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1 Introduction

Conformal field theories in three space-time dimensions (CFT3’s) have played and continue
to play a central role in string and M-theory. When endowed with enough supersymme-
try, various non-renormalisation theorems have been stated making superconformal field
theories (SCFT3’s) very interesting from the viewpoint of the AdS4/CFT3 correspondence.
Interacting superconformal field theories in three space-time dimensions are special because
gauge fields are described by (an up to N = 3 supersymmetric extension of) the topological
Chern-Simons (CS) Lagrangian1

LCS = k

4πTr
[
εµνρ

(
Aµ∂νAρ + 2

3AµAνAρ
)]

, (1.1)

where k ∈ Z is the so-called CS level. It was then shown in [1] that gauge fields can be
consistently coupled to matter fields (scalars and fermions) carrying new degrees of freedom
in a way compatible with N = 1, 2 supersymmetry as well as with conformal symmetry.
The result is a superconformal CS-matter theory with OSp(N|4) superconformal symmetry.

CS-matter theories in three dimensions and holography. One of the motivations
to investigate superconformal CS-matter theories in three dimensions was to provide a
holographic dual to the maximally supersymmetric AdS4×S7 solution of eleven-dimensional
(11D) supergravity that describes a stack of N M2-branes on flat space. An important step
towards constructing such an N = 8 CFT3 was the BLG theory [2–5] with gauge group
G = SO(4) ∼ SU(2)k×SU(2)−k and where k ∈ Z is the CS level of the corresponding gauge
factor (see [6] for a study of the realisation of the OSp(8|4) superconformal symmetry in
the BLG theory). However, there was no large N limit to be taken on the BLG theory
and, therefore, no gravitational interpretation of the CS level k. These questions cleared
up with the advent of the N = 6 ABJM theory [7]: a CS-matter theory with gauge group
G = U(N)k×U(N)−k. In the largeN limit, it describes an AdS4×S7/Zk orbifold solution of
11D supergravity and is conjectured to feature N = 8 supersymmetry enhancement at low
CS levels k = 1, 2 (see [8] for a generalisation of ABJM theory and its geometrical realisation
in 11D supergravity). Other interesting SCFT3’s with N = 1, 2, 3 have appeared in the
context of ten-dimensional (10D) massive type IIA supergravity with gauge groups G =
SU(N)k1×SU(N)k2 [9] and G = SU(N)k [10] including charged matter fields transforming
in different representations of G. On the gravity side, they correspond to AdS4 ×CP3 and
AdS4×S6 solutions of massive IIA supergravity and the Romans mass parameter is related
to the CS levels k1 + k2 6= 0 and k, respectively.

SCFT3’s have also been extensively investigated in the context of type IIB string
theory. A precursor of these theories was the three-dimensional planar interface in four-
dimensional N = 4 super Yang-Mills [11] dual to the simple non-supersymmetric Janus
solution of type IIB supergravity constructed in [12]. Supersymmetric N = 1, 2, 4 three-
dimensional interfaces were constructed in [13] and shown to admit a superconformal limit.
The dual type IIB supersymmetric Janus solutions were constructed in [14–16] and [17],

1The standard F 2 term is dimension 4 and therefore is not compatible with scale invariance.
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respectively. Motivated by the N = 4 superconformal interface and its type IIB dual of the
form AdS4×S2×S2×Σ — with Σ being a Riemann surface with coordinates η ∈ (−∞,∞)
and α ∈ [0, π2 ] having the topology of the infinite strip –, a general class of half-maximal
N = 4 SCFT3’s was put forward in [18, 19] for which brane setups were provided in terms of
D3-branes suspended between NS5-branes and D5-branes [20]. These brane setups are dual
to linear quivers which can be made circular by taking the η direction to be an S1, namely,
by changing the topology of Σ to that of the annulus. In this context, mirror symmetry [21]
between two theories is interpreted as an equivalence relation between their brane setups:
D5-branes and NS5-branes are exchanged by the inversion element S ∈ SL(2,Z). This
can be generalised to other elements of SL(2,Z). For example, acting k times with the
unit-translation element, i.e. T k ∈ SL(2,Z), leaves a D5-brane invariant and transforms
an NS5-brane into a (1, k) 5-brane. This is interpreted as turning on a CS level k in the
corresponding quiver [19, 22]. Amongst the class of quivers with a known type IIB brane
intersection, the mirror symmetric T[U(N)] linear quiver plays a prominent role [19]. This
quiver has an infrared (IR) SCFT3 fixed point, the T[U(N)] theory, with a U(N)× U(N)
global symmetry, although only one U(N) is present in the ultraviolet (UV) Lagrangian
description of the theory. Gauging the diagonal U(N) subgroup of the U(N) × U(N)
global symmetry using an N = 4 vector multiplet and turning on a CS coupling k, it was
argued in [23] that a novel class of N = 4 CS-matter theories, dubbed S-fold CFT3’s,
emerges in the IR.

Holographic duals of S-fold CFT3’s. The gravity dual of the simplest N = 4 S-fold
CFT3 was constructed in [24] upon uplift of an AdS4 solution originally reported in [25].
It is a type IIB supergravity solution of the form AdS4×S1

η×S5 where the SO(6) isometry
group of the S5 is broken to the SO(3)×SO(3) ∼ SO(4)R isometry group2 of the S2×S2 ⊂ S5.
Therefore, the S-fold geometry lies within the class of AdS4× S2× S2×Σ (local) solutions
of [17] with an annulus topology for Σ. However, when looping around the S1

η ⊂ Σ,
the N = 4 S-fold solution of [24] comes along with a non-trivial SL(2,Z) monodromy of
hyperbolic type, i.e. Jk = −ST k, for the type IIB supergravity fields transforming under
S-duality (hence the term S-fold). This SL(2,Z) monodromy renders the type IIB S-fold
solution non-geometric. Interestingly, the N = 4 S-fold of [24] was first obtained as a
half-maximal AdS4 solution (16 supercharges) of an effective four-dimensional maximal
supergravity (32 supercharges) with a dyonic gauging of the group

Gmax = [SO(1, 1)× SO(6)] nR12 ⊂ E7(7) , (1.2)

where E7(7) is the duality group of maximal supergravity [26]. After the AdS4 solution is
found in four dimensions, it is straightforward (but tedious) to uplift it to ten dimensions
by implementing a generalised Scherk-Schwarz reduction [27] of the E7(7) exceptional field
theory (E7(7)-ExFT) [28], and then using the dictionary between E7(7)-ExFT and type IIB
fields [29]. This bottom-up procedure has proven very successful and various other type
IIB S-folds have been constructed in this manner [30–33].

2We have attached an R-symmetry label R to SO(4)R in order to highlight the N = 4 supersymmetry
emerging in the infrared S-fold CFT3.
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Of particular interest for this work is the N = 2 S-fold with SU(2)×U(1)R symmetry
put forward in [31]. Both the N = 4 and N = 2 S-folds have the same AdS4 radius
and were shown in [34] to be connected by a scalar modulus ϕ ∈ R, namely, a non-
compact flat direction in the scalar potential of the maximal gauged supergravity. In light
of the AdS4/CFT3 correspondence, these two solutions are dual to two different points in
a conformal manifold of N = 2 S-fold CFT3’s with the scalar modulus ϕ being dual to an
exactly marginal deformation [34, 35]. Such a conformal manifold of N = 2 S-fold CFT3’s
was shown in [34] to actually be two-dimensional, with the additional marginal deformation
being dual to another flat direction χ of the scalar potential originally identified in [31]. The
Zamolodchikov metric on the conformal manifold (CM) of N = 2 CFT3’s was computed
in [34] using holography and reads

ds2
CM = 1 + 2ϕ2

2(1 + ϕ2)2
(
dϕ2 + (1 + ϕ2) dχ2) . (1.3)

The type IIB uplift of the modulus χ in the AdS4 solutions at ϕ = 0 (N = 2 S-fold) and
ϕ = 1 (N = 4 S-fold) showed that χ is a compact parameter [35, 36]. However, the apparent
non-compactness of the modulus ϕ [34, 37] remains a puzzle and poses some challenges to
the CFT distance conjecture [38]. Further insights on this issue could come from the ten-
dimensional uplift of the ϕ modulus which has not been worked out yet. Lastly, N = 1 [39]
as well as non-supersymmetric [32] conformal manifolds of S-fold CFT3’s have also been
investigated.

Plan of this work. We will continue using the effective four-dimensional supergravity
approach to holographically explore the landscape of N = 2 CFT3’s. This approach
allows to compute the conformal dimensions of all the operators in the N = 2 CFT3’s
dual to supergravity excitations of the corresponding AdS4 solutions. According to the
standard AdS4/CFT3 correspondence, the relation between the normalised mass mL of a
supergravity field of spin [j] in a given AdS4 solution with radius L and the conformal
dimension ∆ of the dual operator in the CFT3 is given by[3

2

]
: mL = ∆− 3

2 ,

[1] : m2L2 = (∆− 2)(∆− 1) ,[1
2

]
: mL = ∆− 3

2 ,

[0] : m2L2 = ∆(∆− 3) ,

(1.4)

with the graviton [j] = [2] being massless. Moreover, using three-dimensional N = 2
representation theory, the set of operators can be arranged into superconformal multiplets
of the osp(2|4) superconformal algebra.

We will concentrate on the holographic study of N = 2 CFT3’s with a potential
type IIB gravity dual of the form AdS4×S2×S2×Σ. Firstly, in order to be general but still
keep control over the effective supergravity, we will consider four-dimensional supergravity
Lagrangians preserving half-maximal supersymmetry (16 supercharges). Secondly, in order
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to be able to recover the conformal manifold of N = 2 S-fold CFT3’s constructed in
the context of maximal supergravity [34], we will couple the half-maximal supergravity
multiplet to six vector multiplets so that the field content of the half-maximal supergravity
forms a subset of the (unique) field content of maximal supergravity. Thirdly, in order to
be compatible with a potential uplift to a type IIB solution of the form AdS4×S2×S2×Σ,
the gauging must contain an SO(3)× SO(3) factor. It becomes then natural to investigate
gaugings of the group

Ghalf-max = ISO(3)× ISO(3) ⊂ SL(2)× SO(6, 6) , (1.5)

with ISO(3) = SO(3) n R3, as well as their possible group-theoretical embeddings (1.5)
into the SL(2)× SO(6, 6) duality group of half-maximal supergravity coupled to six vector
multiplets. The most general such embeddings turns out to depend on eight parameters.
However, a full analysis of the eight-parameter family of gaugings in (1.5) goes beyond the
scope of this work.

In this work we will simplify the setup by choosing the same group-theoretical em-
bedding for the two ISO(3) factors in (1.5). This reduces the number of embedding pa-
rameters down to four. Turning on three out of the four embedding parameters produces
new multi-parametric families of AdS4 solutions, all of them with the same AdS4 radius.
Interestingly, for any value of the three embedding parameters, the AdS4 solutions still
feature two scalar moduli (ϕ, χ) ∈ R associated with non-compact flat directions in the
scalar potential. By adjusting the embedding parameters and the scalar moduli (ϕ, χ) in
the AdS4 solutions, these can preserve N = 2 (8 supercharges), N = 3 (12 supercharges)
or N = 4 (16 supercharges) supersymmetry. Via the gauge/gravity duality, these AdS4
solutions are conjectured to be dual to new classes of strongly-coupled N = 2, N = 3 or
N = 4 CFT3’s provided an embedding in string theory (yet to be worked out) exists.

Our results point at the existence of a web of N = 2 CFT3’s containing a special “line”
of N = 3 supersymmetry enhancement which, in turn, contains isolated “points” where
supersymmetry gets enhanced to N = 4. We will characterise this web of N = 2 CFT3’s by
arranging their set of low lying operators into superconformal multiplet of osp(2|4), and by
further discussing the phenomenon of supermultiplet shortening that occurs at the special
loci where supersymmetry gets enhanced to N = 3 or N = 4. Regarding the latter, two
isolated points describing N = 4 CFT3’s are identified. The first one describes the N = 4
S-fold CFT3 of [23, 24] dual to the N = 4 AdS4 solution of the maximal supergravity with
gauge group (1.2).3 The second one describes a novel N = 4 CFT3 — we will refer to it as
the exotic N = 4 CFT3 — dual to an N = 4 AdS4 solution of a half-maximal supergravity
with gauge group (1.5).4 This AdS4 solution appeared originally in [40] where it was argued
to be a non-geometric solution still admitting a locally geometric type IIB description. We
now see that it is actually connected to the locally geometric N = 4 S-fold solution of

3Note that Ghalf-max ⊂ Gmax. This makes it possible to rediscover an AdS4 solution of a maximal
supergravity as an AdS4 solution of a half-maximal supergravity provided certain relations between the
couplings in the half-maximal supergravity Lagrangian hold (see eq. (2.8)).

4This N = 4 AdS4 solution is “maximally” supersymmetric within the theory it belongs to: it preserves
the 16 supercharges of the half-maximal supergravity where it lives.
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type IIB supergravity [24], at least at the effective four-dimensional supergravity level.
As a by-product, we will also present an additional set of generically non-supersymmetric
marginal deformations of the exotic N = 4 CFT3 which resemble (without being the same)
the axion-like deformations of S-folds introduced in [33, 35, 36, 41].

The paper is organised as follows. In section 2 we review half-maximal gauged super-
gravity in four dimensions and present a simple class of ISO(3) × ISO(3) gaugings which
depends on a specific deformation parameter ϕ̃. In section 3 we construct the Z2

2-invariant
sector of the theory and present a (ϕ; ϕ̃)-family of N = 2 AdS4 solutions that incorporates
the ϕ modulus dual to one of the two marginal operators spanning the conformal manifold
of N = 2 S-fold CFT3’s. These AdS4 solutions are holographically conjectured to describe
a web of N = 2 CFT3’s whose spectrum of low lying operators is arranged into superconfor-
mal multiplets of osp(2|4). Supersymmetry as well as flavour symmetry enhancements are
discussed together with the corresponding shortening of superconformal multiplets. In sec-
tion 4 we construct the U(1)R-invariant sector of the theory in order to also incorporate the
modulus χ dual to the second marginal operator compatible with N = 2 supersymmetry
in the dual CFT3’s. We present a (ϕ, χ; ϕ̃)-family of N = 2 AdS4 solutions that generalises
the results of [34] to the context of half-maximal supergravity, and arrange the spectrum of
low lying operators of the dual N = 2 CFT3’s into superconformal multiplets of osp(2|4).
After a suitable treatment of vector fields and gauge redundancies in the U(1)R-invariant
sector, the Zamolodchikov metric on the conformal manifold of such N = 2 CFT3’s is
shown to still be (1.3) for arbitrary values of the half-maximal deformation parameter ϕ̃.
We conclude in section 5 with some implications and potential applications of the results
presented in this work. Appendix A discusses more general gaugings of ISO(3) × ISO(3)
in half-maximal supergravity.

2 ISO(3)× ISO(3) half-maximal supergravity

As stated in the introduction, our starting point is the four-dimensional maximal (N = 8)
supergravity with gauge group

Gmax = [SO(1, 1)× SO(6)] nR12 ⊂ E7(7) , (2.1)

put forward in [24], and shown to accommodate various classes of AdS4 solutions uplifting
to S-fold backgrounds of type IIB supergravity [24, 30–33]. Following the prescription
in [42], we will mod out this maximal supergravity by a Z2 discrete group to produce a
very specific half-maximal (N = 4) supergravity with gauge group

Ghalf-max = ISO(3)× ISO(3) ⊂ SL(2)× SO(6, 6) . (2.2)

Lastly, we will introduce a specific deformation of such a half-maximal supergravity —
which we parameterise in terms of a continuous parameter ϕ̃ ∈ R — and characterise it
from an algebraic perspective.

– 6 –
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2.1 A crash course on N = 4 gauged supergravity

We frame our work within the context of half-maximal N = 4 gauged supergravity in four
dimensions [43]. The ungauged theory features a global duality group G = SL(2)×SO(6, n)
where n is the number of vector multiplets to which the supergravity multiplet is coupled.
Promoting a subgroup G ⊂ G from global to local, i.e. performing a so-called gauging,
the duality group G is generically broken and only the local gauge symmetry G is left in
the gauged supergravity. Still, the commutant (if any) of G inside G remains as a global
symmetry of the theory after the gauging procedure.

In this work we will consider the case n = 6. This is the largest value for which
the duality group of half-maximal supergravity can be embedded into the one of maximal
supergravity, i.e. SL(2)× SO(6, 6) ⊂ E7(7), and the half-maximal supergravity Lagrangian
can be embedded into the maximal one provided certain quadratic constraints on the
couplings in the theory hold (see eq. (2.8) below). We investigate a specific class of gaugings
of the group

G = ISO(3)1 × ISO(3)2 , (2.3)

which is embedded in the duality group as

G ⊂ SO(3, 3)1 × SO(3, 3)2 ⊂ SL(2)× SO(6, 6) , (2.4)

where we have attached labels 1 and 2 in order to keep track of each independent ISO(3) and
SO(3, 3) factor in (2.3) and (2.4). General classes of gaugings of G ⊂ SO(3, 3)1× SO(3, 3)2
in half-maximal supergravity [44–46] have been extensively investigated in the past, for
example, with the aim of charting the landscape of flux compactifications [40, 47].

In the duality-covariant formulation of [43], the bosonic field content of the half-
maximal supergravity consists of the metric gµν , 12 (electric) plus 12 (magnetic) vector
fields AµαM , and 2 + 36 scalar fields φ’s serving as coordinates in the coset space geometry

Mscal = SL(2)
SO(2) ×

SO(6, 6)
SO(6)× SO(6) , (2.5)

and being parameterised by a coset representative V(φ). Already at this level we have
introduced a fundamental SL(2) index α = ± as well as a fundamental SO(6, 6) index M .
These are raised/lowered using the εαβ and ηMN invariant tensors of SL(2) and SO(6, 6),
respectively.

Having set the bosonic field content of the theory, all the interactions compatible with
N = 4 supersymmetry and induced by gaugings of the type5 (2.4) are encoded in a so-called
embedding tensor. This tensor comes along with an index structure fαMNP = fα[MNP ] and
thus lives in the (2,220) irreducible representation (irrep) of G. It also specifies the non-
Abelian gauge structure of the half-maximal gauged supergravity, namely,

[TαM , TβN ] = fαMN
P TβP , (2.6)

5The gauge group G = ISO(3)1 × ISO(3)2 is a particular example within the larger class of
G = CSO(p, q, r) × CSO(p′, q′, r′) gaugings investigated in [46, 48]. The case of ISO(3) corresponds to
(p, q, r) = (3, 0, 1) or (p, q, r) = (0, 3, 1) (and equivalently for the primed factor).
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where TαM are the generators of G that couple to the vector fields AµαM in the gauge
connection. Consistency of the gauging procedure requires a set of quadratic constraints
on the embedding tensor of the form [43]

(3,495) : fα[MN
R fβPQ]R = 0 and (1,66 + 2079) : εαβ fαMN

R fβPQR = 0 , (2.7)

where we have included the irrep of G where each constraint lives. In addition, there are
two additional constraints given by

(3,1) : fαMNP fβ
MNP = 0 and (1,462′) : εαβ fα[MNP fβQRS]

∣∣∣
SD

= 0 , (2.8)

where SD refers to the self-dual projection of the SO(6, 6) six-form. These two additional
constraints (2.8) are not required by N = 4 supersymmetry but must hold for the half-
maximal Lagrangian to be embeddable into an N = 8 maximal gauged supergravity [42].
Whenever these two additional constraints are satisfied, the half-maximal supergravity
with gauging (2.3) can be viewed as a subsector of the maximal gauged supergravity with
gauging

Gmax = [SO(1, 1)× SO(6)] nR12 ⊂ E7(7) . (2.9)

This maximal supergravity has recently received a lot of attention due to its connection to
S-fold solutions in type IIB string theory as originally noticed in [24].

As a consequence of the gauging procedure, the fermions in the theory develop scalar-
dependent mass terms and supersymmetry requires to introduce a non-trivial scalar po-
tential. This is given by

V = 1
64 fαMNP fβQRSM

αβ
[

1
3 M

MQMNRMPS +
(

2
3 η

MQ −MMQ
)
ηNRηPS

]
− 1

144 ε
αβ fαMNP fβQRSM

MNPQRS ,
(2.10)

where

Mαβ = 1
Imz7

(
|z7|2 Rez7
Rez7 1

)
∈ SL(2) , (2.11)

encodes a complex scalar z7 spanning the SL(2)/SO(2) factor in (2.5). Together with this,
the potential depends on additional scalars spanning the SO(6, 6)/(SO(6)× SO(6)) factor
in (2.5). These are 36 real scalars which can be assembled in a matrix

MMN =
(

G−1 −G−1B

BG−1 G−BG−1B

)
∈ SO(6, 6) , (2.12)

where G and B are arbitrary symmetric and anti-symmetric 6× 6 matrices accounting for
21 and 15 scalars, respectively. For the class of gaugings in (2.3)–(2.4), the kinetic terms
for the scalar fields serving as coordinates on the scalar geometry (2.5) are constructed
using standard coset techniques and read

Lkin = 1
8 ∂µMαβ ∂

µMαβ + 1
16 DµMMN D

µMMN , (2.13)
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where Mαβ and MMN are the inverse of Mαβ in (2.11) and MMN in (2.12), respectively.
In this work we will focus on maximally symmetric AdS4 solutions of the theory so that
vector fields will be set to zero in the general covariant derivatives

DµMMN = ∂µMMN + 2AµαP fαP (M
QMN)Q . (2.14)

Lastly, the scalar potential (2.10) depends on a specific SO(6, 6) six-form6

MMNPQRS = εmnpqrs VMm VNn VP p VQq VRr VSs , (2.15)

that is constructed from the SO(6, 6)/(SO(6)×SO(6)) coset representative VMN such that
MMN = (V Vt)MN (see [43] for more details).

The scalar potential (2.10) is a complicated function of the 2+36 scalars spanning (2.5).
Trying to chart the landscape of N = 2 supersymmetric AdS4 solutions by direct extremi-
sation of (2.10) is out of computational reach, so we will resort to two simpler setups where
only 2 + 12 scalars are kept and the rest are set to zero. Following the original idea in [49],
this will be done in a group-theoretical consistent manner by retaining only those scalars
that are invariant (singlets) under specific residual symmetry groups. In particular, we
will consider discrete Z2

2 and continuous U(1)R subgroups of G as such residual symme-
try groups. In this manner, whenever an extremum is found in the simplified setup, it is
guaranteed that it corresponds to an actual extremum of the scalar potential of the full
theory. Moreover, although we will find extrema of the scalar potential in the setups with
2 + 12 scalars, we will provide the full mass spectrum for all the bosonic and fermionic
fields in half-maximal supergravity using [43, 50]. This supergravity spectrum maps to the
spectrum of operators in the would-be dual CFT3’s.

2.2 From [SO(1, 1)× SO(6)] nR12 to ISO(3)× ISO(3)

Starting from the Gmax = [SO(1, 1) × SO(6)] n R12 gauged maximal supergravity of [24],
and modding it out by a discrete subgroup Z2 ⊂ Gmax [42], one is left with a very specific
gauging

G = ISO(3)1 × ISO(3)2 , (2.16)

of half-maximal supergravity. In order to describe the resulting half-maximal supergravity,
it will prove convenient to first perform a light-cone splitting M = (m, m̄) with respect to
the SO(6, 6) invariant metric

ηMN =
(

0 δmn̄
δm̄n 0

)
with m = 1, . . . , 6 , n̄ = 1̄, . . . , 6̄ , (2.17)

and then a further splitting m = (a, i) and m̄ = (ā, ī) with a = 1, 3, 5 and i = 2, 4, 6. In
this manner, the original SO(6, 6) fundamental index M has a decomposition

SO(6, 6) ⊃ SO(3, 3)1 × SO(3, 3)2

M → ( a , ā ) ⊕ ( i , ī )
(2.18)

6Due to the εmnpqrs tensor with m,n, . . . = 1, . . . , 6 in the definition of the SO(6, 6) six-form (2.15), the
components VMn entering (2.15) must be extracted from the coset representative VMN using a Lorentzian
basis (for the column index N) of SO(6, 6) where ηMN = diag(−I6, I6).
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and the ISO(3)1,2 factors in (2.16) are embedded into SO(3, 3)1,2 ∼ SL(4)1,2, respectively.
An explicit computation of the resulting embedding tensor fαMNP specifying the half-
maximal supergravity yields (using conventions in [40])

f+ābc = 2 g , f−abc = ± 2 g c ,

f−ij̄k̄ = 2 g , f+īj̄k̄ = ± 2 g c ,
(2.19)

where g is the gauge coupling and c is a parameter encoding the dyonic nature of the
gauging, and with all the other components vanishing. In what follows we are assuming
a cyclic structure in all the embedding tensor components of the same type, i.e. f+1̄35 =
f+3̄51 = f+5̄13 = 2 g, etc., so we are intentionally omitting epsilon symbols in (2.19) to
lighten the notation. Lastly, since the embedding tensor in (2.19) is the result of halving
the Gmax = [SO(1, 1) × SO(6)] n R12 gauging of maximal supergravity, it automatically
satisfies the extra constraints in (2.8) for a half-maximal supergravity to be embeddable in
a maximal supergravity.

2.3 Deforming ISO(3)× ISO(3) half-maximal supergravity

Following [48] (in the conventions of [40]), we will deform the G = ISO(3)1 × ISO(3)2
gauging specified by (2.19) while preserving the N = 4 supersymmetry of half-maximal
supergravity. We are doing so by activating two additional embedding tensor components

f+abc and f−īj̄k̄ . (2.20)

As discussed in [40, 48], turning on these two components modifies how the gauge group
G = ISO(3)1 × ISO(3)2 is embedded into the duality group, see (2.4). We will change this
embedding in a parametrically controlled manner yielding a one-parameter generalisation
of the gauging in (2.19).

Let us denote ϕ̃ the new parameter entering the embedding tensor, which now has
components

f+ābc = 2
√

2 g√
1 + ϕ̃2 , f−abc = ±2

√
2 g c ϕ̃√

1 + ϕ̃2 , f+abc = −2
√

2 g c ϕ̃
2 − 1

ϕ̃2 + 1 ,

f−ij̄k̄ = 2
√

2 g√
1 + ϕ̃2 , f+īj̄k̄ = ±2

√
2 g c ϕ̃√

1 + ϕ̃2 , f−īj̄k̄ = −2
√

2 g c ϕ̃
2 − 1

ϕ̃2 + 1 ,
(2.21)

and, as we will see in a moment, accommodates a rich structure of new AdS4 vacua. The
class of gaugings in (2.21) automatically solves the quadratic constrains in (2.7) required by
half-maximal supersymmetry. However, an explicit computation of the additional quadratic
constraints in (2.8) yields

fαMNP fβ
MNP = 0 and εαβ fα[MNP fβQRS]

∣∣∣
SD
∝ g2c

ϕ̃2 − 1
(ϕ̃2 + 1)

3
2
. (2.22)

As a result, due to the violation of the constraint living in the (1,462′) irrep, the deformed
theories do not admit an uplift to maximal supergravity unless ϕ̃2 = 1. Note that, at
ϕ̃2 = 1, the embedding tensor in (2.21) consistently reduces to the one in (2.19) and the
theory becomes a Z2-invariant subsector of the Gmax = [SO(1, 1)× SO(6)] nR12 maximal
supergravity.

– 10 –



J
H
E
P
0
6
(
2
0
2
3
)
0
6
8

2.4 The gauge algebra of the deformed N = 4 models

It is instructive to take a closer look at how the precise N = 4 gauging specified by (2.21)
is realised at an algebraic level in terms of the generators

TαM = (Tαa , Tαā ; Tαi , Tαī ) (2.23)

entering the commutation relations (2.6). We will show that each of the ISO(3)1,2 factors
is at a different SL(2) angle in the spirit of [51]. Moreover, each ISO(3)1,2 factor by itself
involves a non-trivial SO(3, 3)1,2 angle (both unbar/bar generators are present) in the spirit
of [48].

Before discussing its gauge structure in detail, it is also worth noticing that the class
of half-maximal G = ISO(3)1× ISO(3)2 gaugings specified by the embedding tensor (2.21)
depends on three arbitrary parameters (g, c, ϕ̃). However the most general class of gaugings
of G = ISO(3)1 × ISO(3)2 in half-maximal supergravity involves eight parameters (up to
gauge fixing) and is discussed in detail in appendix A. The study of the structure of AdS4
solutions in this more general class of models goes beyond the scope of this work and is
postponed for the future.

The algebraic realisation of the G = ISO(3)1 × ISO(3)2 gaugings specified by (2.21)
involves a set of 12 independent generators. For example, choosing them to be (T+a, T+ā)
and (T−i, T−ī), the antisymmetry of the brackets (2.6) further sets

T−a = c ϕ̃ T+ā , T+ī = c ϕ̃ T−i , T−ā = T+i = 0 , (2.24)

and the independent generators satisfy non-trivial commutation relations of the form

[T+a, T+b ] = 2
√

2 g
(

1√
1 + ϕ̃2 εab

c T+c + c
1− ϕ̃2

1 + ϕ̃2 εab
c̄ T+c̄

)
,

[
T+a, T+b̄

]
= 2
√

2 g 1√
1 + ϕ̃2 εab̄

c̄ T+c̄ ,[
T+ā, T+b̄

]
= 0 ,

(2.25)

for the ISO(3)1 factor in the gauge group and, similarly,

[
T−ī, T−j̄

]
= 2
√

2 g
(

1√
1 + ϕ̃2 ε̄ij̄

k̄ T−k̄ + c
1− ϕ̃2

1 + ϕ̃2 ε̄ij̄
k T−k

)
,

[
T−ī, T−j

]
= 2
√

2 g 1√
1 + ϕ̃2 ε̄ij

k T−k ,

[T−i, T−j ] = 0 ,

(2.26)

for the ISO(3)2 factor. There is the limiting case ϕ̃ → ±∞ for which the embedding
tensor (2.21) stays regular and the ISO(3)1,2 factors become nilpotent. More concretely,
they reduce to the nilpotent algebra denoted n(3.5) in table 4 of [52]. The drastic change
in the four-dimensional algebra structure at ϕ̃ → ±∞ suggests a drastic change in the
interpretation of the corresponding supergravity solutions as well as of their possible uplifts
to ten or eleven dimensions.
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3 Z2
2-invariant sector

We will look at the Z2
2-invariant sector of half-maximal supergravity. Being an invariant

sector with respect to a (in this case discrete) Z2
2 subgroup of G, an extremum of the scalar

potential in this simplified setup automatically implies an extremum of the full scalar
potential.

3.1 The N = 1 seven-chiral model

The Z2
2-invariant sector of half-maximal supergravity was investigated in [53]. It can be

recast as a minimal N = 1 supergravity coupled to seven chiral multiplets. We will denote
zI , with I = 1, . . . , 7, the seven complex scalars in the chiral multiplets. One of them,
we choose it to be z7, is the one parameterising the Mαβ ∈ SL(2) element in (2.11).
The remaining six complex fields specify the G and B matrices in (2.12) from which the
MMN ∈ SO(6, 6) element is constructed. More concretely,

G =

G1 0 0
0 G2 0
0 0 G3

 and B =

B1 0 0
0 B2 0
0 0 B3

 (3.1)

are block-diagonal matrices with components

Gi = Imzi+3
Imzi

(
1 Rezi

Rezi |zi|2

)
, Bi =

(
0 Rezi+3

−Rezi+3 0

)
, i = 1, 2, 3 , (3.2)

that depend on the complex scalars z1, . . . , z6. The scalar kinetic terms for this sector of
the theory take the form

Lkin = −1
4

7∑
I=1

(
dϕ2

I + e2ϕI dχ2
7

)
with zI = −χI + i e−ϕI . (3.3)

The scalar manifold invariant under the Z2
2 discrete symmetry is therefore identified with

the special Kähler (SK) factorised geometry

M
Z2
2

scal =
[ SL(2)
SO(2)

]7
⊂ SL(2)

SO(2) ×
SO(6, 6)

SO(6)× SO(6) . (3.4)

In the Z2
2-invariant sector of half-maximal supergravity, the scalar potential takes a

lengthy but more tractable expression in terms of the seven complex scalars zI . We will
find families of N = 2 supersymmetric AdS4 extrema analytically in this setup.

3.2 Warming up: the ϕ-family of N = 2 AdS4 solutions of [34]

The half-maximal gauged supergravity specified by the undeformed (ϕ̃ = ±1) embedding
tensor (2.19) possesses a one-parameter ϕ-family ofN = 2 supersymmetric AdS4 solutions.7

7These solutions were originally constructed in [34] within the context of Gmax = [SO(1, 1)×SO(6)]nR12

maximal gauged supergravity. Two additional moduli fields χ1,2 dual to marginal operators and dubbed
axion-like flat deformations in [41] were also identified for this family of AdS4 solutions. In an appropriate
basis, the combination χ ≡ χ1 − χ2 preserves N = 2 supersymmetry whereas the orthogonal combination
breaks supersymmetry completely. We will come back to the axion-like flat deformation χ in section 4 when
exploring a U(1)R-invariant sector of the theory.
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This ϕ-family of solutions lies at the loci

z1 = −z̄3 = i c

√
1 + ϕ2

2 , z2 = i c , z4 = −z̄6 = −ϕ+ i√
1 + ϕ2 , z5 = z7 = ∓1 + i√

2
, (3.5)

where the ∓ sign in (3.5) is correlated with the ± sign in (2.19). Having Imz1,2,3 > 0 then
requires c > 0. The vacuum energy turns out to be independent of ϕ and given by

V0 = −3 g2 c−1 . (3.6)

The AdS4 solutions in (3.5) preserve N = 2 supersymmetry and a U(1)R residual
symmetry at generic values of ϕ within half-maximal supergravity.8 However, and even
though the vacuum energy in (3.6) does not depend on ϕ, there are two special values of
ϕ at which (super) symmetry enhancements occur:

• Point ϕ = 0: at this value the AdS4 solution preserves N = 2 supersymmetry and
a U(1)R ×U(1)F symmetry within half-maximal supergravity.9

• Point ϕ = ±1: at these values the AdS4 solution preserves N = 3 supersymmetry
and an SO(3)R symmetry within the half-maximal supergravity.10

The AdS4 solutions at ϕ = 0 and ϕ = ±1 uplift to the N = 2 and N = 4 type IIB
S-folds constructed in [31] and [24], respectively. From a four-dimensional perspective,
the parameter ϕ appears to be non-compact. From a higher-dimensional perspective, the
compactness of ϕ remains an open question since the type IIB uplift of the entire ϕ-family
of AdS4 solutions in (3.5) has not been constructed yet.

Marginal deformation and osp(2|4) superconformal multiplets. Being a flat di-
rection in the scalar potential, ϕ was identified with a marginal deformation specifying
a direction in an N = 2 conformal manifold of S-fold CFT3’s [34].11 Interestingly, there
are unprotected operators in the N = 2 S-fold CFT3’s whose conformal dimensions de-
pend on ϕ.

According to the AdS4/CFT3 correspondence, the mass spectrum of the full set of
half-maximal supergravity fields at the N = 2 AdS4 solutions in (3.5) can be arranged into
multiplets of the osp(2|4) superconformal symmetry of the dual N = 2 CFT3’s. Following
the notation12 of [54] for a superconformal multiplet [j]R∆, where j and R are the Lorentz
and R-symmetry Dynkin labels of the highest weight state (HWS) in the multiplet and ∆

8N = 2 supersymmetry and U(1)R×U(1)F symmetry in the maximal theory without the Z2 projection.
To set up notation, we have attached labels R and F to identify the corresponding R-symmetry and flavour
symmetry groups in the would-be dual SCFT3’s.

9N = 2 supersymmetry and U(1)R×SU(2)F symmetry in the maximal theory without the Z2 projection.
10N = 4 supersymmetry and SO(4)R symmetry in the maximal theory without the Z2 projection.
11The apparent non-compactness of ϕ (see [37] for a KK approach to this question) poses some challenges

to the CFT Distance Conjecture [38].
12For the N = 2 supermultiplets in three dimensions, our conventions for the Lorentz and R-symmetry

Dynkin labels differ from the one in [54]: j = 1
2 j [54] and R = r [54].
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is its conformal dimension, the spectrum contains five unprotected long multiplets

LL̄[0]0∆1 , LL̄

[1
2

]0

∆±
, LL̄[0]0∆̃± , (3.7)

with conformal dimensions given by

∆1 = 1
2 + 1

2

√
17+33ϕ2

1+ϕ2 , ∆± = 1
2 + 2+(ϕ±1)ϕ√

2(1+ϕ2)
,

∆̃− = 1
2 + 1

2
√

1 + 8ϕ2 , ∆̃+ = 1
2 + 1

2

√
17+ϕ2

1+ϕ2 .

(3.8)

In addition there are one short and two semi-short protected multiplets with integer con-
formal dimension ∆ = 2, namely,

A1Ā1[1]02 , LB̄1[0]22 , B1L̄[0]−2
2 , (3.9)

where A1Ā1[1]02 is the stress-energy tensor multiplet of the N = 2 CFT3’s.
The multiplets in (3.7)–(3.9) describe a Z2-invariant subset of the spectrometry per-

formed in [34] within the context of the Gmax = [SO(1, 1)× SO(6)] n R12 maximal super-
gravity. The two semi-short multiplets LB̄1[0]22 and B1L̄[0]−2

2 in (3.9) contain the two real
marginal operators investigated in [34]. They are Z2-even enabling us to capture them also
within the context of half-maximal supergravity. The scalar modulus ϕ in (3.10) is dual to
one such marginal operators. The other marginal operator is dual to a different modulus
χ that will be studied in detail in section 4. Last but not least, the spectrum in (3.7)–(3.9)
does not contain a u(1)F flavour current multiplet A2Ā2[0]01 present in [34]. This multiplet
is Z2-odd and therefore projected away when truncating from maximal to half-maximal
supergravity. This fact has some consequences we touch upon in the conclusions.

3.3 A (ϕ ; ϕ̃)-family of N = 2 AdS4 solutions

Let us now consider the effect of turning on the deformation parameter ϕ̃, i.e. ϕ̃ 6= ±1 in
the embedding tensor (2.21). As already anticipated, turning on this parameter produces
new N = 2 supersymmetric AdS4 solutions which can still be found analytically.

At generic values of the deformation parameter ϕ̃, the locus of the N = 2 AdS4
solutions in (3.5) changes to

z1 = −z̄3 = i c

√
1 + ϕ2

1 + ϕ̃2 , z2 = i c , z4 = −z̄6 = −ϕ+ i√
1 + ϕ2 , z5 = z7 = ∓ϕ̃+ i√

1 + ϕ̃2 , (3.10)

with the ∓ sign in (3.10) being correlated with the ± sign in (2.21). Notice that having
Imz1,2,3 > 0 still requires c > 0, and also the reflection symmetry ϕ̃ → −ϕ̃. The vacuum
energy turns out to be independent of the embedding tensor deformation ϕ̃ and, therefore,
still given by

V0 = −3 g2 c−1 . (3.11)

Taking the limit ϕ̃ → ±∞ becomes pathological as Imz1,3,5,7 = 0 hinting at some de-
compactification regime. This decompactification regime resonates well with the fact that
taking ϕ̃ → ±∞ changes the gauge group to a new one being nilpotent (see discussion
below (2.25)–(2.26)).
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3.4 osp(2|4) superconformal multiplets

The full half-maximal supergravity spectrum at this (ϕ ; ϕ̃)-family of AdS4 solutions can
be arranged into multiplets of the osp(2|4) superconformal symmetry of the dual N = 2
CFT3’s. The spectrum contains five unprotected long multiplets

LL̄[0]0∆1 , LL̄

[1
2

]0

∆±
, LL̄[0]0∆̃± , (3.12)

with conformal dimensions given by

∆1 = 1
2 + 1

2

√
9+25ϕ̃2+ϕ2(17+49ϕ̃2)

(1+ϕ2)(1+ϕ̃2) ,

∆± = 1 + 1
2

√
4ϕ4+ϕ2(13ϕ̃2+9)+4ϕ̃4+9ϕ̃2+5

(ϕ2+1)(ϕ̃2+1) − 4(ϕ2+ϕ̃2+1)±8ϕ3ϕ̃±4ϕϕ̃
(
2ϕ̃2+2−

√
(ϕ2+1)(ϕ̃2+1)

)
√

(ϕ2+1)(ϕ̃2+1)
,

∆̃± = 1
2 + 1

2

√
5(1+ϕ̃2)+8(ϕ4+ϕ̃4)+ϕ2(ϕ̃2+9)±4

√
4ϕ8+8ϕ6−4ϕ4(ϕ̃4+3ϕ̃2−1)−4ϕ2ϕ̃2(3+ϕ̃2)+(1+ϕ̃2+2ϕ̃4)2

(1+ϕ2)(1+ϕ̃2) .

(3.13)
In addition, there are one short and two semi-short protected multiplets with integer con-
formal dimension ∆ = 2. These are the same as in (3.9), namely,

A1Ā1[1]02 , LB̄1[0]22 , B1L̄[0]−2
2 , (3.14)

where A1Ā1[1]02 is the stress-energy tensor multiplet of the dual N = 2 CFT3’s.

3.5 Special loci

The (ϕ ; ϕ̃)-family of N = 2 AdS4 solutions in (3.10) generically preserves a U(1)R symme-
try. The latter can be seen from the normalised gravitino masses which are given by

mL = 1 (×2) , 1 + ϕ2 + ϕ̃2 ± ϕ ϕ̃√
(1 + ϕ2) (1 + ϕ̃2)

. (3.15)

As a result, the marginal deformation ϕ turns out to be compatible with the embedding
tensor deformation ϕ̃. Moreover, they both enter the AdS4 solutions (3.10) and the nor-
malised gravitino masses (3.15) in a very symmetric fashion.

A detailed inspection of the normalised gravitino masses in (3.15) singles out four
special cases to be further investigated:

i) ϕ = ϕ̃ = 0 ⇒ mL = 1 (×4) ,

ii) ϕ = ±ϕ̃ 6= 0 ⇒ mL = 1 (×3) , 3− 2
1 + ϕ̃2 ,

iii) ϕ = 0 ⇒ mL = 1 (×2) ,
√

1 + ϕ̃2 (×2) ,

iv) ϕ̃ = 0 ⇒ mL = 1 (×2) ,
√

1 + ϕ2 (×2) .

(3.16)

Note that the case i) sits at the intersection of the one-dimensional slicings ii), iii) and
iv). A diagram of the (ϕ ; ϕ̃)-family of AdS4 solutions in (3.10) is shown in figure 1. In
the figure, and in the rest of the work, we have denoted by N &G0 the number N of
four-dimensional supersymmetries and the residual symmetry group G0 of a given AdS4
solution.
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N = 2&U(1)R

<latexit sha1_base64="XYBi12pniROtQ2Ue5hGo3NpdPTI=">AAACHHicbVDLSgMxFM3UV62vUZdugkWpIGVGi3YjFNy40vroAzqlZNK0Dc08SO6IZZgPceOvuHGhiBsXgn9j+hC0eiHh5Jx7uTnHDQVXYFmfRmpmdm5+Ib2YWVpeWV0z1zeqKogkZRUaiEDWXaKY4D6rAAfB6qFkxHMFq7n906Feu2VS8cC/gUHImh7p+rzDKQFNtcxDxyPQo0TE58lJATv72Nkd3cDuQHrx9UWSK+y14u/3VZLglpm18tao8F9gT0AWTarcMt+ddkAjj/lABVGqYVshNGMigVPBkowTKRYS2idd1tDQJx5TzXhkLsE7mmnjTiD18QGP2J8TMfGUGniu7hxaUdPakPxPa0TQKTZj7ocRMJ+OF3UigSHAw6Rwm0tGQQw0IFRy/VdMe0QSCjrPjA7Bnrb8F1QP8vZRvnBZyJaKkzjSaAttoxyy0TEqoTNURhVE0T16RM/oxXgwnoxX423cmjImM5voVxkfX7RpoIc=</latexit>

N = 4&SO(4)R

<latexit sha1_base64="R4uUY1xM4P2HLKjM26pP/SwIHc8=">AAAB7nicdVDLSgMxFM3UV62vqks3wSK4GjLjVNtd0Y3LCvYB7VAyadqGZjIhyRTK0I9w40IRt36PO//G9CGo6IELh3Pu5d57IsmZNgh9OLm19Y3Nrfx2YWd3b/+geHjU1EmqCG2QhCeqHWFNORO0YZjhtC0VxXHEaSsa38z91oQqzRJxb6aShjEeCjZgBBsrtboTrOSI9Yol5FarKAjKELll5Pt+xRJ04VeqHvRctEAJrFDvFd+7/YSkMRWGcKx1x0PShBlWhhFOZ4VuqqnEZIyHtGOpwDHVYbY4dwbPrNKHg0TZEgYu1O8TGY61nsaR7YyxGenf3lz8y+ukZlAJMyZkaqggy0WDlEOTwPnvsM8UJYZPLcFEMXsrJCOsMDE2oYIN4etT+D9p+q536QZ3Qal2vYojD07AKTgHHrgCNXAL6qABCBiDB/AEnh3pPDovzuuyNeesZo7BDzhvn+gdj/g=</latexit>'

<latexit sha1_base64="bcYySxdMh42fv50vFaXs71zr7O0=">AAAB+HicdVDLSgMxFM3UV62Pjrp0EyyCqyHTd3dFNy4rWFvoDCWTybShmQdJplCHfokbF4q49VPc+TemD0FFD1w4nHMv997jJZxJhdCHkdvY3Nreye8W9vYPDovm0fGdjFNBaJfEPBZ9D0vKWUS7iilO+4mgOPQ47XmTq4Xfm1IhWRzdqllC3RCPIhYwgpWWhmbRUYz7NHOmWCRjNh+aJWSheq1VQRBZNWQ3Wi1NEKo3K2Voa7JACazRGZrvjh+TNKSRIhxLObBRotwMC8UIp/OCk0qaYDLBIzrQNMIhlW62PHwOz7XiwyAWuiIFl+r3iQyHUs5CT3eGWI3lb28h/uUNUhU03YxFSapoRFaLgpRDFcNFCtBnghLFZ5pgIpi+FZIxFpgonVVBh/D1Kfyf3JUtu25Vb6ql9uU6jjw4BWfgAtigAdrgGnRAFxCQggfwBJ6Ne+PReDFeV605Yz1zAn7AePsE0P2T3w==</latexit>

'̃

<latexit sha1_base64="bMDNv7QcEBtPBpjkE7r1tFwp7g4=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSxCBSmJFPVY9OKxgv2AJpTNdtMu3WzC7kQsoX/FiwdFvPpHvPlv3LY5aOuDgcd7M8zMCxLBNTjOt1VYW9/Y3Cpul3Z29/YP7MNyW8epoqxFYxGrbkA0E1yyFnAQrJsoRqJAsE4wvp35nUemNI/lA0wS5kdkKHnIKQEj9e2yJ1gIVeycO9hTfDiCs75dcWrOHHiVuDmpoBzNvv3lDWKaRkwCFUTrnusk4GdEAaeCTUteqllC6JgMWc9QSSKm/Wx++xSfGmWAw1iZkoDn6u+JjERaT6LAdEYERnrZm4n/eb0Uwms/4zJJgUm6WBSmAkOMZ0HgAVeMgpgYQqji5lZMR0QRCiaukgnBXX55lbQvau5lrX5frzRu8jiK6BidoCpy0RVqoDvURC1E0RN6Rq/ozZpaL9a79bFoLVj5zBH6A+vzB9N0kwY=</latexit>

(0, 0)

<latexit sha1_base64="/tTOS8+boItUU5+Is619H8NpGwE=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSxCBSmJFPVY9OKxgv2AJpTNdtMu3WzC7kQsoX/FiwdFvPpHvPlv3LY5aOuDgcd7M8zMCxLBNTjOt1VYW9/Y3Cpul3Z29/YP7MNyW8epoqxFYxGrbkA0E1yyFnAQrJsoRqJAsE4wvp35nUemNI/lA0wS5kdkKHnIKQEj9e2yJ1gIVeycu9hTfDiCs75dcWrOHHiVuDmpoBzNvv3lDWKaRkwCFUTrnusk4GdEAaeCTUteqllC6JgMWc9QSSKm/Wx++xSfGmWAw1iZkoDn6u+JjERaT6LAdEYERnrZm4n/eb0Uwms/4zJJgUm6WBSmAkOMZ0HgAVeMgpgYQqji5lZMR0QRCiaukgnBXX55lbQvau5lrX5frzRu8jiK6BidoCpy0RVqoDvURC1E0RN6Rq/ozZpaL9a79bFoLVj5zBH6A+vzB9UAkwc=</latexit>

(0, 1)
[34]

[24]
[31]

[40]

Figure 1. Web of N = 2 CFT3’s dual to the (ϕ ; ϕ̃)-family of AdS4 solutions in (3.10). CFT3’s
at ϕ̃ = 1 (dotted blue line) are dual to AdS4 solutions of the [SO(1, 1) × SO(6)] n R12 maximal
supergravity and have been studied and characterised in [34]. The green and blue/red circles have
a type IIB dual: the S-fold backgrounds in [31] and [24], respectively. The N = 4 CFT3 sitting at
ϕ = ϕ̃ = 0 (red star) is dual to an exotic AdS4 solution originally presented in [40] and classified as
non-geometric therein. A generic CFT3 in the diagram features N = 2 &U(1)R symmetry.

3.5.1 N = 3 line of supersymmetry enhancement

The two involutions ϕ = ±ϕ̃ respectively yield ∆∓ = 3
2 so that the corresponding long

multiplet in (3.12) hits the unitary bound. We will set ϕ = ϕ̃ (red dashed line in figure 1)
without loss of generality by virtue of the reflection symmetry ϕ̃→ −ϕ̃ of (3.10) and (3.13).

The conformal dimensions in (3.13) reduce in this case to13

∆1 = 4− 2
1 + ϕ̃2 , ∆− = 3

2 , ∆+ = 7
2−

2
1 + ϕ̃2 , ∆̃− = 2 , ∆̃+ = 3− 2

1 + ϕ̃2 . (3.17)

As a result, the long multiplet LL̄
[1

2
]0
∆− hits the unitarity bound and splits into one short

and two semi-short multiplets. The multiplets in (3.12) then reduce to

LL̄[0]0∆1
→ LL̄[0]04− 2

1+ϕ̃2

LL̄
[1

2
]0
∆− ⊕ LL̄

[1
2
]0
∆+
→
[
A1Ā1

[1
2
]0

3
2
⊕ A2L̄[0]−1

2 ⊕ LĀ2[0]12
]
⊕ LL̄

[1
2
]0

7
2−

2
1+ϕ̃2

LL̄[0]0∆̃− ⊕ LL̄[0]0∆̃+
→ LL̄[0]02 ⊕ LL̄[0]03− 2

1+ϕ̃2

(3.18)
13One has that ∆̃− = 2 and ∆̃+ = 3− 2

1+ϕ̃2 for |ϕ̃| ≥ 1 whereas ∆̃+ = 2 and ∆̃− = 3− 2
1+ϕ̃2 for |ϕ̃| ≤ 1.
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The enhancement to N = 3 supersymmetry originates from the short multiplet A1Ā1
[1

2
]0

3
2

in (3.18) which contains a massless gravitino.
Alternatively, the mass spectrum in (3.14) and (3.18) can be arranged into unitary

superconformal multiplets of the osp(3|4) algebra. Following closely the notation14 of [54],
we find a set of multiplets

L[0]03− 2
1+ϕ̃2

, B1[0]22 , A1

[1
2

]0

3
2

, (3.19)

with A1
[1

2
]0

3
2
corresponding to the stress-energy multiplet of the dual N = 3 CFT3. The

unprotected long multiplet in (3.19) is simply a rearrangement of the ϕ̃-dependent long
multiplets in (3.18).

3.5.2 N = 4 points of supersymmetry enhancement

There are two isolated points in the space of conformal dimensions (3.17) at which ∆1 and
∆̃± corresponding to a [j] = [0] HWS are integer valued whereas ∆± corresponding to a
[j] =

[1
2
]
HWS are half-integer valued.15 Let us look at these two special points in more

detail.

• Point ϕ = ϕ̃ = 1. At this point (red/blue circle in figure 1), the conformal dimensions
in (3.17) simplify to

∆1 = 3 , ∆− = 3
2 , ∆+ = 5

2 , ∆̃± = 2 . (3.20)

Therefore, there are no further long multiplets in (3.18) hitting the unitarity bound. In-
stead, they simply reduce to

LL̄[0]0∆1
→ LL̄[0]03

LL̄
[1

2
]0
∆− ⊕ LL̄

[1
2
]0
∆+
→
[
A1Ā1

[1
2
]0

3
2
⊕ A2L̄[0]−1

2 ⊕ LĀ2[0]12
]
⊕ LL̄

[1
2
]0

5
2

LL̄[0]0∆̃− ⊕ LL̄[0]0∆̃+
→ LL̄[0]02 (×2)

(3.21)

The multiplets in (3.14) and (3.21) precisely describe the Z2-even sector of the N = 4 &
SO(4)R S-fold of [24]. In other words, the field content of half-maximal supergravity only
captures an N = 3 subsector of the N = 4 S-fold CFT3 of [24].

In osp(3|4) language, the unprotected long multiplet in (3.19) does not split and the
spectrum (3.19) simply reduces to

L[0]02 , B1[0]22 , A1

[1
2

]0

3
2

. (3.22)

14Our convention for the Lorentz and R-symmetry Dynkin labels differs from the one in [54]: j = 1
2 j [54]

and R = 1
2R [54].

15There is also the limit ϕ̃ → ±∞ for which the gauging changes drastically pointing at a decompact-
ification regime (see discussion below (2.25)–(2.26)). Studying this limit goes beyond the scope of this
work.
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• Point ϕ = ϕ̃ = 0. At this special point (red star in figure 1) the conformal dimensions
in (3.17) reduce to

∆1 = 2 , ∆± = 3
2 , ∆̃− = 2 , ∆̃+ = 1 . (3.23)

This implies that the three long multiplets LL̄
[1

2
]0
∆± and LL̄[0]0∆̃+

hit the unitarity bound
and split, each of them producing one short and two semi-short multiplets. More concretely,
the multiplets in (3.18) decompose as

LL̄[0]0∆1
→ LL̄[0]02

LL̄
[1

2
]0
∆± →

[
A1Ā1

[1
2
]0

3
2
⊕ A2L̄[0]−1

2 ⊕ LĀ2[0]12
]

(×2)

LL̄[0]0∆̃− ⊕ LL̄[0]0∆̃+
→ LL̄[0]02 ⊕

[
A2Ā2[0]01 ⊕ B1L̄[0]−2

2 ⊕ LB̄1[0]22
] (3.24)

There is this time an enhancement to N = 4 supersymmetry originating from the two short
multiplets A1Ā1

[1
2
]0

3
2
in (3.24) each one containing a massless gravitino. In addition, there

is the shortening associated with ∆̃+ = 1 which provides an additional massless vector
multiplet.

In osp(3|4) language, the unprotected long multiplet in (3.19) hits the unitarity bound
and splits into two short multiplets as L[0]01 → A2[0]01 ⊕ B1[0]22. The spectrum in (3.19)
then reduces to

A2[0]01 , B1[0]22 (×2) , A1

[1
2

]0

3
2

, (3.25)

as a consequence of the supersymmetry enhancement to N = 4 in the exotic CFT3.

3.5.3 U(1)F flavour symmetry enhancement

The identification ϕ = 0 (vertical axis in figure 1) gives rise to a U(1)F flavour symmetry
enhancement in the corresponding CFT3’s. At this value it occurs that ∆̃− = 1, the long
multiplet LL̄[0]0∆̃− in (3.12) hits the unitarity bound and splits again into one short and
two semi-short multiplets. The multiplets in (3.12) reduce to

LL̄[0]0∆1 → LL̄[0]0
1
2 + 1

2

√
25− 16

1+ϕ̃2

LL̄

[1
2

]0

∆±
→ LL̄

[1
2

]0

1+ 1
2

√
5+4ϕ̃2−4

√
ϕ̃2+1

(×2) (3.26)

LL̄[0]0∆̃− ⊕ LL̄[0]0∆̃+
→
[
A2Ā2[0]01 ⊕ LB̄1[0]22 ⊕ B1L̄[0]−2

2

]
⊕ LL̄[0]0

1
2 + 1

2

√
9+ 16 ϕ̃4

1+ϕ̃2

where A2Ā2[0]01 is a massless vector multiplet reflecting the U(1)F flavour symmetry en-
hancement in the dual N = 2 CFT3’s.

Note that the two degenerated long multiplets LL̄
[1

2
]0
∆± in (3.26) hit the unitarity

bound at the special point ϕ̃ = 0. At this point, each of them splits as

LL̄
[1

2
]0

3
2
→ A1Ā1[1]03

2
⊕ A2L̄[0]−1

2 ⊕ LĀ2[0]12 (3.27)

recovering the exotic N = 4 CFT3.
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3.6 General axion deformations of the exotic N = 4 CFT3

Setting ϕ = ϕ̃ = 0 in (3.10) reproduces the exotic N = 4 AdS4 solution with SO(4)R
symmetry originally reported in [40] (red star in figure 1). Let us recall that it is located
at the (rescaled by c) origin of the scalar geometry, namely,

z1,2,3 = i c , z4,5,6,7 = i , (3.28)

and preserves the compact part of the gauging, namely,

SO(4)R ∼ SO(3)1 × SO(3)2 ⊂ ISO(3)1 × ISO(3)2 . (3.29)

Three new scalar moduli can be turned on at this AdS4 solution which are parameterised
by three axions χ1,2,3 ∈ R of the axion-like type investigated for the S-fold solutions
in [33, 35, 36, 41]. Activating χ1,2,3 changes the location of the AdS4 solution (3.28) to

z1,2,3 = c (−χ1,2,3 + i) , z4,5,6,7 = i , (3.30)

keeping the vacuum energy at the value V0 = −3 g2c−1. Therefore, the moduli fields χi
(i = 1, 2, 3) are naturally identified with marginal deformations of the N = 4 exotic CFT3.

The explicit computation of the normalised gravitino masses at the AdS4 solution (3.30)
yields

mL =
√

1 + ω2
1 ,

√
1 + ω2

2 ,
√

1 + ω2
3 ,

√
1 + ω2

4 , (3.31)

with

χi = ωj + ωk (i 6= j 6= k) and ω1 + ω2 + ω3 + ω4 = 0 . (3.32)

It proves very convenient to introduce a set ωA = {ω1, ω2, ω3, ω4} of deformation parameters
subject to the constraint ∑4

A=1 ωA = 0. The twelve normalised vector masses can then be
very symmetrically written as

m2L2 = 1 + ω2
A + ω2

B ±
√

1 + (ωA + ωB)2 + 4ω2
A ω

2
B with A < B , (3.33)

whereas the normalised scalar masses are given by

m2L2 = −1 + ω2
A + ω2

B ±
√

1 + (ωA + ωB)2 + 4ω2
A ω

2
B with A < B ,

4 , −2 (×2) , 0 (×15) , λ1,...,8 (×1) .
(3.34)

We cannot provide a closed form for the eight normalised scalar masses λ1,...,8. They
correspond to the eigenvalues of the χ1,2,3-dependent matrix

χ̂2 − 2 0 2χ2χ3 2χ1χ3 2χ1χ2 0 0 0
0 χ̂2 − 2 2χ1 2χ2 2χ3 2χ2

2 − χ̂2 2χ2
3 − χ̂2 2χ2

1 − χ̂2

2χ2χ3 2χ1 χ̂2 2χ1χ2 2χ1χ3 −2χ1 −2χ1 0
2χ1χ3 2χ2 2χ1χ2 χ̂2 2χ2χ3 0 −2χ2 −2χ2
2χ1χ2 2χ3 2χ1χ3 2χ2χ3 χ̂2 −2χ3 0 −2χ3

0 2χ2
2 − χ̂2 −2χ1 0 −2χ3 χ̂2 2− χ̂2 + 2χ2

1 2− χ̂2 + 2χ2
3

0 2χ2
3 − χ̂2 −2χ1 −2χ2 0 2− χ̂2 + 2χ2

1 χ̂2 2− χ̂2 + 2χ2
2

0 2χ2
1 − χ̂2 0 −2χ2 −2χ3 2− χ̂2 + 2χ2

3 2− χ̂2 + 2χ2
2 χ̂2


, (3.35)
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with χ̂2 ≡ χ2
1 + χ2

2 + χ2
3. A numerical scan of the mass spectrum in (3.34) as a function

of ωA shows that there exist regions in parameter space for which non-supersymmetric
solutions become perturbatively unstable, e.g. whenever ω1 = ω2 = −ω3 = −ω4 > 0.3052.

It follows from (3.33) that the number of massless vectors is given by the number np
of pairs ωA = ωB with A < B. This yields the following classification of CFT3 duals in
terms of the four parameters ωA:

◦ All four ω’s are zero: N = 4 with SO(4)R symmetry

◦ Three ω’s are zero: same case as before by virtue of ∑ωA = 0

◦ Exactly two ω’s are zero: N = 2 with SO(2)R symmetry

◦ Exactly one ω is zero: N = 1 with

– SO(2)F flavour symmetry if two of the remaining ω’s are equal
– no flavour symmetry otherwise

◦ All ω’s are non-zero: N = 0 with

– SO(2)F × SO(2)F if there are two pairs of ω’s of equal value, one pair with the
opposite sign of the other

– SO(3)F if three ω’s are identified
– SO(2)F if only two ω’s are identified
– no flavour symmetry otherwise

In summary, the number of supersymmetries (both of the AdS4 solution and the dual
CFT3) matches the number of parameters ωA = 0, and the AdS4 solution features an
orthogonal symmetry group of dimension np. Amongst the np pairs, each pair ωA = ωB = 0
adds one generator to the orthogonal R-symmetry group of the dual CFT3 whereas each
pair ωA = ωB 6= 0 adds one generator to an orthogonal flavour symmetry group in the
CFT3. Finally, observe that there is a case compatible with a single axion, let us denote
it χ, that preserves N = 2 and SO(2)R symmetry within half-maximal supergravity. The
consequences of turning on this axion χ will be investigated in detail in section 4.

3.6.1 Relation to axion-like deformations of S-folds?

Axion-like deformations (generically also denoted by χ’s) of S-fold solutions of type IIB
supergravity have been geometrically characterised in [36, 41] (see [33] for a light review). In
these solutions, they cause a breaking of symmetries by global effects in the ten dimensional
geometry [35, 36]. More concretely, axion-like deformations break the symmetry group of
an S-fold down to its Cartan subgroup. The number of such deformations was shown to
match the dimension of the Cartan subalgebra of the symmetry group of the S-fold solution
before turning on any deformation.

The way the χ’s enter the AdS4 solution in (3.30) is identical to the known examples
of axion-like deformations of S-folds (cf. eq.(2.18) in [31]). However one must be cautious
about giving the same interpretation to all the χ’s in (3.30). The reason is twofold:
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i) We find three different axion deformations χ1,2,3 for the exotic N = 4 AdS4 solution
with SO(4)R symmetry and not two, as one would naively expect from the number
of Cartan generators of SO(4)R.

ii) Generic values of χ1,2,3 totally break the SO(4)R symmetry of the undeformed solu-
tion: the Cartan subgroup of SO(4)R is generically not preserved. As a result, the
pattern of symmetry breaking is very different from the one induced by the axion-like
deformations in the S-fold solutions [36, 41].

As a result, while the N = 0 case with SO(2)F×SO(2)F symmetry preserves the Cartan
subgroup of SO(4)R and, therefore, stands a chance of having a geometrical interpretation
alike the axion-like deformations of S-folds, the other cases appear (at first glance) to be
different as the Cartan subgroup of SO(4)R is not preserved. Of special interest will be
the case of the single axion χ mentioned above, which we move to discuss in the next
section. This axion preserves N = 2 supersymmetry, an SO(2)R ⊂ SO(4)R symmetry
within half-maximal supergravity, and combines with the modulus ϕ to generalise the
conformal manifold of N = 2 CFT3’s in (1.3) to arbitrary values of the parameter ϕ̃.

4 U(1)R-invariant sector

In this section we construct a particular U(1)R invariant sector of half-maximal supergravity
that suffices to capture the modulus χ dual to the second marginal deformation spanning
with ϕ the N = 2 conformal manifold in (1.3).

4.1 The N = 2 three-vector and two-hyper model

To our knowledge, there is no explicit construction of the U(1)R invariant sector of half-
maximal supergravity of relevance for this work. So we will present it in some detail. In
order to construct it, let us first introduce the set of SO(6, 6) generators

[tMN ]P
Q = 2 ηP [M δQN ] , (4.1)

where M = 1 . . . , 6, 1̄, . . . 6̄ is a fundamental SO(6, 6) index in the light-cone basis. We
choose the specific U(1)R generator to be

tU(1)R = (t51̄ − t15̄)− (t62̄ − t26̄) , (4.2)

which is embedded in the duality group of half-maximal supergravity as

SL(2)×SO(6, 6) ⊃ SL(2)×SO(2, 2)×SO(4, 4) ⊃ SL(2)×SO(2, 2)×SU(2, 2)×U(1)R . (4.3)

From the commutant of U(1)R in the embedding chain (4.3), the scalar manifold invariant
under U(1)R is identified with

MU(1)R
scal = SL(2)

SO(2) ×
SO(2, 2)

SO(2)× SO(2)︸ ︷︷ ︸[ SL(2)
SO(2)

]3

× SU(2, 2)
S (U(2)×U(2)) . (4.4)
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This U(1)R-invariant sector of half-maximal supergravity can be described as an N = 2
gauged supergravity coupled to three vector multiplets and two hyper-multiplets. Within
this N = 2 sector, the gauge group is

GN=2 = U(1)R ×U(1)γ × Ra × Rε ⊂ ISO(3)× ISO(3) , (4.5)

with all the fields being inert under the U(1)R factor. The three complex scalars in the
vector multiplets span the [SL(2)/SO(2)]3 factor of the scalar geometry (4.4). They are
identified with z7 and (z2, z5) in the Z2

2-invariant sector of section 3. The scalar matrix
Mαβ spanned by z7 was given in (2.11). The part of the MMN matrix in (2.12) spanned
by (z2, z5) was constructed in terms of the 2× 2 blocks G2 and B2 in (3.2). Alternatively,
it can directly be constructed from the coset representative

VSO(2, 2) = e−χ2 t43̄+χ5 t43 e−
1
2 [ϕ2 (t44̄−t33̄)+ϕ5(t44̄+t33̄) ] , (4.6)

such that z2,5 = −χ2,5 + ie−ϕ2,5 . There is also the part of the scalar matrix MMN that
depends on the scalars in the quaternionic Kähler (QK) space [SU(2, 2)/S(U(2)×U(2))] ∼
[SO(2, 4)/(SO(2)× SO(4))]. Following the coset construction of [55], we will first introduce
the generators

H1 = t11̄ + t55̄ + t66̄ + t22̄ , H2 = t11̄ + t55̄ − t66̄ − t22̄

E2
3 = −t15 , V 23 = t26

U1
3 = −t12 + t56 + t16 − t25 , U1

2 = t21̄ + t25̄ + t61̄ − t65̄

U2
3 = t12 − t56 + t16 − t25 , U2

2 = t21̄ − t25̄ − t61̄ − t65̄

(4.7)

and construct the coset representative as

VSO(2,4) = e
1

2
√

2
U
eaV

23
ehE23

e−
1
4 [ (φ2+φ1)H1+(φ2−φ1)H2 ] , (4.8)

with
U = −(ζ̃0 − ζ̃1)U1

2 − (ζ0 + ζ1)U2
2 − (ζ0 − ζ1)U1

3 + (ζ̃0 + ζ̃1)U2
3 . (4.9)

The scalar matrix MMN ∈ SO(6, 6) is then obtained as M = V Vt using the factorised
coset representative

V = VSO(2,2) VSO(2,4) . (4.10)
In order to complete the characterisation of the 2 + 12 scalars in the U(1)R-invariant

sector, we will now look at the metric on the scalar manifold (4.4) which can be extracted
from the kinetic terms in (2.13). An explicit computation gives

Lkin = −1
4
(
dϕ2

7 + e2ϕ7 dχ2
7
)
− 1

4
(
dϕ2

2 + e2ϕ2 dχ2
2
)
− 1

4
(
dϕ2

5 + e2ϕ5 dχ2
5
)

−1
4

(
Dφ2

2 + e2φ2 Dh2
)

−1
4

[
dφ2

1 + e2φ1
(
Da+ 1

2
(
ζ0Dζ̃0 + ζ1Dζ̃1 − ζ̃0Dζ

0 − ζ̃1Dζ
1))2]

−1
8

[
eφ1−φ2

(
Dζ0 +Dζ1)2 + eφ1−φ2

(
Dζ̃0 −Dζ̃1

)2
+ eφ1+φ2

(
Dζ0 −Dζ1 + h (Dζ̃0 −Dζ̃1)

)2

+ eφ1+φ2
(
Dζ̃0 +Dζ̃1 − h (Dζ0 +Dζ1)

)2]
,

(4.11)
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where we have introduced the kinetic term notation dX dY ≡ ∂µX ∂µY and DXDY ≡
DµXDµY for two generic scalars X and Y . The covariant derivatives in (4.11) include a
gauge connection for the gauge group in (4.5). They can be straightforwardly computed
from (2.14) and take the form

Dφ2 = dφ2 − 4g A(ε)
h , Dh = dh− 2g A(ε) (

e−2φ2 − h2
)
, Da = da− 2g A(a)

, (4.12)

together with

Dζ0 = dζ0 − g A(ε) (ζ̃0 + ζ̃1)− 2g A(γ)
ζ̃0 , Dζ1 = dζ1 − g A(ε) (ζ̃0 + ζ̃1) + 2g A(γ)

ζ̃1 ,

Dζ̃0 = dζ̃0 − g A
(ε) (ζ1 − ζ0) + 2g A(γ)

ζ0 , Dζ̃1 = dζ̃1 − g A
(ε) (ζ0 − ζ1)− 2g A(γ)

ζ1 ,
(4.13)

in terms of three linear combinations of vectors AµαM given by

A
(ε)
µ ≡

√
2 c 1−ϕ̃2

1+ϕ̃2 Aµ
+3 +

√
2√

1+ϕ̃2

(
Aµ

+3̄ + c ϕ̃Aµ
−3
)
,

A
(a)
µ ≡

√
2 c 1−ϕ̃2

1+ϕ̃2 Aµ
−4̄ +

√
2√

1+ϕ̃2

(
Aµ
−4 + c ϕ̃Aµ

+4̄
)
,

A
(γ)
µ ≡

√
2√

1+ϕ̃2

(
Aµ

+3 +Aµ
−4̄
)
.

(4.14)

The vectors A(ε)
µ , A(a)

µ and A
(γ)
µ in (4.14) respectively gauge the factors Rε and Ra and

U(1)γ in (4.5). There is an additional vector field A(R)
µ associated with the U(1)R generator

in (4.2) under which all the scalars in this sector of the theory are invariant.

4.2 Warming up: the (ϕ, χ)-family of N = 2 AdS4 solutions of [34]

Let us start by recovering the two-parameter (ϕ, χ)-family of N = 2 AdS4 solutions of
the [SO(1, 1) × SO(6)] n R12 maximal supergravity put forward in [34]. As explained in
section 2.3, we must first of all set ϕ̃2 = 1 in order to make contact with the maximal
theory. Then, the two-parameter (ϕ, χ)-family of N = 2 AdS4 solutions of [34] is recovered
within the U(1)R-invariant sector of half-maximal supergravity as follows. The SK scalars
are fixed to

z5 = z7 = ∓1 + i√
2

and z2 = i c , (4.15)

where, as before, the ∓ sign in (4.15) is correlated with the ± sign in (2.21). The QK
scalars are fixed to

h+ i e−φ2 = i

√
2

c (1 + ϕ2) , e−φ1 = c√
2
,

a = 0 , ζ0 = ζ1 = c χ√
2
, ζ̃0 = ζ̃1 = ϕ√

1 + ϕ2 .
(4.16)

This N = 2 family of AdS4 solutions comes along with a vacuum energy

V0 = −3g2c−1 , (4.17)
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for any value of the moduli fields (ϕ, χ) thus identifying them with marginal deformations in
the dual CFT3’s. It is worth emphasising that (4.15)–(4.16) provides an explicit realisation
of the (ϕ, χ)-family of N = 2 AdS4 solutions of [34] in a specific supergravity model.16

Marginal deformation and osp(2|4) superconformal multiplets. The explicit com-
putation of the normalised mass spectrum recovers the half-maximal (Z2-invariant) subset
of multiplets within the maximal content of [34]. This consists of five unprotected long
multiplets

LL̄[0]0∆1 , LL̄

[1
2

]0

∆±
, LL̄[0]0∆̃± , (4.18)

with conformal dimensions17

∆1 = 1
2 + 1

2

√
17+33ϕ2

1+ϕ2 ,

∆± = 1
2 +
√

(2+ϕ2)2+χ2±ϕ√
2(1+ϕ2)

,

∆̃± = 1
2 + 1

2

√
9+4ϕ4+5ϕ2+4χ2±4(ϕ4+ϕ2+χ2−2)

ϕ2+1 .

(4.19)

There are also the short and semi-short protected multiplets given in (3.9), namely,

A1Ā1[1]02 , LB̄1[0]22 , B1L̄[0]−2
2 , (4.20)

where A1Ā1[1]02 is identified with the stress-energy tensor multiplet of the N = 2 CFT3’s.

4.3 A (ϕ, χ ; ϕ̃)-family of N = 2 AdS4 solutions

The two-parameter family of N = 2 AdS4 solutions in (4.15)–(4.16) can be generalised to
arbitrary values of the deformation parameter ϕ̃. The SK scalars are given by

z5 = z7 = ∓ϕ̃+ i√
1 + ϕ̃2 and z2 = i c , (4.21)

whereas the QK scalars take the form

h+ i e−φ2 = i

√
1 + ϕ̃2

c (1 + ϕ2) , e−φ1 = c√
1 + ϕ̃2 ,

a = 0 , ζ0 = ζ1 = c χ√
1 + ϕ̃2 , ζ̃0 = ζ̃1 = ϕ√

1 + ϕ2 .

(4.22)

The vacuum energy at this N = 2 family of AdS4 solutions is still given by

V0 = −3g2c−1 , (4.23)

for any value of the deformation parameter ϕ̃ as well as of the moduli fields (ϕ, χ) dual to
marginal deformations. It is worth highlighting that, at any value of ϕ̃, turning on (ϕ, χ)
activates the hypermultiplet scalars (ζ0, ζ1; ζ̃0, ζ̃1) spanning the Heisenberg fiber of the QK
geometry. Activating these scalars automatically breaks the compact U(1)γ factor of the
gauge group (4.5), as it can be seen from (4.13).

16This two-parameter (ϕ, χ)-family of solutions was constructed in [34] by applying a χ-dependent E7(7)

duality transformation to the one-parameter ϕ-family in (3.5).
17The conformal dimensions (∆1,∆+,∆−, ∆̃+, ∆̃−) map into (β3, β5, β4, β1, β2) in eq.(4.5) of [34] upon

the identification χ =
√

1 + ϕ̃2 χ [34] with ϕ̃ = 1.
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4.4 osp(2|4) superconformal multiplets

The half-maximal supergravity spectrum at generic ϕ̃ of the N = 2 (ϕ, χ)-family of AdS4
solutions can be arranged into multiplets of the osp(2|4) superconformal symmetry of the
would-be dual N = 2 CFT3’s. The spectrum contains five unprotected long multiplets

LL̄[0]0∆1 , LL̄

[1
2

]0

∆±
, LL̄[0]0∆̃± , (4.24)

with conformal dimensions given by

∆1 = 1
2 + 1

2

√
9+25ϕ̃2+ϕ2(17+49ϕ̃2)

(1+ϕ2)(1+ϕ̃2) ,

∆± = 1
2 +
√

(1+ϕ2+ϕ̃2)2+χ2±ϕϕ̃√
(1+ϕ2)(1+ϕ̃2)

,

∆̃± = 1
2 + 1

2

√
5+8ϕ4+ϕ2(ϕ̃2+9)+8ϕ̃4+5ϕ̃2+8χ2±4

√
Θ

(ϕ2+1)(ϕ̃2+1) ,

(4.25)

where

Θ = 4ϕ8 + 8ϕ6 − 4ϕ4 (ϕ̃4 + 3ϕ̃2 − 1− 2χ2)− 4ϕ2 (ϕ̃4 + 3ϕ̃2 − 2χ2)(
ϕ̃2 (1 + 2ϕ̃2)+ 1− 2χ2)2 + 4

(
ϕ̃2 − 1

)2
χ2.

(4.26)

In addition, there are one short and two semi-short protected multiplets with integer con-
formal dimension ∆ = 2. These are the same as in (3.9), namely,

A1Ā1[1]02 , LB̄1[0]22 , B1L̄[0]−2
2 , (4.27)

where A1Ā1[1]02 is the stress-energy tensor multiplet of the dual N = 2 CFT3’s. The two
moduli fields ϕ and χ in (4.22) belong to the semi-short multiplets LB̄1[0]22 and B1L̄[0]−2

2 .

4.5 Special loci

The computation of the four gravitino masses in the half-maximal theory yields

mL = 1 (×2) ,
√

(1 + ϕ2 + ϕ̃2)2 + χ2 ± ϕ ϕ̃√
(1 + ϕ2) (1 + ϕ̃2)

, (4.28)

which consistently reduces to (3.15) when setting χ = 0. Notice that, even when turning
on χ 6= 0, the marginal deformation ϕ and the embedding tensor parameter ϕ̃ continue
entering the gravitino masses (4.28) in a symmetric fashion. A quick inspection of (4.28)
shows that supersymmetry enhancement to N > 2 is no longer possible whenever χ 6= 0.
Still we will look at two special cases. The first case is ϕ̃ = 0 which accounts for the N = 2
marginal deformations of the N = 4 exotic CFT3. The second one is ϕ = 0 which describes
the effect of the modulus χ in a genuine half-maximal supergravity at generic ϕ̃.
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4.5.1 (ϕ, χ)-deformations of the N = 4 exotic CFT3

Setting ϕ̃ = 0 in the general expressions of the previous section one is left with the N = 2
(ϕ, χ) marginal deformations of the exotic N = 4 CFT3. More concretely, we find in this
case five unprotected long multiplets

LL̄[0]0∆1 , LL̄

[1
2

]0

∆
(×2) , LL̄[0]0∆̃± , (4.29)

with conformal dimensions

∆1 = 1
2 + 1

2

√
9+17ϕ2

1+ϕ2 ,

∆ = 1
2 +
√

(1+ϕ2)2+χ2√
1+ϕ2

,

∆̃± = 1
2 + 1

2

√
5+8χ2+8ϕ4+9ϕ2±4

√
1+4(ϕ4+ϕ2+χ2)2

1+ϕ2 .

(4.30)

Notice that, unlike for the N = 4 & SO(4)R S-fold in (4.18), the multiplets LL̄
[1

2
]0
∆± get

degenerated in this case. In addition, there are also the short and semi-short protected
multiplets given in (4.27). The long multiplets LL̄

[1
2
]0
∆ and LL̄[0]0∆̃− hit the unitarity

bound at the special value ϕ = χ = 0 and split as

LL̄
[1

2
]0

3
2
→ A1Ā1

[1
2
]0

3
2
⊕ A2L̄[0]−1

2 ⊕ LĀ2[0]12
LL̄[0]01 → A2Ā2[0]01 ⊕ B1L̄[0]−2

2 ⊕ LB̄1[0]22
(4.31)

recovering the undeformed exotic N = 4 CFT3.

4.5.2 (χ ; ϕ̃)-family of N = 2 AdS4 solutions

In section 3.3 we characterised the (ϕ ; ϕ̃)-family of N = 2 CFT3’s at χ = 0. Let us
now take the complementary case ϕ = 0 and characterise the (χ ; ϕ̃)-family of N = 2
CFT3’s. Since the axion-like deformations are by now well understood geometrically for
the S-fold backgrounds at ϕ̃ = 1 [36], it would be interesting to investigate whether a
higher-dimensional geometric interpretation at arbitrary values of ϕ̃ is still be possible.

Setting ϕ = 0, the half-maximal spectrum of dual operators contains the five unpro-
tected long multiplets

LL̄[0]0∆1 , LL̄

[1
2

]0

∆
(×2) , LL̄[0]0∆̃± , (4.32)

this time with conformal dimensions given by

∆1 = 1
2 + 1

2

√
9+25ϕ̃2

1+ϕ̃2 ,

∆ = 1
2 +
√

(1+ϕ̃2)2+χ2√
1+ϕ̃2

,

∆̃± = 1
2 + 1

2

√
8ϕ̃4+5ϕ̃2+8χ2+5±4

√
Θϕ→0

1+ϕ̃2 ,

(4.33)
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with
Θϕ→0 =

(
ϕ̃2
(
1 + 2ϕ̃2

)
+ 1− 2χ2

)2
+ 4

(
ϕ̃2 − 1

)2
χ2. (4.34)

There are also the short and semi-short protected multiplets given in (4.27). As a check of
consistency, the χ-family of N = 2 S-folds in [31] is recovered at ϕ̃ = 1. We also recover
the results of section 3.6 upon setting ϕ̃ = 0 together with χ1 = −χ3 = χ and χ2 = 0 (up
to a U(1)γ transformation (see eq. (4.36)) of angle γ = −π

4 ).

4.6 On the conformal manifold of N = 2 CFT3’s

Given the supergravity model in section 4.1, which includes vector fields and gaugings of
scalar isometries, the holographic Zamolodchikov metric on a conformal manifold of CFT3’s
cannot be obtained simply by direct substitution of the AdS4 solution (4.21)–(4.22) into
the scalar kinetic terms (4.11). The reason being that a solution like (4.21)–(4.22) can be
brought to a different, but physically equivalent, form upon a gauge transformation.

The infinitesimal U(1)γ×Ra×Rε gauge transformations entering the covariant deriva-
tives in (4.13) — recall that all the fields within this sector are invariant under U(1)R —
can be integrated to finite transformations. To describe such finite transformations we will
introduce three complex fields

z = h+ i e−φ2 , ψ0 = ζ0 + i ζ̃0 , ψ1 = ζ̃1 + i ζ1 , (4.35)

in terms of which the compact U(1)γ transformation acts as

ψ0 → ei γ ψ0 and ψ1 → ei γ ψ1 , (4.36)

the non-compact Ra acts as a shift

a→ a+ ca , (4.37)

and Rε acts as a fractional linear transformation

z → z

ε z + 1 and
(
ψ0
ψ1

)
→
(

1− i ε2
ε
2

ε
2 1 + i ε2

) (
ψ0
ψ1

)
. (4.38)

As a result, the gauge-fixed solution in (4.21)–(4.22) can be gauge-released by acting on
it with (4.36)–(4.38). This action introduces three additional (yet unphysical) parameters
(γ, ca, ε) in the solution (4.21)–(4.22), and the naive pull-back of the metric (4.11) on
different gauge-fixed solutions will depend on the choice of gauge. For example, choosing
ca = f(ϕ, χ) in (4.37) and performing the pull-back of the metric (4.11), one encounters
different Zamolodchikov metrics for different choices of the function f(ϕ, χ). Of course,
the catch is that we are considering solutions which are gauge-equivalent, and therefore
physically equivalent, as different. In order to perform the gauge-fixing properly, one should
not pick up a subspace within the gauge-released space of solutions and perform the naive
pull-back of the metric onto it. Instead, one must study the quotient of the gauge-released
space of solutions by the gauge group. This quotient space is the one being dual to a
conformal manifold with a uniquely defined Zamolodchikov metric.
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For the sake of concreteness, let us particularise to our specific gauge-released or am-
bient scalar geometry as described by the kinetic terms in (4.11). We first need to identify
three independent one-forms on the scalar geometry which are to be declared as “pure
gauge” or unphysical, and then quotient the scalar geometry by them. How to identify
such three one-forms in field space is a physical question. And the answer to that question
comes from the vector sector which, despite being set to zero at the supergravity solution,
still provides equations of motion that must hold. In short, we must quotient the geometry
by the one-form currents J (γ) , J (a) and J (ε) acting as sources for the vector fields that have
been set to zero at the supergravity solution. This implies that we should first put those
one-forms to zero in the kinetic terms (4.11) before reading off the Zamolodchikov metric
by performing the pull-back of the ambient metric on any gauge-fixed subspace of solutions.

Let us illustrate the procedure described above by looking at the gauge-fixing of the
Ra shift symmetry in (4.37) spanned by the vector field A(a) . The scalar a plays the role
of a Stückelberg field for the massive vector A(a) — recall that Da = da+ 2 g A(a) in (4.12)
— and the associated current computed from (4.11) reads

J
(a) ≡ g e2φ1 ∗

[
Da+ 1

2
(
ζ0Dζ̃0 + ζ1Dζ̃1 − ζ̃0Dζ

0 − ζ̃1Dζ
1)] . (4.39)

Quotienting the scalar geometry by this (field space) one-form implies that (4.39) must be
set to zero identically, i.e. J (a) = 0, when evaluating any quantity at a gauge-fixed solution
like (4.21)–(4.22). In particular, its contribution to the third line in the kinetic terms (4.11)
must be removed before reading off the Zamolodchikov metric from it. Proceeding similarly
with the contributions coming from the remaining one-form currents J (ε) and J (γ) acting
as sources for A(ε) and A(γ) , the resulting Zamolodchikov metric becomes independent of
the deformation parameter ϕ̃ and reads

ds2
CM = 1 + 2ϕ2

2(1 + ϕ2)2
(
dϕ2 + (1 + ϕ2) dχ2) . (4.40)

This metric in the conformal manifold of N = 2 CFT3’s at generic ϕ̃ agrees with that
of [34] upon the identification χ =

√
1 + ϕ̃2 χ[34] with ϕ̃ = 1.

The moduli (ϕ, χ) belong to the hypermultiplet sector in the AdS4 solution (4.21)–(4.22).
Recalling that, for AdS4 solutions preserving N = 2, the hypermultiplet moduli space must
be a Kähler submanifold of the quaternionic Kähler geometry [56], the conformal manifold
in (4.40) must be Kähler. The Kählericity of the metric (4.40) can be checked as follows.
Let us first introduce a set of so-called isothermal coordinates for which the metric is
conformal to the Euclidean metric. These are given by x = χ and y = arcsinhϕ so that
the Zamolodchikov metric in (4.40) is brought to the form

ds2
CM = 1

2 Ω(y)2
(
dx2 + dy2

)
with Ω(y)2 ≡ 1 + tanh2 y . (4.41)

Introducing the complex coordinate z = x+ iy one arrives at

ds2
CM = gzz̄ dz dz̄ with gzz̄ = 1

2

(
1 + tanh2

[−i(z − z̄)
2

])
, (4.42)
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where gzz̄ = ∂2K
∂z∂z̄ can be derived from the real Kähler potential

K(z, z̄) = |z|2 − log
[
cosh2

(−i(z − z̄)
2

)]
. (4.43)

More on gauge-fixing and Zamolodchikov metric. The scalar manifold Mscal
in (2.5) of half-maximal supergravity is endowed with a canonical Riemannian metric g,
prior to any gauge fixing, and a left action of a gauge group G, e.g., G = ISO(3)1× ISO(3)2
in our case. In general, the action of G onMscal is not free — there are fixed loci under the
action of the compact part of G — and thus the quotient space G\Mscal is not a manifold.
In supergravity, the action of G on Mscal is well-behaved and we can chop the fixed loci
out ofMscal to define a new manifold M̃scal on which G has a free action.

In order to establish a connection with the N = 2 supergravity model of sec-
tion 4.1, we will focus on the U(1)R-invariant sector of half-maximal supergravity for which
G → GN=2 = U(1)R ×U(1)γ × Ra × Rε and Mscal in (2.5) reduces to the one in (4.4).
From (4.13), the U(1)R × U(1)γ compact part of GN=2 leaves invariant the scalar locus
defined by the condition ζ̃0 = ζ̃1 = ζ0 = ζ1 = 0.18 Starting from the gauge-released solu-
tion extending the gauged-fixed one in (4.21)–(4.22) with three parameters (γ, ca, ε) (see
discussion below (4.38)) and removing the fixed locus under U(1)γ , we can finally define
a manifold of supergravity solutions S ⊂ M̃scal on which GN=2 acts freely. This gives a
structure of principal bundle

π : S → GN=2\S . (4.44)

The quotient space GN=2\S is the object dual to the N = 2 conformal manifold of CFT3’s,
and it is on this quotient space that we must define metric gCM dual to the Zamolodchikov
metric in (4.40).

We can always decompose the tangent space of S as TS = V S⊕HS where V S = kerπ∗
and HS = [V S]⊥ is the orthogonal complement of V S with respect to the metric g. The
tangent space TS should then be understood as the space of all small deformations: HS
corresponding to physical deformations and V S being the space of unphysical deformations.
The latter are exactly the infinitesimal gauge transformations, and a projector PrHS onto
HS can be defined that projects them away. Finally, for any x ∈ GN=2\S there is a p ∈ S
such that π(p) = x. Then, for any pair of vectors (v, v′) in T (GN=2\S) we can choose
vectors (w, w′) in TS such that π∗w = v and π∗w′ = v′. In this manner the Zamolodchikov
metric can be defined as the map

gCM : T (GN=2\S)⊗2 → R : v ⊗ v′ → gCM(v, v′) = g
(
PrHSw, PrHSw′

)
. (4.45)

This is a well defined metric on GN=2\S and it is equivalent to the prescription we have
given in our example. Importantly, it does not depend on the choice of gauge fixing nor
the invariant subsector used to find the supergravity solution within the full theory.

18In the gauge-fixed supergravity solution of (4.21)–(4.22), this locus corresponds to setting to zero the
marginal deformations, i.e., ϕ = χ = 0.
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5 Final remarks

In the present paper we have initiated a holographic study of new CFT3’s with N =
2, 3, 4 supersymmetry using an effective four-dimensional gauged supergravity approach.
The rich structure of multi-parametric families of supersymmetric AdS4 solutions we have
just started to identify in the half-maximal gauged supergravities with ISO(3)1 × ISO(3)2
gaugings raises some immediate questions.

Perhaps the most obvious question is whether or not the ϕ̃-family of ISO(3)1×ISO(3)2
gaugings of half-maximal supergravity we have presented in sections 2.3 and 2.4 (and,
more ambitiously, its generalisation in appendix A) describes consistent truncations of
ten- or eleven-dimensional supergravity down to four dimensions. In this respect, since
turning on the embedding parameter ϕ̃ (i.e. ϕ̃ 6= ±1 in our parameterisation) only af-
fects the embedding of the non-compact translational generators in the gauge algebra (see
e.g. (2.25)–(2.26)), the family of N = 2 AdS4 solutions we have found may stand a chance of
being upliftable to new (possibly only locally geometric) type II or M-theory backgrounds.
However, it could still happen — as for the ω deformation of the SO(8)-gauged supergrav-
ity [57] — that only very specific values of ϕ̃ enjoy a higher-dimensional interpretation,
the natural ones being ϕ̃ = ±1 and 0. The case ϕ̃ = ±1 is by now known to uplift to
type IIB S-fold backgrounds. Examples are the N = 4 S-fold of [24] and its marginal de-
formations [31, 34, 41]. The case ϕ̃ = 0 remains to be understood. But it would certainly
be disappointing if a supergravity solution like the exotic AdS4 vacuum of [40] with such
a (conjectured but) highly symmetric N = 4 CFT3 dual — together with its marginal
deformations presented in sections 3.6 and 4.5.1 — ended up being in the Swampland.

Let us further comment on the exactly marginal deformation of the exotic N = 4
CFT3 dual to the modulus χ in (4.22) preserving N = 2 supersymmetry. As discussed in
section 3.6.1, turning on χ breaks the original SO(4)R symmetry down to a U(1)R factor
within the Cartan subgroup U(1)R × U(1)F ⊂ SO(4)R. As a result, the whole Cartan
subgroup is not preserved and a geometric interpretation of the modulus χ along the lines
of the axion-like deformations of S-folds seems a priori unplausible within the context of
half-maximal supergravity. However, the situation is more subtle: when setting ϕ̃ = ±1,
the embedding of this solution into maximal supergravity provides an additional flavour
current multiplet A2Ā2[0]01 that accounts for the U(1)F symmetry [34]. In this case, the
U(1)F ⊂ SO(4)R is actually not broken but projected out by the Z2 symmetry truncating
maximal to half-maximal supergravity. Therefore, if a ten- or eleven-dimensional uplift
exists for the AdS4 solution (4.21)–(4.22) at ϕ̃ = 0 (or more generically at ϕ̃ 6= ±1), it is
still possible that some symmetries have been truncated away in the half-maximal effective
description. Needless to say, an uplift (if any) to ten or eleven dimensions is required in
order to settle this question.

The effective four-dimensional gauged supergravity approach adopted in this work
provides us with some guidance in order to guess what the potential higher-dimensional
realisation of the AdS4 solutions could be. Remarkably, amongst the extra quadratic
constraints in (2.8), only those in the (1,462′) irrep of SL(2) × SO(6, 6) are violated in
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the AdS4 solutions with ϕ̃ 6= ±1.19 Assuming (as for the S-folds) a type IIB origin, and
since in a type IIB duality frame the SL(2) factor of the duality group is identified with
S-duality, one possibility is the presence of SL(2)-singlet branes (or bound states) in the
corresponding ten-dimensional backgrounds. It could be interesting to look at possible
uplifts incorporating such branes in a smeared limit. For example, try to add smeared D3-
branes to the S-fold setups previously investigated in the literature. This could shed some
light on how to incorporate sources in S-fold backgrounds. Another possibility is that
the breaking of supersymmetries in the four-dimensional supergravity Lagrangian (from
maximally to half-maximally supersymmetric) is not related to the inclusion of sources
but, instead, it stems from geometry. This would be more in the spirit of the half-maximal
consistent truncations of [60] and, perhaps, some generalised frame could be constructed
for these half-maximal supergravities along the lines of [58] in order to systematically uplift
any four-dimensional solution.

Another interesting line to explore is the possible relation between the AdS4 solutions
of the ISO(3)1 × ISO(3)2 gaugings of half-maximal supergravity and various classes of
type IIB backgrounds of the form AdS4 ×M6 that have been constructed directly in ten
dimensions using different techniques: pure spinor formalism, G-structures, non-abelian
T-duality, . . . (see [61–64] for an incomplete list). Identifying the field theory duals of these
ten-dimensional solutions is a laborious and generically non-systematic task: one first makes
an educated guess for the field theory duals and then runs as many holographic tests as
possible. Thinking along these lines, it would be very interesting to establish whether
or not the general eight-parameter family of ISO(3)1 × ISO(3)2 gaugings of half-maximal
supergravity we have presented in appendix A describes classes of consistent truncations
of type IIB supergravity on M6 = S2 × S2 × Σ with Σ being a Riemann surface. If such a
connection exists and is well established via generalised geometry or extended field theory
techniques, then exploiting the four-dimensional effective description would provide a way
to characterise the CFT3’s dual to such type IIB solutions (presumably related to IR fixed
points of Gaiotto-Hanany-Witten-like brane constructions) without having to work out
their ten-dimensional uplift explicitly. For example, as we have done in this work, the
conformal dimensions of the low lying operators in the dual CFT3’s could be extracted
directly using four-dimensional data, namely, from the mass spectrum of the supergravity
fields in the half-maximal ISO(3)1× ISO(3)2 gauged supergravity. Also the new techniques
for Kaluza-Klein (KK) spectrometry put forward in [65] could be applied to the type IIB
backgrounds of the form AdS4×S2×S2×Σ (see [32, 35, 37, 66] for a study of the spectrum
of KK modes around the type IIB S-folds at ϕ̃ = ±1) upon suitable adjustment of the
techniques to the context of half-maximal supergravity.

Finally, the analysis performed in appendix A shows that the results in the main text
can be straightforwardly generalised to include different embedding parameters ϕ̃1,2 and
c1,2, as well as independent gauge couplings g1,2, for each of the ISO(3)1,2 factors in the
gauge group. In particular, having two independent gauge couplings g1,2 permits to collapse

19The extra quadratic constraints in (2.8) living in the (3,1) irrep are not violated in our half-maximal
supergravity models. These constraints appeared as the four-dimensional incarnation of the SL(2) exten-
sion [58] of the so-called section constraint in double field theory [59].
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or flatten-out one S2 while keeping the other S2 at finite size. This suggests an a priori
much larger structure of supersymmetric AdS4 solutions with new potentially interesting
CFT3 duals. Also going beyond the Z2

2 and U(1)R invariant sectors investigated in this
work could accommodate new families of AdS4 solutions with additional flat directions
dual to new marginal deformations in the dual CFT3’s. These are all open questions and
aspects we plan to continue exploring in the future.
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A ISO(3)× ISO(3) gaugings of half-maximal supergravity

In this appendix we analyse the set of possible embeddings of an ISO(3)1×ISO(3)2 gauging
of half-maximal supergravity of the form

ISO(3)1 × ISO(3)2 ⊂ SL(2)× SO(3, 3)1 × SO(3, 3)2 ⊂ SL(2)× SO(6, 6) . (A.1)

We have attached labels 1 and 2 to keep track of each repeated factor. Following the
notation of [40], and building upon the results of [48], a gauging of this type is totally
encoded in a set of eight embedding matrices [67]. Since SO(3, 3)1 ∼ SL(4)1, the most
general embedding20 of the first ISO(3)1 factor is encoded in four 4× 4 matrices given by

Q
(1)
+ =

(
−a′0 0

0 0× I3

)
, Q̄

(1)
+ =

(
0 0
0 c̃′1 × I3

)
, (A.2)

Q
(1)
− =

(
−b′0 0

0 0× I3

)
, Q̄

(1)
− =

(
0 0
0 d̃′1 × I3

)
, (A.3)

with c̃′1 6= 0. Equivalently, the first ISO(3)1 factor is specified by four embedding tensor
components of the form

f+ābc = c̃′1 εābc , f−abc = −b′0 εabc , f+abc = −a′0 εabc , f−ābc = d̃′1 εābc . (A.4)

Analogously, the second ISO(3)2 factor is encoded in another set of four 4× 4 matrices of
the form

Q
(2)
+ =

(
0 0
0 c̃2 × I3

)
, Q̄

(2)
+ =

(
a3 0
0 0× I3

)
, (A.5)

Q
(2)
− =

(
0 0
0 d̃2 × I3

)
, Q̄

(2)
− =

(
b3 0
0 0× I3

)
, (A.6)

20This is so up to equivalent solutions of the quadratic constraints in (2.7).
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with d̃2 6= 0. The components of the embedding tensor for the second ISO(3)2 factor are
then given by

f−ij̄k̄ = d̃2 εij̄k̄ , f+īj̄k̄ = a3 ε̄ij̄k̄ , f−īj̄k̄ = b3 ε̄ij̄k̄ , f+ij̄k̄ = c̃2 εij̄k̄ . (A.7)

Together, (A.4) and (A.7) account for all the components of the embedding tensor fαMNP

that are activated in the class (A.1) of ISO(3)1 × ISO(3)2 gaugings of half-maximal super-
gravity we investigate in this work.

A.1 Quadratic constraints and algebra structure

The embedding tensor components in (A.4) and (A.7) automatically satisfy the quadratic
constraints of half-maximal supergravity. However, the computation of the additional
constraints in (2.8) for this multi-parameteric family of ISO(3)1 × ISO(3)2 gaugings yields

fαMNP fβ
MNP = 0 and εαβ fα[MNP fβQRS]

∣∣∣
SD

= 0 ⇔

 b′0 c̃2 − a′0 d̃2 = 0

b3 c̃
′
1 − a3 d̃

′
1 = 0

. (A.8)

The antisymmetry of the commutators [TαM , TβN ] = fαMN
P TβP for this general

class of embeddings imposes a set of linear relations between the generators of the form

(c̃′1)2 T−a = d̃′1 c̃
′
1 T+a + (a′0 d̃′1 − b′0 c̃′1)T+ā , c̃′1 T−ā = d̃′1 T+ā , (A.9)

and
(d̃2)2 T+ī = d̃2 c̃2 T−ī + (a3 d̃2 − b3 c̃2)T−i , d̃2 T+i = c̃2 T−i . (A.10)

Choosing the independent generators to be (T+a, T+ā) and (T−i, T−ī), one finds a set of
non-trivial commutation relations of the form

[T+a, T+b ] = c̃′1 εab
c T+c − a′0 εabc̄ T+c̄ ,[

T+a, T+b̄

]
= c̃′1 εab̄

c̄ T+c̄ ,[
T+ā, T+b̄

]
= 0 ,

(A.11)

for the first ISO(3)1 factor in the gauge group and, similarly,[
T−ī, T−j̄

]
= d̃2 ε̄ij̄

k̄ T−k̄ + b3 ε̄ij̄
k T−k ,[

T−ī, T−j
]

= d̃2 ε̄ij
k T−k ,

[T−i, T−j ] = 0 ,

(A.12)

for the second ISO(3)2 factor. Note that, for each of the ISO(3)1,2 factors, there are two
parameters entering the commutation relations in (A.11) and (A.12) and two additional
parameters specifying the linear combinations of generators in (A.9) and (A.10).
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A.2 N = 1 superpotentials

It is also interesting to investigate the dynamics of the seven moduli fields zI , I = 1, . . . , 7,
in the Z2

2-invariant sector of half-maximal supergravity coupled to six vector multiplets.
This sector is described by the N = 1 supergravity multiplet coupled to seven chiral
superfields with Kähler potential

K = −
7∑
I=1

log[−i(zI − z̄I)] , (A.13)

and a superpotential given by

W =
[
− a3 + a′0 z4z5z6 − c̃2 (z1z4 + z2z5 + z3z6) + c̃′1 (z1z5z6 + z2z4z6 + z3z4z5)

]
+
[
b3 − b′0 z4z5z6 + d̃2 (z1z4 + z2z5 + z3z6)− d̃′1 (z1z5z6 + z2z4z6 + z3z4z5)

]
z7 .

(A.14)
Note that the eight gauging parameters in (A.4) and (A.7) enter the superpotential of the
model.

In this work we have made a simple choice of gauging parameters. More concretely, we
have chosen the same embedding for the two ISO(3)1,2 factors in the gauging. This choice
drastically simplifies the analysis of supersymmetric vacua. These vacua satisfy the set of
supersymmetric (or F-flatness) conditions

FI ≡ DIW = ∂IW + (∂IK)W = 0 , (A.15)

with I = 1, . . . 7.

A.3 Back to our model

The specific model discussed in section 2.3 corresponds to a simple fixing of the gauging
parameters in (A.4) of the form d̃′1 = c̃2 = 0 and

c̃′1 = 2
√

2 g√
1+ϕ̃2

, −b′0 = ±2
√

2 g c ϕ̃√
1+ϕ̃2

, −a′0 = −2
√

2 g c ϕ̃2−1
ϕ̃2+1 ,

d̃2 = 2
√

2 g√
1+ϕ̃2

, a3 = ±2
√

2 g c ϕ̃√
1+ϕ̃2

, b3 = −2
√

2 g c ϕ̃2−1
ϕ̃2+1 .

(A.16)

Plugging (A.16) into (A.14) yields a superpotential

W = 2
√

2 g√
1 + ϕ̃2

[
z1z5z6 + z2z4z6 + z3z4z5 + (z1z4 + z2z5 + z3z6) z7

]
− 2

√
2 g√

1 + ϕ̃2 c

[
±ϕ̃ (1− z4z5z6z7) + 1− ϕ̃2√

1 + ϕ̃2 (z4z5z6 − z7)
]
.

(A.17)

We have verified that the AdS4 solutions in (3.10) solve the F-flatness equations in (A.15)
constructed from (A.17).

Lastly, as a further check of consistency, setting ϕ̃2 = 1 recovers the maximal theory.
Namely, the superpotential in (A.17) reduces to

W = 2 g
[
z1z5z6 + z2z4z6 + z3z4z5 + (z1z4 + z2z5 + z3z6) z7

]
± 2 g c (1− z4z5z6z7) , (A.18)

in agreement with the result of [31].
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