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1 Introduction

To our understanding of the AdS/CFT correspondence, [1], topological twisting has been
essential in field theory, [2–4], and also in supergravity, [5]. Recently, new examples of the
AdS/CFT correspondence beyond the topological twisting have been proposed. The first
kind of such AdS solutions are from branes wrapped on a spindle which is topologically
a two-sphere with orbifold singularities at the poles. There are AdS solutions from D3-
branes, [6–8], M2-branes, [9, 10], and M5-branes, [11], wrapped on a spindle. The solutions
from D3-branes were previously found in [12–16] in various contexts, but the interpretation
as a spindle solution and the AdS/CFT correspondence are newly proposed.

The second kind of such AdS solutions are from branes wrapped on a topological disk
which is a disk with non-trivial U(1) holonomies at the boundary. The AdS5 solutions
from M5-branes wrapped on a topological disk was found in [17, 18]. The dual field theory
was proposed to be the Argyres-Douglas theory, [19], from 6d N = (2, 0) theories on a
sphere with irregular punctures. The construction was soon applied to AdS3 solutions from
D3-branes and M5-branes in [20] and AdS2 solutions from M2-branes in [21]. See also [22]
and [23] for spindle and disk solutions from D3- and M2-branes. To recapitulate, topological
dics and spindle are not manifolds with constant curvature and the supersymmetry is not
realized by topological twist.

In this paper, we construct the D4-D8 brane system wrapped on a topological disk. Five-
dimensional superconformal field theories were first discovered in [24, 25] and their gravity
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dual was proposed to be the D4-D8 brane system, [26], and found to be supersymmetric
AdS6 ×w S4 solution, [27], of massive type IIA supergravity, [28]. The solution is also realized
as the supersymmetric fixed point, [29], of F (4) gauged supergravity in six dimensions, [30].

From topological twisting in F (4) gauged supergravity, D4-D8-brane system wrapped
on supersymmetric two- and three-cycles was studied in [31, 32] and also from massive
type IIA supergravity in [33]. The D4-D8-brane system wrapped on a supersymmetric
four-cycle provides the horizon geometry of supersymmetric AdS6 black holes, [34], and the
Bekenstein-Hawking entropy was shown to match the field theory calculation of topologically
twisted index, [35, 36]. See [37] also for non-supersymmetric solutions. So far, solutions were
obtained from D4-D8-branes wrapped on supersymmetric cycles with constant curvature.

In this paper, we study D4-D8-branes wrapped on a disk with non-trivial holonomy at
the boundary. In particular, we construct supersymmetric AdS4 solutions of F (4) gauged
supergravity and uplift the solutions to massive type IIA supergravity. The dual field
theories are 3d N = 1 SCFTs that arise from the twist compactification of 5d N = 1
USp(2N) superconformal gauge theories, [24, 25], on a topological disk. We calculate the
holographic free energy of dual 3d superconformal field theories.

In section 2, we review F (4) gauged supergravity in six dimensions. In section 3, we
construct supersymmetric AdS4 solutions and uplift the solutions to massive type IIA
supergravity. In section 4, we conclude and discuss some open questions. The equations of
motion are relegated in appendix A. In appendix B we derive the metric of D4-D8-branes
smeared over four directions.

Note added. Some time after this work, the spindle solutions from D4-branes are obtained
in [38, 39]. In appendix C, we show that the topological disk solution we obtain, in fact,
matches the local solution of spindle in [38].

2 F (4) gauged supergravity in six dimensions

We review SU(2)×U(1)-gauged N = 4 supergravity in six dimensions [30]. The bosonic field
content consists of the metric, gµν , a real scalar, φ, an SU(2) gauge field, AIµ, I = 1, 2, 3, a
U(1) gauge field, Aµ, and a two-form gauge potential, Bµν . The fermionic field content is
gravitinos, ψµi, and dilatinos, χi, i = 1, 2. The field strengths are defined by

Fµν = ∂µAν − ∂νAµ ,
F Iµν = ∂µA

I
ν − ∂νAIµ + gεIJKAJµA

K
ν ,

Gµνρ = 3∂[µBνρ] ,

Hµν = Fµν +mBµν . (2.1)

The bosonic Lagrangian is given by

e−1L =− 1
4R+ 1

2∂µφ∂
µφ+ 1

8
(
g2e
√

2φ + 4gme−
√

2φ −m2e−3
√

2φ
)

− 1
4e
−
√

2φ
(
HµνHµν + F IµνF

Iµν
)

+ 1
12e

2
√

2φGµνρG
µνρ

− 1
8ε

µνρστκBµν

(
FρσFτκ +mBρσFτκ + 1

3m
2BρσBτκ + F IρσF

I
τκ

)
, (2.2)
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where g is the SU(2) gauge coupling constant and m is the mass of the two-form gauge
potential. The supersymmetry transformations of the fermionic fields are

δψµi =∇µεi + gAIµ(T I)i jεj −
1

8
√

2

(
ge
− φ√

2 +me
− 3φ√

2

)
γµγ7εi

− 1
8
√

2
e
− φ√

2 (Fνλ +mBνλ)
(
γµ

νλ − 6δµ νγλ
)
εi

− 1
4
√

2
e
− φ√

2F Iνλ

(
γµ

νλ − 6δµ νγλ
)
γ7(T I)i jεj

− 1
24e

√
2φGνλργ7γ

νλργµεi , (2.3)

δχi = 1√
2
γµ∂µφεi + 1

4
√

2

(
ge
− φ√

2 − 3me−
3φ√

2

)
γ7εi

+ 1
4
√

2
e
− φ√

2 (Fµν +mBµν) γµνεi

+ 1
2
√

2
e
− φ√

2F Iµνγ
µνγ7(T I)i jεj

− 1
12e

√
2φGµνλγ7γ

µνλεi , (2.4)

where T I , I = 1, 2, 3, are the SU(2) left-invariant one-forms,

T I = − i2σ
I . (2.5)

Mostly minus signature is employed. For g > 0 and m > 0 the theory admits a supersym-
metric AdS6 fixed point when g = 3m. At the supersymmetric AdS6 fixed point, all the
fields are vanishing except the AdS6 metric.

3 Supersymmetric AdS4 solutions

3.1 Supersymmetry equations

We consider the background,

ds2 = f(r)ds2
AdS4 − g1(r)dr2 − g2(r)dθ2 , (3.1)

with the gauge fields,
A1 = A2 = 0 , A3 = Aθ(r)dθ , (3.2)

and the scalar field, φ = φ(r). The gamma matrices are given by

γα = ρα ⊗ I4 , γ r̂ = iρ∗ ⊗ σ1 , γ θ̂ = iρ∗ ⊗ σ2 , (3.3)

where α = 0, 1, 2, 3 are four-dimensional flat indices and the hatted indices are flat
indiced for the corresponding coordinates. ρα are four-dimensional gamma matrices with
{ρα, ρβ} = 2ηαβ and σ1,2,3 are the Pauli matrices. The four- and six-dimensional chirality
matrices are defined to be, respectively,

ρ∗ = iρ0ρ1ρ2ρ3 , γ7 = ±ρ∗ ⊗ σ3 . (3.4)
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The spinor is given by
εi = niϑ⊗ η , (3.5)

where ϑ is a Killing spinor on AdS4 and η = η(r, θ). The Killing spinors satisfy

∇AdS4
α ϑ = 1

2sραρ∗ϑ , (3.6)

where s = ±1.
The supersymmetry equations are obtained by setting the supersymmetry variations of

the fermionic fields to zero. From the supersymmetry variations, we obtain

0 =± s i2γ
r̂θ̂γ7εi + 1

4
f ′

f1/2g
1/2
1

γ r̂εi −
1

8
√

2

(
ge

φ√
2 +me

− 3φ√
2

)
f1/2γ7εi

− 1
4
√

2
e
− φ√

2A′θ
f1/2

g
1/2
1 g

1/2
2

γ r̂θ̂γ72
(
T 3
)
i

jεj ,

0 = ∂rεi + 1
8
√

2

(
ge

φ√
2 +me

− 3φ√
2

)
g

1/2
1 γ r̂γ7εi + 3

4
√

2
e
− φ√

2A′θ
1
g

1/2
2

γ θ̂γ72
(
T 3
)
i

jεj ,

0 = ∂θεi + 1
2gAθ2

(
T 3
)
i

jεj + 1
4

g′2

g
1/2
1 g

1/2
2

γ r̂θ̂εi + 1
8
√

2

(
ge

φ√
2 +me

− 3φ√
2

)
g

1/2
2 γ θ̂γ7εi

− 3
4
√

2
e
− φ√

2A′θ
1
g

1/2
1

γ r̂γ72
(
T 3
)
i

jεj ,

0 = 1√
2

1
g

1/2
1

φ′γ r̂εi + 1
4
√

2

(
ge

φ√
2 − 3me−

3φ√
2

)
γ7εi + 1

2
√

2
e
− φ√

2A′θ
1

g
1/2
1 g

1/2
2

γ r̂θ̂γ72
(
T 3
)
i

jεj ,

(3.7)

where the first three and the last equations are from the spin-3/2 and spin-1/2 field variations,
respectively. By multiplying suitable functions and gamma matrices and adding the last
equation to the first three equations, we obtain

0 =±s i2γ
r̂θ̂γ7εi+

1
2g
−1/2
1 f1/2

[1
2
f ′

f
+ 1√

2
φ′
]
γ r̂εi−

m

2
√

2
e
− 3φ√

2 f1/2γ7εi ,

0 =∂rεi+
1

2
√

2
φ′εi+

m

2
√

2
e
− 3φ√

2 g
1/2
1 γ r̂γ7εi+

1√
2
g
−1/2
2 e

− φ√
2A′θγ

θ̂2
(
T 3
)
i

jεj ,

0 =∂θεi+
1
2gAθ2

(
T 3
)
i

jεj−
1√
2
g
−1/2
1 e

− φ√
2A′θγ

r̂2
(
T 3
)
i

jεj+
1
2g
−1/2
1 g

1/2
2

[1
2
g′2
g2

+ 1√
2
φ′
]
γ r̂θ̂εi

+ m

2
√

2
e
− 3φ√

2 g
1/2
2 γ θ̂γ7εi ,

0 = 1
4
√

2

(
ge

φ√
2−3me−

3φ√
2

)
γ7εi+

1√
2
φ′g
−1/2
1 γ r̂εi+

1
2
√

2
e
− φ√

2A′θg
−1/2
1 g

−1/2
2 γ r̂θ̂γ72

(
T 3
)
i

jεj .

(3.8)

The spinor is supposed to have a charge under the U(1)θ isometry,

η(r, θ) = einθη̂(r) , (3.9)
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where n is a constant. It shows up in the supersymmetry equations in the form of(
−i∂θ + 1

2Aθ
)
η =

(
n+ 1

2Aθ
)
η which is invariant under

A3 7→ A3 − 2α0dθ , η 7→ eiα0θη , (3.10)

where α0 is a constant. We also define

1
2Âθ = n+ 1

2Aθ . (3.11)

We solve the equation of motion for the gauge fields and obtain

A′θ = b e
√

2φg
1/2
1 g

1/2
2 f−2 , (3.12)

where b is a constant. Employing the expressions we discussed in (3.8) beside the second
equation, we finally obtain the supersymmetry equations,

0 = −isf−1/2η + g
−1/2
1

[1
2
f ′

f
+ 1√

2
φ′
] (
σ1η

)
± i m√

2
e
− 3φ√

2
(
σ3η

)
,

0 = gg
−1/2
2 Âθ

(
σ1η

)
∓ i
√

2f−2e
φ√

2 b
(
σ3η

)
+ g
−1/2
1

[1
2
g′2
g2

+ 1√
2
φ′
] (
iσ2η

)
± i m√

2
e
− 3φ√

2 η ,

0 = ∓i 1
2
√

2

(
ge

φ√
2 − 3me−

3φ√
2

)
η +
√

2g−1/2
1 φ′

(
iσ2η

)
∓ i 1√

2
f−2e

φ√
2 b
(
σ3η

)
. (3.13)

The supersymmetry equations are in the form of M (i)η = 0, i = 1, 2, 3, where M (i) are
three 2× 2 matrices, as we follow [17, 18],

M (i) = X
(i)
0 I2 +X

(i)
1 σ1 +X

(i)
2

(
iσ2
)

+X
(i)
3 σ3 . (3.14)

We rearrange the matrices to introduce 2× 2 matrices,

Aij = det
(
v(i)|w(j)

)
, Bij = det

(
v(i)|v(j)

)
, Cij = det

(
w(i)|w(j)

)
, (3.15)

from the column vectors of

v(i) =
(
X

(i)
1 +X

(i)
2

−X(i)
0 −X

(i)
3

)
, w(i) =

(
X

(i)
0 −X

(i)
3

−X(i)
1 +X

(i)
2

)
. (3.16)

From the vanishing of Aij , Bij and Cij , necessary conditions for non-trivial solutions
are obtained. From Aii = 0, we find

0 = − 1
f
− 1

4g1

(
f ′

f
+
√

2φ′
)2

+ m2e−3
√

2φ

2 ,

0 = 2 b2 e
√

2φ

f4 + 1
4g1

(
g′2
g2

+
√

2φ′
)2
− m2e−3

√
2φ

2 − g2Â2
θ

g2
,

0 = 2 (φ′)2

g1
+ b2e

√
2φ

2f4 − 1
8

(
g e

φ√
2 − 3me

− 3φ√
2

)2
. (3.17)

– 5 –



J
H
E
P
0
6
(
2
0
2
3
)
0
0
8

From Aij +Aji = 0, we find

0 = −2 bme
− 2φ√

2

f2 −
√

2sme
− 3φ√

2
√
f

− gÂθ√
g1
√
g2

(
f ′

f
+
√

2φ′
)
,

0 = −bme
− 2φ√

2

f2 + s√
2
√
f

(
g e

φ√
2 − 3me

− 3φ√
2

)
,

0 = 2 b2 e
2φ√

2

f4 +
√

2φ′
g1

(
g′2
g2

+
√

2φ′
)

+ me
− 3φ√

2

2

(
g e

φ√
2 − 3me

− 3φ√
2

)
. (3.18)

From Aij −Aji = 0, we find

0 = 1
2g1

(
f ′

f
+
√

2φ′
)(

g′2
g2

+
√

2φ′
)
− 2
√

2s b e
φ√

2

f5/2 −m2e−3
√

2φ ,

0 =
√

2s b e
φ√

2

f5/2 −
√

2
g1
φ′
(
f ′

f
+
√

2φ′
)
− m

2 e
− 3φ√

2

(
g e

φ√
2 − 3me

− 3φ√
2

)
,

0 = −mbe−
√

2φ

f2 − b e
φ√

2

f2

(
g e

φ√
2 − 3me

− 3φ√
2

)
+ 2
√

2φ′ g Âθ√
g1
√
g2

. (3.19)

From Bij + Cij = 0, we find

0 = −
√

2b e
φ√

2

f2√g1

(
f ′

f
+
√

2φ′
)
− s√

f
√
g1

(
g′2
g2

+
√

2φ′
)
−
√

2e−
3φ√

2 gm Âθ√
g2

,

0 = b e
φ√

2
√

2f2√g1

(
f ′

f
+
√

2φ′
)

+ 4 s φ′√
2
√
f
√
g1
,

0 = − 1
2
√

2√g1

(
g′2
g2

+
√

2φ′
)(

g e
φ√

2 − 3me
− 3φ√

2

)
− 2me

− 3φ√
2φ′

√
g1

−
√

2b g e
φ√

2 Âθ
f2√g2

. (3.20)

From Bij − Cij = 0, we find

0 = me
− 3φ√

2
√

2√g1

(
f ′

f
+
√

2φ′
)
− me

− 3φ√
2

√
2√g1

(
g′2
g2

+
√

2φ′
)
− 2s g Âθ√

f
√
g2
,

0 = 1
2
√

2√g1

(
f ′

f
+
√

2φ′
)(

g e
φ√

2 − 3me
− 3φ√

2

)
+ 2me

− 3φ√
2φ′

√
g1

,

0 = − b e
φ√

2
√

2f2√g1

(
g′2
g2

+
√

2φ′
)

+ 4b e
φ√

2φ′

f2√g1
− gÂθ√

2√g1

(
g e

φ√
2 − 3me

− 3φ√
2

)
. (3.21)

3.2 Supersymmetric solutions

From the second equation of (3.18), we obtain

f = 21/3b2/3m2/3

e
4φ

3
√

2

(
s

(
ge

φ√
2 − 3me−

3φ√
2

))2/3 . (3.22)
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Then, from the third equation of (3.17) with (3.22), we obtain

g1 = 16 21/3b2/3m8/3 (φ′)2(
s

(
ge

φ√
2 − 3me−

3φ√
2

))2/3
(

21/3b2/3m8/3 − 2e
22φ
3
√

2

(
s

(
ge

φ√
2 − 3me−

3φ√
2

))2/3
) .

(3.23)
From the third equation of (3.18), we find an expression for √g1

√
g2,

√
g1
√
g2 = 2

√
2gf2Âθφ

′

b e
φ√

2

(
g e

φ√
2 − 2me−

3φ√
2

) . (3.24)

Also from (3.12), we find another expression for √g1
√
g2,

√
g1
√
g2 = e−

√
2φf2Â′θ
b

. (3.25)

Equating (3.24) and (3.25), we find an ordinary differential equation for Âθ and it gives

Âθ = Ce
3φ√

2

(
g e

φ√
2 − 2me−

3φ√
2

)
, (3.26)

where C is a constant. From (3.11), we find

Aθ = Ce
3φ√

2

(
g e

φ√
2 − 2me−

3φ√
2

)
+ n . (3.27)

Then, from (3.24) or (3.25), we obtain

g2 =
C2g2

(
21/3b2/3m8/3 − 2e

22φ
3
√

2

(
s

(
ge

φ√
2 − 3me−

3φ√
2

))2/3
)

e
4φ

3
√

2

(
s

(
ge

φ√
2 − 3me−

3φ√
2

))2/3 . (3.28)

Therefore, we have determined all functions in terms of the scalar field, φ(r), and its
derivative. The solution satisfies all the supersymmetry equations in (3.17) to (3.21) and
the equations motion which we present in appendix A. We can determine the scalar field by
fixing the ambiguity in reparametrization of r due to the covariance of the supersymmetry
equations,

φ(r) =
√

2 log r , (3.29)

where r > 0.
Finally, let us summarize the solution. The metric is given by

ds2 = B r2/3

m2 (s (gr4 − 3m))2/3

[
ds2
AdS4 −

32m2r10/3

h(r) (s (gr4 − 3m))4/3dr
2 − C

2g2m2h(r)
B

dθ2
]
,

(3.30)
where we define

h(r) = B − 2r16/3
(
s
(
gr4 − 3m

))2/3
, (3.31)
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Figure 1. A representative solution with s = −1, b = 0.1, C = 1 and g = 3m = 3. The solution is
regular in the range of 0 < r < r1 = 0.610.

with
B = 21/3b2/3m8/3 . (3.32)

The gauge field is given by
Âθ = C

(
gr4 − 2m

)
. (3.33)

The metric can also be written as

ds2 = B r2/3

m2 (s (gr4 − 3m))2/3ds
2
AdS4 −

32B r4

h(r) (s (gr4 − 3m))2dr
2 − C2g2r2/3h(r)

(s (gr4 − 3m))2/3dθ
2 .

(3.34)
Now we consider the range of r for regular solutions, i.e., the metric functions are

positive definite and the scalar fields are real. We find regular solutions when we have

0 < r < r1 , (3.35)

where

r4
1 = m

g

(
1 +X +X−1

)
,

X ≡ 2−
2
3 e−

2πi
3

(
4 + x+

√
x (8 + x)

) 1
3
,

x ≡ bg2m, (3.36)

and r1 is determined from h(r1) = 0. We plot a representative solution with s = −1, b = 0.1,
C = 1 and g = 3m = 3 in figure 1. The metric on the space spanned by Σ(r, θ) in (3.30)
has a topology of disk with the origin at r = r1 and the boundary at r = 0.

Near r → 0 the AdS4 warp factor vanishes and it is a curvature singularity of the
metric,

ds2 ≈ Br2/3

32/3m8/3

[
ds2
AdS4 −

32m2/3r10/3

34/3B
dr2 − C2g2m2dθ2

]
. (3.37)

This singularity is resolved when the solution is uplifted to massive type IIA supergravity.
Approaching r = r1, the metric becomes to be

ds2 = B r2/3

m2 (s (gr4 − 3m))2/3

[
ds2
AdS4 −

128m2r10/3 [dρ2 + C2E2(b; g,m)ρ2dθ2]
−h′(r1) (s (gr4 − 3m))4/3

]
, (3.38)
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where we introduced a new parametrization of coordinate, ρ2 = r1 − r. The function,
E(b; g,m), is given by

E(b; g,m) = 21/3g

b1/3m4/3 r
8/3
1

(
gr4

1 − 2m
) (
gr4

1 − 3m
)1/3

. (3.39)

Then, the ρ-θ surface is locally an R2/Zl orbifold if we set

C = 1
lE(b; g,m) , (3.40)

where l = 1, 2, 3, . . . .
Employing the Gauss-Bonnet theorem, we calculate the Euler characteristic of Σ, the

r-θ surface, from (3.30). The boundary at r = 0 is a geodesic and thus has vanishing
geodesic curvature. The only contribution to the Euler characteristic is

χ (Σ) = 1
4π

∫
Σ
RΣvolΣ = 2π

4π
24/3Cg
b1/3m4/3 r

8/3
1

(
gr4

1 − 2m
) (
gr4

1 − 3m
)1/3

= CE(b; g,m) = 1
l
,

(3.41)
where 0 < θ < 2π. This result is natural for a disk in an R2/Zl orbifold centered at r = r1
with g = 3m.

3.3 Uplift to massive type IIA supergravity

We review the uplift formula of F (4) gauged supergravity to massive type IIA supergrav-
ity, [29]. We present the uplift formula in our conventions of [30].1 The non-trivial fields
are the metric, the dilaton, and the four-form flux, respectively,

ds2
10 = X1/8 sin1/12 ξ

(
∆3/8ds2

6 + 8
g2 ∆3/8X2dξ2 + 2

g2
cos2 ξ

∆5/8X
ds2
S̃3

)
, (3.42)

eΦ = ∆1/4

X5/4 sin5/6 ξ
, (3.43)

F(0) = m = g

3 , (3.44)

F(4) = −4
√

2
3

U sin1/3 ξ cos3 ξ

g3∆2 dξ ∧ volS̃3 − 8
√

2sin4/3 ξ cos4 ξ

g3∆2X3 dX ∧ volS̃3

+ 8√
2

sin1/3 ξ cos ξ
g2 F I ∧ hI ∧ dξ − 2√

2
sin4/3 ξ cos2 ξ

g2∆X3 F I ∧ hJ ∧ hKεIJK . (3.45)

1In contrast to [30], mostly plus signature is employed in [29]. The couplings and fields in [29] are related
to the ones of [30] by

g = 2g̃ , X = e
− φ̃

2
√

2 = e
φ√

2 ,

AI
µ = 1

2 ÃI
µ , Aµ = 1

2 Ãµ , Bµν = 1
2 B̃µν ,

where the tilded ones are of [29]. We will switch the solution to mostly plus signature, but keep following
the normalization of [30].
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We employ the metric and the volume form on the gauged three-sphere by

ds2
S̃3 =

3∑
I=1

(
σI − gAI

)2
,

volS̃3 = h1 ∧ h2 ∧ h3 , (3.46)

where

hI = σI − gAI , (3.47)

and σI , I = 1, 2, 3, are the SU(2) left-invariant one-forms which satisfy

dσI = −1
2εIJKσ

J ∧ σK . (3.48)

A choice of the left-invariant one-forms is

σ1 = − sinα2 cosα3dα1 + sinα3dα2 ,

σ2 = sinα2 sinα3dα1 + cosα3dα2 ,

σ3 = cosα2dα1 + dα3 . (3.49)

We also defined quantities,

X = e
φ√

2 ,

∆ = X cos2 ξ +X−3 sin2 ξ ,

U = X−6 sin2 ξ − 3X2 cos2 ξ + 4X−2 cos2 ξ − 6X−2 . (3.50)

For our solutions, we have X = r. In particular, the metric can be written by

ds2
10 = B∆3/8r19/24 sin1/12 ξ

m2 (s (gr4 − 3m))2/3

[
ds2
AdS4 + 32m2r10/3

h (s (gr4 − 3m))4/3dr
2 + C

2g2m2h

B
dθ2

+ 8m2r2 (s (gr4 − 3m
))2/3

B g2r2/3 dξ2 + 2m2 cos2 ξ
(
s
(
gr4 − 3m

))2/3
B g2r5/3∆

ds2
S̃3

]
, (3.51)

where we have
∆ = r cos2 ξ + r−3 sin2 ξ . (3.52)

3.4 Uplifted metric

The six-dimensional internal space of the uplifted metric is an S1
θ × S3 fibration over the

2d base space, B2, of (r, ξ). The 2d base space is a rectangle of (r, ξ) over [0, r1)×
[
0, π2

]
.

See figure 2. We explain the geometry of the internal space by three regions of the 2d base
space, B2.

• Region I: The side of P1P2.

• Region II: The sides of P2P3 and P3P4.

• Region III: The side of P1P4.
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0

monopole

P1 P2

P3P4

⇠

⇡

2

r1
r

Q2

Q1

Smeared

D4-branes

L = 0

L
=

l

Figure 2. The two-dimensional base space, B2, spanned by r and ξ.

Region I. On the side of ξ = 0, unlike the D3-, M2-, and M5-branes wrapped on a
topological disk, there is no circle that shrinks.

Region II: Monopole. We break
(
σ3 − gA3)2 in S3 and complete the square of dθ, [18,

23], to obtain the metric of

ds2
10 = B∆3/8r19/24 sin1/12 ξ

m2 (s (gr4 − 3m))2/3

[
ds2
AdS4 + 32m2r10/3

h (s (gr4 − 3m))4/3dr
2

+ 8m2r2 (s (gr4 − 3m
))2/3

B g2r2/3 dξ2 + 2m2 cos2 ξ
(
s
(
gr4 − 3m

))2/3
B g2r5/3∆

(
(σ1)2 + (σ2)2

)
+R2

θ

(
dθ − gLσ3

)2
+R2

σ3(σ3)2
]
. (3.53)

The metric functions are defined to be

R2
θ =
C2m2

(
g4∆hr5/3 + 2

(
gr4 − 2m

)2 (
s
(
gr4 − 3m

))2/3 cos2 ξ
)

Bg2∆r4/3 ,

R2
σ3 = 2g2m2h

(
s
(
gr4 − 3m

))2/3 cos2 ξ

B
(
g4∆hr5/3 + 2 (gr4 − 2m)2 (s (gr4 − 3m))2/3 cos2 ξ

) ,
L = 2

(
gr4 − 2m

)2 (
s
(
gr4 − 3m

))2/3 cos2 ξ

g C
(
g4∆hr5/3 + 2 (gr4 − 2m)2 (s (gr4 − 3m))2/3 cos2 ξ

) . (3.54)

The function, L(r, ξ), is piecewise constant along the sides of r = r1 and ξ = π
2 of the

2d base, B2,
L

(
r,
π

2

)
= 0 , L (r1, ξ) = 1

CE(b; g,m) = l . (3.55)

The jump in L at the corner, (r, ξ) =
(
r1,

π
2
)
, indicates the existence of a monopole source

for the Dθ fibration. Due to the complexity of the expressions, we were not able to take
the r → r1 and ξ → π

2 limit to obtain the metric of the monopole.
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Region III: Smeared D4-D8-branes. The singularity at r → 0 in the warp factor of
five-dimensional metric, (3.37), has been resolved in the uplifted metric, (3.51). On the
other hand, there is a singularity at (r → 0, sin ξ → 0) and we consider this singularity.
We first transform the metric from Einstein frame to string frame, ds2

string = eΦ/2ds2
Einstein.

Then, in the limit, the metric asymptotes to

ds2
string ≈

B

32/3m8/13 r
−4/3 sin2/3 ξ

[
ds2
AdS4 + g2m2C2dθ2

]
+ 8
g2 sin2/3 ξ

[
dξ2 + cot2 ξ

4 ds2
S̃3

]
+ 32

9m2 r
2 sin2/3 ξdr2 . (3.56)

The metric implies the smeared D4-D8-brane sources. The D4-D8-branes are

• extended along the AdS4 and θ directions;

• localized at the center of r direction;

• smeared along the ξ and S̃3 directions.

This matches the metric of D4-D8-branes smeared over four directions which can be
obtained by following [40]. We present the derivation of metric for smeared D4-D8-branes
in appendix B.2

Lastly, we briefly present the comparison of our geometry with the geometry of wrapped
M5-branes in [17, 18]. The overall geometries are given by

Wrapped D4-branes : AdS4 × ∅ × S1
θ × S3 × [r, ξ] ,

Wrapped M5-branes : AdS5 × S2 × S1
z × S1

φ(Dφ)× [w, µ] , (3.57)

where ∅ is empty and we denote the gauged coordinates with D, e.g., Dφ. For each metric,
we presented the factors in the same order so that the corresponding factors are easily
found.

3.5 Flux quantization

In order to properly quantize the flux fields in massive type IIA supergravity, we rescale
the fields with a positive parameter, λ, [38],

dŝ2
string = λ2ds2

string , eΦ̂ = λ2eΦ , B̂(2) = λ2B(2) ,

F̂(0) = λ−3F(0) , Ĉ(n−1) = λn−3C(n−1) , (3.58)

where the metric is in the string frame and n = 2, 4. Under the transformation the equations
of motion are invariant. As there is only one free parameter, g = m/3, and two constraints
from the quantizations of F(0) and F(4), the additional parameter, λ, is required. For the
convenience of notation, we will remove the hat on the fields from now on.

The quantization condition on the Romans mass, F(0) = g
3λ3 , is given by

(2πls)F(0) ≡ n0 ∈ Z , (3.59)

where n0 = 8−Nf and Nf is the number of D8-branes.
2We would like to thank Hyojoong Kim for very helpful comments on this limit.
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We consider the flux quantization condition for the four-form flux. The integral of the
four-form flux over any four-cycle in the internal space is an integer, see, e.g., [33],

1
(2πls)3

∫
M4

F(4) ∈ Z , (3.60)

where ls is the string length.
First, we consider the F(4) ξα1α2α3 component of the four-form flux and we obtain

1
(2πls)3

∫
F(4) ξα1α2α3 = 1

(2πls)3

∫ (
−λ4
√

2
3

U sin1/3 ξ cos3 ξ

g2∆2

)
dξ∧vol

S̃3 = 3λ
2
√

2πl3sg3 ≡ N ,

(3.61)
where volS̃3 = 2π2 and N ∈ N is the number of D4-D8-branes wrapping the two-dimensional
manifold, Σ. This integration contour corresponds to the interval, Q1Q2 in figure 2.

Second, we consider the F(4) rθα3ξ component of the four-form flux and we obtain

1
(2πls)3

∫
F(4) rθα3ξ = 1

(2πls)3

∫
λ

8√
2

sin1/3 ξ cos ξ
g2 F I ∧ dα3 ∧ dξ = 3λCr4

1√
2πl3sg

. (3.62)

Plugging C from (3.40) and ls from (3.61), we obtain

1
(2πls)3

∫
F(4) rθα3ξ = N

l

2g2r4
1

E(b; g,m) ≡ K (3.63)

where K ∈ Z is another integer.
From (3.59) and (3.61), we determine

g8 = 1
(2πls)8

144
√

2π6

N3n0
, λ8 = 2

√
2π2

9Nn3
0
. (3.64)

By eliminating E(b) from the constraints, (3.40) and (3.63), and with the expression of
r1(b) in (3.36), we obtain3

b = K2 (K − 6gmCN)
4g2m (gmCN)3 , (3.65)

and we also find
r1(b)4 = K

2g2CN
. (3.66)

Then, by plugging r1(b), (3.66), in (3.40) with the expression of E(b) in (3.39), we also find
another expression for b,

b = K2l3 (K − 6gmCN) (K − 4gmCN)3

32g5m4C3N6 . (3.67)

Finally, identifying (3.65) and (3.67), we can solve for C and then for b in terms of the
quantum numbers, N and K,

C = Kl − 2N
4gmNl , b = −8K2l2 (Kl − 6N)

g2m (Kl − 2N)3 . (3.68)
3We are very happy to acknowledge an anonymous referee who first derived (3.65) and encouraged us to

find explicit expressions of C and b in terms of the quantum numbers, N and K.
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3.6 Holographic free energy

Now we calculate the holographic free energy of dual 3d SCFTs. Consider the metric of the
form,

ds2
10 = e2A

(
ds2
AdS4 + ds2

M6

)
, (3.69)

in the Einstein frame. The formula for holographic free energy is given in e.g., [33],

F = 16π3λ4

(2πls)8

∫
M6

e8A−2ΦvolM6 , (3.70)

where the ten-dimensional metric is in the string frame, ds2
string = eΦ/2ds2

Einstein. Employing
the formula, we find

F = 16π3λ4

(2πls)8

∫ 32
√

2B3/2Cr3 cos3 ξ sin1/3 ξ

g3m2 (s (gr4 − 3m))2 volS̃3dr dθ dξ

= 16π3λ4

(2πls)8

[
36 b Cm2

5g4 (s (gr4 − 3m))

]rmax

rmin

2π 2π2 , (3.71)

where we have 0 < θ < 2π, 0 < ξ < π
2 , and volS̃3 = 2π2. For the solutions in (3.35) with

rmin = 0 and rmax = r1, we obtain the holographic free energy,

F = 3λ4

5π2l8s

b Cmr4
1

g3 (gr4
1 − 3m

) = 64 21/4πK3N3/2l2

15
√

8−Nf (Kl − 2N)2 , (3.72)

where we used (3.68). If we set K ∼ N , the free energy scales as F ∼ N5/2 as the free
energy of 5d SCFTs in [24, 25]. Even though the uplifted solutions have singularities, we
obtain a well-defined finite result for free energy.

4 Conclusions

Employing the method applied to M5-branes recently by [17, 18], we constructed super-
symmetric AdS4 solutions from D4-D8-branes wrapped on a two-dimensional manifold
with non-constant curvature. We uplifted the solutions to massive type IIA supergrav-
ity and calculated the holographic free energy of dual three-dimensional superconformal
field theories.

The first natural question would be to identify the three-dimensional superconformal
field theory which is dual to the solution and match the free energy calculated from the
field theory.

In this work, we only constructed a class of AdS4 fixed points from D4-D8-branes on
a non-constant curvature manifold. The holographic RG flow from the AdS6 fixed point
dual to 5d superconformal field theories would enable us to understand more details of
the solution.

From matter coupled F (4) gauged supergravity, [41], wrapped D4-D8-brane solutions
on constant-curvature manifolds were previously studied in [42–44]. We would like to
generalize our solutions in matter coupled F (4) gauged supergravity. See also [45].

Among twist compactifications of branes and their dual field theories, D4-D8-brane
system is lesser understood and we look forward to seeing development to come in the future.
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A The equations of motion

In this appendix, we present the equations of motion of F (4) gauged supergravity,

Rµν = 2∂µφ∂νφ+ 1
8gµν

(
g2e
√

2φ + 4gme−
√

2φ −m2e−3
√

2φ
)

− 2e−
√

2φ
(
Hµ ρHνρ −

1
8gµνHρσH

ρσ
)
− 2e−

√
2φ
(
F Iµ

ρF Iνρ −
1
8gµνF

I
ρσF

Iρσ
)

+ e2
√

2φ
(
Gµ

ρσGνρσ −
1
6gµνGρστG

ρστ
)
, (A.1)

1√
−g

∂µ
(√
−ggµν∂νφ

)
= 1

4
√

2

(
g2e
√

2φ − 4gme−
√

2φ + 3m2e−3
√

2φ
)

+ 1
2
√

2
e−
√

2φ
(
HµνHµν + F IµνF

Iµν
)

+ 1
3
√

2
e2
√

2φGµνρG
µνρ , (A.2)

Dν
(
e−
√

2φHνµ
)

= 1
6eε

µνρστκHνρGστκ , (A.3)

Dν
(
e−
√

2φF Iνµ
)

= 1
6eε

µνρστκF IνρGστκ , (A.4)

Dρ
(
e2
√

2φGρµν
)

= −1
4eε

µνρστκ
(
HρσHτκ + F IρσF

I
τκ

)
−me−

√
2φHµν . (A.5)

B Smeared D4-D8-branes

In this appendix, we derive the metric of D4-D8-brane system smeared over four directions
by following appendix B of [40].

The metric describing D4-branes in the worldvolume of D8-branes were constructed
in [46]. In particular, for the D4-branes extending from x0 to x4 and the D8-branes along
all directions beside x9, the metric is given by

ds2 = (H8H4)−1/2
(
−dx2

0 + · · ·+ dx2
4

)
+H

1/2
4 H

−1/2
8

(
dx2

5 + · · ·+ dx2
8

)
+ (H4H8)1/2 ds2

9 ,

(B.1)
where the harmonic functions satisfy

∂2
x9H4 +H8

8∑
i=5

∂4
xiH4 = 0 , ∂2

x9H8 = 0 . (B.2)

The solutions are given by

H4 = 1 +Q4

(
r2 + 4

9Q8|x9|3
)−5/3

, H8 = Q8|x9| , (B.3)

– 15 –



J
H
E
P
0
6
(
2
0
2
3
)
0
0
8

where r2 = ∑8
i=5(xi)2 is the radial coordinate in the x5 to x8 directions and Q4 and Q8

are constant.
We specialized to the D4-branes smeared over the x5 to x8 directions. Thus the

equations are
∂2
x9H4 = 0 , ∂2

x9H8 = 0 , (B.4)

and they are solved by

H4 = 1 +Q4|x9| , H8 = Q8|x9| . (B.5)

Near the core of the solution, |x9| → 0, the metric is given by

ds2 = (Q4Q8)−1/2 |x9|−1
(
−dx2

0 + · · ·+ dx2
4

)
+Q

1/2
4 Q

−1/2
8

(
dx2

5 + · · ·+ dx2
8

)
+ (Q4Q8)1/2 |x9|dx2

9 . (B.6)

We employ a change of coordinate,
x9 = r4/3 , (B.7)

and the metric reduces to

ds2 = (Q4Q8)−1/2 r−4/3
(
−dx2

0 + · · ·+ dx2
4

)
+Q

1/2
4 Q

−1/2
8

(
dx2

5 + · · ·+ dx2
8

)
+ (Q4Q8)1/2 16

9 r
2dr2 . (B.8)

This precisely matches the topological disk solution in the limit of r → 0 in (3.56).

C Equivalence with the spindle

Although the spindle and disk solutions are physically distinct, the solutions originate from
different global completions of common local solutions. In this appendix, we show that
the solution of topological disk we obtained in (3.30) matches the local solution in [38], by
simple change of a coordinate, (C.3): by identifying the r coordinate here with the scalar
field, X(y), in [38].

The spindle solution in [38] is

ds2 =
(
y2h1h2

)1/4
(
ds2
AdS4 + y2

F
dy2 + F

h1h2
dz2

)
,

Ai =
(
αi −

y3

hi

)
dz , Xi =

(
y2h1h2

)3/8
h−1
i ,

F (y) = m2h1h2 − y4 , hi(y) = 2g̃
3my3 + qi , (C.1)

where qi and αi, i = 1, 2, are constants. We consider a special case of

h̃(y) ≡ h1(y) = h2(y) , X(y) ≡ X1(y) = X2(y) , q ≡ q1 = q2 , α ≡ α1 = α2 .

(C.2)
It is equivalent to the reduction of matter coupled F (4) to pure F (4) gauged supergravity.
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Now we perform a change of coordinate by identifying the scalar field, X(y), with the
coordinate, r, in (3.1),

X(y) = r . (C.3)

Note that y is the spindle coordinate of [38] and r is the disk coordinate of ours. We further
make identifications of parameters,

g̃ = 1
2g , q = 1

6b , α = 2m. (C.4)

Then the solution reduces to our solution obtained in (3.30) with the parameters,

g = 1 , C = −1 . (C.5)

This shows that our disk solution matches the local solution of spindle in [38].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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