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1 Introduction

The discovery of color-kinematic duality in the amplitudes of Yang-Mills theory, and subse-
quently in the amplitudes of a much broader class of field theories (see ref. [1] for a review),
has unleashed a tool of great power, particularly in the calculation of gravitational ampli-
tudes through the double-copy procedure [2–4]. In 2008, Bern, Carrasco, and Johansson
(BCJ) showed that the assumption of color-kinematic duality in tree-level amplitudes of
Yang-Mills theory implies a set of linear relations among the color-ordered amplitudes. The
subsequent proof of these BCJ relations using string-theory techniques [5, 6] and BCFW
on-shell recursion [7, 8] provided evidence for the conjecture of tree-level color-kinematic
duality. Bern et al. also conjectured that color-kinematic duality applies to integrands of
loop-level amplitudes [2, 3]; while not proven, this conjecture has been tested for ampli-
tudes of various multiplicities and loop levels in supersymmetric Yang-Mills theories, which
have been used to construct supergravity amplitudes [1].

In 2016, R. W. Brown and the current author observed that tree-level gauge-theory
amplitudes possess a color-factor symmetry, which acts as a momentum-dependent shift
on the color factors of an amplitude, leaving the full amplitude invariant [9–11]. This
symmetry was proved for both Yang-Mills theory and for gauge theories with massive
particles of various spins using the radiation vertex expansion [12]. The BCJ relations
follow as an immediate consequence of color-factor symmetry [9, 10].

Color-kinematic duality and color-factor symmetry are closely related features of gauge
theories: the former implies the latter (as proved using the cubic vertex expansion), but
the latter implies a less stringent (but gauge-invariant) constraint than the former on
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the kinematic numerators of a tree-level amplitude [9]. Similarly color-kinematic duality
implies color-factor symmetry for loop-level amplitudes, but no independent proof of the
latter has yet been developed.

Color-factor symmetry is also a property of tree-level amplitudes of the biadjoint scalar
(BAS) theory [13], whose fields transform in the adjoint representation of U(N)×U(Ñ), as
was proved using the cubic vertex expansion [9]. Cheung and Mangan [14] observed that
the classical equations of motion of the BAS theory also possess color-factor symmetry, and
that this implies the invariance of the tree-level amplitudes. They demonstrated a relation
between the U(N) color-factor symmetry of the equations of motion and the conservation of
current associated with the dual U(Ñ) symmetry. In ref. [15], these results were generalized
to curved symmetric spacetime.

In this paper, we offer a new proof of color-factor symmetry based on a recursive ap-
proach. In 1987, Berends and Giele [16] introduced a method for computing tree-level QCD
amplitudes using a set of partially off-shell amplitudes (subsequently known as Berends-
Giele currents), which were then computed recursively. Rosly and Selivanov [17–19] later
showed that a perturbative solution of the classical equations of motion (dubbed the
perturbiner expansion) acts as a generating function for Berends-Giele currents. Mafra,
Schlotterer, et al. [20–23] also used classical equations of motion to generate Berends-Giele
currents in various theories. Mizera and Skrzypek [24] introduced the color-dressed pertur-
biner expansion, which, as we will see in this paper, is well adapted for the demonstration
of color-factor symmetry of tree-level amplitudes.

Further developments in this subject include the work of Lopez Arcos, Quintero Vélez,
et al., who related the L∞-algebra that appears in Batalin-Vilkovisky quantization [25] to
the perturbiner expansion for biadjoint scalar and Yang-Mills theories [26] as well as in
gauge theories with matter [27]. Berends-Giele currents in BCJ gauge were constructed
using Bern-Kosower rules [28], with this work extended to gravity using the double-copy
procedure [29]. Gomez and Jusinskas have applied perturbiner methods to gravity cou-
pled to matter [30], and in ref. [31], perturbiner methods were used to compute tree-level
boundary correlators in anti-de Sitter space. The perturbiner approach has also been
found effective for computing one-loop integrands [32]. The connection between tree-level
Berends-Giele recursion relations and the L∞-algebra uncovered in ref. [25] was extended
to loop-level recursion relations and the quantum homotopy algebra A∞ in ref. [33]. For
connections between the homotopy algebra and the double copy, see refs. [34–36].

We present this alternative proof of color-factor symmetry because the recursive meth-
ods employed may be more familiar to modern readers than the radiation vertex expansion
used in ref. [9] to prove color-factor symmetry. Moreover, this recursive approach may be
easier to generalize to the exploration of color-factor symmetry in other theories.

The outline of this paper is as follows. In section 2, we recall how color-factor symmetry
acts on amplitudes, and how the BCJ relations follow as a consequence. In section 3, we
show how the color-dressed perturbiner expansion is used to compute tree-level amplitudes,
first in the biadjoint scalar theory, and then in Yang-Mills theory. In section 4, we then
use the color-dressed perturbiner expansion to prove color-factor symmetry for tree-level
amplitudes of the biadjoint scalar theory and of Yang-Mills theory. Section 5 contains our
conclusions.
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2 Color-factor symmetry and BCJ relations

Tree-level scattering amplitudes of a gauge theory are given by a sum of Feynman diagrams,
and can be expressed as [37]

An =
∑
i

aici (2.1)

where ci are color factors, consisting of the contraction of various color tensors fabc and
(T a)i

j appearing in the Feynman diagrams, and ai depends on kinematic and spin factors.
Each color factor can itself be represented as a Feynman diagram [38, 39], one that contains
only trivalent vertices. (If the full Feynman diagram contains only trivalent vertices, then
it contributes to the color factor with the same Feynman diagram. If the full Feynman
diagram also contains quartic vertices, then its contribution is parcelled out among different
color factors by expressing the quartic vertex as products of trivalent vertices.) Note that,
due to the group theory identities

0 = fbaef ecd + f caef edb + fdaef ebc , (2.2)

0 = (T a)i
k (T c)k

j − (T c)i
k (T a)k

j − f
ace (T e)i

j (2.3)

there exist (Jacobi) relations among the various color factors ci. Since the ci are not
independent, there is some choice about how the coefficients ai are defined.

2.1 Color-factor symmetry

There exists a color-factor symmetry associated with each external gluon a contributing
to the amplitude [9, 10]. This symmetry acts on each color factor ci appearing in eq. (2.1)
by a momentum-dependent shift δaci. For each color factor ci, the gluon leg a divides the
associated tree-level diagram in two at its point of attachment. Let Sa,i denote the subset
of the remaining legs on one side of this point; it does not matter which side we choose.
The shift of the color factor ci associated with gluon a then satisfies1

δaci ∝
∑
d∈Sa,i

ka · kd (2.4)

where kµa is the outgoing momentum of gluon a (satisfying k2
a = 0), and kµd are the outgoing

momenta of the legs belonging to Sa,i. The color-factor shift also respects the group theory
identities, as we will see below.

We may regard the color-factor symmetry as acting directly on the color tensors ap-
pearing in ci. If gluon a (with color a) is attached to a gluon line, so that the color factor
contains fbac, then the color-factor symmetry acts as [14]

δaf
bac = αaδ

bc(k2
c − k2

b ) (2.5)

1Choosing to sum over the complement of Sa,i gives the same result (up to sign) due to momentum
conservation.
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where kµb and kµc are the momenta flowing out of the vertex associated with fbac and αa
is a constant parameter. If gluon a is attached to a line corresponding to a particle in
some other representation, so that the color factor contains (T a)i

j, then the color-factor
symmetry acts as

δa (T a)i
j = αaδ

i
j(k2

j − k2
i ) (2.6)

where kµi and kµj are the momenta flowing out of the vertex associated with (T a)i
j. Using

momentum conservation at each vertex, we may express these shifts as

δaf
bac = αaδ

bc(2ka · kb) , δa (T a)i
j = αaδ

i
j(2ka · ki) . (2.7)

The relations (2.7) guarantee that the color-factor shifts satisfy eq. (2.4). We must also
check that the color-factor shifts leave the group theory identities invariant. Using eq. (2.7)
in eqs. (2.2) and (2.3), we find

δa
[
fbaef ecd + f caef edb + fdaef ebc

]
= 2αaka · (kb + kc + kd)fbcd

= −2αak2
af

bcd = 0 , (2.8)

δa
[
(T a)i

k (T c)k
j − (T c)i

k (T a)k
j − f

ace (T e)i
j

]
= 2αaka · (ki + kj + kc) (T c)i

j

= −2αak2
a (T c)i

j = 0

using momentum conservation and the masslessness of the gluon.
In ref. [9], the n-point amplitude eq. (2.1) was proved to be invariant under the color-

factor shift associated with any of the external gluons it contains

δaAn = 0 (2.9)

by rewriting the amplitude using the radiation vertex expansion. In section 4 we give an
alternative proof of this fact using the recursive perturbiner approach.

2.2 BCJ relations

In the remainder of this section, we recall the demonstration [9] that color-factor symmetry
of the amplitude implies the fundamental BCJ relation [5, 7, 40] among the color-ordered
amplitudes. As mentioned above, the color factors ci are not independent due to group
theory identities (2.2) and (2.3). It is useful to identity an independent basis of color factors,
whose coefficients will be unambiguously specified [39]. For tree-level n-gluon amplitudes,
such a basis consists of half-ladder color factors

c1γn ≡
∑

b1,...,bn−3

fa1aγ(2)b1fb1aγ(3)b2 · · · fbn−3aγ(n−1)an (2.10)

in terms of which the amplitude may be written as [41, 42]

An =
∑

γ∈Sn−2

c1γnA(1, γ(2), · · · , γ(n− 1), n) (2.11)
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where γ runs over all permutations of {2, · · · , n − 1}, and A(1, γ(2), · · · , γ(n − 1), n) are
color-ordered amplitudes. Singling out one of the external gluons (a = 2) and letting σ
denote an arbitrary permutation of {3, · · · , n− 1}, we may reexpress eq. (2.11) as

An=
∑

σ∈Sn−3

[
n∑
e=3

c1σ(3)···σ(e−1)2σ(e)···σ(n−1)nA(1, σ(3), · · · , σ(e− 1), 2, σ(e), · · · , σ(n−1), n)
]

(2.12)

where

c1σ(3)···σ(e−1)2σ(e)···σ(n−1)n

=
∑

b1,...,bn−3

fa1aσ(3)b1 · · · fbe−4aσ(e−1)be−3fbe−3a2be−2fbe−2aσ(e)be−1 · · · fbn−3aσ(n−1)an . (2.13)

The color-factor symmetry associated with gluon a = 2 acts on eq. (2.13) as

δ2 c1σ(3)···σ(e−1)2σ(e)···σ(n−1)n = 2α2k2 ·
(
k1 +

e−1∑
d=3

kσ(d)

)
c1σ(3)···σ(e−1)σ(e)···σ(n−1)n (2.14)

and therefore

δ2An = 2α2
∑

σ∈Sn−3

c1σn

n∑
e=3

k2 ·
(
k1 +

e−1∑
d=3

kσ(d)

)

×A(1, σ(3), · · · , σ(e− 1), 2, σ(e), · · · , σ(n− 1), n) . (2.15)

Since δ2An = 0 by color-factor symmetry, and since the half-ladder color factors c1σn are
independent, this establishes that

n∑
e=3

(
k2 · k1 +

e−1∑
d=3

k2 · kσ(d)

)
A(1, σ(3), · · · , σ(e− 1), 2, σ(e), · · · , σ(n− 1), n) = 0 (2.16)

which is the fundamental BCJ relation, from which the rest of the BCJ relations may be
derived [5, 7, 40]. This argument may be generalized to the amplitudes of the BAS theory
in curved symmetric spacetime [15].

For tree-level amplitudes containing fields in other representations (e.g. quarks) in
addition to gluons, an independent basis of color factors is given by the Melia basis [43–45].
The independent amplitudes corresponding to this basis also satisfy BCJ relations that
follow from the assumption of color-kinematic duality [46, 47]. Color-factor symmetry can
also be used to derive BCJ relations for these amplitudes [10].

3 Color-dressed perturbiner expansion

In this section, we review the color-dressed perturbiner expansion [24] of the solutions to the
classical equations of motion for the biadjoint scalar theory and Yang-Mills theory, and how
its coefficients (Berends-Giele currents) are used to obtain tree-level n-point amplitudes in
those theories.
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3.1 Biadjoint scalar theory

The biadjoint scalar theory is a theory of a massless scalar field φaa′ transforming in the
adjoint representation of U(N)×U(Ñ), with Lagrangian [13]

L = 1
2
(
∂µφ

aa′)(∂µφaa′) − 1
6λf

abcf̃a′b′c′φaa′φbb′φcc′ (3.1)

where fabc and f̃a′b′c′ are the structure constants2 of U(N) and U(Ñ) respectively. This
Lagrangian yields the equation of motion

∂2φaa′ = − 1
2λf

abcf̃a′b′c′φbb′φcc′ . (3.2)

Rosly and Selivanov [17–19] introduced the perturbiner ansatz, which is a solution to
the nonlinear classical equation of motion obtained by first solving the free equation of
motion ∂2φaa′ = 0 with an arbitrary linear combination of plane waves3

φaa′(x) =
M∑
i=1

φaa′
i eiki·x +O(λ) , φaa′

i = εiδ
aaiδa′a′i , k2

i = 0 (3.3)

and then using this as a seed in eq. (3.2) to generate corrections higher order in λ. The
coefficients of this expansion are used to compute tree-level amplitudes of the theory.

For the purpose of proving the color-factor symmetry of tree-level amplitudes in sec-
tion 4, we find it convenient to use a version of the perturbiner ansatz developed by Mizera
and Skrzypek [24], called the color-dressed perturbiner expansion (in distinction from the
color-stripped perturbiner expansion). For the BAS theory, the ansatz can be written4

φaa′(x) =
∑
i

φaa′
i eiki·x +

∑
i<j

φaa′
ij e

ikij ·x +
∑
i<j<k

φaa′
ijk e

ikijk·x + · · · (3.4)

where kµij = kµi + kµj , etc. Equation (3.4) is expressed compactly as

φaa′(x) =
∑
P

φaa′
P eikP ·x (3.5)

summing over all non-empty ordered words P = p1p2 · · · pm with 1 ≤ p1 < p2 < · · · <
pm ≤M , where kP =

∑m
j=1 kpj . By inserting eq. (3.5) into eq. (3.2) one obtains [24]

φaa′
P = λ

2k2
P

fabcf̃a′b′c′ ∑
P=Q∪R

φbb′
Q φcc′

R (3.6)

where P = Q ∪ R denotes all possible divisions of P into two non-empty ordered words
Q and R. The coefficients φaa′

P are Berends-Giele currents5 of the BAS theory, computed
recursively using eq. (3.6). One sees that φaa′

P has a pole at k2
P = 0.

2Normalized by f abc = Tr([T a, T b]T c) with Tr(T aT b) = δab, so that [T a, T b] = f abcT c. We use η00 = 1.
3The number M of plane waves is arbitrary, but the light-like momenta kµi will eventually be taken as

the momenta of external states in an n-point amplitude, so M should at least equal the multiplicity.
4In the higher order terms, one suppresses terms in which some of the indices i, j, k coincide. This may

be achieved formally [17–19] by setting ε2
i = 0.

5Berends and Giele [16] originally defined these currents for Yang-Mills theory, which Mafra [22] adapted
to the BAS theory.
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To obtain the tree-level n-point amplitude An, one first computes φaa′
P for

P =12 · · · (n−1). Since momentum conservation for the n-point amplitude implies kP =
−kn, and an on-shell amplitude has k2

n = 0, one extracts the residue of the k2
P pole of φaa′

P

and contracts with φaa′
n to get [24]

An = lim
k2
P→0

φaa′
n k2

Pφ
aa′
P . (3.7)

To illustrate this procedure for the four-point amplitude we first use eqs. (3.3) and (3.6)
to compute the rank-2 perturbiner coefficient

φaa′
ij = λ

2k2
ij

fabcf̃a′b′c′
(
φbb′
i φcc′

j + φbb′
j φcc′

i

)
= λεiεj

k2
ij

faaiaj f̃a′a′ia
′
j (3.8)

and from this the rank-3 coefficient

φaa′
123 = λ

2k2
123

fabcf̃a′b′c′
(
φbb′

12 φ
cc′
3 + φbb′

3 φcc′
12 + φbb′

13 φ
cc′
2 + φbb′

2 φcc′
13 + φbb′

23 φ
cc′
1 + φbb′

1 φcc′
23

)
= λ2ε1ε2ε3

k2
123

[
ca

123c̃
a′
123

k2
12

+ (cyclic permutations of 123)
]

(3.9)

where ca
123 = fa1a2cf ca3a and c̃a′

123 = f̃a′1a′2c′ f̃ c′a′3a′ . Then eq. (3.7) is used to obtain the
four-point amplitude (setting ε1ε2ε3ε4 = 1)

A4 = λ2
[
c1234c̃1234

k2
12

+ (cyclic permutations of 123)
]

(3.10)

where c1234 = fa1a2cf ca3a4 and c̃1234 = f̃a′1a′2c′ f̃ c′a′3a′4 . This result agrees with four-point
amplitude found in ref. [13].

3.2 Yang-Mills theory

We now describe the color-dressed perturbiner expansion for Yang-Mills theory [24]. The
Yang-Mills Lagrangian

L = −1
4F

a
µνF

µν a (3.11)

implies the equation of motion6

∂νF
νµ a = igfabcAb

νF
νµ c (3.12)

where the Yang-Mills field strength is given by

F a
µν = ∂µA

a
ν − ∂νAa

µ − igfabcAb
µA

c
ν . (3.13)

Choosing Lorenz gauge

∂νA
ν a = 0 (3.14)

6See footnote 2.
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we can write eq. (3.12) as

∂2Aµ a = igfabcAb
ν (∂νAµ c + F νµ c) . (3.15)

For convenience we define Gνµa ≡ −i (∂νAµ a + F νµ a), which becomes

Gνµa = −i (2∂νAµ a − ∂µAν a)− gfabcAν bAµ c (3.16)

so that eq. (3.15) is expressed as

∂2Aµ a = −gfabcAb
νG

νµ c . (3.17)

The advantage of using two fields, Aµa and Gνµa, rather than just Aµa is that eqs. (3.16)
and (3.17) contain only quadratic (not cubic) terms, simplifying the recursion relations
derived below [20–24].

We now solve these equations with the perturbiner ansatz. As in the previous subsec-
tion, we begin by solving the free equation

∂2Aµ a = 0, ∂νA
ν a = 0 (3.18)

with an arbitrary linear combination of plane waves

Aµ a(x) =
M∑
i=1

Aµ a
i eiki·x +O(g) with k2

i = 0 (3.19)

where

Aµ a
i = εµi δ

aai with εi · ki = 0 . (3.20)

Also to this order we have

Gνµ a(x) =
M∑
i=1

Gνµ a
i eiki·x +O(g) (3.21)

where

Gνµ a
i = gνµi δaai with gνµi = 2kνi ε

µ
i − k

µ
i ε
ν
i . (3.22)

As before, the lowest-order solution is the first term of the color-dressed perturbiner
expansion7

Aµ a(x) =
∑
P

Aµ a
P eikP ·x, Gνµ a(x) =

∑
P

Gνµ a
P eikP ·x . (3.23)

The coefficients Aµ a
P are the (color-dressed) Berends-Giele currents of the Yang-Mills

theory [16]. To obtain the tree-level n-gluon amplitude, one first computes Aµa
P for

7In refs. [20–24] the plane wave factor is written ekP ·x, with the momentum taken imaginary, in order
to avoid a proliferation of factors of i. With the conventions of this paper, it is simpler to write eikP ·x and
use real momenta.
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P = 12 · · · (n− 1), then extracts the residue of the k2
P pole, and finally contracts8 with

the Berends-Giele current Aµ a
n of the last gluon [16]

An = lim
k2
P→0

Aµ a
n k2

PA
µ a
P . (3.24)

The recursion relations for the Berends-Giele currents Aµa
P are obtained by plugging

eq. (3.23) into eq. (3.17) to obtain

k2
PA

µ a
P = gfabc ∑

P=Q∪R
Aν b
Q Gνµ c

R . (3.25)

Similarly, plugging eq. (3.23) into eq. (3.16) we find

Gνµ a
P = 2kνPA

µ a
P − k

µ
PA

ν a
P −H

νµ a
P (3.26)

where

Hνµ a
P ≡ gfabc ∑

P=Q∪R
Aν b
Q Aµ c

R . (3.27)

We combine the three previous equations to obtain

k2
PG

νµ a
P = gfabc ∑

P=Q∪R

[
2kνPAλ b

Q Gλµ c
R − kµPA

λ b
Q Gλν c

R − k2
PA

ν b
Q Aµ c

R

]
. (3.28)

Eqs. (3.25) and (3.28) play a key role in the proof of color-factor symmetry in the
next section. In the remainder of this section, we illustrate how they are used recursively
to compute the four-gluon amplitude. We first use eqs. (3.25) and (3.28) together with
eqs. (3.20) and (3.22) to obtain the rank-2 coefficients

Aµ a
ij = g

k2
ij

fabc
[
Aν b
i Gνµ c

j + (i↔ j)
]

= g

k2
ij

faaiaj
[
ενi g

νµ
j − (i↔ j)

]
, (3.29)

Gνµ a
ij = g

k2
ij

faaiaj
[
2kνijελi g

λµ
j − k

µ
ijε

λ
i g
λν
j − k2

ijε
ν
i ε
ν
j − (i↔ j)

]
. (3.30)

These are then used in eq. (3.25) to determine the rank-3 coefficient

Aµ a
123 = g

k2
123

fabc
[
Aν b

12 G
νµ c
3 +Aν b

3 Gνµ c
12 +Aν b

13 G
νµ c
2 +Aν b

2 Gνµ c
13 +Aν b

23 G
νµ c
1 +Aν b

1 Gνµ c
23

]
= g2

k2
123

[
ca

123n
µ
123

k2
12

+ cyc(1,2,3)
]

(3.31)

where

ca
123 = fa1a2cf ca3a , (3.32)

nµ123 =
[
ελ1g

λν
2 gνµ3 − ε

ν
3

(
2kν12ε

λ
1g
λµ
2 − k

µ
12ε

λ
1g
λν
2 − k2

12ε
ν
1ε
µ
2

)]
− (1↔ 2) . (3.33)

8For notational clarity, we resort here and below to the regrettable practice of writing all Lorentz indices
upstairs. Repeated indices are of course contracted with the Minkowski metric.
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We may obtain a more explicit form for nµ123 by using eq. (3.22) in eq. (3.33) and
simplifying

nµ123 = kµ1
[
2ε2 · ε3 k2 · ε1 − 2ε1 · ε3 k1 · ε2 − 3ε1 · ε2 k2 · ε3 − ε1 · ε2 k1 · ε3

]
+ kµ2

[
2ε2 · ε3 k2 · ε1 − 2ε1 · ε3 k1 · ε2 + ε1 · ε2 k2 · ε3 + 3ε1 · ε2 k1 · ε3

]
+ kµ3

[
− 2ε2 · ε3 k2 · ε1 + 2ε1 · ε3 k1 · ε2 + ε1 · ε2 k2 · ε3 − ε1 · ε2 k1 · ε3

]
+ εµ1

[
4k1 · ε2 k1 · ε3 + 4k1 · ε2 k2 · ε3 − 2ε2 · ε3 k1 · k2

]
+ εµ2

[
− 4k2 · ε1 k1 · ε3 − 4k2 · ε1 k2 · ε3 + 2ε1 · ε3 k1 · k2

]
+ εµ3

[
4k2 · ε1 k3 · ε2 − 4k3 · ε1 k1 · ε2 − 2ε1 · ε2 k2 · k3 + 2ε1 · ε2 k1 · k3

]
. (3.34)

We observe that color factors appearing in the Berends-Giele current (3.31) satisfy the
Jacobi identity ca

123 + ca
231 + ca

312 = 0, but the kinematic numerators do not

nµ123 + nµ231 + nµ312 = (kµ1 + kµ2 + kµ3 )
[
ε1 · ε2(k1 − k2) · ε3 + cyc(1,2,3)

]
. (3.35)

Finally, eq. (3.24) yields the well known four-gluon amplitude

A4 = g2
[
c1234n1234

k2
12

+ cyc(1,2,3)
]
, c1234 = fa1a2cf ca3a4 , n1234 = nµ123ε

µ
4 . (3.36)

Both color factors and kinematic numerators in the four-gluon amplitude satisfy the
Jacobi identity

c1234 + c2314 + c3124 = 0 , (3.37)

n1234 + n2314 + n3124 = ε4 · (kµ1 + kµ2 + kµ3 )
[
ε1 · ε2(k1 − k2) · ε3 + cyc(1,2,3)

]
= 0 (3.38)

because k1 + k2 + k3 = −k4 and ε4 · k4 = 0.

4 Recursive proof of color-factor symmetry

In this section, we present proofs that the tree-level n-point amplitudes of the BAS theory
and Yang-Mills theory are invariant under the color-factor shifts described in section 2 using
the recursion relations derived from the color-dressed perturbiner expansions in section 3.

4.1 Biadjoint scalar theory

We begin by combining eq. (3.7) with eqs. (3.3) and (3.6) to obtain the following expression
for the tree-level n-point amplitude of the BAS theory

An = 1
2λεn

∑
P=Q∪R

fanbcf̃a′nb′c′φbb′
Q φcc′

R , P = 12 · · · (n− 1) . (4.1)

We now determine how this amplitude transforms under the color-factor symmetry
associated with scalar n. The color-factor symmetry acts only on the U(N) structure
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constants fabc, with the U(Ñ) structure constants f̃a′b′c′ behaving as spectators.9 From
eq. (2.5) we have

δnAn = 1
2λεnf̃

a′nb′c′ ∑
P=B∪C

(δnfanbc)φbb′
B φcc′

C

= 1
2λαnεnf̃

a′nb′c′ ∑
P=B∪C

δbc(k2
B − k2

C)φbb′
B φcc′

C . (4.2)

Since the sum over divisions of P into words B and C is symmetric under B ↔ C, we
may relabel B, b, b′ ↔ C, c, c′ in the first term

f̃a′nb′c′ ∑
P=B∪C

δbck2
Bφ

bb′
B φcc′

C = f̃a′nc′b′ ∑
P=B∪C

δcbk2
Cφ

cc′
C φbb′

B (4.3)

so that using f̃a′nc′b′ = −f̃a′nb′c′ we have

δnAn = −λαnεnf̃a′nb′c′ ∑
P=B∪C

δbcφbb′
B k2

Cφ
cc′
C . (4.4)

Now we again use eq. (3.6) to obtain

δnAn = −1
2λ

2αnεnf̃
a′nb′c′ f̃ c′d′e′

(
fbde ∑

P=B∪D∪E
φbb′
B φdd′

D φee′
E

)
. (4.5)

Using the invariance of the sum over P = B ∪ D ∪ E under any permutation of the
words B, D, and E, we observe that the term in parentheses is invariant under cyclic
permutations

B, b, b′ → D, d, d′ → E, e, e′ → B, b, b′

so that we may cyclically symmetrize f̃a′nb′c′ f̃ c′d′e′ to obtain

δnAn =− 1
6λ

2αnεn
(
f̃a′nb′c′ f̃ c′d′e′ + f̃a′nd′c′ f̃ c′e′b′ + f̃a′ne′c′ f̃ c′b′d′

)
×
(
fbde ∑

P=B∪D∪E
φbb′
B φdd′

D φee′
E

)
. (4.6)

Since the term in the left parenthesis vanishes by the Jacobi identity, the n-point
amplitude is invariant under the color-factor symmetry associated with scalar n. Since the
amplitude is Bose symmetric, it is invariant under the color-factor symmetry associated
with any of the external fields

δaAn = 0 (4.7)

as was previously established using the cubic vertex expansion [9].

9Naturally, one could alternatively define color-factor shifts that act on f̃ a′b′c′
.
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4.2 Yang-Mills theory

To prove that the tree-level n-gluon amplitude is invariant under color-factor shifts, we
begin by combining eq. (3.24) with eqs. (3.20) and (3.25) to obtain

An = gεµn
∑

P=Q∪R
fanbcAν b

Q Gνµ c
R , P = 12 · · · (n− 1) . (4.8)

The color-factor symmetry associated with gluon n acts only on the explicit factor
fanbc in the equation above, giving

δnAn = gεµn
∑

P=Q∪R
(δnfanbc)Aν b

Q Gνµ c
R

= gαnε
µ
n

∑
P=Q∪R

δbc(k2
Q − k2

R)Aν b
Q Gνµ c

R

= gαnε
µ
n

∑
P=Q∪R

[
(k2
QA

λ c
Q )Gλµ c

R −Aν a
Q (k2

RG
νµ a
R )

]
. (4.9)

Our goal is to show that the right hand side of this equation vanishes, so we must first
compute

SµP ≡
∑

P=Q∪R

[
(k2
QA

λ c
Q )Gλµ c

R −Aν a
Q (k2

RG
νµ a
R )

]
(4.10)

which unfortunately is a bit more complicated than the biadjoint scalar case. First we use
eqs. (3.25) and (3.28) to find

SµP =gfabc ∑
P=A∪B∪C

[(
Aν a
A Gνλ b

B

)
Gλµ c
C −Aν a

A

(
2kνBCAλ b

B Gλµ c
C −kµBCA

λ b
B Gλν c

C −k2
BCA

ν b
B Aµ c

C

)]
=gfabc ∑

P=A∪B∪C
Aν a
A

[(
Gνλ b
B −2kνBAλ b

B −2kνCAλ b
B

)
Gλµ c
C +kµBCA

λ b
B Gλν c

C +k2
BCA

ν b
B Aµ c

C

]
(4.11)

where kµBC = kµB + kµC . We use eq. (3.26) to reexpress this as

SµP = gfabc ∑
P=A∪B∪C

Aν a
A

[ (
−kλBAν b

B − 2kνCAλ b
B −Hνλ b

B

) (
2kλCA

µ c
C − k

µ
CA

λ c
C −H

λµ c
C

)
+ (kµC + kµB)Aλ b

B

(
2kλCAν c

C − kνCAλ c
C −Hλν c

C

)
+
(
k2
C + 2kB · kC + k2

B

)
Aν b
B Aµ c

C

]
.

(4.12)

Equation (4.12) can be split into two contributions

SµP = SµP,1 + SµP,2 , (4.13)

SµP,1 = gfabc ∑
P=A∪B∪C

[ (
kB ·Ac

C Aa
A ·Ab

B + 2kC ·Aa
A Ab

B ·Ac
C +Aν a

A Hνλ b
B Aλ c

C

)
kµC

+
(
2kC ·Ab

B Aa
A ·Ac

C − kC ·Aa
A Ab

B ·Ac
C −Aν a

A Aλ b
B Hλν c

C

)
kµC

+
(
2kC ·Ab

B Aa
A ·Ac

C − kC ·Aa
A Ab

B ·Ac
C −Aν a

A Aλ b
B Hλν c

C

)
kµB
]
, (4.14)
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SµP,2 = gfabc ∑
P=A∪B∪C

[
−4kC ·Aa

A kC ·Ab
B + k2

C Aa
A ·Ab

B

]
Aµ c
C

+ gfabc ∑
P=A∪B∪C

[
−2Aν a

A Hνλ b
B kλC +Aν a

A (k2
BA

ν b
B )
]
Aµ c
C

+ gfabc ∑
P=A∪B∪C

Aν a
A

(
kλBA

ν b
B + 2kνCAλ b

B +Hνλ b
B

)
Hλµ c
C (4.15)

where SµP,1 contains the terms in which the free index µ labels a momentum k and SµP,2
contains those in which it labels a field A or H.

First we examine SµP,1. Relabelling B, b ↔ C, c in the last line (the kµB term) of
eq. (4.14) and using facb = −fabc, we obtain two terms

SµP,1 = SµP,1a + SµP,1b , (4.16)

SµP,1a = gfabc ∑
P=A∪B∪C

[
− kB ·Ac

C Aa
A ·Ab

B + kC ·Aa
A Ab

B ·Ac
C

+ 2kC ·Ab
B Aa

A ·Ac
C + kB ·Aa

A Ab
B ·Ac

C

]
kµC , (4.17)

SµP,1b = gfabc ∑
P=A∪B∪C

Aν a
A

[
Hνλ b
B Aλ c

C +Aλ c
C Hλν b

B −Aλ b
B Hλν c

C

]
kµC . (4.18)

For SµP,1a, we relabel A, a ↔ B, b in the first two terms of eq. (4.17) and use fbac =
−fabc to obtain

SµP,1a = gfabc ∑
P=A∪B∪C

[
kA ·Ac

C Aa
A ·Ab

B + kC ·Ab
B Aa

A ·Ac
C + kB ·Aa

A Ab
B ·Ac

C

]
kµC .

(4.19)

Then we cyclically relabel the last two terms of eq. (4.19) and use fbca = f cab = fabc

to obtain

SµP,1a = gfabc ∑
P=A∪B∪C

kA ·Ac
C Aa

A ·Ab
B (kµC + kµA + kµB)

= gfabckµP
∑

P=A∪B∪C
kA ·Ac

C Aa
A ·Ab

B (4.20)

where we have used kµA + kµB + kµC = kµP .
Next, we turn to SµP,1b, observing that the first two terms in eq. (4.18) cancel (since

Hνλ b
B = −Hλν b

B ), leaving

SµP,1b = −gfabe ∑
P=A∪B∪E

Aν a
A Aλ b

B Hλν e
E kµE . (4.21)

Using eq. (3.27) with E = D ∪ C we have

SµP,1b = g2fabef ecd ∑
P=A∪B∪C∪D

Aa
A ·Ac

C Ab
B ·Ad

D (kµC + kµD) . (4.22)
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Since fabef ecdAa
A ·Ac

C A
b
B ·Ad

D is invariant under (A, a↔ C, c;B, b↔ D, d), we replace
this with

SµP,1b = 1
2g

2fabef ecd ∑
P=A∪B∪C∪D

Aa
A ·Ac

C Ab
B ·Ad

D (kµA + kµB + kµC + kµD)

= 1
2g

2fabef ecdkµP
∑

P=A∪B∪C∪D
Aa
A ·Ac

C Ab
B ·Ad

D (4.23)

using kµP = kµA + kµB + kµC + kµD. Combining eqs. (4.20) and (4.23), we have

SµP,1 = kµP

[
gfabc ∑

P=A∪B∪C
kA ·Ac

C A
a
A ·Ab

B + 1
2g

2fabef ecd ∑
P=A∪B∪C∪D

Aa
A ·Ac

C Ab
B ·Ad

D

]
.

(4.24)

Now we turn to SµP,2. The two terms on the first line of eq. (4.15) vanish using
fabc = −fbac, leaving

SµP,2 = SµP,2a + SµP,2b , (4.25)

SµP,2a = gfaic ∑
P=A∪I∪C

[
−2Aν a

A Hνλ i
I kλC +Aν a

A (k2
IA

ν i
I )
]
Aµ c
C , (4.26)

SµP,2b = gfabj ∑
P=A∪B∪J

Aν a
A

(
kλBA

ν b
B + 2kνJAλ b

B +Hνλ b
B

)
Hλµ j
J . (4.27)

For SµP,2a, we use eqs. (3.25) and (3.27) with I = B ∪D in eq. (4.26) to obtain

SµP,2a = g2faicf ibd ∑
P=A∪B∪C∪D

[
−2kC ·Ad

D Aa
A ·Ab

B +Aν a
A Aλ b

B Gλν d
D

]
Aµ c
C

= g2f caif ibd ∑
P=A∪B∪C∪D

[
− 2kC ·Ad

D Aa
A ·Ab

B + 2kD ·Ab
B Aa

A ·Ad
D

− kD ·Aa
A Ab

B ·Ad
D −Aν a

A Aλ b
B Hλν d

D

]
Aµ c
C . (4.28)

For SµP,2b, we use eq. (3.27) with J = D ∪ C in eq. (4.27) to obtain

SµP,2b = g2fabjf jdc ∑
P=A∪B∪C∪D

[
kB ·Ad

D Aa
A ·Ab

B + 2kD ·Aa
A Ab

B ·Ad
D

+ 2kC ·Aa
A Ab

B ·Ad
D +Aν a

A Hνλ b
B Aλ d

D

]
Aµ c
C . (4.29)

Letting A, a↔ D, d in eq. (4.29) and using fdbjf jac = f caif ibd, we obtain

SµP,2b = g2f caif ibd ∑
P=A∪B∪C∪D

[
kB ·Aa

A Ad
D ·Ab

B + 2kA ·Ad
D Ab

B ·Aa
A

+ 2kC ·Ad
D Ab

B ·Aa
A +Aν d

D Hνλ b
B Aλ a

A

]
Aµ c
C . (4.30)
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Recombining eqs. (4.28) and (4.30) and symmetrizing on B, b↔ D, d we find

SµP,2 = SµP,2a + SµP,2b = SµP,2c + SµP,2d , (4.31)

SµP,2c = g2f caif ibd ∑
P=A∪B∪C∪D

[
kA ·Ad

D Ab
B ·Aa

A + kB ·Aa
A Ad

D ·Ab
B + kD ·Ab

B Aa
A ·Ad

D

− kA ·Ab
B Ad

D ·Aa
A − kB ·Ad

D Aa
A ·Ab

B − kD ·Aa
A Ab

B ·Ad
D

]
Aµ c
C , (4.32)

SµP,2d = −2g2f caif ibj ∑
P=A∪B∪C∪J

Aν a
A Aλ b

B Aµ c
C Hλν j

J . (4.33)

For SµP,2c, we cyclically relabel ABD in four of the six terms in eq. (4.32) to obtain

SµP,2c = g2
(
f caif ibd + f cdif iab + f cbif ida

)
×

∑
P=A∪B∪C∪D

[
kA ·Ad

D Ab
B ·Aa

A − kA ·Ab
B Ad

D ·Aa
A

]
Aµ c
C (4.34)

which vanishes by the Jacobi identity.
For SµP,2d, we use eq. (3.27) with J = D ∪ E in eq. (4.33) to obtain

SµP,2d = −2g3f caif ibjf jde ∑
P=A∪B∪C∪D∪E

Aa
A ·Ae

E Ab
B ·Ad

D Aµ c
C . (4.35)

Using the symmetries of Aa
A ·Ae

E Ab
B ·Ad

D, we may replace

f caif ibjf jde → 1
8
{[(

f caif ibjf jde + f ceif idjf jba
)

+ (a↔ e)
]

+ (b↔ d)
}

(4.36)

which vanishes identically.10 Hence we also have that SµP,2d = 0.
In sum, we have shown that SµP,2 = 0, leaving SµP = SµP,1 as given in eq. (4.24)

SµP = kµP

[
gfabc ∑

P=A∪B∪C
kA ·Ac

C Aa
A ·Ab

B + 1
2g

2fabef ecd ∑
P=A∪B∪C∪D

Aa
A ·Ac

C Ab
B ·Ad

D

]
.

(4.37)

Note that for P = 123 the first term is given by gfabc(nµ123 + nµ231 + nµ312) as written
in eq. (3.35), and the second term is absent.

Combining eq. (4.9) with eq. (4.37) we therefore have that the change in the amplitude
under the color-factor shift associated with gluon n is

δnAn=g2αnε
µ
nk

µ
P

[
fabc ∑

P=A∪B∪C
kA ·Ac

C Aa
A ·Ab

B + 1
2gf

abef ecd ∑
P=A∪B∪C∪D

Aa
A ·Ac

C Ab
B ·Ad

D

]
(4.38)

where P = 12 · · · (n − 1). Momentum conservation
∑n
i=1 p

µ
i = 0 implies kµP = −kµn. Since

εn · kn = 0, we have established that the n-gluon amplitude is invariant under the color-
factor shift associated with gluon n. Since the n-gluon amplitude is Bose symmetric, it is
therefore invariant under a color-factor shift associated with any of the external gluons

δaAn = 0 (4.39)

which is what we set out to prove.
10This may most directly be seen by expressing f caif ibjf jde = Tr

(
T c[T a, [T b, [T d, T e]]]

)
and expanding.
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5 Conclusions

We began by reviewing the color-factor symmetry of tree-level amplitudes of the BAS and
Yang-Mills theories. This symmetry acts as a momentum-dependent shift on the color
factors, leaving the amplitude invariant. The BCJ relations follow as a direct consequence
of this symmetry.

Tree-level amplitudes can be obtained from Berends-Giele currents, which are com-
puted recursively. The recursions relation for the currents can be derived from the classical
equations of motion of the theory using the color-dressed perturbiner formalism. We used
these recursion relations, together with a variety of group theory relations, to prove the
invariance of tree-level amplitudes under a color-factor shift. This proof is a (somewhat)
easier alternative to the proof of color-factor symmetry using the radiation vertex expansion
given in ref. [9], and is amenable to generalization to other theories.

Cheung and Mangan [14] have shown that the color-factor symmetry of the BAS theory,
with scalars transforming in the adjoint of U(N) × U(Ñ), also applies to the equations
of motion of the theory, and that the color-factor invariance of the equations of motion
associated with U(N) is related to the conservation of current of the global symmetry of the
Lagrangian under the dual group U(Ñ). It would be interesting to find a similar relation
for Yang-Mills and other theories possessing color-kinematic duality.
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