
J
H
E
P
0
6
(
2
0
2
3
)
0
8
9

Published for SISSA by Springer

Received: January 19, 2023
Revised: April 13, 2023

Accepted: May 26, 2023
Published: June 15, 2023

Isospin mass differences of the B, D and K

Matthew Rowea and Roman Zwickya,b
aHiggs Centre for Theoretical Physics, School of Physics and Astronomy, University of Edinburgh,
Edinburgh EH9 3JZ, Scotland
bTheoretical Physics Department, CERN,
Esplanade des Particules 1, Geneva CH-1211, Switzerland

E-mail: m.j.rowe@sms.ed.ac.uk, roman.zwicky@ed.ac.uk

Abstract: We compute the electromagnetic mass difference for the B-, D- and K-mesons
using QCD sum rules with double dispersion relations. For the B- and D-mesons we also
compute the linear quark mass correction, whereas for the K the standard soft theorems
prove more powerful. The mass differences, which have not previously been computed via a
double dispersion, are fully consistent with experiment, albeit with large uncertainties.

Keywords: Precision QED, Properties of Hadrons

ArXiv ePrint: 2301.04972

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP06(2023)089

mailto:m.j.rowe@sms.ed.ac.uk
mailto:roman.zwicky@ed.ac.uk
https://arxiv.org/abs/2301.04972
https://doi.org/10.1007/JHEP06(2023)089


J
H
E
P
0
6
(
2
0
2
3
)
0
8
9

Contents

1 Introduction 1

2 Electromagnetic mass difference ∆mH |QED from QCD sum rules 3
2.1 B- and D-meson with pseudoscalar operators 4

2.1.1 Numerics 6
2.2 K-meson with axial operators 7

3 Linear quark mass correction ∆mH |mq 9
3.1 QCD sum rule computation of 〈H̄|q̄q|H̄〉 for H = B,D 9

3.1.1 Numerics 10
3.2 SU(3)F estimates of 〈H̄|q̄q|H̄〉 for H = B,D 11
3.3 Soft Goldstone estimate of 〈L|q̄q|L〉 for L = π,K 12

4 Final overview and conclusions 12

A Variants of quark-hadron duality 13
A.1 Weight function ω(s) = s 14
A.2 Weight function ω(s) = 1

s−η 15

B Numerical input 15
B.1 Decay constants fB, fD and fK 15

C Double cuts, self energies and condensates for ∆mH |QED 16
C.1 Perturbation theory: b− q diagram 16
C.2 Perturbation theory: self energies 17
C.3 Condensates 17

D Some classic results 18
D.1 Linear quark mass dependence from Feynman-Hellman theorem 18
D.2 ∆mπ|QED from soft theorem and Weinberg sum rules 18

1 Introduction

The mass difference of charged and neutral hadrons,

∆mH = mH+ −mH0 , H = B,D,K, π, p , (1.1)

is an isospin breaking effect and has intrigued particle physicists from the very beginning.
In particular the proton-neutron [1] and the π+-π0 [2] mass difference have been discussed
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extensively. At the microscopic level ∆mH is driven by differences in the electric charge
and the mass mq of the hadron’s light valence quark q = u, d

∆mB = ∆mB|QED + ∆mB|mq . (1.2)

The sign and the size depends on the hadron in question and QED stands for quantum
electrodynamics.1,,2 Recent lattice Monte Carlo simulations [3, 4] have verified this to a
high accuracy, for light and charm mesons, by computing both the charged and the neutral
mass and effectively using (1.1). Light meson splittings were also analysed in [7] using
coupled Dyson-Schwinger and Bethe-Salpeter equations.

One may take a different approach and compute the two differences in (1.2) separately
by using the second order perturbation theory formula (with H = B for definiteness)3

δmB|QED = −iα
2mB(2π)3

∫
d4q T (B)

µν (q)∆µν(q) +O(α2) , (1.3)

with
∆mB|QED ≡ δmB+ |QED − δmB0 |QED , (1.4)

known in the current algebra era [8, 9]. Above ∆µν(q) = 1
q2 (−gµν + (1 − ξ) qµqν

q2 ) is the
photon propagator, α = e2/(4π) the fine structure constant and T (B)

µν (q) is the (uncontracted)
forward Compton scattering tensor,

T (B)
µν (q) = i

∫
d4xe−iq·x〈B|Tjµ(x)jν(0)|B〉 , (1.5)

with jα = ∑
q Qq q̄γαq, the electromagnetic current.

In 1963, Cottingham [10] improved this formula by parameterising it in terms of form
factors and relating it to structure functions. That is, by deforming the contour q0 → iq0
and writing a dispersion representation, assessing the number of subtraction terms of the
form factors thus allowing him to write the contribution as an integral over Q2 = −q2 ≥ 0
and ν = p · q/mB in the physical region. This opened the gate for many phenomenological
studies saturating the dispersion relation by a few terms beyond the elastic one and using
high energy constraints. This is a formidable task as one requires the knowledge of a
correlation function over the entire energy range akin to the situation of the vacuum
polarisation for the anomalous magnetic moment. Some examples are for K, π [11, 12] using
chiral perturbation theory (and large Nc), for B and D [13, 14] using heavy quark theory
(and large Nc), for the proton-neutron [15] with updated fits to the structure functions and
an approach to B, D, K and π using vector meson dominance [16]. Another interesting
point, not unrelated, is that (1.3) requires renormalisation [17] and it was argued that it is

1Strictly speaking the separation (1.2) is not well-defined as it requires fixing a (quark mass) renormali-
sation scheme e.g. [3]. In turn this is a reason for being interested in the problem as, especially light, quark
masses cannot be determined to high precision without folding in QED. This shows for example in the
D-meson results in comparison between [3] and [4]. For our purposes ∆mB |mq is as defined from (1.7).

2Effects due to the weak force are of O(Λ2
QCD/m

2
W ) with respect to QED and are thus negligible. Similar

effects are relevant in the context of neutral meson mixing e.g [5, 6].
3Note that in the literature the notation ∆m2

B ≡ 2mB∆mB is also frequently used.
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justified to cut-off the Q2-integral. The divergences associated with the quark and the gluon
condensate in the OPE are related to the mass and the coupling constant renormalisation
at O(α) (e.g. [18] where this spelled out). Debates about subtraction terms in dispersion
representation of (1.5) are ongoing cf. [15] and the response [19].

Here we do not follow this phenomenological approach but evaluate (1.5) directly
in Minkowski space using double dispersion relation sum rules and thus determine the
mass differences from a unified framework (i.e. same hadronic input).4 Note that the
double dispersion is necessity since each B-meson requires an (approximate dispersive) LSZ
procedure. To the best of our knowledge this has not been done previously with sum rules,
presumably due to the subtleties of non gauge-invariant interpolating currents [23, 24].
For example, in leptonic decays this requires the introduction of a non-local interpolating
operator (or an auxiliary scalar field carrying the charge to infinity) for gauge invariance
and reproduction of all infrared sensitive logs [24]. However, in the case at hand this is not
necessary, as verified by explicit computation, since ∆mB is an infrared safe quantity.

An efficient and transparent way to implement the first order quark mass corrections is
to make use of the Feynman-Helmann theorem which gives

m2
B|mq =

∑
q

mq〈B|q̄q|B〉+O(m2
q ,m

2
q lnmq) , (1.6)

as rederived in appendix D.1. For the difference (1.1) this gives

∆mB

∣∣
mq = (mu −md)

2mB
〈B|q̄q|B〉+O((mu −md)2) . (1.7)

The matrix element 〈B|q̄q|B〉 can be evaluated in the isospin degenerate limit q = u = d

since we work to leading order (LO). For the B- and the D-meson we compute this
matrix element whereas for the Kaon and the pion a soft theorem (e.g. [25]) 〈π|q̄q|π〉 =
− 2
f2
π
〈0|q̄q|0〉+O(m2

π/m
2
ρ), with fπ ≈ 131MeV, due to their pseudo-Goldstone nature, proves

more effective.
In principle one could compute all the ∆mB|mq -effects with the QCD analogue of (1.3)

but this would be rather inefficient and we further comment in the relevant section. Another
noteworthy aspect is that we were not able to obtain stable sum rules for the pion (cf.
section 2.2).

The paper is organised as follows. In section 2 the electromagnetic computation is
presented, followed by the quark mass correction in section 3. We give an overview of
the results and the conclusions in section 4. Comments on quark hadron duality, the
numerical input. some (extra) computation and useful classic results are collected in
Appendices A, C, B and D respectively.

2 Electromagnetic mass difference ∆mH |QED from QCD sum rules

The electromagnetic mass difference follows from the formula quoted in (1.3) and it is our
task to evaluate this. The main theoretical challenge is to incorporate the two hadrons for

4This function has been evaluated for the pion on the lattice with good agreement with experiment
in [20] (method in [21]) and [4, 22] (method in [18]).
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b
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γ

Figure 1. Diagrams contributing to the correlation function in (2.3) with the double line representing
the b-quark. (left) main diagram of the QbQq mixed type. (middle) b- and q-quark self energies.
(right) 〈q̄q〉-condensate part to b-quark self energy. There is no corresponding part for the q-quark
self energy since 〈b̄b〉 is negligibly small. For the mass difference only the first one is relevant while
the others are useful to obtain stable sum rules as described in the text.

which a non-perturbative method is needed. We use QCD sum rules [26] with a double
dispersion relation. The first step involves the adaption of an interpolating operator. For
the heavy mesons a pseudoscalar current is suitable and has proven to give good results
in many other contexts. For particles of light quark masses, and Goldstone particles in
particular [27], pseudoscalar interpolating operators are unsuitable as they are infested by
so-called direct instantons [28].5 We therefore discuss the heavy mesons and the K-meson
separately in sections 2.1 and 2.2 respectively.

An important criteria in assessing the validity of our sum rules is the so-called daughter
sum rule which we consider worthwhile to present now. In the simple single dispersion
relation case this criteria reads

m2
B(s0,M

2) =
∫ s0

cut
e−s/M

2
ρ(s)sds/(

∫ s0

cut
e−s/M

2
ρ(s)ds) , (2.1)

where M2 is the Borel parameter, the “cut” marks the onset of physical states, ρ(s) =
rBδ(s−m2

B) + . . . is the spectral density and the dots stand for states above the continuum
threshold s0. Formally, the residue rB drops out in the ratio. In practice ρ(s) is a continuous
function in partonic computations and eq. (2.1) should be seen as a self-consistency criteria
for an s0 in the range of (mB + 2mπ)2 of (mB + 4mπ)2. If that is the case then eq. (2.1)
can be used to fix the central value of s0.

2.1 B- and D-meson with pseudoscalar operators

As motivated at the beginning of the section, the default choice for heavy-light 0− meson
interpolating operators are

JB = m+b̄iγ5q , ZB ≡ 〈B̄|JB|0〉 = m2
BfB , m+ ≡ (mb +mq) . (2.2)

In determining (1.3), one of the main challenges, is that the momenta for the two B-meson
is degenerate. We bypass this problem by introducing an auxiliary momentum r into one of

5For the heavy mesons axial interpolating operators are unsuitable because the 1+ states are relatively
low, e.g. for the JP = 0− B-meson with mB ≈ 5.28GeV there is a 1+ B1(5721) with mB1 ≈ 5.72GeV.
This is too close to the two pion threshold and even below the typical continuum threshold s0 ≈ (6GeV)2

assumed for the pseudoscalar operators.
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the currents and let it flow out at one of the two interpolating operators. Concretely we
start from

Γqq′(p2, p̃2) = c i3
∫
x,y,z,q

ei(p̃z−ipy−(q+r)x)〈0|TJ†B(z)jµ(x)jν(0)JB(y)|0〉∆µν(q)|QqQq′

=
∫ ∞

0
ds

∫ ∞
0

ds̃
ρΓqq′ (s, s̃)

(s− p2)(s̃− p̃2) = Z2
Bδqq′mB

(m2
B − p2)(m2

B − p̃2) + . . . , (2.3)

with c ≡ −iα
2mB(2π)3 , p̃ = p + r, shorthands xp = x · p,

∫
q,x =

∫
d4qd4x and the density is

given by
(2πi)2ρΓqq′ (s, s̃) = discs,s̃[Γqq′(s, s̃)] , (2.4)

the double discontinuity with further relevant explanations at the end of the section.
The quantity ∆qq′mB denotes the part proportional to the QqQq′-charges. Of course the
auxiliary momentum r has to disappear from the final result. This is achieved by the
on-shell condition “p̃2 = p2” and is implemented in practice by treating them equally (p-p̃
symmetry) and requiring the daughter sum rule to be satisfied reasonably well. The QCD
sum rule is then given by

δqq′mB = 1
Z2
B

∫ δ̄(a)(m2
+)

m2
+

ds e
(m2
B
−s)

M2

∫ δ̄(a)(s)

m2
+

ds̃ e
(m2
B
−s̃)

M2 ρΓqq′ (s, s̃) , (2.5)

where M2 is the Borel parameter from the Borel transformation and the δ̄(a) is the contin-
uum threshold

δ̄(a)(s) = 21/aσ0

(
1−

(
s

21/aσ0

)a)1/a
, (2.6)

which is complicated for double dispersion sum rules [29]. Here it is implemented as in [30]
but simplified since the two hadrons are identical implying M2 → 2M̂2 and s̃0 = t̃0 =
σ

(a)
0 21/a (allowing for elimination of those parameters). The number σ0 ≈ 35GeV2 takes

on the rôle of s0 in (2.1) and we shall use the notation s0 ≡ σ0 hereafter for reasons of
familiarity. The parameter a is a model-parameter and the independence of the result is a
measure of the quality of the result itself.

Let us turn to the computation of which further details are given in appendix C. In
perturbation theory there is the diagram connecting the q- to the b-quark and the self
energies. We focus on the former, as it is numerically dominant, and present the self energies
and the condensate contribution in appendix C. The computation can be done analytically
and we obtain the following compact result for the density

ρΓbq = NcαQqQbm
2
+

32π3mB
·
√
λλ̃

ss̃

(
A+ B

b
ln
(a + b

a− b

))
, (2.7)

where

a = m2
q −

1
4
√
ss̃

(
ss̃+ (m+m−)2)+

{
q ↔ b

}
, b = 1

2

√
λλ̃

ss̃
, A = m2

− ,

B =
{
Y Ỹ ss̃+ 1

2m
2
q

√
ss̃(Y + Ỹ )− 1

4m
2
−

(
s+ s̃+ 4mbmq + 2m2

q

)
− 1

4m
2
+
√
ss̃
}

+
{
q ↔ b

}
,
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with further abbreviations

m± = mb ±mq , λ = λ(s,m2
b ,m

2
q) , Y = s−m+m−

2s , (2.8)

λ(x, y, z) = x2 + y2 + z2− 2xy− 2xz− 2yz is the Källén function and in the tilde quantities
Ỹ and λ̃ we have s→ s̃.

A few words about the computation. We have taken the discontinuity in (2.4) using
Cutkosky rules. A crucial point is that we do not cut the photon propagator as this would
be a QED correction to the B-meson state and does not contribute to (1.3). This amends
the meaning of (2.4).

Let us turn to the usage of the auxiliary momentum r in the context of double
dispersion sum rules. First we note that this is different to a form factor computation,
e.g. F π→π(q2) [31], where the momentum transfer naturally takes on the rôle of this
variable. It is closer to ∆F = 2 matrix elements as there is no momentum transfer but the
flavour contractions naturally lead to a symmetric configuration (e.g. [32]) which is more
straightforward. In fact since our procedure (2.3) artificially breaks the bq-symmetry, a
and B turn out to be non-symmetric whereas b and A remain symmetric. This has to be
remedied by the following substitution

a→ 1
2(a + a|b↔ q) , B → 1

2(B +B|b↔ q) , (2.9)

which is apparent from the way the Cutkosky cuts work out. We have performed the
computation in general gauge. Of course Γqq′ is gauge dependent but as stated earlier its
discontinuity in the bq-quark lines are not. This is the case since the particles are put on the
mass shell and it is important that the quantity is infrared safe. Otherwise, as previously
stated, one needs to introduce extra machinery [24].

2.1.1 Numerics

Our numerics have three cornerstones, the hadronic input parameters in table 2, the
daughter sum rule (2.1) and the choice of a mass scheme for mb. Whereas there is nothing
to say about point one, the others are in need of some explanation. We start with the
B-meson case. The daughter sum rule constrains the sum rule parameters: the continuum
threshold s0 and the Borel parameter M2. Additional constraints, defining the Borel
window, are the convergence of the condensate expansion and keeping the B-pole term
dominant versus the continuum contribution [26]. Let us turn to the question of the mass
scheme which is not independent of the second point. We consider the pole-, the kinetic- and
the MS-scheme. In the pole scheme the b, c-quark self energy contributions (perturbative
and condensate, diagrams 2 and 4 in figure 1) vanish and the sum rules are not stable,
that is no Borel window, and we therefore discard it. For the MS-scheme the b-quark self
energies are dominant with the b-q contribution comparable to the condensates. Since
these contributions cancel in the observable ∆m, this scheme is not ideal either and we
therefore drop it. Hence we are left with the kinetic scheme for the b-quark which shows
good properties as for the B → γ form factor [33] and the gBB∗γ-couplings [30]. For the
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c-quark the self energies are not dominant and we use the MS-scheme, also because the
kinetic-scheme has proven unsuitable in for gDD∗γ [30].

As stated above the daughter sum rule (2.1) is used to fix s0. For that purpose it is
instructive to define the normalised ratio

U(s0,M
2) ≡ 1

m2
B

·m2
B(s0,M

2) , (2.10)

of the sum rule value over the experimental one which has to be close to unity for self-
consistency of the approach. This leads to6

{s0, M̂
2}B = {35.2(1.0), 2.6(0.5)}GeV2 , {s0, M̂

2}D = {5.5(1), 1.0(0.25)}GeV2 ,

(2.11)
for which

U(s0 ± 1GeV2,M2)∆mB |QED = 1± 0.01 , U(s0 ± 0.1GeV2,M2)∆mD|QED = 1± 0.01 .

Using the input parameters in table 2 (with mkin
b (1GeV), m̄c(m̄c)) and the fB,D sum

rule to LO (cf. appendix B.1) for the ZB-factor we get

∆mB|QED = +1.58+0.26
−0.23 MeV , ∆mD|QED = +2.25+0.89

−0.52 MeV , (2.12)

where the error is obtained by adding the individual errors in quadrature. The dominant
error is due to the heavy quark mass mb(c) (50-60%). The Borel mass M2 and duality
parameters a each contribute a 20-25% uncertainty. The error in a is quantified by taking
the standard deviation of the results with a ∈ [1

2 , 1, 2,∞]. The errors for the D-meson are
larger reflecting the generically inferior quality of the sum rule.

2.2 K-meson with axial operators

As explained at the beginning of this section pseudo Goldstone bosons cannot be interpolated
by pseudoscalar operators and one therefore resorts to axial ones

Aµ = q̄ γµγ5 s , 〈0|Aµ|K(p)〉 = ipµfK . (2.13)

The correlation function corresponding to (2.3) assumes the form

Γαβqq′(p
2, p̃2) = ci3

∫
q

∫
x,y,z

ei(p̃z−py−(q+r)x)〈0|TAα(z)jµ(x)jν(0)A†β(y)|0〉∆µν(q)|QqQ′q

= gαβΓ(0)
qq′ + pαpβΓ(2)

qq′ +O(r) . . . , (2.14)

where the O(r)-terms are not of interest to us. The decisive information is in the pαpβ-term
which takes on the form

Γ(2)
qq′ = f2

Kδqq′m

(m2
K − p2)(m2

K − p̃2) + . . . , (2.15)

6Note that in our case the s0 is isospin-independent since we work in the linear approximation. When
estimating the QCD isospin breaking to decay constant this is a different matter cf. [34].
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in a hadronic representation where the dots represent higher states in the spectrum (which
includes the K∗-meson in this case).

Let us turn to the computation which involves some practical matters. Computing the
double discontinuity of Γ(2)

qq′ is laborious as there are open Lorentz indices. One may though
obtain the same information from a linear combination of (2.3) and (2.14) with contracted
indices. It follows from Ward identities that (d = 4)

Γ(2)(s, s) = 1
s2(1− d) (sΓαα(s, s)− dΓ(s, s))) , (2.16)

where we omitted the qq′-subscript for brevity and have set s = s̃. The generalisation to
the s 6= s̃ is in principle ambiguous but fortunately the differences are not that sizeable.
Concretely we use

Γ(2)(s, s̃) = 1
ss̃(1− d)

(1
2(s+ s̃)Γαα(s, s̃)− dΓ(s, s̃))

)
, (2.17)

and the analogous expression of (2.7) is lengthy for the Kaon and is given in a Mathematica
ancillary notebook attached to the arXiv version.

Changing the prescription (2.17) by 1
2(s+ s̃)→

√
ss̃ results in a 15%-change which is

sizeable but not extremely large and well within the error. In addition we use a weight
function 1/ss̃ as described in appendix A.2 as otherwise the daughter sum rule is off by at
least a factor of two which is very large in view of how well it works in all other cases.

Proceeding as before we obtain the following values

{s0, M̂
2}K = {0.7(1), 0.95(0.5)}GeV2 , U(s0 ± 0.1,M2)∆mK |QED = 1.00± 0.10 ,

(2.18)
for the sum rule parameters and the daughter sum rule (2.10). Using the input parameters
in table 2, the fK sum rule to LO (cf. appendix B.1) and (2.18) we get7

∆mK |QED = +1.85+0.42
−0.66 MeV . (2.19)

Scale dependent quantities are evaluated at µ = 2GeV. The uncertainty again comes from
adding individual errors in quadrature. The dominant uncertainty (75%) comes from the
ms mass with the remaining uncertainty due to the duality parameter a in (2.6).

As stated in the introduction, the pion proved more difficult. That is we were not able to
find stable sum rules satisfying the daughter sum rule for reasonable values of the continuum
threshold.8 We believe that is due to its small mass mπ which is considerably below the
other hadronic masses. Conversely the Kaon mass, while being a pseudo-Goldstone, is much
closer to the other hadrons (due to ms being close to ΛQCD).

7The error estimates presented are found by varying the input parameters to the sum rule in a procedural
way. By not rounding the error digits we do not imply that the error is that precise. The uncertainties
should thus be taken as only indicative of the error.

8The extra disconnected diagram for the π0, e.g. [20], is small since the γ5 generates a Levi-Civita tensor
which enforces two extra loops. This is reflected in the smallness of the lattice result [20] and also by the
fact that the LO chiral Lagrangian does not contribute to π0 (cf. appendix D.2).
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b

q̄

g

Figure 2. Diagrams contributing to the matrix element 〈B|q̄q|B〉. They are analogous to the
ones in figure 1 but the square blob denotes the insertion of the q̄q-operator. Perturbation theory
is minimal and the quark condensate diagram is the main contribution. The mixed condensate
diagrams 〈q̄Gq〉 are mainly useful to stabilise the sum rule.

3 Linear quark mass correction ∆mH |mq

As stated in the introduction (and cf. appendix D.1) the O(mq)-corrections are governed by
〈H|q̄q|H〉 (1.7). For the B,D-meson we compute this matrix element from QCD sum rules
in section 3.1, using similar techniques as for the QED correction, and for light mesons we
resort to soft theorems cf. section 3.3 as the corresponding sum rules are inferior.

3.1 QCD sum rule computation of 〈H̄|q̄q|H̄〉 for H = B,D

In order to anticipate the hierarchy of diagrams shown in figure 2 it is worthwhile to
contemplate on the heavy quark behaviour. The matrix element scales like (H = B)
for definiteness).

〈B|q̄q|B〉 = O(mb) , (3.1)

for relativistically normalised states, 〈B(p)|B(q)〉 = 2EB(~p)(2π)3δ(3)(~p−~q), due to the factor
EB = O(mb). On the one hand, the operator q̄q demands a chirality flip in perturbation
theory and this cannot come from the mb-mass since the latter is entirely kinematic as we
have just established. On the other hand the condensate contribution itself 〈q̄q〉 does not
require this flip and is therefore unsuppressed and numerically leading.

To do the computation we start from the following correlation function

Π(p2, p̃2, r) = i2
∫
y,z
ei(p̃z−py−xr)〈0|TJ†B(z)(q̄q)(x)JB(y)|0〉 , (3.2)

where JB has been defined in (2.2) and the auxiliary momentum r takes on the same rôle
as before. The double dispersion relation of the correlation functions reads

Π(p2, p̃2, r) =
∫

dsds̃ ρΠ(s, s̃)
(s− p2 − i0)(s̃− p̃2 − i0) = Z2

B〈B̄|q̄q|B̄〉
(m2

B − p2)(m2
B − p̃2) + . . . , (3.3)

with (2πi)2ρΠ(s, s̃) = discs,s̃[Π(s, s̃)], and the matrix element is then given by

〈B̄|q̄q|B̄〉 = 1
Z2
B

∫ δ̄(a)(m2
+)

m2
+

ds e
(m2
B
−s)

M2

∫ δ̄(a)(s)

m2
+

ds̃ e
(m2
B
−s̃)

M2 ρΠ(s, s̃) , (3.4)

with δ̄(a) defined in (2.6). The three contributions depicted in figure 2 are described below.
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• Perturbation theory is given by

ρΠ(s, s̃) = m2
+Ncmq

2π2
s− (mb −mq)2

s+m2
q −m2

b

λ
1
2 δ(s̃− s) , (3.5)

with the anticipated O(mq)-suppression. This term is negligible and it is noted that
there is no mb-type term.

• The 〈q̄q〉 condensate evaluates to

〈B̄|q̄q|B̄〉 = −4m2
+

Z2
B

e
2(m2

B
−m2

b
)

M2 〈0|q̄q|0〉 (m2
b +O(mqmb,m

2
q)) , (3.6)

which is not suppressed by O(mq) and thus dominant.

• The mixed condensate yields

〈B̄|q̄q|B̄〉 = −m
2
+〈q̄σsggGq〉

Z2
B

e
2(m2

B
−m2

b
)

M2

((
1− 3m2

b

M2

)
+
(

5
8 + 2m2

b

M2 −
4m4

b

M4 + . . .

))
,

(3.7)
which is not suppressed either as it is in the same chirality representation as the quark
condensate. The dots correspond to mbmq and m2

q-terms which are negligibly small
as in the condensate case above. The first and second term in round brackets are
from the third and fourth diagram in figure 2.

We consider it worthwhile to comment how the lack of mq-suppression in the condensate
contribution arises. Its origin is the propagator 1/(r2−m2

q+ iε) (we work in the ~r = 0 frame)

r2 −m2
q + iε = (

√
s− (

√
s̃+mq − iε′))(

√
s− (

√
s̃−mq + iε′)) , (3.8)

which when cut gives a term of the form
√
s

mq
δ(s − (

√
s̃ + mq)2). The 1/mq thus removes

the O(mq)-suppression in the numerator. Numerically perturbation is entirely negligible
and this is also the reason for not including the gluon condensate which is expected to be
further suppressed O(Λ4

QCD/M
4) as compared to perturbation theory.

3.1.1 Numerics

The basic procedure for the numerics is the same as described in section 2.1.1. However,
the choice of scheme is not as important in this case. Any of the schemes, pole, kinetic
and MS give similar results and indicate stability. The situation is certainly clearer with
respect to the mb-mass itself as the matrix element is O(mb) (3.1) and ∆mB|mq itself is
O(m0

b) whereas ∆mB|QED is computed from a non-local correlation function where the
mb-dependence is more difficult to track. Since the perturbative contribution is suppressed,
there is no s0 dependence (there would be at NLO in αs). Hence we can fix the Borel value
M2 to satisfy the daughter sum rule (2.10), obtaining the following sum rule parameters

{s0, M̂
2}B = {35.0, 4.0}GeV2 , {s0, M̂

2}D = {6.0, 0.75}GeV2 , (3.9)
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and daughter sum rules

U(s0, M̂
2 ± 0.15GeV)∆mB |mq =1.00+0.03

−0.02 ,

U(s0, M̂
2 ± 0.05GeV)∆mD|mq=1.00+0.20

−0.12 . (3.10)

Using the input parameters in table 2 (with mkin
b (1GeV), m̄c(m̄c)), the fB,D sum rule to

LO (cf. appendix B.1) and (3.9) we get

〈B̄|q̄q|B̄〉µ=1 GeV = 5.99+1.99
−1.41 GeV , 〈D̄|q̄q|D̄〉µ=m̄c GeV = 3.40+1.78

−1.71 GeV , (3.11)

for the matrix elements and

∆mB|mq = −1.88+0.49
−0.71 MeV , ∆mD|mq = +2.68+1.48

−1.38 MeV , (3.12)

for the mass differences.
As this is a LO computation the errors are large, primarily coming from M2 with a

small contribution (20%) from the light quark masses. Note that the set value of M2 is not
independent of higher order αs corrections. For the D-meson especially, the convergence of
the sum rule is not good. This is reflected in the mixed condensate contributing a sizeable
20%-uncertainty. On inspection the ratio of ∆mD|mq to ∆mB|mq is noticeably larger than
the SU(3)F estimates in (3.15). However this is easily within the given errors which are
very large due to the poor quality of the leading order sum rule.

3.2 SU(3)F estimates of 〈H̄|q̄q|H̄〉 for H = B,D

Alternatively, one may use SU(3)F flavour symmetry 〈B|q̄q|B〉 ≈ 〈Bs|s̄s|Bs〉 to estimate
〈B|q̄q|B〉 [13]. Following this analysis one may write (mud ≡ 1

2(mu +md))

(2m2
Bs −m

2
B+ −m2

B0) = 2(ms −mud)〈B|q̄q|B〉 , (3.13)

from which
〈B|q̄q|B〉 ≈

m2
Bs
−m2

B

(ms −mud)
, (3.14)

follows. Employing the input from the PDG [35] this leads to9

∆mB|mq = −2.37+0.35
−0.43 ± 20%SU3 MeV , ∆mD|mq = +2.81+0.51

−0.41 ± 20%SU3 MeV .
(3.15)

We have added a characteristic 20% SU(3)F -violation due to the use of the 〈B|q̄q|B〉 ≈
〈Bs|s̄s|Bs〉. The result are well compatible with (3.12) and we shall not use them any
further. Note that in the heavy quark limit we have ∆mB|mq = −∆mD|mq since the c and b
are up and down quark types respectively. This heavy quark limit relation holds reasonably
as already observed in [13] (with slightly different input).

9Or taking the η → 3π analysis [36], which in this case makes a difference, results in

∆mB |mq = −2.54+0.17
−0.18 ± 20%SU3 MeV , ∆mD|mq = +3.01+0.21

−0.20 ± 20%SU3 MeV ,

a more precise result.
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3.3 Soft Goldstone estimate of 〈L|q̄q|L〉 for L = π,K

The matrix elements 〈L|q̄q|L〉 where L = π,K is a pseudo-Goldstone boson may be estimated
using soft-pion techniques which in this case lead to the famous GMOR-relation [37].
Concretely [38]

m2
π+,0 = (mu +md)B0 , m2

K+ = (mu +ms)B0 , m2
K0 = (md +ms)B0 , (3.16)

which are to first order in the quark masses, with no QED corrections and the constant is
B0 = −2〈q̄q〉

f2
π
≈ 2.26GeV at µ = 2GeV. We see that for the pions there is no difference to

linear order which is a consequence of isospin [11]. The pion mass splitting is a ∆I = 2
isospin effect since the relevant matrix element has two pion states where the quark masses
themselves are of ∆I = 1. Hence it takes at least two powers of the quark mass difference.
Fortunately, the latter follows in a straightforward manner from chiral perturbation theory
and one obtains to LO

∆mK |mq=
mu −md

ms −mud

m2
K −m2

π

2mK
= mu −md

2mud

m2
π

2mK
=− 6.74+0.98

−1.21 MeV ,

∆mπ|mq = 1
16

md −mu

ms −mud

md −mu

mud
mπ = + 0.16+0.06

−0.05 MeV , (3.17)

using the values from the PDG [35]. As expected the pion contribution is rather small as a
result of being second order in the quark mass difference. It is noteworthy that one obtains
∆mK |mq ≈ −5.7MeV when using (3.16) directly which can be seen as a SU(3)F correction
which is well covered by the quoted uncertainty.

4 Final overview and conclusions

In this paper we have computed the mass difference of the charged and neutral B-, D-
and K-mesons. The results, which originate from electromagnetic and quark mass effects,
are summarised and contrasted with experimental values in table 1. The electromagnetic
contribution is computed from the second order formula (1.3) in section 2 and may be
regarded as the core part of this paper. ∆mπ|QED is taken from a soft-pion theorem
(cf. appendix D.2) for completeness and comparison. Quark mass effects are obtained from
the Feynman-Hellman formula (1.7) and its corresponding matrix element is computed in
section 3.1 for the B and the D respectively whereas for the K and the π a soft theorem
turns out to be more reliable.

The results obtained are consistent with the current experimental values. The uncer-
tainties are above 20% and indeed more cannot be expected from a double dispersion sum
rule at leading order in the strong coupling constant. Experimental uncertainties are one or
two orders of magnitude lower.

The values in table 1 deserves some comments as they are not easily guessed by
rules of thumb by a practitioner in non-perturbative QCD. The parametric estimate
of ∆mH |QED = cQeff

H
α
πΛQCD with ΛQCD = 200MeV and Qeff

D = 2Qeff
B,K = 2/3, leads to

c ≈ 10-20 which is a rather large number. To put this into perspective, one should keep in

– 12 –



J
H
E
P
0
6
(
2
0
2
3
)
0
8
9

H ∆mH |QED ∆mH |mq ∆mH ∆mH |PDG[35]
B +1.58(24) MeV −1.88(60) MeV a −0.30(65) MeV −0.32(5) MeV
D +2.25(70) MeV +2.7(1.4) MeV a +4.9(1.6) MeV +4.822(15) MeV
K +1.85(54) MeV −6 .7 (1 .1 ) MeV b −4.9(1.2) MeV −3.934(20) MeV
π +4 .8 (1 .2 ) MeV c +0 .16 (5 ) MeV b +5.0(1.2) MeV +4.5936(5) MeV

Table 1. Our values of ∆mH due to the electromagnetic mass difference and the quark masses
compared to the PDG values. The entries marked with a are obtained from the 〈H|q̄q|H〉 matrix
element in conjunction with the Feynman-Hellman theorem (valid to LO in mq). The values in
italic should not be regarded as predictions of this work. E.g. bderived from the soft theorem
for (pseudo-) Goldstone bosons (cf. appendix 3.3) and cresults from soft theorem in conjunction
with the Weinberg sum rules (cf. appendix D.2). It is noteworthy that ∆mπ|mq = O((mu −md)2)
which explains its smallness. For comparison some lattice values ∆mD = 5.47(53)MeV and
∆mK = −4.07(15)(15)MeV [4] and ∆mD = 4.68(10)(13)MeV [3] which are of course more precise
as the lattice is suited for mass determination, even in the presence of QED, and due to the full
inclusion of QCD.

mind that these kind of estimates are not straightforward as the mass difference is obtained
from a non-local (long distance) correlation function (1.3). The scale for the quark mass
effect is of course set me mu −md ≈ 2.5MeV and its sign depends on whether the non
q = u, d quark is of the up (charm) or down (beauty, strange) type quark. The cancellation
to almost an order of magnitude of the electric and the quark mass contribution for the
B-meson is remarkable, leading to an inflated uncertainty in ∆mB.

Indeed numerically the uncertainties are comparable to previous studies. However the
main aim of this paper was to show that it is possible to understand the isospin mass
difference from QCD sum rules, that is to obtain values compatible with experiment. The
sum rule computation could be improved by including radiative corrections in the strong
coupling constant which would be a formidable task. Perhaps more interestingly, the
formalism developed in this paper could be applied to baryons to obtain the proton-neutron
mass difference for instance.
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A Variants of quark-hadron duality

In this appendix we elaborate on variations of quark-hadron duality. This is best explained
by example. Consider the axial correlator in connection with the K

Παβ = i

∫
d4xeipx〈0|TA†α(x)Aβ(0)|0〉 = pαpβΠ(p2) + gαβΠ̂(p2) , (A.1)
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with Aβ defined in (2.13). The Kaon appears in the first structure

Π(p2) = f2
K

m2
K − p2 + . . . , (A.2)

where the dots stand for higher states as usual. QCD sum rules consists of two steps. Firstly
the observation that

Π(p2) ≈ Π(p2)pQCD , (A.3)

for some p2 outside the physical region (could be p2 < 0), where pQCD stands for perturba-
tive QCD with OPE improvements. In a second step one rewrites eq. (A.3) as a dispersion
relation followed by a Borel transform under which (s− p2)−1 → exp

(
−s/M2) (M2 is the

Borel parameter) which results in∫ ∞
0

e−s/M
2
ρ(s) ≈

∫ ∞
0

e−s/M
2
ρpQCD(s) , (A.4)

with ρ(s) = 1
2πidiscsΠ(s) = f2

Kδ(s−m2
K) + . . . and the pQCD part is defined analogously.

The one assumption is then that this integral can be broken up as follows∫ s0

0
e−s/M

2
ρ(s) ≈

∫ s0

0
e−s/M

2
ρpQCD(s) , (A.5)

and (A.5) is sometimes referred to as semi-global quark hadron duality [39]. One way to
determine s0 is to impose the daughter sum rule (2.1) and then for consistency with the
duality assumption s0 ought to be somewhere between (mK + 2mπ)2 and (mK + 4mπ)2.

We want to briefly contemplate for which types of weight functions ω(s) (A.5)∫ s0

0
e−s/M

2
ρ(s)ω(s) ≈

∫ s0

0
e−s/M

2
ρpQCD(s)ω(s) , (A.6)

with corresponding (2.1)

m2
B =

∫ s0

cut
e−s/M

2
ρpQCD(s)ω(s) s ds/(

∫ s0

cut
e−s/M

2
ρpQCD(s)ω(s)ds) , (A.7)

can hold. The crucial point is to be able to justify the analogue of eq. (A.3).

A.1 Weight function ω(s) = s

We might start by rewriting the pαpβ-part in (A.1) as follows

pαpβΠ(p2) = pαpβ
p2 (p2Π(p2)) . (A.8)

For the pQCD part one may directly write ρpQCD(s)→ sρpQCD(s) since p2 does not lead
to new singularities. Using (A.2), the QCD part can be written as

(p2Π(p2)) = p2 f2
K

m2
K − p2 + · · · = −f2

K +m2
K

f2
K

m2
K − p2 + . . . , (A.9)

where −f2
K is a constant that will disappear under Borel transformation and thus ρ(s)→

sρ(s) works the very same way. The analogue of (A.3) can be justified in this case by
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replacing A†α(x) → −∂2A†α(x) (A.1).10 Weight functions of polynomials are generally
referred to as moments and are familiar to the community e.g. moments in b → c`ν for
example [40]. It is quite clear that one can not take arbitrarily high powers of moments as
then duality will be challenged. Global duality, which is equivalent to a dispersion relation,
is only strictly valid for the n = 0 case and deviating in higher n is therefore not safe.

A.2 Weight function ω(s) = 1
s−η

Choosing a weight function

ω(s) = 1
s− η

, (A.10)

is equivalent to working with a subtracted dispersion relation fo the form

Π(p2)−Π(η)
p2 − η

=
∫

dsρ(s)
(s− p2)(s− η) + c , (A.11)

where c = −
∫
dsρA(s)/(s(s− η)) + Π′(η) is a subtraction constant such that the limit

p2 → 0 comes out correctly. The constant c is though not important in the end as it vanishes
under Borel transformation. The question of whether one can use (A.10) then turns into
the question whether the left hand side can be computed reliably.

In our application to Kaons we have chosen η = 0 which is close but still below the Kaon
resonance. We have checked that for the fK sum rule with s0 = 0.7GeV2 the agreement is
reasonable and this serves at least as a partial justification of the procedure in section 2.2.

B Numerical input

The numerical QCD input is summarised in table 2 and below we give the numerical values
of the decay constant from sum rule which are the effective LSZ factors.

B.1 Decay constants fB, fD and fK

The extraction of both the QED mass shifts and the linear quark mass corrections, require
values for the decay constants fB, fD and fK . Note that, for consistency with the rest of
this paper these are evaluated at LO in QCD. The LO expressions for the pseudoscalar
(B,D) and axial (K) correlators are well known (e.g. [44, 45]). The following values

fB = 0.157GeV , {s0,M
2} = {33.5, 6.0}GeV2 ,

fD = 0.158GeV , {s0,M
2} = {5.7, 2.0} GeV2 ,

fK = 0.147GeV , {s0,M
2} = {1.1, 1.5} GeV2 , (B.1)

are obtained.
10In our case this is not trivial as A†α is not QED gauge invariant but it can still be used at LO. In the

general case this requires more thought.
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JP = 0− Meson masses [35]

mB mBs mD mDs mK mπ

5.280GeV 5.367GeV 1.867GeV 1.968GeV 0.496GeV 0.137GeV

JP = 0− Mass Differences [35]

∆mB ∆mD ∆mK ∆mπ

−0.32(5)MeV +4.822(15)MeV −3.934(20)MeV +4.5936(5)MeV

Quark masses [35]

m̄b(mb) m̄c(mc) mpole
b mpole

c mkin
b |1GeV mkin

c |1GeV

4.18+0.03
−0.02 GeV 1.27(2)GeV 4.78(6)GeV 1.67(7)GeV 4.53(6)GeV 1.13(5)

m̄s|2GeV m̄d|2GeV m̄u|2GeV m̄ud|2GeV m̄u
m̄d

m̄s
m̄ud

93.4+8.6
−3.4 MeV 4.67+0.48

−0.17 MeV 2.16+0.49
−0.26 MeV 3.45+0.35

−0.15 MeV 0.474+0.056
−0.074 27.33+0.67

−0.77

Condensates

〈q̄q〉|2GeV [41] 〈s̄s〉|2GeV [42] m2
0 [43] 〈0|απG2|0〉 [26]

−(269(2)MeV)3 1.08(16) 〈q̄q〉 0.8(2)GeV2 0.012(4)GeV4

Table 2. Summary of input parameters. Note as inputs into the sum rules we use mH = mH− , as
which has a completely negligible impact. The quantity mud ≡ 1

2 (mu+md) is the light quark average.
The mixed condensate is parameterised as 〈q̄σsggGq〉 = m2

0〈q̄q〉 as is standard in the literature.

C Double cuts, self energies and condensates for ∆mH |QED

In this appendix we give some more details of the double cuts required for the double
dispersion and we present some extra computations: the self energies and condensate
contributions to ∆mB|QED. These are important for stabilising the sum rules but do not
affect the actual value of ∆mB|QED per se. This is the case since graphs proportional to
Q2
b are cancelled in the mass difference. The only non-zero graph contributing to the mass

shift is the q-q self energy, but it is numerically negligible. We wish to note that in all these
graphs explicit gauge independence has been verified to hold after the double-cut is taken.

C.1 Perturbation theory: b− q diagram

This corresponds to diagram 1 (left) of figure 1 where the photon connects the b and q

quarks. The required double discontinuity comes from cutting all 4 quarks simultaneously
(that is putting them on shell using the Cutkovsky rules). Once cut, the corresponding
spectral density is

ρΓbq(s, s̃) =−4π3Ncm
2
+QbQqα

mB

∫ d4qd4l

(2π)8 δ
+(l2−m2

q)δ+((pB−l)2−m2
b)

δ+(q2−m2
q)δ+((p̃B−q)2−m2

b)
N

(q−l)2 , (C.1)

where N is the numerator trace structure in Feynman gauge and l and q are loop momenta
running through the left and right hand side of the diagram respectively. These integrals
can be done with the help of the delta functions with the resulting logarithm in (2.7)
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coming from the angular integration of the denominator (q − l)2. The result (eq. (2.7)
in the main text) is numerically dominant. For the sake of clarity let us explain the link
to the Cottingham formula (1.3). Comparing (C.1) to the latter one infers that T (B)µ

µ (q)
corresponds to ρΓbq(s, s̃), with the d4q/(q − l)2-part separated off, integrated over the
dispersive s, s′-variables as in (2.5).

C.2 Perturbation theory: self energies

As mentioned the self energy graphs of figure 1 (middle-left and middle-right) are not
relevant to the mass splitting. The b− b graph cancels once we take the mass difference
while the q− q graph is numerically negligible. The procedure for these diagrams is broadly
similar to the b− q diagram above except now the photon loop is completely separate of the
two B meson states. This introduces a degeneracy between the cuts which forces s̃ = s (see
below). That is, once we have taken the discontinuity in s the remaining propagator becomes
proportional to s− s̃. The photon d4q loop factorises and can be evaluated completely in
terms of Passarino-Veltman functions. The perturbative b-b self energy graph, after mass
renormalisation, takes on the form

ρΓbb(s, s̃) = Ncm
2
+Q

2
bα

32π3mB
· λ

1
2 ·

s−m2
−

s+m+m−
fR(m2

b)δ(s̃− s) , (C.2)

with the renormalised fR,11

fR(m2) = f(m2) + 32π2m2

e2 δZm =


2m2

(
4 + 3 ln µ2

m2

)
, MS

0, Pole

2m2
(

16µ
3m + 2µ2

m2

)
, Kinetic

(C.3)

f(m2) = 4m2B0(m2, 0,m2) + (d− 2)A0(m2) . (C.4)

The functions A0 and B0 are the standard Passarino-Veltman functions with (FeynCalc)
normalisation (2πµ)2ε ∫ ddk /(iπ2). Explicitly these are

B0(m2, 0,m2) = 1
ε̂

+ 2 + log
(
µ2

m2

)
, A0(m2) = m2

(
1
ε̂

+ 1 + log
(
µ2

m2

))
, (C.5)

with 1
ε̂ = 1

ε − γE + log 4π. The q-q graph can be obtained by replacing b→ q in the result
and since it is O(m2

q) it is negligible.

C.3 Condensates

The only relevant condensate graph is given in figure 1 (4th diagram). There are two quark
propagators p2

B −m2
b and p̃2

B −m2
b which are both cut giving simple delta functions. With

mq → 0 the density is

ρ
〈q̄q〉
Γbb = −m

2
bαQ

2
b

8πmB
mb〈q̄q〉δ(s−m2

b)δ(s̃−m2
b)fR(m2

b) . (C.6)

11Note that the vanishing in the pole scheme is clear, by the very definition of the scheme, since we are
on-shell after the cuts.

– 17 –



J
H
E
P
0
6
(
2
0
2
3
)
0
8
9

Light quark mass corrections come from Taylor expanding the quark fields, leading to
derivatives of δ-functions. It is thus more convenient to directly display the resulting
mass shift

∆mB|〈q̄q〉 = − m2
+αQ

2
b

8πmBZ2
B

e
2(m2

B
−m2

b
)

M2 〈q̄q〉
(
mb −

mq

4
(
1 + 4m2

b

M2
))
fR(m2

b) (C.7)

The 〈q̄q〉 condensate graph where the photon connects the b and the q-quark is not of
short distance type (it leads to 1/m2

q in the propagator) and is therefore omitted. This is
similar to the B → γ form factor although in that case the physics is covered by the photon
distribution amplitude (e.g. [33]). The same problem afflicts the similar 〈q̄q〉 q − q graph.

D Some classic results

In this appendix we summarise some classic results which are of use and referred to in
the paper.

D.1 Linear quark mass dependence from Feynman-Hellman theorem

In order to derive the Feynman-Hellman theorem it is convenient to use states 〈B̂(p)|B̂(q)〉 =
(2π)3δ(3)(~p− ~q) normalised in a non-relativistic manner (the translation to the usual states
is |B̂〉 = |B〉/

√
2EB). Taking the derivative of 〈B̂|H|B̂〉 (using ∂mq〈B̂(p)|B̂(q)〉 = 0)

one obtains
mq∂mqEB = mq〈B̂|q̄q|B̂〉 , (D.1)

which is equivalent to
mq∂mq2E2

B = 2mq〈B|q̄q|B〉 , (D.2)

which in turn is consistent with

m2
B|mq =

∑
q

mq〈B|q̄q|B〉+O(m2
q ,m

2
q lnmq) , (D.3)

since the momenta are independent of the mass. This is the relation quoted in (1.6) in the
main text.

D.2 ∆mπ|QED from soft theorem and Weinberg sum rules

Using soft-pion techniques it was shown that [2]

∆mπ|QED = 3α
8πmπf2

π

∫ ∞
0

dss ln µ
2

s
(ρV (s)− ρA(s)) +O(m2

π/m
2
ρ) , (D.4)

where ρV = fρδ(s−m2
ρ) + . . . is the spectral density of the vector triplet current and ρA is

the analogous quantity for the axial case. The ln s-term originates from integrating over
the photon momentum d4q. We refer the reader to [11] for an improved treatment using
chiral perturbation theory. In fact, as is the case for all soft-pion results, eq. (D.4) follows
from the LO electromagnetic term in the Lagrangian and can therefore be systematically
improved beyond the soft limit to the extent that its low energy constants (i.e. couplings)

– 18 –
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are known. Using the Weinberg sum rules [46], which are phenomenologically successful, a
good estimate was obtained [2]. Taking the equations resulting from the so-called first and
second Weinberg sum rule in [47], then

f2
ρ = f2

a1 + f2
π , m2

ρf
2
ρ = m2

a1f
2
a1 , (D.5)

(where the chiral limit mq = 0 is assumed). Moreover, the spectral functions are truncated
after the first vector meson resonances ρ and a1 which can be justified as the chiral symmetry
is restored at high energy. Using these in expressions in (D.4) one gets

∆mπ|QED = 3α
8π

m2
ρf

2
ρ

m2
πf

2
π

mπ ln
f2
ρ

f2
ρ − f2

π

≈ 4.8MeV , (D.6)

for fπ = 131MeV, mρ = 0.77MeV [35] and fρ = 215MeV [48]. Since the quark mass effect
is small O((mu − md)2) (3.17), one has ∆mπ ≈ ∆mπ|QED which is rather close to the
experimental value ∆mπ = +4.5936(5) MeV [35]. Clearly (D.6) is a crude approximation
as more detailed analyses [11, 49] including finite width effects yields a result which is
ca +1.2MeV larger [49]. We therefore assign an uncertainty of this amount to ∆mπ|QED
in table 1.

It is also worthwhile to mention two other interesting aspects in conjunction with
∆mπ|QED. First, by using by using QCD inequalities it has been shown that ∆mπ|QED ≥
0 [50] which is of course well satisfied. Second Dashen’s theorem [51] states that ∆m2

π|QED−
∆m2

K |QED = O(αms, αmq lnmq) as a result of degeneracy in the SU(3)F limit ms = md =
mu. The corrections seem rather large and are largely kinematic, the larger K mass in the
Kaon propagator [52]. Lattice Monte Carlo simulations have settled this matter to large
precision [53] (cf. [54] for a review).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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