configuration
(i), both partons are inside the “jet cone” and cannot be found in the gap region. On the
contrary, in the single jet configurations (ii) and (iii), the parton outside the jet could be
emitted in the forbidden gap region, if no additional constraints are imposed. Therefore we
must supplement this additional constraint to the single-jet configurations. In conclusion,
the selection function S(3)

J reads

S
(3)
j (p,q, zx;x) =S

(2)
j

(
p, (1− z)x

)
Θ(|p| − |q|) Θk⊥

J Θg
gap (quark − jet)

+ S
(2)
j (q, zx) Θ(|q| − |p|) Θk⊥

J Θq
gap (gluon− jet)

+ S
(2)
j (p + q, x)

(
1−Θk⊥

J

)
, (composite)

(4.4)

10Notice that p is not an independent variable, as p + q = k.
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where

Θk⊥
J (p,q, z;Rjet) = Θ(∆y2 + ∆ϕ2 −R2

jet) (4.5)

∆y = log
(1− z

z

|q|
|p|

)
, ∆ϕ = arccos

( p · q
|p| |q|

)
.

Θk⊥
J is 1 in case of single (quark or gluon) jet and 0 for composite (quark and gluon) jet. It

clearly depends on the jet algorithm, and eq. (4.5) refers to the (anti-)kt one. In the first
line of eq. (4.4) S(2)

J enforces the quark to be the jet, Θ(|p| − |q|) makes sure that this is
the leading jet in the hemisphere, while

Θq/g
gap
(
yq/g,

∣∣∣kq/g∣∣∣) =1−Θ
(
ygap − yq/g

)
Θ
(∣∣∣kq/g∣∣∣− Eth

)
(4.6)

rejects the event if the gluon outside the jet ends up in the gap. In the second line of
eq. (4.4) the gluon and quark roles are interchanged. The third line describes the condition
of a composite jet.

One would argue that, because of the colourless (pomeron) exchange, particle emission
in the central region is expected to be dynamically suppressed. Each vertex is expected to
emit its two partons in the fragmentation region of the incoming parton, thus constraining
partons not to be inside the gap (central region) is unnecessary or at most it should amount
to a small effect. However, this is not completely true if the parton outside the jet is the
gluon. We will discuss in detail this aspect in the next section.

The original calculation of the NLO jet vertex was done by using Lipatov’s effective
action for QCD at high-energy [26]. We repeated the calculation using standard QCD
Feynman rules, and confirmed the correctness of their results [12, 13] (except for a few
typos that we fixed; see appendix B.2). However, we preferred to employ an alternative
procedure to extract ε-poles and finite reminders. Although formally equivalent, it yields
expressions that are better suited for the numerical analysis. Our procedure is illustrated
in appendix B.1, taking the term with color factor C2

f in the quark-induced IF as an
example. The complete expressions for the NLO IF after the singularity extraction is given
in appendix B.2.1.

A final remark concerns the numerical integrations involving such impact factors. The
computation of the cross-section involves convoluting GGFs, IFs, PDFs and then integrat-
ing the maximally differential cross-section according to the specific observable being com-
puted. Going back to the expression (4.3) of the NLO jet vertex, we note that it involves
three internal integrations dz d2q, which are however constrained by at least three delta
functions contained in the jet function SJ . Therefore, when convoluting the NLO vertex
with the GGFs ( d2`1 d2`2), the opposite LO vertex ( d2k) and the two PDFs ( dx1 dx2),
one is faced with an eight-dimensional integral. Finally, integrating over the jet variables
( d3J1 d3J2) and taking into account four-dimensional momentum conservation, we have to
deal with ten-dimensional integrations in order to compute cross-sections at NLO accuracy.

4.2.1 Breaking of BFKL factorization

Any impact factor which enters a BFKL formula for a physical observable must be (i)
IR-finite and (ii) independent of s in the s → ∞ limit. The first requirement is obvious.
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The cancellation of the ε-poles when combining real and virtual correction and subtracting
the universal collinear singularities, was proven in [12, 13], provided that an IR-safe jet
definition is adopted in SJ for the final-state phase space integration. Nevertheless, if only
the jet clustering is implemented, without further restrictions, we face a problem: the z-
integration in eq. (4.3) is divergent for z → 0 due to the 1/z behaviour of the Pgq splitting
function. For the quark-induced case,11 this happens in the C2

A term when only the quark
generates the jet while the gluon, whose longitudinal momentum is z, can be emitted at
arbitrary rapidities (yg . yJ) outside the jet cone. In fact, since dz/z = dy, the gluon
emission density appears to be flat in rapidity. This spurious divergence should not be taken
seriously, as it stems from the kinematic region yg < 0 ⇐⇒ z < |q|/

√
s which is outside

the domain of validity of the calculation: an exact calculation would provide a suppression
of the emission probability in that region. Therefore, we can believe the prediction of a flat
rapidity distribution to hold only up to central rapidities: |q|/

√
s . z < 1. In that case,

the dz/z-integration is finite, but gives rise to a term proportional to log s, in conflict with
the requirement (ii) mentioned above. In fact, BFKL factorization assumes that all the
energy dependence of the cross-section is taken into account by the GGFs.

The authors of [12] tackled this problem by imposing an upper limit on the invariant
mass M2

X,max of the forward (and backward) system. This prescription avoids the occur-
rence of a log s/p2

j term at the price of introducing new logarithms of the invariant mass
log
(
M2
X,max/p2

j

)
. For phenomenological purposes, such constraint is not viable, since it

requires the measurement of all proton remnants, most of which escape the detector. Fur-
thermore, that prescription differs considerably from the experimental event selection for
MT jets.

In the case of MT jets that we are considering, one actually constrains the rapidity of
the gluon (and of any parton stemming from the incoming forward quark) to stay above
ygap, the gap upper bound, unless its energy is so small that it remains undetected. For such
gluons below threshold, the occurrence of a log s term in the cross-section is unavoidable,
therefore we have to admit that BFKL factorization in the NLLA is violated for MT jet
processes. A question then arises: why a singlet exchange does not dynamically suppress
gluon emission in the central region? Intuitively one can explain this fact by looking at
figure 6-a: if the lower t-channel gluons `1,2 are in a colour-singlet state, the two upper
gluons `′1,2 are in a colour-octet state, causing gluon radiation at all rapidities between the
two jets. Even more explicit is the diagram in figure 6-b.

The rescue for our computation comes from the fact that such violation is quantita-
tively small for the proposed CMS setup. In fact, the function J2(`1,2,k,q) in eq. (4.3) is
uniformly bounded for Eth > |q| → 0, so that the logarithmic terms vanishes for Eth → 0
for lack of phase space. In practice, for Eth � |pJ |,

dV NLO

dJ

∣∣∣∣∣
log s
∼ C2

a

E2
th

p2
j

log s

q2 δ
(2)(p− pj) . (4.7)

11The gluon-induced case is completely equivalent, due to the singular behaviour of the corresponding
Pgg splitting function.
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(c)

l2l1 l1 l2

l’1 l’2 l’1

(a) (b)

Figure 6. Diagrams contributing to the log s term in the jet vertex. The pink rectangle ranging
from l1 to l2 denotes that the two gluons are in a colour-singlet state. In (a) the two gluons l′1 = l1
and l′2 emerging from the upper quark cannot be in a color-singlet state. In (b) the only gluon
l′1 emerging from the upper quark is in a colour-octet state. The resummation of the logarithmic
terms in the impact factors involves diagram with multiple emissions (c).

Thus, for the sake of our phenomenological analysis, the actual size of the violating term
is expected to be small, of order ∼ E2

th/p2
j . In section 6 we confirm this assumption.

Concerning gluon emission in the rapidity range ygap < y . yJ , there is no E2
th/p2

j

suppression, so that we expect a contribution to the jet vertex of order
dV NLO

dJ

∣∣∣∣∣
∆y
∼ C2

a∆y δ(2)(p− pj) , ∆y ≡ yJ − ygap . (4.8)

However, in the limit s → ∞ which implies yJ ' log(s/p2
j ) → ∞, one should consistently

require also ygap →∞ in such a way that ∆y remains finite, so that no log s enhancement
comes from this region of phase space.

In practice, the formal divergence, occurring when z → 0, is removed by imposing
a lower rapidity bound on the gluon emission from the violating term yg > 0 (yg < 0
for the bottom IF). Other choices yg > 1 (yg < −1) were also explored and produced no
appreciable difference.

From the theoretical point of view, in order to conceptually solve the problem of the
violation of factorization, one could think of a modified factorization formula, where the
expected higher-order logarithms, stemming from multi-gluon emission diagrams like that
in figure 6-c, are resummed to all orders. However, the condition of energy below detector
threshold suppresses such emission with the same E2

th/p2
j relative factor with respect to

unconstrained emission. Therefore there is no need to perform such resummation for phe-
nomenological purposes. Another option to describe the MT process within the framework
of reggeon field theory is to consider the factorization formula depicted in figure 7. The
vertical axis along the unitarity cut corresponds to rapidity of emitted particles. The region
of the gap is described by two BFKL GGFs in the singlet channel, while the region out-
side the gap is described by the imaginary part of BFKL GGFs, one for each hemisphere,
attached to the corresponding jet vertices for Mueller-Navelet jets [27]. The GGFs are
connected by two triple pomeron vertices, so as to build a pomeron loop diagram. Besides
the difficulties for a practical implementation of this formula, the major obstacle is that
the triple pomeron vertex is not known in NLLA yet.

In conclusion, we adopt the pragmatic attitude to exploit the conventional BFKL fac-
torization formula for MT jets with the impact factors described in this section, expecting
a small systematic theoretical error at LHC energies.
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Figure 7. Mueller-Navelet and Mueller-Tang hybrid structure: a pomeron loop formed connecting
two forward-GGFs and two non-forward GGFs (red blobs) by means of two 3-pomeron vertices
(yellow triangles).

5 Mueller-Navelet jets with rapidity gap

The main aim of studying MT jets is to find a clear signal of BFKL-type dynamics, which in
this case governs the behavior of color-singlet GGFs. Dijet events with the same signature
— no radiation in the gap, but not involving a singlet exchange — provide an additional
contribution to the cross-section that we want to describe with the present calculation,
thus affecting the reliability of our predictions. In this section we want to give an estimate
of such contribution. The simplest diagram for dijet production at high-energy involves
a single gluon exchange (a color octet) in the t-channel. Being an O

(
α2
s

)
term, it might

seem that it should dominate over the signal and that its radiative corrections could be
important as well. However, colour octet exchanges are very likely to radiate uniformly in
rapidity, as predicted by BFKL dynamics in such channel. Such dijet-inclusive emission —
the so called Mueller-Navelet jets — is described by another factorization formula which
involves the imaginary part of the forward GGF. We can estimate it by computing the cross-
section for Mueller-Navelet jets with the constraint of no emission above energy threshold
in the rapidity gap. A fully-fledged calculation is not easy; however, following Mueller and
Tang [3], a reliable estimate in the LLA is given by

dσMN
gap

dJ1 dJ2
' dσ(0)

dJ1 dJ2
eω(t)Ygap ' dσ(0)

dJ1 dJ2

(
E2

th
p2
j

)ᾱsYgap

, (5.1)

where
dσ(0)

dJ1 dJ2
=
( 2CFαs√

N2 − 1

)2 δ(2)(pj1 − pj2)
p2
j1

p2
j2

δ(1− x1/xj1)δ(1− x2/xj2) (5.2)

is the one-gluon-exchange elastic cross-section and

ω(−p2) = − ᾱs4π

∫ d2k
k2 +m2

g

p2

(p− k)2 +m2
g

' −ᾱs log
(
p2
/
m2
g

)
, if mg � |p| (5.3)

is the correction to the gluon Regge trajectory for a gluon of mass mg.
The idea is that the jet cross-section with gluon emission only below some energy scale

Eth � |pj | is almost equal to the elastic cross-section with gluons of mass mg ' Eth,
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because in the realistic massless case real and virtual corrections at scales λ < Eth cancel
almost exactly. Gluon reggeization [28] means that the color octet projection of the elastic
amplitude can be written as

A8 = A(0)
8

(
s

−t

)ω(t)
= A(0)

8 eω(t)Y . (5.4)

By squaring the amplitude (5.4) and exploiting eq. (5.3) one obtains eq. (5.1), which is
consistent with the fact that in the limit Eth → 0 virtual corrections completely suppress
the purely elastic cross-section. Actually, since the energy threshold does not extend all
the way in between the jets but is required only within the rapidity gap, we expect the
approximation of eq. (5.1) to provide a lower bound for the estimate of the non-singlet
contribution to the jet-gap-jet process cross-section. Nonetheless, since it rarely exceed
15% of the singlet contribution (see section 6), we conclude that, notwithstanding large
corrections,12 it can be safely neglected in first approximation.

6 Results

In this section, we present the results of the phenomenological analysis of the MT jet
processes at LHC energies. The goal is to investigate the impact of the NLO IF over the
NL corrections (LL⊗ NLO vs NLL⊗ LO) and consequently the comparison of the complete
FULL NL estimate with respect to the LL predictions.

Let us first define the observables that we study in the analysis. We investigate the
jet distributions with respect to the jet rapidity difference Yj12 = yj1 − yj2 , the azimuthal
difference between the jets ∆ϕj12 = ϕj1 − ϕj2 and the transverse energy of the “second
leading jet” pj< = min(pj1 , pj2) defined by

dσ
dYj12

=
∫

d2pj1 d2pj2
∫

dyj1 dyj2δ(Yj12 − (yj1 − yj2))
∫

d2k dσ
dJ1 dJ2 d2k , (6.1)

dσ
d∆ϕj12

=
∫

d2pj1 d2pj2δ(∆ϕj12 − (ϕj1 − ϕj2))
∫

dyj1 dyj2
∫

d2k dσ
dJ1 dJ2 d2k , (6.2)

dσ
dpj<

=
∫

d2pj1 d2pj2
[
δ(pj< − pj2)θ(pj1 − pj2) + δ(pj< − pj1)θ(pj2 − pj1)

]
(6.3)

×
∫

dyj1 dyj2
∫

d2k dσ
dJ1 dJ2 d2k .

where the integration extends over the bin sizes. Note that, the azimuthal angular distri-
bution is trivial (∆ϕj12 = π) if the NLO IFs are not included.

12A better estimate could include the NL corrections to the Mueller-Navelet predictions with finite energy
threshold. On the other hand, since there is a fixed gap size in the rapidity interval [−1, 1], some events
show a much larger rapidity difference between the jets, leaving enough phase space for emission. Therefore
our observable may be represented by a Mueller-Navelet, then Mueller-Tang and finally Mueller-Navelet
process in different regions of rapidity, as depicted in fig 7.
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6.1 Generalities about the phenomenological calculation

In this section, we report the details of the calculation methods employed for the analysis
and we fix the kinematic domain considered in all following phenomenological studies.

The kinematic setup is related to the recent CMS analysis [7]. At a center-of-mass
energy of

√
s = 13TeV the number of active flavors is fixed to Nf = 5. The value of

the strong coupling constant at the Z boson mass was taken to be αS
(
M2
Z

)
= 0.1176,

corresponding to ΛQCD = 221.2MeV as the QCD-scale. Following the typical acceptance
of a detector at the LHC (CMS or ATLAS), we assume the jets to be reconstructed in
the forward region 1.4 < |yj | < 4.7 (2.8 < |Yj12 | < 9.4) with a gap devoid of any energy
spanning the central region between −1 and 1 units in rapidity. Note that the reliability of
the BFKL approach, which formally neglects momentum conservation constraints, begins
to deteriorate approaching the kinematic boundary (Yj12 & 9). In addition, at the other
end of the rapidity spectrum Yj12 . 4, the approximation becomes less reliable since we
move away from the high-energy regime.

The clustering of particle emission into jets is performed using the (anti-)kt jet algo-
rithm13 with a jet radius set to Rjet = 0.4 in the rapidity-azimuth plane (see eq. (4.5)).
According to collinear factorization, the matrix element of the interacting partons must be
convoluted with parton distribution functions (PDFs). These, as well as the running αS
coupling value, were introduced via the CTEQ18 routine [29].

The experimental observables measured in jet-gap-jet events often rely on the ratio
between the MT dijet prediction with a color-singlet exchange and the standard inclusive
QCD dijet events in order to reduce the systematic uncertainties on the observables [4, 7].
However, in this paper, we choose to focus on completing the BFKL predictions at the
NLL approximation. For a direct comparison with experimental data, an implementation
of this process in a general purpose Monte-Carlo generator would be necessary (this will
be performed in an upcoming study). The Monte-Carlo implementation will also allow
to simulate the additional soft radiation mechanisms that are not part of the BFKL de-
scription but tend to contaminate the gap [11]. In the simplest scenario, the effect of
these soft rescatterings is to rescale the overall normalization by the so called gap survival
probability [10]. More sophisticated models, where these effects emerge dynamically as
consequence of soft radiation mechanisms, have also been proposed (e.g., [30]). In the
following, we present the results without any survival probability factor.

Let us now discuss briefly the accuracy of the calculation. The difference between the
Vegas and Suave algorithms from the Cuba multidimensional integration routine [31] has
been used to estimate the numerical uncertainty on the integrals. Despite the large number
of integrals, the numerical uncertainties can generally be pushed down to the order of 1%
by increasing the number of iterations.

Another source of uncertainty affecting our numerical analysis originates from the fact
that we approximate the GGF as a multilinear interpolation over a grid. Each node stores
the result of the numerical integration of the GGF found in eq. (A.7) over the Mellin variable

13Actually, since the jet clustering is stopped at the first iteration and there are never more then two
partons that can be grouped together, the kt or anti-kt jet algorithms behave identically.
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ν. An estimate of the quality of the interpolation can be obtained a posteriori by comparing
the average of the GGF over its external legs as given by the analytic expression (3.4) and
the explicit integration of its interpolated values over the grid∫

d2`G(`, . . . ) ?= G(. . . ),

where the right-hand side is given by eq. (3.4). A precision of the order of 2-5% has been
achieved (the larger uncertainties are in the lower rapidity range). Higher precision could
be reached by using a finer grid, but we consider it unnecessary in view of the much larger
uncertainties originating from varying the physical scales.

The theoretical uncertainties have been estimated as usual by varying the renormal-
ization scale µR, the factorization scale µF and the BFKL scale s0 by a factor of 1

2 and 2.
In the following, the result of each scale variation is depicted individually. Renormalization
and factorization scales were chosen as µF = µR = |pj1 |+ |pj2 | for both IFs but were varied
independently to estimate the uncertainty. Additional choices for µR were also explored
and discussed below. The BFKL scale was fixed at the value s0(kji) = |pj1 | |pj2 |.14

6.2 Predictions on dependence on the rapidity, transverse momentum and
difference in azimuthal angle

In this section, we present and discuss the results of the BFKL calculations on the jet-
gap-jet σYj12

, σpj< and σ∆ϕj12
cross sections. In all figures the plot canvas is splitted in

two parts: the top part gives the absolute values of the cross sections in nanobarn (nb)
on logarithmic scale and the bottom plot displays the ratios with respect to the standard
value or the LL calculation depending on the plots. In figures 8 and 9, the MT predictions
are shown in green for LL, in orange for LL⊗NLO, in pink for NLL⊗LO and in blue for
the FULL NLO, following the notations given in the last paragraph of section 4. The cross
sections in pink and orange include the sum with the pure LL results. The same color
scheme will consistently be employed throughout the result section. The bottom portion
of the plots shows in general the ratios of the various approximations with respect to the
LL one.

The corrections to the GGFs and to the IFs tend to reduce the cross-section with
the latter dominating over the former at small rapidities and vice-versa at higher rapidity
separation.

The azimuthal angular distribution is shown in figure 10. At LL, it is a delta distri-
bution at π by definition, and at NLO, it is strongly peaked towards ∆ϕj12 ∼ π, with a
strong suppression towards the opposite side of the angular range ∆ϕj12 ∼ π/2, where it
is compatible with zero.15

14Note that, with this choice, ŝ/s0, the argument of the GGFs is not necessarily equal to the jet rapidity
difference (ŝ/s0 6= expYj12) nor to the gap size (ŝ/s0 6= expYgap).

15The reason the distribution cannot reach lower angular values is related to the observable definition.
The single emission originating from the LO IF must be balanced by the two partons on the opposite side.
Transverse momentum conservation prohibits the hardest of the two parton system to be emitted towards
the same semi-plane of the opposite jet.
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6.3 Studies on the dependence on the energy scales

In this section, we discuss the uncertainties on the BFKL calculations related to the fac-
torization, renormalization and BFKL scale variations.

The theoretical uncertainty is estimated by varying all physical scales (µR, µF , s0)
that appear as a consequence of the truncation of the perturbative expansion. Usually,
one considers as scale uncertainty the differences between the results of the calculations
when the scales are halved and doubled. The observation that the sensitivity to the scale
variations decreases while increasing the order of the approximation is considered to be
an indication of a good convergence behavior. Calculations based on the BFKL approach
have not always fulfilled that criterion and we will discuss this in detail in the following.

We first display the effects of scale variation in two sets of figures. The first set,
figures 11, 12, 13, 14, 16 and 17 display the effects of varying the scales (renormalization,
factorization, etc.) on the Yj12 and pj< distributions as a blue vertical error bars for the
NLO predictions and as a green band for the LL calculation. At the bottom of each figure,
the ratio of the NLL results with respect to the LL calculation is shown. Figures 10, 15,
and 18 display the scale variations for the ∆ϕj12 variable for the FULL NLO calculation
only, as well as the ratios with respect to the default scale value. The various scale choices
are indicated by different line types. The solid line always represents the default value.
σ∆ϕj12

is indeed a Dirac-delta distribution in LLA, which prevents a meaningful comparison
with the FULL NLO result.

In figure 11, we observe that the FULL NLO contribution is less sensitive to the choice
of the factorization scale only in the higher rapidity region compared to the LL case. On the
other hand, figure 12 shows that the NLO corrections tend to reduce the overall sensitivity
to the choice of the scale only at moderate jet transverse momentum. Figures 16 and 17
show that the NLO BFKL corrections do not reduce the renormalization scale uncertainty
band if the renormalization scale is fixed at the “natural” scale µNR ≡ |pj1 | + |pj2 |. In
particular, when the scale is halved, the prediction is reduced by about 50-60%, a rather
large factor.

All scales µR, µF , s0 influence the results implicitly through the strong coupling, the
PDFs, and the GGF, but also, explicitly, as part of the NLO corrections. A slightly more
monotonous dependence on all scale variations is observed for the ϕ angular distribution in
figures 10, 15 and 18 since the scale variations only appear implicitly on the cross-section
at angles ∆ϕj12 < π.

Summarizing, typical uncertainties related to the variations of the µF , µR and s0 scales
are of the order of 10-20%, 50-60% and 20%, respectively. In particular, the variations of
µR lead to a larger systematic uncertainty. This sensitivity can be regarded as a symptom
of instability of the expansion due to large subleading corrections that demand a tailored
treatment. It is often suggested that a better choice for the renormalization scale (that
takes better accounts of the higher and uncontrolled terms of the perturbative expansion)
can be found by using dedicated methods. These methods often tend to use a scale further
away (much larger) from the “natural” ones and their interval allowed by the uncertainty
definition. In the following, we will use the principle of minimal sensitivity (PMS) which
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prescribes to fix the coupling scale at the value where the variation induced on the cross
section has a stationary point.

We found µPMS
R ' 4µN

R as the stationary point since we observe an inversion in the
direction of the cross section variations in figures 19 and 20. These figures show indeed
that the uncertainty band narrows greatly at NLO using this choice of scale compared
to the one at LL. Nonetheless, LL and FULL NLO predictions appear to fall within the
uncertainties for σYj12

. In σpj< the FULL NLO cross-section is also consistent with the LL
estimate for the first few bins but tends to become increasingly larger at higher momenta.
The total uncertainty bands, at the PMS scale, accounting for the compound theoretical
uncertainties from all the sources combined in quadrature are shown in figure 22 and 23.
The uncertainty band gets reduced to about 15-20% when the NLO corrections are taken
into account. The cross section as a function of the azimuthal angles ∆ϕj12 < π cannot
show (see figure 21) a similar reduction since it depends on the renormalization scale only
implicitly through the strong coupling constant dependence as an overall factor.

6.4 Dependence on the gap size and the energy in the gap and influence of
the factorization breaking term

It is interesting to investigate the sensitivity to the details of the gap definition. It is directly
related to the NLO IF corrections and, consequently, was not performed in previous studies.
The parton emission is supressed in the gap region, hence it introduces a dependence on
the gap definition and its parameters Eth and Ygap. Their values are not arbitrary but
should be fixed to reproduce the experimental prescriptions.

In addition, it is quite interesting to study the sensitivity of the term responsible
for the violation of the BFKL factorization to the gap definition. Figures 24, 25 and 26
show the effects of this “log s” term compared to the FULL NLO calculation and they are
displayed in purple and blue respectively. On the same plots we show (using the same
colors) the effects of modifying the energy thresholds in the gap and the gap size as dashed
and dotted-dashed lines.

For instance, for the MT measurements as performed in the CMS experiment, the
threshold on the electromagnetic calorimeter energy is set up to Eth = 200 MeV. Since our
study does not include hadronization effects, the spread of the primary parton energy over
the detector area is not included in our study. We chose to fix the threshold level at the
higher value of Eth = 1 GeV. As it can be observed in figures 24, 25 and 26, the dependence
of our results on the exact value of the threshold parameter is weak. The results do not
vary much when one changes the value of the energy in the gap. This is a feature of the
MT dynamics. When the interaction is mediated by the exchange of a pomeron, a color-
singlet object, radiation is rarely emitted at large scattering angles. The energy threshold
variation has a small but visible effect only at very low rapidity differences, where the
distance between the jet and the edge of the gap is minimal.

Let us now discuss the impact on our results of the “log s” term, responsible for the
BFKL factorization breaking. In fact, it amounts to a small fraction of the total BFKL
NLO cross section. It grows from a ratio of 8% at low rapidities to 20% at the rapidity
boundary, motivating our conclusions that the impact of the BFKL factorization can be
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neglected at LHC energies. On the other hand, from a pure theoretical point of view, the
fact that the ratio “log s”/FULL raises with rapidity implies the non-reliability of BFKL
factorization at larger center-of-mass energies, and will be an issue to compute the MT
cross section accurately at very high center-of-mass energies.

Strictly speaking, already in the current kinematics, the violation cannot be overlooked
in certain configurations. Figure 26 shows that the “log s” term can effectively be consid-
ered as a negligible contribution to the cross section only approaching the “back-to-back”
configuration. At smaller angles (∆ϕj12 . 3

4π), the BFKL factorization is “maximally” vi-
olated as “log s”> FULL. The estimate of the NLO MT cross section giving is not reliable
in this kinematical region. Fortunately, the cross section over the full kinematical range is
dominated by the kinematical region where violation is small.

A solution to reduce the relative size of the factorization breaking term, that should
also work at higher energies, can be found by modifying the gap definition from a central
fixed gap size to a dynamical gap definition, where its size grows with the jet rapidity
separation. A dynamical gap extending in the region

Ygap∗ = max (yj2 − y0, ygap)−min (−yj1 + y0,−ygap) ,

where y0 = 0.4 works as a buffer zone between the jet edges and the beginning of the gap
to avoid interfering with the jet collinear region. With such a definition, the gap size is
wider than with the CMS definition, and the cross sections are reduced by about a factor
of 2 as shown in figures 27, 28 and 29. The “log s” contribution never exceeds 10% of the
total MT cross section and it is further reduced at higher rapidity differences. Similarly,
throughout the whole azimuth angular range the impact of factorization breaking remains
a small fraction of the total BFKL cross section as shown in figure 29. The wider extension
of the dynamical gap brings a stronger, but still weak, threshold dependence that is not
confined to the low rapidity range.

Figures 30, 31 and 32 are further illustrations of the gap size requirement on the “log s”
contribution. Requiring a larger gap size reduces the impact of the factorization breaking
term by about a factor 2. The “log s” contribution is sensitive to the gap definition since
its impact is larger in the central rapidity region.

6.5 Comparison between the MT and Mueller-Navelet cross sections

Finally, in figures 33 and 34, we compare the Mueller-Tang and Mueller-Navelet predictions
at LL. The same 2→ 2 scattering event resulting in two jets separated by a (large) rapidity
distance Yj12 can be interpreted as a MT process or as a MN scattering event if the intra-jet
radiation can escape detection (for instance if it does not pass the calorimeter threshold).
As expected, the tendency of the MN radiation to increase in multiplicity as the rapidity
range widens is reflected in a drop of the MN/MT ratio toward larger rapidities. At small
rapidities Yj12 . 4 the MNth contamination can be sizable, of about 20%. It is thus
important to stress that the BFKL MT calculation is mainly valid at high rapidities for
large gaps and large spearation intervals between jets. We want to stress that the MNth
vs MT comparison should be seen only as an estimate since it is only a LL approximation.
Moreover, the central gap configuration differs greatly from the theoretical picture.
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Figure 8. Mueller-Tang cross-section σYj12
at LL (green), NLO⊗LL (orange), LO⊗NLL (pink)

and FULL NL (blue). The NLO⊗LL and LO⊗NLL terms include the LL predictions. We also
display the ratios with respect to the LL predictions in the bottom plot. The NLO IF and NLL
GGF corrections have the effect of reducing the cross-section estimate. The IF NLO corrections
have a strong effect on the low rapidity range whereas the NLL GFF ones dominate at higher
rapidities. As a consequence of these two negative contributions, the FULL NL predictions remain
below the LL estimate for the whole rapidity range by a factor of 15-20%.
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Figure 9. Mueller-Tang cross-section σpj< at LL (green), NLO⊗LL (orange), LO⊗NLL (pink)
and FULL NL (blue). The NLO⊗LL and LO⊗NLL terms include the LL predictions. We also
display the ratios with respect to the LL prediction in the bottom plot. The NLO IF corrections
change sign around pj< ' 70 GeV. Overall, the effect is to predict a larger cross section at higher
momentum relatively to LL.
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Figure 10. Mueller-Tang cross-section dσ
d∆ϕj12

for three different choices of the factorization scale
µF = {2µ∗F , µ∗F , µ∗F /2}, where µ∗F = |pj1 |+ |pj2 |. In the lower plot, we display the ratio with respect
to µF = 1. This leads to a systematic uncertainty on the calculation between 5% and 20%.
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Figure 11. Mueller-Tang cross-section σYj12
at LL (green) and NLO (blue). The vertical bars

(respectively the green band) represent the uncertainty due to the factorization scale variation
µF = {2µ∗F , µ∗F /2}, where µ∗F = |pj1 | + |pj2 | at NLO (respectively LL). The ratio with respect to
the LL prediction is shown in the bottom plot. The uncertainties due to the µF variations are of
the order of 15-20%. The FULL and LL uncertainty bands do not overlap, albeit by a very small
margin, for the whole rapidity range. The µF dependence is stronger for the FULL NL predictions
compared to the LL estimate except in the high rapidity range.
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Figure 12. Mueller-Tang cross-section σpj< at LL (green) and NLO (blue). The vertical bars
(respectively the green band) represent the uncertainty due to the factorization scale variation
µF = {2µ∗F , µ∗F /2}, where µ∗F = |pj1 | + |pj2 | at NLO (respectively LL). The ratio with respect to
the LL prediction is shown in the bottom plot. The uncertainties due to the µF variations are of
the order of 15-20%. The FULL and LL uncertainty bands do not overlap, albeit by a very small
margin, for the whole rapidity range. The µF dependence is stronger for the FULL NL predictions
compared to the LL estimate except at large “second leading” jet momentum.
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Figure 13. Mueller-Tang cross-section σYj12
at LL (green) and FULL NLO approximation (blue).

The vertical bars (respectively the green band) represent the uncertainty due to the BFKL scale
variation s0 = {2s∗0, s∗0/2}, where s∗0 = |pj1 | |pj2 | at NLO (respectively LL). In the bottom plot, we
show the ratio FULL NLO to LL. The NLO corrections marginally reduce the uncertainty coming
from the choice of the BFKL scale. The systematic uncertainty band for the LL and NLO cross
sections are of the order of 15% at low Yj12 and increase up to 30% at large rapidities.
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Figure 14. Mueller-Tang cross-section σpj< at LL (green) and FULL NLO approximation (blue).
The vertical bars (respectively the green band) represent the uncertainty due to the BFKL scale
variation s0 = {2s∗0, s∗0/2}, where s∗0 = |pj1 | |pj2 | at NLO (respectively LL). In the bottom plot, we
show the ratio FULL NLO to LL. The NLO corrections marginally reduce the uncertainty coming
from the choice of the BFKL scale. The systematic uncertainty band for the LL and NLO cross
sections are of the order of 15% at low pj< and increase up to 30% at large momentum.
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Figure 15. NLO Mueller-Tang cross-section σ∆ϕj12
for three different choices of the BFKL scale

s0 = {2s∗0, s∗0, s∗0/2}, where s∗0 = |pj1 | |pj2 |. The effect of varying s0 is stronger at smaller angles,
ranging from 20% to 30%. The bottom plot shows the ratios with respect to s0 = s∗0.
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Figure 16. Mueller-Tang cross-section σYj12
at LL (green) and FULL NLO approximation (blue).

The vertical bars (respectively the green band) represent the uncertainty due to the renormalization
scale variation µR = {2µ∗R, µ∗R/2}, where µ∗R = |pj1 |+ |pj2 | at NLO (respectively at LO). The ratio
NLO/LL (shown in the bottom plot) is compatible with 1 throughout the whole rapidity range.
The renormalization scale dependence is non-linear. A larger change is observed when µR is halved
compared to when it is doubled, going from a 20% to 90% systematic uncertainty.
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Figure 17. Mueller-Tang cross-section σpj< at LL (green) and FULL NLO approximation (blue).
The vertical bars (respectively the green band) represent the uncertainty due to the renormalization
scale variation µR = {2µ∗R, µ∗R/2}, where µ∗R = |pj1 | + |pj2 | at NLO (respectively LL). The ratio
NLO/LL (shown in the bottom plot) is compatible with 1 throughout the whole rapidity range.
The renormalization scale dependence is non-linear. A larger change is observed when µR is halved
compared to when it is doubled, going from a 20% to 90% systematics.
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Figure 18. NLO Mueller-Tang cross-section σ∆ϕj12
for three different choices of the renormal-

ization scale µR = {2µ∗R, µ∗R, µ∗R/2}. In the bottom plot, we display the ratio with respect to the
default choice µR = µ∗R = 1. The systematic uncertainties related to the µR variations are about
30-50% and get slightly larger at very low angles.
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Figure 19. Mueller-Tang cross-section σYj12
at LL (green) and FULL NLO approximation (blue).

The vertical bars (respectively the green band) represent the uncertainty due to the renormalization
scale variation µR = {µ∗R, µ∗R/2}, where µ∗R = 4 (|pj1 |+ |pj2 |) at NLO (respectively LL). The ratio
FULL/LL (shown in the bottom plot) is compatible with 1 throughout the whole rapidity range.
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Figure 20. Mueller-Tang cross-section σpj< at LL (green) and FULL NLO approximation (blue).
The vertical bars (respectively the green band) represent the uncertainty due to the renormalization
scale variation µR = {µ∗R, µ∗R/2}, where µ∗R = 4 (|pj1 |+ |pj2 |), at NLO (respectively LL). On the
bottom plot, the vertical error bars never cross the horizontal line corresponding to the equality of
FULL and LL predictions, except for the first few bins.
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Figure 21. Mueller-Tang cross-section σ∆ϕj12
for three different choices of the renormalization

scale µR = {2µ∗R, µ∗R, µ∗R/2}, where µ∗R = 4 (|pj1 |+ |pj2 |). In the bottom plot we display the ratio
with respect to the choice fixed by the PMS tuning µR = µ∗R.
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Figure 22. Mueller-Tang cross-section σYj12
at LL (green) and NLO (blue). The vertical bars

represent the total uncertainty, summing in quadrature the uncertainties coming from the variation
of µR, µF , s0.

∆σtot. =
√

(∆σµR)2 + (∆σµF )2 + (∆σs0)2.

The default value µR(= µPMS
R ) originates from the PMS method for the FULL NLO contribution

whereas it was set to the natural scale µR = µN
R for the LL calculation. With this choice of the

renormalization scale, the theoretical uncertainties are about 20% (compared to about 50% without
this choice). The ratio NLO to LL is shown in the bottom plot. The LL and FULL NLO estimates
remain consistent with 1 within the reduced uncertainty band for the whole rapidity range.
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Figure 23. Mueller-Tang cross-section σpj< at LL (green) and NLO (blue). The vertical bars
represent the total uncertainty, summing in quadrature the uncertainties coming from the variation
of µR, µF , s0.

∆σtot. =
√

(∆σµR)2 + (∆σµF )2 + (∆σs0)2.

The default value of µR originates from the PMS method µPMS
R for the FULL NLO contribution

whereas it was set to the natural scale (muN
R) for the LL contribution. With this choice of the

renormalization scale, the theoretical uncertainties are reduced after applying the NLO corrections.
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Figure 24. Mueller-Tang cross-section σYj12
at FULL NLO (blue) and the contribution of the

factorization breaking logs term (violet), as a function of rapidity. In the bottom plot, we display
the ratio of the factorization breaking term with respect to the NLO cross section. The effect of
this term is small (less than 10%) except at highest rapidity where it reaches up to 15%. We also
display three different choices for the transverse energy threshold (Eth = {1/2, 1, 2} GeV) in the
gap region using three line styles (full, dashed and dooted dashed). The effect of modifying the
threshold value is minimal over the full rapidity range (except for the very first bin). The weak
sensitivity to the energy threshold is due to the fact that the gap region does not extend over the
whole rapidity separation between the jets.
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Figure 25. Mueller-Tang cross-section σpj< at FULL NLO (blue) and the contribution of the
factorization breaking logs term (violet), as a function of jet pT . In the bottom plot, we display the
ratio of the factorization breaking term with respect to the NLO cross section. The effect of this
term is small (less than 5%) except at highest rapidity where it reaches up to 15%. We also display
three different choices for the transverse energy threshold (Eth = {1/2, 1, 2} GeV) in the gap region
using three line styles (full, dashed and dotted dashed). The effect of modifying the threshold value
is minimal over the full rapidity range (except for the very first bin). The very weak sensitivity to
the varying energy threshold is due to the fact that the gap region does not extend over the whole
rapidity separation between the jets.
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Figure 26. NLO Mueller-Tang cross-section σ∆ϕj12
at FULL NLO (blue) and the contribution of

the violating logs term (violet). Different dash types refer to three different choices for the transverse
energy threshold (Eth = {1/2, 1, 2} GeV) in the gap region. The sensitivity to the energy threshold
is minimal.
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Figure 27. NLO Mueller-Tang cross-section σYj12
(blue) and contribution of the violating logs

term (violet) in case of a dynamic gap definition. Different line types refer to three different choices
for the transverse energy threshold (Eth = {1/2, 1, 2} GeV). The ratio relative to the default choice
E∗th = 1 GeV is shown in the bottom plot. With this gap choice, the factorization breaking effect
never exceeds 10% of the total and steadily decreases towards higher rapidity. The cross-section is
less sensitive to the choice of the threshold energy while using a dynamic gap definition.
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Figure 28. NLO Mueller-Tang cross-section σpj< (blue) and contribution of the violating logs
term (violet) in case of a dynamic gap definition. Different line types refer to three different choices
for the transverse energy threshold (Eth = {1/2, 1, 2} GeV). The ratio relative to the default choice
E∗th = 1 GeV is shown in the bottom plot.
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Figure 29. NLO Mueller-Tang cross-section σ∆ϕj12
(blue) together with the contribute of the

factorization breaking logs term (violet) using the dynamic gap definition. Different line types refer
to three different choices for the transverse energy threshold (Eth = {1/2, 1, 2} GeV) in the gap
region. The ratio with respect to the default value E∗th = 1 GeV is shown in the bottom plot. With
a dynamic gap, the importance of the violating “log s” term is reduced. The validity of the BFKL
hypothesis is extended to lower azimuthal angles ∆ϕ ' 3

4π.
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Figure 30. NLO Mueller-Tang cross-section σYj12
(blue) and contribution of the factorization

breaking term only in logs (violet). Different line types refer to three different choices for the size
of the rapidity gap (Ygap = {0, 1, 2}). The ratio relative to the default choice Y ∗gap = 2 is shown
in the bottom plot. We observe that the effect of the gap imposition is relatively stronger on the
“log s” term compared to the total as one would expect. The gap constraint reduces the size of the
violation of the BFKL factorization by a factor of 2 with respect to the case of no gap.
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Figure 31. NLO Mueller-Tang cross-section σpj< (blue) and contribution of the factorization
breaking term only in logs (violet). Different line types refer to three different choices for the size
of the rapidity gap (Ygap = {0, 1, 2}). The ratio relative to the default choice Y ∗gap = 2 is shown in
the bottom plot.
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Figure 32. NLO Mueller-Tang cross-section σ∆ϕj12
(blue) and contribution of the factorization

breaking term in logs (violet). Different line types refer to three different choices for the gap rapidity
size (Ygap = {0, 1, 2}). the ratio relative to the default choice Y ∗gap = 2 is shown in the bottom plot.
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Figure 33. Mueller-Tang cross-section σdYj12
and Mueller-Navelet cross-section with energy

threshold constraint, all at LL approximation and integrated over rapidity bins. On the top canvas
are reported the absolute values while the bottom canvas shows the ratio FULL/MNth. The ratio
decrease with rapidity passing from 20% at Yj12 ' 3− 4 to 2% at Yj12 & 7.
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Figure 34. Mueller-Tang cross-section σpj< and Mueller-Navelet cross-section with energy thresh-
old constraint, all at LL approximation and integrated over rapidity bins. On the top canvas are
reported the absolute values while the bottom canvas shows the ratio FULL/MNth. The ratio is
nearly flat in pj2 and stays consistently around 20%.

7 Conclusions

We performed a phenomenology analysis of the Mueller-Tang jet process taking into ac-
count the NLO corrections to the impact factors (IFs) which represent the new aspects of
this work. In particular, we provide the dijet cross-sections as a function of the rapidity
difference (Yj12), the azimuthal-angular distance (∆ϕj12) and the transverse momentum of
the “second leading” jet (pj<).

The corrections due to the newly included NLO IFs and due to the NLL corrections
to the gluon-Green function (GGF) are similar in size but carry a different differential
dependence on the observables. The NLO IFs dominate at large pj< and moderate Yj12 .
They also break the elastic symmetry proper to all the other contributions inducing a non-
trivial angular jet distribution. At FULL NL approximation, the cross-section σ∆ϕj12

is
strongly peaked towards the “back-to-back” configuration. Similarly to other NLO BFKL
estimate for other processes (see, e.g., [32, 33]), the predictions are rather sensitive to the
choice of the physical scales. Such sensitivity is greatly reduced if the renormalization
scale (µR) is fixed applying the principle of minimal sensitivity, of which we performed an
estimate. The stationary point of the transformation induced by the scale variation on the
cross-section was found to be four times larger then the “natural” scale choice.

Besides the clear interest that resides in completing the NLO description, which was
the prime motivator of the phenomenology analysis, understanding the role played by the
NLO IF corrections merit an interest on its own, in particular from the point of view of the
foundation of the BFKL approach. Unexpectedly, the presumed BFKL factorization which
dictates that all BFKL-like log |s/t| factors should fit into the well known resummation
encapsulated into the GGF fails to hold. We observed that, the BFKL factorization is
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formally violated when the usual gap encompassing only the central rapidity is imposed.
The real (colorful) emission, part of the NLO IF, breaks the color-singlet structure of the
interaction, which leads to the unfactorizable log s factors.

Despite for the enhancing effect of the spurious log s factor, the violating term is small
compared to the totalmat LHC energies. Actually, only for those events (the overwhelming
majority) where the jets azimuthal-angle is close to the peak at ∆ϕj12 = π the effect of the
violation is negligible. Below intermediate angle values the violation can even exceed the
total cross-section.

We showed that a “dynamical” gap, widening up as the jet rapidity distance increases,
further reduces the size of the violation. The effect it is not limited to current energies and
extends the validity to smaller angles between the jets. A rigorous reformulation of the
BFKL structure to accommodate the violating terms is left for a future study.

In general, the sensitivity to the energy threshold (Eth) capping the radiation in the
gap region and the rapidity gap extension (Ygap) is weak. This feature is expected since,
in the BFKL construction, the interaction is cast in terms of a color-singlet exchange. It
follows that, the radiation seldom enters the central region. In most of the events the gap
arises naturally from interaction dynamics with no need of being explicitly enforced.

Finally, we confirm that the MT color-singlet exchange process is favored over the
potential competitors involving other color structures at LHC kinematics. In particular,
a LL estimate shows that colour-octet exchanges with no emission in the gap region are
suppressed with respect to octect exchanges.

In conclusion, our results show that a phenomenological analysis of MT processes at
the LHC is feasible at full NLO BFKL accuracy. Our analysis represents the starting point
for more refined predictions that will include soft effects and require the implementation
inside a Monte Carlo.

A Gluon Green-function

As noted by Lipatov [18], the non-forward gluon Green function can be inferred from the
solution of a modified BFKL equation. The key to the solution is the realization that, with
a slight modification, the equation can be diagonalized when projected over the space of
conformally symmetric functions of the coordinate (Fourier conjugated to the momentum
space). The conformal BFKL equation coincides with the original one under the assumption
of colorless colliding particles, which is valid for inclusive observables. It is to be expected
that the conformal solution must be mended when the interacting partons can be resolved
out from the screening of the hadronic matter at large transferred momentum. In the case
of partons, as shown by Mueller and Tang [3], a non-analytic (divergent) term appears but,
since it is an artifact of the technique used to extract the solution with unclear physical
origin, it must be subtracted away.16

16If instead the non-analytic terms are left there, the results is a rather bizarre null coupling between the
pomeron and the quarks. It is to be demonstrated that the Mueller Tang prescription is also solution of
the BFKL equation (see ref. [22] for a more extensive discussion).
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In the complex impact parameter space ρi = xi+iyi Lipatov’s conformal eigenfunctions
read

Ehh̄(ρi, ρ∗i ) =
(
ρ1 − ρ2
ρ1ρ2

)h (ρ∗1 − ρ∗2
ρ∗1ρ
∗
2

)h̄
(A.1)

where h = 1/2 + n/2 + iν, h̄ = 1/2 − n/2 + iν with n ∈ Z, ν ∈ R. In the momentum-
representation become

Ẽhh̄(`1, `2) =
∫ d2ρ1

(2π)2
d2ρ2
(2π)2E

hh̄(ρ1, ρ2)ei`1·ρ1+i`2·ρ2 ,

= Ẽhh̄A (`1, `2) + Ẽhh̄δ (`1, `2), `1 + `2 = k
(A.2)

where, the transverse vectors have been expressed in complex notation p→ px+i py = peiϕ.
The analytic Ẽhh̄A and the singular part Ẽhh̄δ are given by

Ẽhh̄A (`1, `2) =hh̄(1−h)(1−h̄)Γ(1−h)Γ(1−h̄)
in(4π)2

[(
`1
2

)h̄−2 (`∗2
2

)h−2
2F1

(
1−h, 2−h, 2;−`

∗
1
`∗2

)

× 2F1

(
1−h̄, 2−h̄, 2;−`2

`1

)
+ (−1)n{1→ 2}

]
,

Ehh̄δ (`1, `2) =
[
δ(2)(`1) + (−1)nδ(2)(`2)

] in
4π

(
k

2

)h̄−1 (k∗
2

)h−1 Γ(1− h̄)
Γ(h) .

(A.3)

Following the Mueller-Tang prescription [3], only the analytic part is kept in the non-
forward gluon Green-function17

G

(
ŝ

s0
, `, `′,k

)
= (2π)2 ∑

n∈Z

∫
dν
(
ŝ

s0

)ω(n,ν)
R(n, ν) Ẽ∗ n,νA (`, k) Ẽn,νA (`′, k), (A.4)

where R(n, ν) is a normalization factor given in eq. (3.6) and ω(n, ν) is the LL BFKL
eigenvalue of eq. (3.5).

The GGF when both IF are at LO is remarkably simple [9]

G(k2, ŝ/s0) =
∫

d2` d2`′G(`, `′,k, ŝ/s0)

= 4
k2

∑
m∈Z

∫
dν
(
ŝ

s0

)ω(m,ν)
R(m, ν)

(A.5)

17In [34] definition for the momentum space eigenfunction differs by a factor (2π)2 compared to eq. (A.2).
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whereas if only one IF is left at LO

G

(
`1, `2,

ŝ

s0

)
=
∫

d2`′G

(
`1, `

′,k,
ŝ

s0

)

=
∑
m∈Z

(−1)m+1

8

∫
dν
(
ŝ

s0

)ω(m,ν) ν2 +m2

cosh(πν)

(
k∗

2

)−h (k
2

)−h̄

×
[(
`1
2

)h̄−2 (`∗2
2

)h−2
2F1

(
1−h, 2−h, 2;−`

∗
1
`∗2

)
× 2F1

(
1−h̄, 2−h̄, 2;−`2

`1

)
+ {1→ 2}

]
,

(A.6)

where again `1 + `2 = k.
Thanks to the conformal symmetry, the dependence on the exchanged momentum k

can be factorized out completely, reducing the integral to depend only from the complex
radius R = reiδ, where r = |`1/`2| and δ = ϕ1 − ϕ2 = Arg(`1/`2):

|k|2G
(
ŝ

s0
, R, k

)
=
(1

2

)−4 ∑
m∈Z

(−1)m+1

8

∫ +∞

−∞
dν ν

2 +m2

cosh(πν)

(
ŝ

s0

)ω(m,ν)

×
(
g(m,ν)(R) + g(m,ν)(1/R)

)
,

(A.7)

where

g(m,ν)(R) =
( 1

1 +R−1

)h̄−2( 1
1 +R∗

)h−2

× 2F1 (1−h, 2−h, 2;−R∗)2F1
(
1−h̄, 2−h̄, 2;−R−1

)
.

(A.8)

The integrand is real and even in ν, and G(R) = G(R−1) = G(R∗),18

|k|2 G
(
ŝ

s0
, R, k

)
= 8

∑
m∈Z

(−1)m+1
∫ ∞

0
dν ν

2 +m2

cosh(πν)

(
ŝ

s0

)ω(m,ν)
Re
[
g(m,ν)(R)

]
(A.9)

18By exploiting symmetry properties of the Gauss hypergeometric function (see eq. 15.3.3 of [35]), it is
easy to show that

g(m,ν)(R) = g(−m,−ν)(1/R); g(m,ν)(R) = g(−m,−ν)(R)

The number of (costly) function evaluation of the hypergeometric functions can be reduced to only two for
each R and ν making use of the contiguous relations [35, 36] which allow to recover all the conformal spin
(m, 0,±1 · · ·±M) contributions from the direct computation of only two contiguous conformal spin (n = 0, 1
for example). Nonetheless, extending the sum over large conformal spins has been quite problematic due
to numerical rounding problems. Although, the sum over conformal spins converges monotonically for
Re
[
g(m,ν)(R)

]
the sum grows dramatically with m for Im

[
g(m,ν)(R)

]
so that at each step a growing

portion of the available precision bits is eaten up by the calculation of the uninteresting imaginary part
(double precision already fails at m = 4). A representation for the GGF where the real part is computed
directly bypassing altogether the imaginary part would solve the problem for any m. However, as such
representation in not available, we solved the problem by employing Arb [37], a “C library for arbitrary-
precision ball arithmetic” and we increased the number of bits up to 2000 to reach max(m) = 150.
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A.1 NLL eigenvalue function

The forward BFKL eigenvalue at NLL reads [18]19

χ1(n, ν) = γ
(2)
K χ0(n, ν) + 3

2ζ(3)− β2
2 χ

2
0(n, ν)

+ 1
4χ
′′
0(n, ν)− 1

2 (Φ(|n| , ν) + Φ(|n| ,−ν))

+ π2 sinh πν
8ν cosh2 πν

{
−δn0

[
3 +

(
1 + NF

N3
C

)
11 + 12ν2

16 (1 + ν2)

]

+ δ|n|2

(
1 + NF

N3
C

)
1 + 4ν2

32 (1 + ν2)

}
(A.10)

where χ′′0(ν) = ψ′′
(

1
2 + iν

)
+ ψ′′

(
1
2 − iν

)
. and

Φ(n, ν) =
∞∑
k=0

(−1)k+1

k + iν + 1+n
2

{
ψ′(k + n+ 1)− ψ′(k + 1)+

+(−1)k+1 (β′(k + n+ 1) + β′(k + 1)
)

+ ψ(k + 1)− ψ(k + n+ 1)
k + iν + 1+n

2

}
,

(A.11)

where
β(z) = 1

2

(
ψ

(1 + z

2

)
− ψ

(
z

2

))
, (A.12)

Finally, the two-loop QCD cusp anomalous dimension in the dimensional reduction scheme is

γ
(2)
K = 1

3 (5b+ 1)− ζ(2)
2 = 1

4

(67
9 −

10NF

9NC
− 2ζ(2)

)
. (A.13)

The collinearly improved NLL eigenvalue for arbitrary conformal spin can be found in
appedix of ref. [25]. For convenience, the result for scheme (4) is reported verbatim

χ4(n, γ, ω) =χLL(n, γ)− f(n, γ) + [1− ᾱA(n)]f(n+ ω + 2ᾱsB(n), γ)

+ ᾱs

{
χ1(n, γ) +A(n)f(n, γ) +

(
B(n) + χLL(n, γ)

2

)
×

[(
γ + n

2

)−2
+
(

1− γ + n

2

)−2
]} (A.14)

with
f(n, γ) = 1

γ + n
2

+ 1
1− γ + n

2
, γ = 1/2− ν . (A.15)

In this scheme, A(n) and B(n) are given by:

A(n) =−d1(n)− 1
2

[
ψ′(n+1)−ψ′(1)+ 1

(n+1)2

]
; B(n) =−d2(n)+ 1

2[ψ(n+1)−ψ(1)] ,

(A.16)
19 ωf−NLL(n, ν) := ᾱsχ(n, ν).
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with

d1(n) = 1 + 5b
3 − π2

8 + b[ψ(n+ 1)− ψ(1)] + 1
8

[
ψ′
(
n+ 1

2

)
− ψ′

(
n+ 2

2

)
+ 4ψ′(n+ 1)

]
−
(

67 + 13Nf

N3
c

)
δ0n
36 −

(
1 + Nf

N3
c

)47δ2n
1800 (A.17)

and

d2(n) = − b2 −
1
2[ψ(n+ 1)− ψ(1)]−

(
11 + 2Nf

N3
c

)
δ0n
12 −

(
1 + Nf

N3
c

)
δ2n
60 . (A.18)

B NLO IFs

B.1 Singularity cancellation

In ref. [12] a phase-space splitting parameter λ was introduced to separate the collinear
divergent configurations into ε-poles in dimensional regularization and the correspondent
finite reminders. The procedure is independent of the new parameter only in the limit
λ → 0. The λ value must be chosen carefully as a trade-off between accuracy of the
solution and swift numerical convergence which is increasingly hampered approaching that
limit.

On a separate note, the suppression of the 1/∆(∆ = k − zq) divergence relies on
vanishing of the integral of the quark-quark splitting function

∫
dzP (+)

qq (z) = 0. When
dealing with highly dimensional numerical integrations it is preferable to work with ex-
pressions where singular configurations are explicitly removed at the level of the integrand
as opposed to let the integrator figure out that the singularity is integrable.

These two drawbacks can be improved upon by extracting the collinear singularities
as done in ref. [27].

B.1.1 Color factor C2
f

Let us examine the C2
f term and apply the modified subtraction prescription to extract

its singularities. The bold notation for transverse vectors is dropped here. The vectorial
nature of k, q, p,∆ is understood. Starting from eq. (48) of ref. [12]:( dV (1)

r

dJ

)
C2
f

= C2
fH

α
q

∫
dzP (ε)

gq (z)
∫

dεq
z2k2

q2∆2S
3
J(p, q, zx;x), (B.1)

where
Hαs
q = C2

fH
αs , Hαs = αs,ε

2π h
(0),

h(0) =
α2
s,ε2ε

µ4εΓ2(1− ε)(N2
c − 1) , αs,ε = g2µ2εΓ(1− ε)

(4π)1+ε ,

dεq = d2+2εq

πε
, πε = π1+εΓ(1− ε)µ2ε

(B.2)

and the pole of the quark-gluon splitting function is extracted as

P (ε)
g←q(z) = Cf

P(ε)
gq (z)
z

. (B.3)
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Clearly, there is a collinear divergence when the gluon is emitted along the beam axis
q→ 0.

The other denominator ∆2 mixes transverse and longitudinal coordinates and its con-
tribution is better examined with the variable change q → zq. The soft limit is reached
sending z → 0.

(
dV (1)

r

dJ

)
C2
f

= Hα
q C

3
f

∫
dzP

(ε)
gq (z)
z1−2ε

∫
dεq

k2

q2+(k−q)2

( 1
(q − k)2 + 1

q2

)
S3
J(k−zq, zq, zx;x).

(B.4)
Due to the intertwining of collinear and soft configurations, it is convenient to apply a
method for the singularity cancellation split in two phases: first, the soft configuration z →
0 is integrated in ε-regularization and extracted subtracting it from the reminder. Secondly,
starting from the reminder that is now free of soft divergences, a similar procedure is applied
once more to remove the initial q → 0 and final p → 0 state collinear singularities. The
last step introduces a phase space slicing parameter λ for each collinear pole. Finally, what
is left is the finite reminder If where the singular configurations are explicitly subtracted
away. The contributions in 4-ε-dimensions of soft, initial state and final state collinear
poles are indicated respectively as Is{z→0}, I in.

c {q→0}, Ifin.
c {p→0}.

(
dV (1)

r

dJ

)
C2
f

= Hα
q C

3
f

[
Is{z→0}(ε, k) + Ic{q→0,p→0}(ε, k) + If (k)

]
, (B.5)

Ifin.
s =

∫ dz
z1−2ε

∫ dεq
(k − q)2 I(0, q),

Ifin.
c =

∫ dz
z1−2ε

∫ dεq
p2 [I(z, k)− I(0, k)] θ(λ2 − z2p2),

Ifin.
f =

∫ dz
z

∫ d2q

πp2

[
I(z, q)− I(0, q)− (I(z, k)− I(0, k))θ(λ2 − z2p2)

]
,

I in.
s =

∫ dz
z1−2ε

∫ dεq
q2 I(0, q),

I in.
c =

∫ dz
z1−2ε

∫ dεq
q2 [I(z, 0)− I(0, 0)] θ(λ2 − z2q2),

I in.
f =

∫ dz
z

∫ dq
πq2

[
I(z, q)− I(0, q)− (I(z, 0)− I(0, 0))θ(λ2 − z2q2)

]
,

(B.6)

where

I(z, q) = P(ε)
gq (z) k2

q2 + p2S
(3)
J (k − zq, zq, zx;x). (B.7)
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The singularities are extracted as poles in ε.20

Ifin.
s = Pgq(0)

2ε I1(ε, µ)S(2)
J (k, x) = 1

ε

(
k2

µ2

)ε [1
ε
− π2

6 ε+ o(ε2)
]
S

(2)
J (k, x)

Ifin.
c =

∫ dz
z1−2ε I2(ε, λ/zµ)

[
P(ε)
gq (z)− Pgq(0)

]
S(2)(k, x)

= 1
ε

(
λ2

µ2

)ε [
−3

2 + ε

2 + o(ε2)
]
S

(2)
J (k, x)

I in.
s = Ifin.

s

I in.
c =

∫ dz
z1−2ε I2(ε, λ/zµ)

[
P(ε)
gq (z)S(2)

J (k, (1− z)x)− Pgq(0)S(2)(k, x)
]

= 1
ε

(
λ2

µ2

)ε [∫
dz
(Pgq(1− z)

1− z

)
+
S

(2)
J (k, zx)

+ ε

∫
dz(1− z)S(2)

J (k, zx)− 3
2S

(2)
J (k, x)

]
,

Ifin.
f =

∫ dz
z

∫ d2q

∆2

[
k2

q2 + ∆2

(
Pgq(z)S(3)

J (p, q, zx;x)− Pgq(0)S(2)
J (k, x)

)
− (Pgq(z)− Pgq(0)) θ(λ2 −∆2)S(2)

J (k, x)
]
,

I in.
f =

∫ dz
z

∫ d2q

q2

[
k2

q2 + ∆2

(
Pgq(z)S(3)

J (p, q, zx;x)− Pgq(0)S(2)
J (q, x)

)
−

θ(λ2 − q2)
(
Pgq(z)S(2)

J (k, (1− z)x)− Pgq(0)S(2)
J (k, x)

)]
.

(B.9)

An identical procedure is applied to the corresponding analogous terms in the gluon-
induced IF.

B.1.2 Color factor C2
a

Let us examine the term ∼ C2
a giving rise to the logs factor.

The p → 0 initial state collinear singularity (limp→0 J2 ∼ 1/p2), corresponding to a
quark emission collinear to its incoming parent, is canceled by the PDF counter term.

(
dV (1)

r

dJ

)
C2
a

= Hα
g

[
Ic{p→0}(ε, k) + If (q)

]
, (B.10)

20The transverse integrals can be reduced to the form

I1(ε, k/µ) =
∫

d2+2εq

µ2επ1+ε
k2

q2(k − q)2 = Γ(ε)Γ(1− ε)
Γ(2ε)

(
k2

µ2

)ε
=
(
k2

µ2

)ε(2
ε
− π2

3 ε+ o(ε2)
)
,

I2(ε, λ/µ) =
∫

d2+2εq

q2µ2επ1+ε θ(λ
2 − q2) = 1

εΓ(1 + ε)Γ(1− ε)

(
λ2

µ2

)ε
=
(1
ε

+ o(ε2)
)(

λ2

µ2

)ε
.

(B.8)
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where

Ic = 1
1 + ε

∫ dz
z2εPgq(z, ε)

∫
dεq

θ(λ2 − p2)
p2 S

(2)
J (k, zx)

= 1
ε

(
λ2

µ2

)ε ∫
dzPgq(z)S(2)

J (k, zx) + 2Cf
∫ dz

z
(z − 1)S(2)

J (k, zx),

If =
∫

dzPgq(z)
∫ d2q

π

(
J2(k, q, `2, `2)S(3)

J (p, q, zx;x)− θ(λ2 − p2)
p2 S

(2)
J (k, zx)

)
(B.11)

where Hα
g = h

(0)
g

αs
2π , h

(0)
g = C2

ah
(0)(1 + ε).

B.2 NLO IF final expressions

In this section, we report explicitly all the expressions for the NLO IF employed in the
analysis. They are equivalent to those of refs. [12, 13] besides for a few typos that we
corrected there: the rescaling q→ q/(1− z) should result in an additional factor (1− z)2

in the numerator of eq. (78) and, subsequently, on the 7th line of eq. (89); the angle in
eq. (50) has the wrong sign. It is correct in [20]; in eq. (41) the signs of the ∝ Ca are
incorrect but they get corrected later in eq. (43);

B.2.1 Quark-Induced
dV
dJ f.r. refer to all the residual finite reminders once all the poles associated to the divergences
are cancelled between real and virtual corrections as well as all the counter terms.

dV (1)
q (P1, `1, `2; J1; s0)

dJ1
= Hα

q

dV (1)
v

dJ1
+Hα dV (1)

f.r.
dJ1

+Hα dV (1)
r

dJ1
. (B.12)

The first term has no integration

dV (1)
v

dJ1
=Cf

(
3
2 ln k2

µ2
R

+ π2

6 − 4
)

+ β0
4

[
10
3 − ln

(
`21
µ2
R

)
− ln

(
(`1 − k)2

µ2
R

)]

+ Ca
2

[
3
2

(
`21 − (`1 − k)2)

k2 ln
(

(`1 − k)2

`21

)
− 6 |`1| |`1 − k|

k2 ϕ1 sinϕ1

− 3
2

(
ln
(
`21
k2

)
+ ln

(
(`1 − k)2

k2

))
− ln

(
`21
k2

)
ln
(

(`1 − k)2

s0

)

− ln
(

(`1 − k)2

k2

)
ln
(
`21
s0

)
− 2ϕ2

1 + π2 + 7
3

]
+ {1→ 2}

(B.13)

with β0 = 11
3 Nc − 2

3nf and ϕi = ∠(`i,k − `i) ≡ arccos
( (k−`i)2−k2−`i

2|`i||`i−k|
)
for i = 1, 2. The

second term involves a single one dimensional integral

dV (1)
f.r.

dJ1
= C3

f

(
3
2 ln(µ2

R/λ
2) + 1

2 + 3
2 ln(µ2

R/λ
2)− π2

3

)
S

(2)
J (k, x)

+
∫

dzS(2)
J (k, zx)

[
C2
f

(
ln(λ2/µ2

F )Pqq(z) + Cf (1− z)
)

+ C2
a

(
ln(λ2/µ2

F )Pgq(z) + 2Cf
z − 1
z

)]
.

(B.14)
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The final term involves a one dimensional integral and a two dimensional momentum
integral.

dV (1)
r

dJ1
= C2

f

∫ dz
z

∫ d2q

π

{ 1
∆2

[
k2

q2 + ∆2

(
Pgq(z)S(3)

J (p, q, zx;x)− Pgq(0)S(2)
J (k, x)

)
− θ(λ2 −∆2) (Pgq(z)− Pgq(0))S(2)

J (k, x)
]

+ 1
q2

[
k2

q2 + ∆2

(
Pgq(z)S(3)

J (p, q, zx;x)− Pgq(0)S(2)
J (q, x)

)
− θ(λ2 − q2)

(
Pgq(z)S(2)

J (k, (1− z)x)− Pgq(0)S(2)
J (k, x)

)]
+ CaCf (J1(k, q, `1, z) + J1(k, q, `2, z))Pgq(z)S(3)

J (p, q, zx;x)

+ C2
a

(
J2(k, q, `1, `2)S(3)

J (p, q, zx;x)− θ(λ2 − p2)
p2 S

(2)
J (k, zx)

)
Pgq(z)

}

(B.15)

where

J1(q,k, `i, z) = 1
4

[
2k2

p2

((1− z)2

∆2 − 1
q2

)
− 1

Σ2
i

((`i − zk)2

∆2 − `2
i

q2

)
− 1

Υ2
i

((`i − (1− z)k)2

∆2 − (`i − k)2

q2

)]
;

J2(q,k, `1, `2) = 1
4

[
`2

1
p2Υ2

1
+ (k− `1)2

p2Σ2
1

+ `2
2

p2Υ2
2

+ (k− `2)2

p2Σ2
2

− 1
2

((`1 − `2)2

Σ2
1Σ2

2
+ (k− `1 − `2)2

Υ2
1Σ2

2
+ (k− `1 − `2)2

Σ2
1Υ2

2
+ (`1 − `2)2

Υ2
1Υ2

2

)]
.

(B.16)

and

∆ = q − zk, Σi = q − `i, Υi = q − k + `i i = 1, 2. (B.17)

B.3 Gluon-Induced

When is a gluon to be scattered in the proton two emission channels contribute g → gg

and g → qq̄. The finite reminder includes all the pieces resulting from the cancellation of
divergences between real and virtual corrections as well as all the counter terms.

dV (1)
g (P1,2, `1, `2; s0)

dJ1
= Hαs

g

dV (1)
v

dJ1
+Hαs dV (1)

f.r.
dJ1

+Hαs dV (1)
r g→qq̄
dJ1

+Hαs
g

dV (1)
r g→gg
dJ1

(B.18)
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The first term is again only a function of momenta

dV (1)
virt.

dJ1
= β0

4 + Ca

(2
3π

2 − 3
4

)
−
[
β0
2 + nf

6

(
1 + 1

C2
a

)](
ln `21
k2 + ln (k − `1)2

k2

)

+ Ca
2

[
ln k

2

`21
ln `

2
1
s0

+ ln k2

(k − `1)2 ln (k − `1)2

s0
+ ln2 `1

(k − `1)2

]

−
[
nf
6

(
1 + 1

C2
a

)
+ β0

4

] (`21 − (k − `1)2)
k2 ln `21

(k − `1)2

−
(
nf
C2
a

+ 4Ca
) (`21(k − `1)2)1/2

k2 ϕ1 sinϕ1

+ 1
3

(
Ca + nf

C2
a

)[
8(`21(k − `1)2)3/2

(k2)3 ϕ1 sin3 ϕ1

− 2`
2
1(k − `1)2

(k2)2

(
2− (`21 − (k − `1)2)

k2 ln `21
(k − `1)2

)
sin2 ϕ1

+ (`21(k − `1)2)1/2

k2

(
2− 6(`21(k − `1)2)1/2

k2 ϕ1 sinϕ1

− 1
2

(`21 − (k − `1)2)
k2 ln `21

(k − `1)2

)
cosϕ1

]
− Caϕ2

1 + {1↔ 2}

(B.19)

The second term involves a single one-dimensional integral

dV (1)
f.r.

dJ =C2
a

[
nf
6 − Ca

π2

3 − Ca
11
6 ln

(
λ2

µ2
R

)
+ Nf

3 ln
(
λ2

µ2
R

)
− ln

(
µ2
F

µ2
R

)
β0
2

]
S

(2)
J (k, x)

+
∫

dz
[
C2
a ln

(
λ2

µ2
F

)
P (2)
gg +(z) + C2

a ln
(
λ2

µ2
F

)
P (1)
gg (z)

+ 2nfC2
f

(
ln
(
λ2

µ2
F

)
Pqg(z) + 1

2

)]
S

(2)
J (k, zx).

(B.20)
And the final two terms involve a one-dimensional integral and a two-dimensional momen-
tum integral

dV (1)
r g→qq̄
dJ1

=nf

∫
dzPqg(z)

∫ d2q

π

[
2C2

f

1
q2

(
k2

q2+p2S
(3)
J (p,q,zx;x)−θ(λ2−q2)S(2)

J (k,(1−z)x)
)

+C2
a

1
q2

(
z2k2

q2+∆2−
k2

q2+p2

)
S

(3)
J (p,q,zx;x)

+C2
a

1
∆2

(
z2k2

q2+∆2S
(3)
J (p,q,zx;x)−θ(λ2−∆2)S(2)

J (k,x)
)

−(J1(z,k,q,`1)+J1(z,k,q,`2))S(3)
J (p,q,zx;x)

+ 1
C2
a

(
J2(k,q,`1, `2)− 1

p2
k2

q2+p2

)
S

(3)
J (p,q,zx;x)

]
,

(B.21)
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and

dV (1)
r g→gg
dJ1

=
∫ dz

z

∫ d2q

π

{ 1
q2

[
k2

q2 + ∆2

(
P(1)
gg (z)S(3)

J (p, q, zx;x)− P(1)
gg (0)S(2)

J (q, x)
)
,

− θ(λ2 − q2)
(
P(1)
gg (z)S(2)

J (k, (1− z)x)− P(1)
gg (0)S(2)

J (k, x)
)]

+ 1
∆2

[
k2

q2 + ∆2

(
P(1)
gg (z)S(3)

J (p, q, zx;x)− P(1)
gg (0)S(2)

J (k, x)
)

−
(
P(1)
gg (z)− P(1)

gg (0)
)
θ(λ2 −∆2)S(2)

J (k, x)
]

+ P (1)
gg (z)

[
(J1(k, q, `1, z) + J1(k, q, `2, z))S(3)

J (p, q, zx;x)

+ J2(k, q, `1, `2)S(3)
J (p, q, zx;x)− θ(λ2 − p2)

p2 S
(2)
J (k, zx)

]}
.
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