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Abstract: We propose a new mechanism that adapts to string theory a perturbative
method for stabilizing moduli without leaving the domain of perturbative control, thereby
evading the ‘Dine-Seiberg’ problem. The only required nonperturbative information comes
from the standard renormalization-group resummation of leading logarithms that allow
us simultaneously to work to a fixed order in the perturbative parameter α and to all
orders in α ln τ where τ is a large extra-dimensional modulus. The resulting potential is
naturally minimized for moduli of order τ ∼ e1/α and so can be exponentially large given
O(10) input parameters. The mechanism relies on accidental low-energy scaling symmetries
known to be generic and so is robust against UV details. The resulting compactifications
generically break supersymmetry and 4D de Sitter solutions are relatively easy to achieve
without additional uplifting. Variations on the theme lead to inflationary scenarios for
which the size of the stabilized moduli differ significantly before and after inflation and so
provide a dynamical mechanism whereby inflationary scales are much larger than late-time
physical (e.g. supersymmetry breaking) scales, with this hierarchy contingent on past cosmic
evolution with the inflaton playing a secondary late-time role as a relaxation field. We
apply this formalism to warped D3-D3 inflation using non-linearly realized supersymmetry
to describe the antibrane tension and the Coulomb interaction, and show how doing so our
perturbative modulus stabilization mechanism evades the η-problem that usually plagues
this scenario. We speculate about the relevance of our formalism to tachyon condensation
at later stages of brane-antibrane annihilation.
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1 Introduction

If string theory is right there may be a problem: a simple argument suggests string vacua
are generically strongly coupled and without hierarchies, yet we find ourselves in a world
populated by different scales where experiments often reveal weak interactions at play.
How can these be reconciled? As it turns out, modulus stabilization is the key. Modulus
stabilization is to string theory what logistics is to warfare: it is the difference between
winning and losing. Our goal in this paper is to add a new stabilization mechanism to the
string theory toolbox but we first start with a fuller statement of the issue and why our
mechanism helps.

The issue turns about a central string-theory feature: scarcity of free parameters.
Things that would be coupling constants in other theories arise as fields in string theory,
making all expansions ultimately field expansions. For instance weak string coupling is an
expansion in powers of the string dilaton eφ̂ = 1/s and a 4D world only emerges from higher
dimensions through an expansion in inverse powers of fields that express extra-dimensional
size (such as the volume modulus V := τ3/2 that measures its overall volume in string units).
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The ‘Dine-Seiberg’ problem. Crucially, fields like s and V are moduli, in that their
values are often not fixed by the leading classical field equations. This means their vacuum
values can be determined by energetic arguments purely within a four-dimensional low-
energy effective theory through their appearance within a scalar potential that is to be
minimized. Performing this stabilization is a prerequisite for making practical predictions
because particle masses and couplings depend on the resulting stabilized values in an
important way. However this potential itself typically arises as an expansion in these fields,
as in

V (s, τ) =
∑
nm

Anms
−nτ−m , (1.1)

and (as first articulated in early searches for realistic string compactifications by Dine and
Seiberg [1]) this leads to the problem.

On one hand, if the leading term is positive then the scalar potential slopes off towards
zero in the limit of vanishing string coupling 1/s→ 0 and infinite volume τ →∞. But this
stationary point of the potential corresponds to 10D flat space and so does not describe
what we see around us, and lies beyond the reach of the 4D EFT. Ref. [1] then argues
that if the potential has a non-trivial minimum, as is required to avoid the runaway to
infinity, different orders in these expansions must compete with one another (e.g. quantum
effects must compete with the classical results) signalling the breakdown of the perturbative
expansion itself. They concluded that the generic weak-coupling situation is a runaway
without a non-trivial minimum. Conversely, if a non-trivial minimum exists then it should
generically arise at strong coupling with an extra-dimensional volume of order the string
scale: s ∼ τ ∼ 1. This argument can also be cast in terms of two accidental approximate
scale invariances that turn out to be shared by all string vacua, for which s and τ play the
role of pseudo Goldstone modes and 10D flat space corresponds to the scale invariant point
(see for instance [2]).

Of course the key word in this argument is ‘generic’. Over the years many efforts were
made to overcome this general problem and obtain weak couplings and large hierarchies
in controlled ways. The solutions usually exploit the few parameters that are not vevs
of moduli that can be adjusted to provide non-generic solutions with weak coupling and
large volume. These parameters include the curvature of the extra dimensions, non-critical
dimensionality, the ranks of the various symmetry groups, or integer flux quantum numbers
for antisymmetric tensor fields that thread compact extra dimensions (similar to magnetic
flux threading a sphere — see [3] for a review).

In particular IIB string compactifications have been much explored with successful
scenarios using a combination of the huge number of possible fluxes and various small
non-perturbative effects, leading to two main approaches for stabilizing moduli in IIB
vacua. The first of these — the ‘KKLT’ scenario — exploits the vast number of fluxes
to tune the tree-level superpotential to be exponentially small (so as to compete with
small non-perturbative contributions to the superpotential [4, 5]). The second class —
the ‘large-volume scenario’ or LVS — instead finds solutions with stabilized moduli by
balancing different orders of different expansions, exploiting the fact that generically there
are many moduli and many perturbative expansions going on at the same time. In particular
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non-trivial vacua are found for which the non-perturbative corrections to the superpotential
Wnp ' e−aτs for one modulus τs compete with the perturbative corrections in the much
larger volume modulus V = τ3/2, resulting in minima for which τ ' eaτs and so give
exponentially large volumes [6, 7]. For both scenarios the resulting potential is minimized
with Vmin < 0 and so additional ‘uplift’ mechanisms are required to obtain flat or de Sitter
space, using extra ingredients such as antibranes, T-branes, etc. [5, 8, 9]. These scenarios
have been explored in considerable detail and so far represent the state of the art for moduli
stabilization in general and de Sitter string solutions in particular.

In section 2 we present an alternative mechanism for moduli stabilization that shares
some of the attractive properties of KKLT and LVS pictures, but also evades some of their
difficulties. Our proposal differs substantially from both of them by being purely based on
perturbative corrections within the corresponding effective field theory (EFT), but doing so
in a way consistent with the Dine-Seiberg problem. Our scenario adapts a proposal made
for higher-dimensional theories in [10] (and further elaborated for 4D supergravity in [11]).

The idea is very simple and can be illustrated with a concrete toy model. To this end,
consider the perturbative expansion for the low-energy scalar potential V in powers of the
volume field τ ,

V (τ) =
∑
n

An(s)τ−n (1.2)

where naively the coefficients An depend on all of the other moduli such as s. It is tempting
to think that the An should also be independent of τ , but this need not be true because
An can depend logarithmically on τ . It is generic that quantum corrections can introduce
anomalous scaling into effective interactions, which become logarithmic dependence on
ratios of particle masses in a perturbative regime for which a small expansion parameter α
exists. (This expansion parameter might simply be another modulus, like α ' 1/s.) But in
string theory particle masses generically depend on τ since this field determines the ratio
of fundamental scales like the string, Planck and Kaluza-Klein (KK) masses (Ms, Mp and
MKK). Consequently any logarithmic dependence on ratios of masses can also imply a
logarithmic dependence on τ (and on any other moduli that appear in mass ratios).

Because this dependence has its roots in anomalous scaling, renormalization group
(RG) techniques can be used to resum leading-log effects (i.e. they allow one to work to
all orders in the expansion α ln τ while still neglecting subdominant terms like α2 ln τ).
Therefore, even though An might only be known perturbatively in α, RG reasoning gives
this expansion to all orders in α ln τ . The resulting potential can be minimized with respect
to τ without going beyond leading order in the 1/τ expansion, and naturally leads ln τ to
be fixed at a size ln τ ' 1/α. For weak coupling α� 1, this stabilizes τ at exponentially
large values (providing a novel explanation for large hierarchies), and the RG allows this
to be done without losing perturbative control. This is a key part of why we can evade
the Dine-Seiberg conclusion, and suggests the name RG stabilization (see [12] for a related
proposal without the RG overlay).

We see that the modulus τ can easily be exponentially large in RG stabilization
(similar to LVS stabilization), and this in turn reinforces the logic of working within the
1/τ expansion. Also like the LVS case, the RG proposal requires generically at least two
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expansions: the 1/τ and the α expansions. Because the perturbative corrections modify the
supergravity Kähler potential (rather than the superpotential), the non-trivial minima we
obtain can equally well be de Sitter or anti de Sitter and so a separate uplifting mechanism
is not necessary (unlike for KKLT and LVS pictures).

Application to inflationary dynamics. Where de Sitter solutions exist, can inflation-
ary solutions be far behind? Interest in inflation is driven by its successful description
of observed primordial fluctuations in terms of quantum effects amplified by inflationary
expansion. The observation that the fluctuation amplitude points to energy scales not
too far below the Planck scale has raised hopes that these primordial fluctuations might
eventually provide an observational window on very-high-energy physics.

This has stimulated the development of a great variety of string-inflationary scenarios
over the past decades (see [13, 14] for reviews), for which modulus-stabilization again plays
a crucial role. The various inflationary scenarios choose different moduli to be the inflaton,
with both the scalar and axionic components of supersymmetric complex scalars playing
important roles in different pictures. Many of these proposals are quite promising, with some
contenders rising to the top as observations have become more constraining on theoretical
models [15–18]. They also tend to share the following three challenges.

• Modulus stabilization. A theory of modulus stabilization is always a prerequisite for
any microscopic inflationary model. After all, there is no point arranging the scalar
potential to be very shallow along a putative inflaton direction in field space if the
potential also turns out to be much steeper in other directions; a slowly rolling field
prefers to evolve in the steepest direction available. One way to avoid motion in
other steeper directions is to arrange for local minima in these directions into which
noninflationary moduli can be trapped.

• Fragility. The extreme shallowness of the potential required for slow-roll inflation
can easily be overwhelmed by corrections. In particular, classical scalar masses are
notoriously sensitive to quantum effects, but having a small slow-roll parameter
η = M2

p V
′′/V � 1 implies the squared-mass of the inflaton, m2 ∼ V ′′, must be much

smaller than the Planck-suppressed Hubble scale, H2
I ∼ V/M2

p . This makes a slow
roll hostage to the many corrections to the inflaton mass that are of Hubble size or
larger. Many string inflation scenarios are in particular plagued by a specific version
of this fragility — called the ‘η problem’ — that arises when inflation occurs within a
4D supergravity framework (and is discussed in more detail below).

• Inflation vs SUSY breaking scales. String models often produce inflation at high
scales, such as the GUT scale MGUT ' 1017 GeV, particularly if they are designed to
maximize tensor-mode signals [19–21]. However such constructions also tend to give
a very large supersymmetry breaking scale. This need not be a serious problem, but
makes specific realizations of low-energy supersymmetry breaking difficult if combined
with inflation since it creates a tension between the large inflationary scale and the
low scale of supersymmetry breaking [22–24].
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In section 3 we explore some of the implications of RG modulus stabilization for string-
inflationary models, with the encouraging news that it helps resolve all three of these
challenges.

We do so using the specific example of the brane-antibrane inflationary scenario, for
which the inflaton is proposed to be the extra-dimensional separation between a mutually
attracting brane and antibrane. Separations between supersymmetric BPS branes were
proposed as candidates for the inflaton some time ago [25], with slow roll occurring because
of the absence of inter-brane forces implied by the BPS condition. The difficulty breaking
supersymmetry in these models made it hard to compute the inflaton potential, however,
though this was solved by instead exploiting the Coulomb attraction of non-supersymmetric
brane-antibrane configurations [26, 27], though it was realized early on that slow roll
remained difficult to achieve in simple geometries because the branes could not be sufficiently
separated within the extra dimensions to allow them to experience a weak enough force [26].

More detailed string constructions required modulus-stabilization techniques [4, 5],
since only these allow the calculation of the scalar potential for all low-energy moduli.
Although it was initially hoped that extra-dimensional warping might potentially resolve
the ‘runway-length’ problem [5, 28], it turned out that modulus stabilization carried a
sting because it also robustly introduced the η problem [28], requiring parameters to be
tuned in a way that undermined warping’s utility. We find the η problem is evaded within
our stabilization mechanism — largely because it does not rely on the non-perturbative
superpotential as do both KKLT and LVS stabilization — and so allows the utility of
warping for inflation to be resurrected as originally intended.

The inflaton and late-time relaxation. The advantages of RG stabilization for in-
flation are not tied to the details of specific string constructions, however. To emphasize
this, much of the inflationary discussion of section 3 is cast purely in terms of approximate
symmetries of the low-energy 4D effective theory. Although the required symmetries are in
particular generic to string vacua, phrasing the analysis in terms of low-energy symmetries
helps identify what is required (and what is not) in any particular UV completion. We
believe it also undermines the evidence for the swampland hypothesis [29, 30] because it
shows how properties of the low-energy theory (like putative difficulty obtaining de Sitter
vacua) can be seen as relatively mundane consequences of symmetries rather than indicating
any deep failure of EFT methods [2].

Our inflationary analysis relies on the following two crucial components:

1. Constrained supersymmetry. We use the lagrangian for nonlinearly realized 4D
supergravity: i.e. a supersymmetric gravity sector coupled to a matter sector within
which supersymmetry is badly broken (i.e. whose superpartners have been integrated
out, and so supersymmetry is nonlinearly realized using a goldstino field G). In
practice this goldstino can be represented using a nilpotent superfield (G ∈ X, with
X2 = 0) [31]. The coupling of such a sector to supergravity can be found in [32–34].

This kind of EFT is of interest in situations where mass splittings within gravitationally
coupled supermultiplets are much smaller than splittings in other supermultiplets [35],
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such as often occurs in extra dimensional models [36] and string vacua [37–48] when
supersymmetry is badly broken on a brane. It also plausibly applies to Standard
Model phenomenology within models that are supersymmetric in the UV, given the
evidence for the absence of weak-scale supersymmetry [49].

2. Accidental approximate scale invariance. We take our representative modulus to be a
dilaton τ ∈ T that sits within a supermultiplet T and acts as the pseudo-Goldstone
boson for an approximate accidental scale invariance. Such scaling symmetries have
long been known to be present for specific string vacua [50, 51], although we now
know them to be generic for extra-dimensional supergravity [52–56], which in turn
very robustly inherit them from string theory [2].

To these we also add the inflaton field, φ, assuming it to be part of the sector that
badly breaks supersymmetry (and so to realize supersymmetry only nonlinearly). An
attentive reader might be struck by the similarity between this list of ingredients and those
used in ref. [11], for which the only difference is that there the field φ instead enters as a
‘relaxation’ field whose presence dynamically helps suppress the size of the scalar potential
at its minimum.

The appearance of φ in [11] is at first sight a bit jarring, since it appears to arise in a
bespoke way with nothing to do with any other physics. We argue here that one way to
understand the presence of φ is as an inflaton: its very definition requires it to interpolate
between a potential that is dominated by a large positive vacuum energy and one where
the potential energy is small. (The only surprise in [11] is in just how small the potential at
this minimum turns out to be.) All that is needed to make early-universe evolution of φ
into an inflationary mechanism is a reason why this transition should happen slowly (and
showing how this occurs is the baton we take up here).

Furthermore, the brane-antibrane system lends itself perfectly to this scenario. First,
it does so because it is well known that the supersymmetry breaking of an antibrane is
captured precisely by the nilpotent superfield X. Second, the brane-antibrane Coulomb
interaction is also easily captured by a superpotential that couples the inter-brane distance
φ to the nilpotent superfield X. Brane-antibrane attraction thereby provides a natural UV
interpretation for the relaxation/inflaton field φ.

In what follows we describe in detail in section 3 how RG stabilization resurrects
warped brane-antibrane inflation, after first describing the RG stabilization mechanism in
section 2. Section 2 also includes discussions of how to realize the RG mechanism in IIB
string theory; a determination of the relevant scales, like gravitino mass and soft-breaking
terms for the matter sector and their implications for the size of the volume modulus τ ;
the relevance of RG stabilization to the Dine-Seiberg problem; and why runaway regions
can be sensibly addressed using EFT methods (including comparisons with calculations in
other areas of physics).
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2 de Sitter vacua

In this section we explore the simplest stabilization example. Our goal is to illustrate how
standard renormalization-group methods can allow modulus stabilization without losing
perturbative control. We also use this example to show how combining this stabilization
mechanism with accidental low-energy symmetries (in particular accidental, approximate
scale invariance) leads to a novel kind of spontaneous supersymmetry breaking that generates
de Sitter solutions with large hierarchies driven by the exponentially large value of the
stabilized moduli. We first present the mechanism in a stripped-down model and then show
how it naturally embeds into low-energy string vacua.

2.1 Accidental symmetries and dilaton dynamics

Consider a general low-energy 4D effective theory that is both supersymmetric and enjoys
an accidental approximate scaling symmetry (of the form argued in [2] to be generic in
low-energy string vacua and in [52–56] to be generic to higher-dimensional supergravities
more generally). The minimal such a model involves the gravity supermultiplet and the
chiral superfield T 3 {T , ξ} that contains a complex scalar T = 1

2(τ + ia) whose real part
(τ) is the dilaton required by the approximate scale invariance. Because the EFT is a 4D
supergravity it is determined at the two-derivative level in terms of standard supergravity
ingredients: by specifying how the Kähler potential K, the superpotential W and (should
gauge multiplets also be present) the gauge kinetic function fαβ depend on the one chiral
superfield T .

We take W = w0 to be independent of T (as can be enforced with the axionic symmetry
under shifts of a). Accidental approximate scale invariance is implemented by demanding
that e−K/3 arises as a series in powers of 1/τ , as in:

e−K/3 = τ − k + h

τ
+ · · · , (2.1)

where the ellipses denote higher orders in 1/τ . This ensures that the lagrangian density
comes as a series of terms, L = ∑

n Ln, each of which scales homogeneously, Ln → λpnLn
for some pn, when gµν and τ are scaled by powers of the constant parameter λ. This kind
of expansion ensures that semiclassical methods arise as expansions in powers of 1/τ and so
are good approximations in the regime τ � 1 — and so this is where we seek our minima
once we compute a potential V (τ). It represents a scale invariance because these rescalings
of τ and the metric are symmetries of the classical field equations to leading order in 1/τ .

String theorists will recognize this system: in Type IIB string compactifications the role
of the field τ is played by the one always-present Kähler modulus: the extra-dimensional
volume (in string units), V ∝ τ3/2. In a string context the reliance of semiclassical arguments
on large τ expresses how semiclassical supergravities provide reliable EFTs for string vacua
only for geometries that are much larger than the string scale.

Crucially, although powers of τ are explicit in (2.1), in general quantum effects compli-
cate the scaling properties of subdominant terms in the lagrangian. We return below to
why this is so, but just record now that it allows the functions k, h to be rational functions
of logarithms of τ : k = k(ln τ), h = h(ln τ) etc.
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The lagrangian obtained with these choices for K and W have the familiar supergravity
form, with the Einstein-frame kinetic term for the bosons given (in Planck units) by

− Lkin√
−g

= 1
2 R+KTT ∂µT ∂µT '

1
2 R+

( 3
τ2 + · · ·

)
∂µT ∂µT , (2.2)

where (as usual) R denotes the Ricci scalar built from gµν and subscripts on functions like
K and k denote differentiation with respect to the fields: e.g. KTT = ∂T∂TK.

The scalar potential is similarly given by

V = eK
[
KTT DTWDTW − 3|W |2

]
, (2.3)

where KTT = 1/KTT and

DTW = WT +KTW '
(
−3
τ

+ · · ·
)
w0 . (2.4)

The last equality uses (2.1) for K. The leading parts of the scalar potential then are

V ' −3 kTT
P2 |w0|2 + · · · = 3 (k′ − k′′)

τ4 |w0|2 +O(τ−5) , (2.5)

where P := e−K/3 = τ − k + · · · and primes denote differentiation with respect to x = ln τ .
Notice that expression (2.5) vanishes whenever k is independent of T , as it must do on
general grounds because (2.1) becomes a no-scale model [57, 58] in the limit that h (and
higher terms) vanish and k is T -independent. For later purposes recall also that kTT can
have either sign since it does not control the sign of the kinetic energy for T in (2.2).
Contributions involving h and other subdominant terms in (2.1) first arise at order O(τ−5).

2.2 Controlled perturbative stabilization

Eq. (2.5) reveals that the leading contribution to the potential for large τ has the form

V (τ) ' U(ln τ)
τ4 , (2.6)

with U(ln τ) = −3τ2kTT |w0|2 = 3(k′ − k′′)|w0|2. The minima of (2.6) depend on the
functional form of U and so requires more information about how k acquires its dependence
on ln τ .

To this end, following the ideas of [10] and [11], we imagine that k acquires its
dependence on ln τ through the running of some dimensionless coupling αg, due to a
perturbative expansion of the form

k ' k0 + k1 αg + k2
2 α2

g + · · · (2.7)

with a dimensionless coupling αg � 1. In general the running of a dimensionless coupling like
αg introduces logarithms of mass ratios, such as when its renormalization-group evolution
is integrated to give

1
αg(m1) = 1

αg(m2) − b1 ln
(
m1
m2

)
. (2.8)
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The main observation is that this can become a dependence1 on ln τ if there are multiple
fields coupling to this interaction whose masses2 depend differently on τ .

Such interactions do plausibly arise in string compactifications. For instance in IIB
compactifications particles localized on D3 and D7 branes have masses that depend differently
on the volume modulus and when such branes intersect they can both couple to light open-
string 4D gauge fields (whose gauge coupling could be the αg considered here).

In such a situation (2.7) predicts a logarithmic τ dependence for k that emerges through
the τ -dependence of αg, which in turn can be expressed through a renormalization-group
evolution like

τ
dαg
dτ = β(αg) = b1α

2
g + b2 α

3
g + · · · . (2.9)

For αg small enough to neglect all but the leading term in β this has solution

αg(τ) = αg0
1− b1 αg0 ln τ , (2.10)

for some integration constant αg0 = αg(τ = 1). For the present purposes what is important
about the ln τ dependence given in (2.10) is that its derivation neglects only additional
powers of αg in (2.9). Consequently for large τ it remains valid to all orders in αg ln τ while
dropping contributions of order α2

g ln τ . It is this renormalization-group resummation that
ultimately allows us to trust minima of the potential that occur in the regime ln τ ∼ 1/αg.

Now comes the main point. Using (2.7) and (2.9) to evaluate the T -derivatives of k
then gives k′ = (k1 + k2 αg + · · · )β(αg) and similarly for k′′, and using these in (2.6) then
leads to the expression

U ' U1 α
2
g − U2 α

3
g + U3 α

4
g + · · · , (2.11)

where U1 = 3k1b1|w0|2 and so on. Furthermore, the Dine-Seiberg argument leads one to
expect that any minima τ = τ0 of this potential generically occur in the regime where
α(τ0) ∼ O(1). But if stabilization of other moduli make αg0 small, then inspection of (2.10)
shows that τ0 must be very large because αg0 ln τ0 ' O(1).

This general argument can be made explicit purely using perturbative methods if we
arrange that the coefficients U1, U2 and U3 appearing in the potential (2.6) with U given
by (2.11) are all positive and satisfy the mild hierarchy∣∣∣∣U1

U2

∣∣∣∣ ∼ ∣∣∣∣U2
U3

∣∣∣∣ ∼ O(ε) (2.12)

for some smallish ε� 1. Such a hierarchy allows solutions to ∂V/∂τ |τ0
= 0 for α0 ∼ O(ε)

and so
b1 ln τ0 = α−1

g0 − ε
−1 (2.13)

1More precisely masses actually develop a dependence on P rather than just τ because they typically
acquire their leading dependence on τ through powers of the Weyl rescaling factor e−K/3 = P = τ − k+ · · · .
This makes k a function of lnP rather than ln τ in the discussions to follow; a distinction that often does
not matter, but plays an important role when discussing the η problem for the inflationary scenarios of
section 3.4.

2Notice that it is only ratios of physical masses that matter here and not ratios of masses to the RG
running parameter µ. This is because any τ -dependence associated with µ ultimately cancels from physical
observables for the same reason that all µ-dependence also cancels.
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T

V

Figure 1. A plot of V vs τ for the scalar potential V = U(ln τ)/τ4, revealing a de Sitter or anti-de
Sitter minimum separated from a runaway by a local maximum. The plots are obtained using the
representative values k1/k3 = 0.01 and k2/k3 = −0.133 (arbitrary scale). The main text describes
the precise parameter range required to get de Sitter rather than anti-de Sitter or a runaway.

can easily be order 1/ε if ε� αg0 and b1 < 0. For ε . 1/10 the value predicted for τ0 can
be enormous τ0 ∼ e1/ε, justifying the validity of the 1/τ expansion ex post facto. As is easy
to check, when 9U2

2 > 32U1U3 the potential has a local minimum at τ0 that is separated
from the runaway to τ →∞ by a local maximum at τ1 > τ0 (see figure 1).

The value of the potential at this minimum is positive if U2
2 < 4U1U3 and negative

otherwise. Although (2.11) and (2.12) might naively lead one to expect U(τ0) ∼ O(ε4) when
U3 ∼ O(1), it happens that the condition V ′(τ0) = 0 ensures that this leading contribution
cancels, making the result at the minimum instead U(τ0) ∼ O(ε5). As a result both V (τ0)
and τ2(∂2V/∂τ2)

∣∣
τ0

are O(ε5|w0|2/τ4
0 ), and this can be extremely small given that τ0 can

be an exponential of 1/ε. Ref. [11] explores some of the implications if this suppression
were to explain the size of the present-day Dark Energy density.

Because U(τ0) can have either sign both de Sitter and anti-de Sitter solutions can be
generated in this way depending on the values of the coefficients U0, U1 and U2. Both
signs are allowed because (2.4) shows that supersymmetry is broken for any finite τ . It
breaks because the auxiliary field F T for the T supermultiplet is nonzero, since w0 6= 0,
even though WT vanishes. Its size is instead controlled by the Planck suppressed term
KTW/M

2
p ∈ DTW . This type of supersymmetry breaking is common in no-scale models

and is responsible for many of the unusual properties encountered in [11]. This source of
supersymmetry breaking is easily missed in global supersymmetry because it disappears in
the Mp →∞ limit.

2.3 Type IIB string theory realization

We next expand on how the above mechanism arises in the low-energy limit of Type IIB
string vacua. One purpose in doing so is to identify the scales to which this stabilization
mechanism points. Another purpose is to see how such an explicitly perturbative mechanism
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evades the well-known challenges posed by the Dine-Seiberg problem [1]. We discuss each
of these issues after first making the connection to IIB vacua more explicit.

The massless bosonic fields in the 10D supergravity relevant to Type IIB vacua below
the string scale are

g̃MN , S = s− iC, G(3) = H(3) + iSF(3), F̃(5) = dC(4) + 1
2 C(2) ∧H(3) + 1

2 B(2) ∧ F(3)

(2.14)
where a subscript (p) indicates that the corresponding field is a p-form, s = e−φ̂ is the 10D
dilaton3 that controls the local string coupling and C is an axionic scalar while H(3) = dB(2)
and F(3) = dC(2) are field strengths for 2-form gauge potentials. At the two-derivative level
the action for these fields takes the schematic form

Sbulk =
∫

d10x
√
−g̃

{
R̃− |∂S|2

(ReS)2 −
|G(3)|2

ReS − F̃
2
(5)

}
+
∫ 1

ReS C(4)∧G(3)∧G(3) . (2.15)

This action has two accidental symmetries that are important for our present purposes:

• An SL(2,R) symmetry under which

S → aS − ib
icS + d

and G(3) →
G(3)

icS + d
, (2.16)

where ad − bc = 1. Note that the special case b = c = 0 and a = 1/d reduces to a
classical scaling symmetry

g̃MN → g̃MN , S → a2S , G(3) → aG(3) , F̃(5) → F̃(5) . (2.17)

• An approximate accidental scale invariance

g̃MN → λg̃MN , S → S , B(2) → λB(2) , C(2) → λC(2) . C(4) → λ2C(4) , (2.18)

under which the tree level action scales as Sbulk → λ4Sbulk. Upon compactification to
four dimensions the non-trivial scaling of the 10D metric implies an overall scaling of
the volume modulus V → λ3V.

These two approximate symmetries are accidental in the sense that they are broken
by α′ and loop corrections to the effective action. Indeed, how terms scale under these
two transformations can be used to identify how the 10D action depends on these two
expansions [2]. For the 4D theory, the α′ expansion becomes an expansion in inverse powers
of the volume V := τ3/2 while the string-loop expansion is in powers of (ReS)−1 = eφ̂.

Both scaling symmetries are spontaneously broken inasmuch as neither leaves generic
background fields unchanged and the volume modulus and the string dilaton can be regarded
as their pseudo-Goldstone dilaton modes. From this point of view 10D flat space is special
inasmuch as it leaves a scale invariance unbroken because (2.18) does not act on S and
scale transformations of the flat metric can be compensated by a diffeomorphism. 10D
flat space corresponds in 4D to V → ∞ and s→∞ and the scale-invariance of this point
anchors the asymptotic value of the 4D scalar potential to zero.

3The hat on φ̂ distinguishes the string dilaton from the inflaton field φ used everywhere else in this paper.
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2.3.1 IIB modulus stabilization

String theory famously has no parameters, but if so what are the choices that lead to
differently shaped compactifications? For IIB Calabi-Yau orientifold compactifications
the choices made are the quantized fluxes of the three-form fields whose presence and
stress-energy stabilizes the complex structure moduli U and string dilaton S, as pioneered
in [4]. For supersymmetric flux configurations these moduli are fixed in the 4D effective
description by the supersymmetric conditions DSW = DUW = 0.

The choice of higher-dimensional fluxes shows up in the low-energy 4D theory in several
ways. First, (0, 3) fluxes induce a non-trivial superpotential w0 ∈ W that is generically
order unity (in Planck units) but can be arranged to take larger — or extremely small [59]
— values. Second, since fluxes fix the string dilaton field S they provide a ‘discretuum’ of
possible values for the string coupling constant gs ∼ s−1 in the 4D theory. Third, fluxes can
fix the complex structure moduli in such a way that the corresponding three-cycles in the
extra-dimensional geometry become long throats along which 4D geometries are naturally
warped with warp factor eA ∼ e8πK/gsM , where K,M are integers. The three quantities w0,
gs and eA play important roles defining the different scales that arise within the 4D theory.

The Calabi-Yau space’s Kähler moduli are not similarly fixed by these fluxes and so
their potential is naturally explored within the 4D theory. The simplest case arises for
Calabi-Yau orientifiolds that have the fewest possible Kähler moduli: the single complex
modulus T = 1

2(τ + ia) whose real part describes the overall volume V ∝ τ3/2 of the
Calabi-Yau and whose imaginary part a is an axionic partner. The shift symmetry for this
axion a→ a+ c can forbid4 its appearance in the superpotential W . The leading expression
for the Kähler potential for T is well known to be of the no-scale type

K(T, T ) = −2 lnV = −3 ln τ , (2.19)

as can be derived either from explicit dimensional reduction or using the transformation
properties of the 4D action under the approximate accidental scaling symmetries (2.17)
and (2.18).

As discussed earlier, the condition WT = 0 together with the no-scale identity
KABKAKB = 3 satisfied by the Kähler potential (2.19) ensures the scalar potential (2.3)
is independent of τ and this precisely reproduces the microscopic statement that Kähler
moduli are not fixed in the underlying flux construction at leading order in string coupling
and α′. Kähler modulus stabilization proceeds because higher-order corrections lift this
flatness and so can stabilize fields like T . At present the main approaches to modulus
stabilization drive this stabilization by introducing a T -dependent contribution to the
superpotential, which can arise nonperturbatively in 1/τ through contributions of the form
δW = Wnp ∝ e−ξ T for some ξ. Introducing T -dependence to W lifts the flatness of the
no-scale potential, and can be consistent with the underlying 1/τ expansion either if w0
happens to be extremely small [5] or by considering multiple Kähler moduli, τv and τs and
having τv ∼ e ξτs so that powers of 1/τv can compete with δW ∝ e−ξ Ts [6, 7].

4Whether it does or not depends on whether the corresponding symmetry has an anomaly. If so W can
depend exponentially on T . T -dependent corrections to W that are perturbative in 1/T are forbidden by
the supersymmetric non-renormalization theorems [50, 51, 60–63].
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We instead here do not introduce a T -dependence to W at all, and considering only per-
turbative corrections to K (that would in any case normally dominate over non-perturbative
effects). Denoting s = ReS = e−φ, in general [2] perturbative corrections to K in powers of
1/s and 1/τ can be written as

e−K/3 = s1/3τ
∑
nmr

Anmr
(1
s

)n ( s
τ

)(m+r)/2
, (2.20)

with n counting string loops and the α′ expansion receives contributions from r powers
of extra-dimensional curvature and m + 1 powers of 3-form flux G(3). The coefficients
Anmr here are to be regarded as functions of all other moduli,5 but the powers of s and τ
associated with the string-loop and α′ expansions are explicit. Tracking only the volume
dependence then shows that the Kähler potential can be written as the following expansion
in powers of 1/τ

K(T, T ) = −3 lnP, with P(τ) = τ

[
1− k

τ
+ h

τ3/2 +O
( 1
τ2

)]
. (2.21)

This has a form very similar to (2.1), differing6 only by being an expansion in powers of
τ−1/2 ∝ V−1/3 rather than τ−1 ∝ V−2/3.

As discussed above, the corrections in (2.21) generically lift the no-scale flat direction,
but when the coefficients k and h are τ -independent the leading contribution to V comes
from h and arises at order δV ∼ O(τ−9/2), corresponding to what are (α′)3 corrections in
the underlying string construction. The persistence of the potential’s flatness in the presence
of a T -independent k is known as the compactification’s extended no-scale property, and
follows because the first two terms of (2.21) still satisfy the no-scale identity KABKAKB = 3.

The new ingredient here is not to try to stabilize τ by balancing different powers of 1/τ
in the expansion of V that follow from (2.21), but instead to recognize that the coefficients
k and h can generically contain a ln τ dependence k = k(ln τ). This gives the leading
contribution to the scalar potential as in (2.6), and the minimum is instead obtained by
balancing different powers of αg ln τ against one another. As discussed earlier this has
the advantage that this balancing can be done without undermining either the 1/τ or
αg expansions.

We see in this way that the stabilization scenario proposed in section 2.2 can apply
directly to IIB string theory. It easily gives exponentially large volumes, similar to the
large-volume scenario (LVS), and like the LVS requires a second expansion modulus.7 Here,

5A crucial difference in our approach is to consider that the coefficients Anmr can have a ln τ dependence.
6Notice that in principle (2.20) allows a contribution with m+ r = 1 that, if present, would change (2.21)

to P = τ
(
1 + g/

√
τ − k/τ + · · ·

)
. This in turn would lead to a leading correction to the scalar potential of

order δV ∼ O(τ−7/2) that would dominate the contributions we consider here. However no known Calabi
Yau produces these terms and it has recently been shown [64] that such corrections are generally absent
at least to leading order in string loops. Including m + r = 1 contributions still allows our stabilization
mechanism, but the logarithmic terms in K would arise at order τ−7/2 rather than order τ−4 as we use here.

7As mentioned earlier, exponentially large volumes arise in LVS through the introduction of a second
Kähler ‘blow-up’ modulus τs that appears exponentially in the superpotential, with the potential minimized
when powers of 1/V balance against this non-perturbative contribution to W (which occurs when V ' eaτs).
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naturally, the dilaton s can be fixed by fluxes to give small enough coupling (and so 1/s
can play the role of αg in our analysis). This is similar to LVS. But, unlike LVS models,
the mechanism presented here does not need to add new uplifting mechanisms to obtain
de Sitter space.8 The scenario described here also extends straightforwardly to the more
general case with more than one Kähler modulus (ref. [11] explores some multi-modulus
examples) inasmuch as the volume is stabilized by leading order contributions of order τ−4

whereas the smaller ‘fibre’ moduli can be stabilized using the next order contributions of
order τ−9/2 (such as is done in LVS constructions, and exploited for inflationary purposes
in [21]).

Whether ln τ -dependence actually appears in k in specific string constructions is of
course model dependent. For gauge interactions such log dependence requires the existence
of more than one type of matter field for which the masses scale differently with τ since
the logs are sensitive only to ratios of masses. As mentioned earlier, in IIB models this
is the case whenever there are chiral states charged under both D3 and D7 gauge groups.
A general study of concrete models for which these logs are present is beyond the scope
of this article, but we refer the reader to recent discussions on the appearance of logs in
IIB EFTs [12, 66–70]. In particular [12] computes amplitudes that lead to logarithmic
corrections to the Kähler potential of order δK = O(lnV/V) and use them as a mechanism
to stabilize moduli (although without the renormalization-group resummation used here).

2.3.2 Scales and soft terms

We have seen the value of τ can be fixed at a wide range of exponentially large values using
only a relatively small range of parameters ki, but precisely how big should we like τ = τ0
to be at the minimum? There are two classes of regimes that are natural to consider.

Yoga models. The ambitious point of view asks τ0 to be large enough that Vmin ∝ τ−4
0

can be as small as the observed dark energy density. This requires τ0 & 1026 and is the
regime explored in some detail in [11]. For τ0 this large the mass of the τ field and its
axionic partner are light enough to be cosmologically active in the recent universe. Although
one might imagine such light scalars to be ruled out by solar-system and cosmological tests
of gravity, ref. [11] shows that they are surprisingly hard to constrain, partly due to the
appearance of surprising new mechanisms for screening [71].

For the present purposes the main problem with choosing τ0 this large is that the 4D
theory near this minimum requires a UV completion at scales of order Mp/τ0 because this
is where the axion decay constant lies. This in itself need not be a problem because this
occurs at eV scales when τ0 ∼ 1026 and so the required UV physics could plausibly be
extra-dimensional. Whether this kind of a picture is viable then depends on precisely how τ

arises in the UV completion, but if it does so as a volume modulus along the lines described
here then there is a problem.
It is the coupling αg itself that would be the required second modulus in the approach we follow here (and
so need not be a Kähler modulus, such as if it is the inverse string dilaton itself).

8Of course obtaining anti-de Sitter space at tree level need not mean a solution fails to describe our
universe because quantum corrections to V often dominate the classical prediction and so can be the source
of positive energy that allows de Sitter solutions (for a recent suggestion along these lines see [65]).
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The problem arises because the string and Kaluza-Klein scales are related to τ by

Ms = Mp

V1/2 ∼
Mp

τ3/4 and MKK ∼
Ms

V1/6 = Mp

V2/3 ∼
Mp

τ
. (2.22)

Requiring MKK & 10TeV near the minimum implies τ0 . 1014, but this bound can be
model-dependent because it can be evaded by having some extra dimensions be smaller
than others. More robust is the condition Ms & 10TeV, which implies τ0 . 1020. Because
our focus here is on string embeddings we do not pursue values of τ0 larger than this any
further. See [11] for more in-depth discussion of these issues.

SUSY breaking at TeV and higher scales. The alternative point of view is to ignore
(as most do) the cosmological constant problem and ask how other scales depend on τ .
In this case having Vmin ∝ τ−4

0 still suppresses its present-day value relative to other
approaches, particularly when τ0 takes its largest allowed values. In this case the main
constraint on the present-day value of τ actually comes from demanding the field τ to
be heavy enough to avoid the cosmological-modulus problem. This problem is a general
constraint on gravitationally coupled relics and requires τ to be heavy enough to decay
before nucleosynthesis, so as not to destroy its successes, which for gravitational-strength
decays requires mτ & 30TeV [72–74].

Re-introducing factors of Mp, the mass of τ and of the gravitino are related by

mτ =
(
τ2

M2
p

∂2V

∂τ2

)1/2

∼ ε5/2|w0|
τ2M2

p

∼
ε5/2m3/2

τ1/2 where m3/2 ∼
|w0|

τ3/2M2
p

. (2.23)

In these expressions we take ε ∼ O(1/10) since τ0 ∼ e1/ε, but even once this is done the
implications for τ0 of the condition mτ (τ0) & 30TeV depends on the value of |w0|. We
choose two representative benchmarks: |w0| ∼M3

p (as is most commonly found in string
compactifications) or |w0| ∼ M3

p τ
1/2
0 (which is the upper limit on what is possible for

a 4D supergravity EFT, since for larger w0 the gravitino mass becomes larger than the
Kaluza-Klein scale given in (2.22) [11, 75]). Choosing mτ ∼ 30TeV for each of these
cases implies

τ0 ∼ 106 , m3/2 ∼ 109 GeV , MKK ∼ 1012 GeV , Ms ∼ 1014 GeV if |w0| ∼M3
p

τ0 ∼ 108 , m3/2 ∼MKK ∼ 1010 GeV , Ms ∼ 1012 GeV if |w0| ∼M3
p τ

1/2
0 .

Given a value for τ0, the size of soft supersymmetry-breaking terms, superpartner
masses and trilinear couplings for any Standard Model like sector can also be estimated,
under the assumption that their dominant source of supersymmetry breaking comes from
the T auxiliary field, although the result depends somewhat on the particular microscopic
realization of the Standard Model and hidden sectors. For instance, suppose a Standard
Model multiplet ψi appears in the quantity k(ψ, ψ) of eq. (2.21). This would arise, for
example, for states sequestered in local D3 or D7 branes and predicts soft supersymmetry-
breaking masses in a manner similar, although slightly different dependence, to what is
found for the large modulus in LVS (see for instance [82, 83]):

m2
ψ = m2

3/2 − F
iF j∂i∂j lnZψ which implies mψ ∼

w0
τ2 ∼

m3/2

τ1/2 . (2.24)

– 15 –



J
H
E
P
0
6
(
2
0
2
2
)
1
6
7

Here Zψ ∼ ∂īK ∼ −kī/τ and the F -term for T is given by

F T = eK/2KTTKTW ∼
w0
τ1/2 +O(τ−3/2) . (2.25)

For gaugino masses in this type of scenario it is instead the F -term of the dilaton that
plays the key role. This is true (as in LVS) even though to leading order the dilaton S does
not break supersymmetry FS ∝ DSW = 0, since to next order in the 1/τ expansion we
have F S ' eK/2KSSKSw0 ∼ w0/τ

5/2. This gives gaugino masses of order

MG = F i∂if

Ref ∼
w0
τ5/2 ∼

m3/2
τ

. (2.26)

Similarly for the scalar trilinear soft-couplings in the potential (A terms) which are A ∼MG.
Unless further cancellations happen, this gives a split-SUSY spectrum in the sense that

gauginos are lighter than scalar masses and both of these are lighter than the gravitino mass
and similar to the mass of τ . Since τ has to be heavier than 30TeV, this allows for gaugino
masses of order the TeV scale for τ0 ' 106. Note however that we have only included
the contribution of the overall volume modulus τ and the dilaton s to supersymmetry
breaking, the contribution of the Standard Model cycle, if present, may dominate and
wash out the sequestering making all soft terms of order the gravitino mass and leading to
intermediate scale supersymmetry breaking. Therefore, similar to LVS but with different
volume dependence, our scenario may lead either to sequestered split supersymmetry or
intermediate scale supersymmetry breaking in both cases with intermediate scale gravitino
mass. A more detailed study of the structure of soft terms requires constructing concrete
realizations of the Standard Model sector and is beyond the scope of this article.

2.4 The Dine-Seiberg problem

With the broad picture of the string embedding in place we can further comment on how this
construction bears on the challenges posed by the Dine-Seiberg problem. These challenges
come in two separate forms, each of which we discuss in turn.

Field expansions. At its most basic the problem starts with the observation that
expansion parameters are fields in string theory, and for any potential of the form

V (τ) =
∑
n

Vn
τn

(2.27)

the condition V ′(τ0) = 0 requires at least two terms of this series to have a similar size.
How can this be consistent with the underlying expansion in 1/τ? Taken at face value this
means stationary points of V must occur outside the perturbative domain.

There are several well-known ways to evade this argument. One such observes that
perturbation theory need not break down if the first coefficient V0 (or the first few) is for
some reason unusually small. If it happens that V0/V1 = O(ε) for some ε � 1 with all
coefficients except V0 having roughly the same size, then the stationary point τ0 of the series
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V (τ) = τ−p(V0 + V1τ
−1 + · · · ) satisfies V ′(τ0) = 0 = −τ−p−1

0 [p V0 + (p+ 1)V1τ
−1
0 + · · · ] and

so has a solution well-approximated by

1
τ0
' − p V0

(p+ 1)V1
= O(ε) . (2.28)

Precisely this argument is applied to the series in powers of αg in (2.12) to find stationary
points V ′(τ0) = 0 consistent with the condition αg(τ0) � 1. It is also the argument
ultimately used in single-modulus KKLT models, for which |w0| must be assumed small in
order to balance against terms like δW ∝ e−aT within the context of an overall expansion
in power of 1/τ .

The large-volume scenario (LVS) of string vacua works with a variation of this theme
that requires the existence of at least two expansion parameters. In this case the potential
arises as a multiple expansion of the form

V (τ1, τ2) =
∑
mn

Vmn ε
m
1 εn2 (2.29)

where εi(τ1, τ2) are two small functions of the two independent moduli (and in practice
ε1 = τ

−1/2
1 and ε2 = e−aτ2). In this case different terms in ∂τiV = 0 can balance against

one another provided the εi are similar in size, but now this can be consistent with both of
them being small without having to assume special properties for the coefficients Vmn. It
is noteworthy from this point of view that multiple moduli is the rule for the underlying
Calabi-Yau spaces of interest, not the exception.

The stabilization mechanism used here adds a third way to evade this problem. In
this case two expansion parameters are present but the stabilization occurs completely
using a fixed order in 1/τ since the potential has the form V (τ) ' U(ln τ)/τ4, with U a
rational function of ln τ arising due to its expansion in powers of αg(τ). The existence
of a minimum for V with respect to variations of τ then also requires terms at different
orders in αg to balance, and this is achieved consistent with αg(τ0) � 1 by using the
assumption (2.12) — similar to the reasoning leading to (2.28). The new ingredient arises
because the τ dependence embedded in αg(τ) itself comes as a series in αg ln τ , and solutions
come with τ large enough that αg ln τ need not be small even if αg is. Nevertheless the
magic of the renormalization group ensures that the solution can be computed reliably even
if αg ln τ ∼ O(1) without assuming anything special about the coefficients bi in eq. (2.9).

Perturbation theory and the runaway. A stronger claim is sometimes superimposed
on the Dine-Seiberg problem within string theory. This claim (emphasised in particular
by advocates of swampland hypotheses and de Sitter conjectures [30, 76, 77]) states that
full control over perturbative expansions in 1/τ and/or 1/s are only valid for τ and s large
enough to be in the runaway region, for which standard EFT methods break down because
there is no static string vacua exist about which to perturb.

Different versions of this argument involve two separate claims:

• In one the objection is that any effective 4D description inevitably breaks down for
large enough values of fields like τ because for large τ a tower of high-energy states
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descend into the low-energy theory and ruin its validity. This tower is not hypothetical
in the case where τ is the volume modulus because the solution in the limit τ →∞ is
10D flat space and the dangerous tower in question consists of the higher-dimensional
Kaluza-Klein modes.

• In the other the objection is that the state of the string-theory art only provides tools
for studying static vacua and these do not allow comparison with the runaway region
for which τ and s are asymptotically large but not actually infinite.

We argue here that neither of these objections need be that worrisome.
In one sense the first objection is simply true: the first nonzero Kaluza-Klein mass

provides the UV scale above which any 4D EFT must break down, and it is also true that
MKK → 0 as τ →∞. As argued in [78] it is never a good approximation to include even
a few KK states with nonzero masses in the 4D EFT while neglecting the rest because
the underlying EFT expansion is in Mlow/Mhigh where Mlow is the highest nonzero energy
scale appearing in the low-energy theory and Mhigh is the lowest energy scale intrinsic to
the high-energy theory. But Kaluza-Klein masses come in quantized towers, such as when
Mn = n/L for n some integer and L some extra-dimesional length. Keeping the n = 1 state
in the low-energy EFT while integrating out the n = 2 state is only justified within an
expansion in powers of M1/M2 = 1

2 ; never a parametrically small variable.
The same problem does not arise if only n = 0 states (i.e. the moduli) are included

in the 4D theory because in this case the low-energy mass need not be tied as rigidly to
the KK scale 1/L. Whether a 4D theory makes sense depends on the masses acquired by
the moduli, and in the examples of interest here we have e.g. mτ/MKK ∝ τ−1 ∼ (MsL)−4,
which can be parameterically small precisely when τ � 1 because then MKK ∼ 1/L�Ms.
Although it is true that the UV cutoff of the 4D theory declines monotonically as τ →∞,
the 4D theory can have a nontrivial domain of validity for any large but finite τ . One must
of course check that this suffices to describe the physical process of interest.

The second objection ultimately puts a premium on static solutions when justifying
using EFT methods. There is no evidence, however, that this is required elsewhere in the
many areas of physics for which EFT methods apply. It is true that EFTs have additional
conditions for validity when applied to time-dependent systems: most notably the motion
must be adiabatic in the sense that φ̇/φ must be a low-energy scale (i.e. be much smaller
than UV scales like MKK) for any moving low-energy field φ (see [78, 79] for a more detailed
discussion). But once these are satisfied the usual rules for EFTs apply and there is no
necessity to expand around a strictly static vacuum solution (for examples where 4D effective
evolution is compared to explicit higher-dimension evolution see [80]). In the end the only
issue is whether the 4D EFT is being used within its domain of validity, including for
applications to time-dependent problems.

Many examples from other types of physics parallel the runaway situation encountered
for fields like τ and s in string theory (and extra-dimensional models more generally).
One of these is the interaction energy of two nearby atoms regarded as functions of their
centre-of-mass positions, V (r1, r2). For spinless atoms the low-energy EFT variables can
simply be the ri if internal atomic size and structure define the UV scale.
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It can happen that van der Waals forces can make atoms attract for large separations
until more microscopic (e.g. exchange) forces eventually intervene to convert this to strong
repulsion. For specific atomic properties a stable static (molecular) solution can exist for
a specific separation, r := |r1 − r2| = a0, with no static solution possible for any other
finite r. This does not forbid the use of EFT methods (such as the Born-Oppenheimer
approximation) for values r 6= a0, such as is done to map out the shape of the potential
V (r1, r2). Neither does it make expansion around the free theory (in powers of 1/r around
r =∞) useless. We see no reason why the large-τ and large-s limits of string theory should
not be as benign as is this everyday analog.

Simpler atomic systems also shed light on arguments that non-perturbative effects
require a stable vacuum in order to be computable [81] (which we mention despite our
stabilization mechanism not requiring the use of non-perturbative effects). For instance,
suppose one or both of the underlying nuclei were to be unstable to α decay with a very
long half-life (such as Uranium). Since α-decay proceeds through the tunneling of He nuclei
through a Coulomb barrier it can be regarded as a nonperturbative effect. It is hard to argue
that one cannot compute — even in principle — the decay lifetime of the uranium atom
except at the one place where the molecule is static. Notice that because the tunnelling
rate is through an electromagnetic potential it depends in principle on the position of the
external electrons and so at some small level also depends on the inter-atomic separation
since the electrons adjust to the presence of the other atom in the molecule.

We conclude that even though string theory has no free parameters and weak couplings
are related to runaway directions, the underlying issues of control are not unique to string
theory. Experience with reliable calculations under similar conditions elsewhere in physics
suggest that trustable perturbative calculations should also be reliable in string theory.

3 Non-linear SUSY and inflation

de Sitter solutions enter practical considerations in one of two ways: as descriptions of
our cosmological future or as descriptions of our distant inflationary cosmological past.
Although the solution described above might conceivably describe the future universe, the
necessity for inflation eventually to end means that it cannot in itself do so in the past. We
next argue that minor extensions of the previous section’s discussion can include both cases,
along the way potentially explaining why each involves such different scales.

3.1 The goldstino and the inflaton

To incorporate inflation we require two new ingredients. We first require a large source of
positive potential energy and because this necessarily breaks supersymmetry we require
a sector that breaks supersymmetry more dramatically than does the dilaton multiplet9

T . The minimum number of degrees of freedom such a sector can introduce at low energy
is the goldstone fermion, G, for supersymmetry breaking. We follow [31] and incorporate

9One might ask whether inflation can be obtained directly from motion driven by the τ potential (2.6)
itself. We have been unable to do so within a regime under EFT control, largely because the τ−4 behaviour
of the potential is too steep.
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this fermion into the present discussion using a chiral field X that satisfies a nilpotentcy
constraint:

X2 = 0 . (3.1)
This constraint removes any scalar superpartners of G and ensures that it nonlinearly
realizes supersymmetry. The couplings of such fields to supergravity are explored in [32–34].

The second new ingredient is an inflaton field φ that can interpolate between a region
where the large supersymmetry-breaking energy dominates and one where it does not.
Inflation is then imagined to take place as the gravitational byproduct of the slow evolution
of the field φ between these different regimes. With later applications to brane-antibrane
inflation in mind we imagine φ also to arise within the sector for which supersymmetry is
badly broken. A nonsupersymmetric scalar φ can also be represented by a chiral superfield
Φ subject to a constraint [31–34], which in this case becomes:

D(XΦ) = 0 . (3.2)

This states that XΦ is left-chiral. If φ is also real then the left-chiral field it is equal to is
XΦ, in which case (3.2) strengthens to the constraint X(Φ − Φ) = 0. In either case the
constraint removes the fermionic and auxiliary-field components of Φ in a way consistent
with nonlinearly realized supersymmetry.

To incorporate these fields into a supersymmetric framework with accidental approxi-
mate scale invariance we repeat the previous section’s construction but now include these
two new fields. For example, the Kähler potential built only from the minimal superfields
X, T and Φ is, as before,

e−K/3 = τ − k + h

τ
+ · · · , (3.3)

where the ellipses denote higher orders in 1/τ , but now

k = K(Φ,Φ, ln τ) + (X +X)KX(Φ,Φ, ln τ) +XXKXX(Φ,Φ, ln τ) , (3.4)

and similarly for h and higher-order terms (although these are not needed in what follows).
The most general superpotential similarly is

W ' w0(Φ) +XwX(Φ,Φ) , (3.5)

where the unusual dependence of W on Φ is allowed because the constraint (3.2) ensures
that the result is chiral once multiplied by X.

The component lagrangian obtained from K and W is as given in [32–34]. The
constraint (3.1) ensures there is no independent propagating scalar for the X multiplet, but
the kinetic terms for the scalar parts of the remaining fields zI := {T,Φ} are given by the
standard form

− Lkin√
−g

= KIJ ∂µz
I ∂µzJ

' 3
P2

(
1 + k′′ − 2k′

P

)
∂µT ∂µT −

[ 3
P2

(
kφ − k′φ

)
∂µφ∂

µT + h.c.
]

(3.6)

+ 3
P

(
kφφ +

kφkφ
P

)
∂µφ∂

µφ+ · · · ,
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where the ellipses denote terms involving higher-order coefficients like h and primes denote
derivatives with respect to lnP.

The scalar potential resembles the standard supergravity form, although the absence of
auxiliary fields in Φ also makes it slightly different. Writing zA := {T,X} and adopting the
standard notation where KAB is the inverse to the matrix KAB, the scalar potential works
out to have the familiar supergravity form [32–34]

V = eK
[
KABDAWDBW − 3|W |2

]
, (3.7)

with the important proviso that the constrained field Φ is not included in the index sums
over A and B. X = 0 must be chosen (after differentiation) when tracking the dependence
on scalar fields because (3.1) ensures the scalar part of X is built from fermion bilinears.

The scalar potential again comes as a series in inverse powers of τ , whose leading terms
turn out to be

V = A|wX|2

P2 − 2Re(BwXw0)
P3 + C|w0|2

P4 , (3.8)

where (as before) P := τ − k + · · · and we keep in mind that each T derivative of k costs a
power of 1/P because k is a function of lnP rather than just ln τ (see the observation in
the footnote below eq. (2.8)). The coefficients appearing in (3.8) are given explicitly by

A ' 1
3 KXX ,

B

P
' KXXKXT and C

P2 ' −
3(KTT − KXXKTXKXT )

1 + 2KXXKXKX
, (3.9)

and we assume A > 0 so the leading |wX |2 term is positive. Notice that (3.8) reduces to (2.6)
in the limit wX = kX = kXT = 0. Notice also that KTT and KXT would both be O(α2

g) if k
inherits its T dependence through the P-dependence of a perturbative coupling αg(P), as
in section 2.2, and this suggests that B/A,C/A ∼ O(α2

g). The inflationary implications of
this potential are the subject of the remainder of this section.

3.2 Inflaton potential

The potential (3.8) is a function of the two scalars τ and φ, and we turn now to exploring
its properties. The first step is to make contact with previous sections, which can be done
if there exists a configuration φ0 for which wX(φ0) = 0. When this exists it is very close to
a minium of the potential, since it effectively turns off the leading P−2 and P−3 terms in
V , leaving terms of order |w0|2/P4 to dominate. τ can be minimized in this regime using
the lnP dependence of k very much along the lines discussed in section 2.

Within an inflationary perspective this minimum with φ near φ0 is the endpoint
of any φ evolution and so represents our present-day vacuum. The inflationary regime
instead occurs for φ far from φ0, where the potential is dominated by the large positive
contribution coming from the |wX |2/P2 term in (3.8). The next sections compute how the
solution for τ(φ) obtained by minimizing V (τ, φ) changes between these inflationary and
post-inflationary regimes.
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Minimization at late times. Suppose first that there exists a field configuration φ0
that satisfies wX(φ0) = 0, and consider the extremization problem near this point. This
can be done very simply in the particular case where none of KXX , KX and KTX depend on
φ (though this assumption of φ-independence can also be relaxed — see [11]). In this case
φ enters the potential only through wX and so minimizing V with respect to φ amounts to
doing so with respect to wX .

Since V is quadratic in wX it is extremized by evaluating at the saddle point

wX = 3KXT w0 , (3.10)

leading to

V [φ(τ), τ ] ' −3|w0|2

P2

[
KXXKXTKTX + KTT − KXXKTXKXT

1 + 2KXXKXKX

]
=: U
P4 . (3.11)

Notice that this vanishes when k is independent of T . As described in the footnote below
eq. (2.8), we write the potential as a function of P (rather than just τ) because this plays
an important role in our later discussion of the η problem.

The potential (3.11) now has precisely the same form considered in section 2, though
with U = U(lnP) given by a slightly different function of k and its derivatives. Minimization
with respect to τ can be carried over in whole cloth provided that k depends on lnP in the
way described in section 2.2, such as if

K ' K0 + K1αg + K2
2 α2

g + · · · and 1
αg

= b0 − b1 lnP (3.12)

and so on (for constants bi). The arguments of section 2 then go through as before, showing
that a minimum is possible at P = P0 with α0 = αg(P0) ∼ O(ε) and lnP0 ∼ 1/ε, with
ε � 1. The potential evaluated at this minimum is again order V ∼ ε5|w0|2/P4

0 and so
can be extremely small. The field φ, introduced here as an inflaton, plays the role of a
relaxation field by dynamically minimizing the |wX |2 term (providing a simple rationale for
the relaxation mechanism as applied in [11] to present-day Dark Energy).

Inflationary regime. The other region of interest for the potential (3.8) is when φ is
far from φ0 and so wX is not small. This is the regime likely appropriate for inflationary
evolution since the potential is dominated by the large positive contribution proportional
to |wX |2. In general the fields τ and φ can evolve independently in this regime and it is not
a priori necessary that either should sit at a local minimum of the potential [84]. However
when seeking the conditions for slow-roll inflation it is instructive to first extremize the
potential (3.8) with respect to τ and ask how the result looks as a function of φ.

To this end, suppose that φ lies in a region for which δ := |wX/w0| . 0.01 is small (a
regime that actually arises for large φ for the brane-antibrane example described below
because the brane tensions are parametrically smaller than the extra-dimensional Planck
scale). In this case V is a sum of terms of relative order δ2, δ/P and 1/P2, and so can
be extremized for values 1/P ∼ δ. For example, for real B, wX and w0 the extrema are
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τ = τ±(φ, φ) where10

1
P±
' D±wX

w0
∼ O(δ) with D± := 3B

4C ±

√
9B2

16C2 −
A

2C . (3.13)

This expression predicts several regimes:

• When A/C < 0 only one of these roots is positive, corresponding to a local maximum
with Vmax > 0 when A > 0 (and a local minimum with Vmin < 0 when A < 0).

• If A/C > 0 then no stationary points exist at all for positive P if 9B2 < 8AC. For
fixed φ the potential V is then a monotonically decreasing positive function if A > 0.

• Both roots are real and positive (with P− being a local maximum and P+ a local
minimum) when A/C and B/C are both positive and 9B2 > 8AC. The potential
evaluated at the minimum τ+ is also positive provided B2 < AC and negative
otherwise.

When a local minimum exists and A/C and B/C are O(1) and ε ∼ δ are similar
in size (and small) then τ+(φ) ∼ 1/δ � 1 is large but is much smaller than its value
τ0 ∼ exp(1/ε) at the global minimum. If on the other hand |A/C| � |B/C| — as might
be expected if A ∼ O(α0

g) and B,C ∼ O(α2
g) — then stationary points only arise for

positive A if C < 0, corresponding to a local maximum with Vmax > 0. Notice that having
B/A,C/A ∝ α2

g ∼ O(ε2) need not be inconsistent with the existence of two roots τ± (and
so having a local minimum) but only if the numerical coefficients in C/A are adjusted to
be O(ε2), since then B2/C2 and A/C are both O(ε−4). This can be done, for example, by
arranging KTT to be numerically suppressed by ε2 so that KTT ∼ O(ε2α2

g) is similar in size
to (KXT )2 ∼ O(α4

g). Using this in (3.13) then shows that P± ∼ ε2/δ are only large if δ � ε2.
In the special case where a local minimum exists we can compute an effective potential

for φ defined by Veff(φ) = V [φ, τ+(φ)], for which τ is assumed to remain at its local minimum
as φ changes. This evaluates to

Veff(φ) ' (A−BD+)
2P2

+
|wX(φ)|2 = (A−BD+)D2

+
2|w0|2

|wX(φ)|4 (3.14)

3.3 Inflationary evolution

For inflation we are interested in how the fields φ and τ evolve and so must keep track of
their kinetic terms given in (3.6). Although in general τ and φ are mixed by the kinetic
terms, this mixing arises at subleading order in 1/τ . The leading form for the target-space
metric is KIJ dzI z̄J ∼ (dτ/τ)2 + kφφ|dφ|2/τ and so for kφφ ∼ 1 the canonical fields are
dχ ∼Mp dτ/τ and dϕ ∼ dφ/

√
τ̄ near a semiclassical background τ = τ̄ .

10For this we neglect for simplicity any dependence of A, B and C on lnP that is implicit through
their dependence on αg(P). This neglect is justified because αg(P) = αg0/(1 − b1 αg0 lnP) ensures that
all lnP-dependence is subleading in powers of αg0. This argument is consistent with keeping all orders in
αg0 lnP0 for the present-day stabilization of P0 because P turns out to be much smaller during inflation
than at present.
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In general, motion along the τ direction is not a slow roll if inflation is dominated by
the term V ∼ |wX |2/τ2 since the slow-roll parameter in the τ direction is then

ε(τ) ∼
(
MpVχ
V

)2
∼
(
τVτ
V

)2
∼ O(1) . (3.15)

The τ ‘mass’ can be similarly estimated when V ∼ |wX |2/τ2 dominates, giving

m2
τ =

(
∂2V

∂χ2

)
τ+

∼ τ2

M2
p

∂2V

∂τ2 ∼
V

M2
p

∼ H2
I , (3.16)

where HI is the inflationary Hubble scale, during an epoch when V dominates the gravitating
energy density. This is also insufficiently small to justify a slow roll.

This makes it important to choose parameters so that V has a local minimum in the
τ direction that stabilizes τ = τ(φ), in which case we can see whether motion in the φ
direction can be sufficiently slow. Even if this can be done it must be asked whether it is
a good approximation to have τ remain trapped at its local minimum as φ evolves. This
depends on whether the volume modulus is heavy enough to integrate out the transverse
τ field to obtain an effectively single-field description. A brief estimate arguing that it is
heavy enough is given in appendix A.

Evaluated at the local minimum for τ = τ+(φ) described above we can evaluate the
slow-roll parameters for evolving in the direction of the canonically normalized field ϕ, and
this is particularly simple when φ dominantly enters through wX , since

∂V

∂ϕ
' ∂

∂ϕ

(
A|wX |2

τ2
+
− 2Re (BwXw0)

M2
p τ

3
+

+ C|w0|2

M4
p τ

4
+

)
'
(
AwX
τ2

+
− Bw0
M2
p τ

3
+

)
∂wX

∂ϕ
+ h.c. , (3.17)

where factors of Mp are re-instated for later convenience. Evaluating at τ = τ+(φ) ensures
each term in V and ∂V/∂ϕ has a comparable size and so ensures wX ∼ (Bw0)/(AM2

p τ+) and
so we may estimate the right-hand side of (3.17) as being of order [Bw0/(M2

p τ
3
+)](∂wX/∂ϕ).

For comparison, with these same estimates the potential energy itself is V ∼ C|w0|2/(M4
p τ

4
+)

and the inflationary Hubble scale is HI ∼
√
V /Mp ∼

√
C |w0|/(M3

p τ
2
+).

The first slow-roll parameter for motion in the φ-direction then becomes

ε = 1
2

(
Mp ∂V/∂ϕ

V

)2
∼
(
BM3

p τ+

C|w0|
∂wX
∂ϕ

)2

∼ τ3
+

(
BM3

p

C|w0|
∂wX
∂φ

)2

, (3.18)

which shows that slow roll requires ∂wX/∂φ to be much smaller than order C|w0|/(BM3
p τ

3/2
+ ).

The second slow-roll parameter is similarly estimated to be

η =
M2
p

V

∂2V

∂ϕ2 ∼
1
H2
I

[
B|w0|
M2
p τ

3
+

(
∂2wX
∂ϕ2

)
+ A

τ2
+

(
∂wX
∂ϕ

)2]

∼ τ+

[
BM4

p τ+

C|w0|

(
∂2wX
∂φ2

)
+
AM6

p τ
2
+

C|w0|2
(
∂wX
∂φ

)2]
. (3.19)

The property B2 ∼ AC — required for the existence of a minimum τ+(φ) — ensures the
second term of this expression is small when ε is small, so requiring small η implies ∂2wX/∂φ

2
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is much smaller than order C|w0|/(BM4
p τ

2
+). Using w0 ∼M3

p and (B/A)2 ∼ C/A ∼ ε4M2
p

and τ+ ∼ ε2/δ (as found above when B,C ∝ α2
g) then shows that slow roll requires the

derivatives of wX to satisfy∣∣∣∣∂wX∂φ
∣∣∣∣� C|w0|

BM3
p τ

3/2
+
∼ ε2Mp

τ
3/2
+

and
∣∣∣∣∣∂2wX
∂φ2

∣∣∣∣∣� C|w0|
BM4

p τ
2
+
∼ ε2

τ2
+
. (3.20)

To go further we must specify in more detail how the functions k and W depend on φ.
We next identify a promising choice for these functions by re-examining the brane-antibrane
inflationary scenario to see how it is affected by the new modulus stabilization mechanism.

3.4 Warped D3-D3 inflation revisited

Brane-antibrane inflation was the first attempt to derive inflation from a string theory
construction within a framework in which the inflaton potential could be explicitly cal-
culated [26, 27] (see [85, 86] for a recent discussion). The inflaton field is the separation
between a brane and an antibrane and for large separations the corresponding potential is
the sum of two terms: the brane tension and the brane-antibrane interaction generated by
their couplings to the various bulk fields. At large distances the inter-brane force takes a
‘Coulomb’ form11 (and so weakens at large separations) but the challenge was to find how
to separate the branes sufficiently within a finite-sized manifold and to compute how brane
motion changes the energetics of modulus stabilization.

Let us briefly recall the main ideas. Fluxes in IIB compactifications back-react on the
metric in such a way that the resulting compactification is a conformal Calabi-Yau threefold
with metric of the form [26–28]

ds2 =
(

1 + e4A

V2/3

)−1/2

ds2
4 +

(
1 + e4A

V2/3

)1/2

ds2
CY (3.21)

with A(y) a calculable function of position within the extra dimensions. The warp factor
W :=

(
1 + e4AV−2/3

)−1/2
plays a significant role in highly warped regions, defined by the

condition e4A � V2/3 � 1. For future use we note in passing that in order to have the
warped string scale be larger than the Kaluza-Klein scale (as required to have a reliable
low-energy effective field theory) the warping must be constrained to satisfy [9, 87, 88]

eA . V2/3 . (3.22)

A space-filling D3 brane sits at a particular point in the extra dimensions and experiences
no position-dependent forces due to supersymmetric BPS cancellation of bulk forces, and
so are free to move within the Calabi-Yau space. Anti-D3 branes by contrast energetically
prefer to minimize the warp factor and so move to the tip of any warped throat for which
e4A takes its largest value, which turns out to be

e4Atip := e4ρ = e8πK/(3gsM) (3.23)
11We take the Coulomb energy for sources separated by a distance y in d transverse dimensions to be an

interaction energy that falls like y−p with p = d− 2 (with p = 4 — corresponding to d = 6 — being the case
relevant to space-filling 3-branes in 10D string vacua).
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where K and M are the integer flux quantum numbers that fix the relevant complex
structure moduli. Depending on the values of K and M the warp factor can be significant
and so can naturally lead to a source of hierarchies within the theory.

Keeping in mind that g̃µν =Wgµν implies
√
−g̃4 =W2√−g4, the tension of an anti-D3

brane localized at the tip of a strongly warped throat contributes the following positive
contribution to the low-energy 4D scalar potential,

2T3W2 = 2T3
1 + (e4ρ/V2/3)

' 2M4
s e
−4ρV2/3 ∼

e−4ρM4
p

V4/3 (3.24)

which uses e4ρ � V2/3 for strongly warped regions as well as the value of the brane tension
T3 ∝M4

s and the relation (2.22) between the string scale and the 4D Planck scale:

T3 = 1
8π3gsα′2

=
(2π)11g3

sM
4
p

4V2 . (3.25)

The exponential dependence of the warp factor appearing within this brane tension is used
in [5] (with a volume dependence later corrected by [28]) to uplift the AdS minimum found
in previous modulus-stabilization mechanisms in order to obtain a dS solution rather than
AdS or the more generic runaway.

Combining this brane tension term with the Coulomb interaction between a mobile
D3 brane and the anti-D3 brane sitting in a warped environment gives the candidate
brane-antibrane inflation potential [26–28] (again in the Einstein frame):

V = 2T3(e−4ρV2/3)
(

1− 27
64π2

2T3(e−4ρV2/3)
|ϕ|4

)
=: Ω

(
1− bΩ
|ϕ|4

)
(3.26)

where ϕ is the canonically normalised field determining the brane separation y: ϕ =
√
T3 y

and the last equality evaluates T3 in Planck units using (3.25), and so

Ω =
c e−4ρM4

p

V4/3 , c = (2π)11g3
s

2 and b = 27
64π2 . (3.27)

Naive inflationary analysis. Putting aside for the moment how V evolves given this
potential, consider first the naive single-field inflationary picture that emerges for ϕ evolution
at fixed V. The slow-roll parameters for this motion in the regime bΩ� |ϕ|4 are

ε =
M2
p

2

(
Vϕ
V

)2
' 8b2

(ΩMp

|ϕ|5
)2

and η =
M2
pVϕϕ

V
' −

20bΩM2
p

|ϕ|6
. (3.28)

Although these can be made arbitrarily small by making |ϕ| sufficiently large, as noted
in [26] inflation does not work (without the warp factors) because it would require the brane
separation to be larger than the typical linear extent of the extra dimensions. But if the
warp factors buried in Ω are small enough the slow roll conditions ε� 1 and η � 1 can be
satisfied. Notice that these also imply that the ratio

− ε

η
' 2bΩ

5|ϕ|4 � 1 , (3.29)

is deep into the regime where quantum effects are dominated by stochastic methods [89].
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In terms of these the number of inflationary e-foldings between horizon exit and
inflation’s end is

Ne = 1
Mp

∫ ϕ∗

ϕend

dϕ√
2ε
' ϕ6

∗
24bΩM2

p

(3.30)

and the amplitude of primordial scalar density perturbations becomes

δH = 1
π
√

75

(
V 3/2

M3
p Vϕ

)
ϕ∗

' ϕ5
∗

4πb
√

75M3
p

√
Ω
. (3.31)

In these expressions ϕ∗ is the inflaton position at horizon exit, relative to which its value at
inflation’s end is neglected: ϕ∗ � ϕend. The slow-roll parameters evaluated at horizon exit
then become

η∗ = − 5
6Ne

, ε∗ = 20πδH
9
√

2N5/2
e

' 16π
5

√
3
5 δH |η∗|

5/2 . (3.32)

The spectral index ns and tensor-to-scalar ratio r are given by the usual expressions

ns = 1 + 2η∗ − 6ε∗ ' 1 + 2η∗ and r = 16ε∗ (3.33)

in which ε∗ � |η∗| is used in ns, showing that the measured value for ns fixes η∗ '
1
2(ns − 1) ' −0.015 and so Ne ' 56. Combining (3.32) and (3.33) and using the measured
amplitude δH = 1.9× 10−5 then gives the following prediction for the scalar-to-tensor ratio

r = 16ε∗ '
64π
5

√
3
10 δH |ns − 1|5/2 ' 2× 10−8 , (3.34)

which is too small to be observable in the foreseeable future.
Although at face value the warp factors (buried in Ω) allow a potential as flat as desired,

this assumes that the physics that stabilizes the overall volume modulus appearing in Ω
has been fixed in a way that does not significantly alter the potential for φ. However,
the same shallowness that makes (3.26) attractive for inflation also makes it fragile to
changes associated with modulus stabilization, as can be most clearly seen by embedding
the brane-antibrane dynamics into a full 4D supergravity EFT that allows a consistent
description of both inflaton and modulus-stabilization. As argued in [28] this exercise
opens up a new problem (the η problem) that generically ruins the shallowness of the
potential (3.26). We repeat this exercise here to show why the RG stabilization mechanism
avoids this problem.

3.4.1 The nilpotent superfield and anti-D3 branes

An interesting feature of the nilpotent superfield formalism of section 3.3 is that it captures
very efficiently the physics of anti-D3 branes at the tip of a Calabi-Yau throat as described
above in this section. We now explore this connection and determine the choices that it
implies for quantities like K, w0 and wX .
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Antibrane tension from the nilpotent superfield. First we recall how the P-dependence
of the leading part of the potential built using a nilpotent superfield reproduces the volume
dependence of the anti-D3 brane tension at the tip of the warped throat. For this recall
that when W = w0 + wXX then the leading term in the scalar potential (3.8) is

V ' KXX |wX |2

3P2 (3.35)

which for wX ∝ e−2ρ reproduces the KKLT expression (3.24) once the volume modulus is
identified in the usual way: P = V2/3.

It is noteworthy that this agreement between the volume-dependence of the nilpotent
potential and the brane tension works only when one uses the warping-corrected volume-
dependence given in [28] rather than the original expression of [5] that does not include
warping. Only in the warped case is supersymmetry breaking sufficiently sequestered to be
captured using only the single goldstino field X. From the string point of view the fact the
X has no independent scalar degree of freedom corresponds to the fact that the isolated
anti-D3 brane has no position modulus in the radial direction because it is energetically
stuck at the tip of the warped throat.

There is also additional evidence that warping can be captured by the superpotential in
this way, since it can also be derived within the 4D effective supergravity as the expectation
value of the throat’s complex structure modulus Y , which schematically contributes to
the superpotential in the form W (Y ) = Y (n1 log Y + n2) + Y X with ni being integer flux
quantum numbers. Eliminating Y from this superpotential in a supersymmetric way gives
rise to the required warp factor multiplying X in W [4, 48].

Inter-brane dynamics. To obtain a supergravity representation for the dynamics of
brane-antibrane motion we require a supermultiplet for the inter-brane separation field φ.
We do so here by representing the inter-brane separation using the constrained inflaton
field Φ of section 3.3.

To describe the kinetic energy of these fields we choose the function K defined in (3.4)
to have the form

K(φ, φ, lnP) ' γ(φ, φ) + K̂(lnP) , (3.36)

where φi is proportional to a complex coordinate describing the 3-brane position within the
extra dimensions. The quantity K̂ is the φ-independent function of lnP described in (3.12)
whose presence stabilizes P at exponentially large values in the present-day vacuum. In
terms of this the kinetic term for changes to φ become

− Lkin√
−g

= Kī ∂µφ̄
j ∂µφi ' 3γī

P
∂µφ̄

j ∂µφi (3.37)

showing that γī is naturally proportional to the extra-dimensional metric gī and so γ(φ, φ)
is proportional to this metric’s Kähler potential. Coordinates can be chosen without loss of
generality so that γ ' φφ near φ = 0.
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To capture the antibrane tension and the separation-dependent Coulomb interaction
we use the following superpotential12

W = w0 +XwX(Φ,Φ) with wX(Φ,Φ) = t− g

|Φ|4 + · · · (3.38)

where the ellipses denote terms suppressed by even higher powers of |Φ|−1.
With this choice the leading term in the scalar potential (3.8) then is

V = KXX |wX |2

3P2 = KXX

3P2

[
|t|2 − 2Re(tg)

|φ|4
+ · · ·

]
, (3.39)

which is to be compared to (3.26) and (3.27). This comparison is most easily done
using the canonically normalized field — see (3.37) — ϕ ∝ P−1/2φ ∝ V−1/3φ, for which
|φ|4 ∝ |ϕ|4P2 ∝ |ϕ|4V4/3.13 Once expressed in terms of ϕ both terms of (3.39) have the
same dependence on P (or V) as in (3.26) and (3.27), and so it becomes possible to read
off the warping dependence of the coefficients t and g in wX , leading to KXX |t|2 ∝ ce−4ρ

and KXX2Re tg ∝ bc2e−8ρ. The freedom to rescale X allows the warping dependence to be
moved around somewhat, but if this is used to ensure KXX is warping free then (for real t
and g) it implies

t ∝ e−2ρ and g ∝ e−6ρ . (3.40)

As mentioned earlier, it is a good thing that both t and g are suppressed by warping
because we have seen — cf. eq. (3.20) — that inflationary slow roll can be ensured by
making the ϕ derivatives of wX sufficiently small. The subtlety in this argument is that V
is really a function of two fields, φ and τ , and one must check that τ evolution does not
ruin the desired inflationary behaviour.

The above discussion ignores the |g|2/|φ|8 term in V because this must compete with
higher order terms in wX that are already dropped in (3.38). It is noteworthy that some
things can nonetheless be said for smaller |φ| even if the detailed form of wX is not known in
this limit. The main observation is that the supergravity structure of the leading 1/P2 term
of V comes proportional to |wX |2 and so cannot decrease without bound as |φ| decreases.
The lowest it can get is zero, which would be obtained if there exists a φ = φ0 for which
wX(φ0) = 0. If such a field exists within the domain of validity of the 4D EFT then this
point is a local minimum of the potential; unlike the standard Coulomb interaction V

would reach a minimum value beyond which the interaction becomes repulsive rather than
attractive — see figure 2. Although in the simplest scenario this would usually be expected
only to occur at scales of order the warped string scale or less — and so be beyond the
domain of 4D methods — it remains to be seen whether more complicated examples exist
for which φ0 can lie within the domain of 4D methods.

12See [47] for a first supersymmetric discussion of the Coulomb potential.
13Note that it is not trivial that the volume-dependence in the scalar potential comes out as required

given the fact that the volume cannot appear in the superpotential.
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Figure 2. The Coulomb potential from the superpotential wX(φ). Since V ∝ |wX |2 this potential
reproduces the Coulomb interaction for large values of the brane separation φ but at smaller distances
the interaction potential has a minimum and becomes repulsive. At large field values, and due to
the large amount of warping the potential is flat enough to give rise to inflation in a natural way.
The minimum of the potential lies outside the domain of validity of the EFT and only for large
values of φ is this potential under control.

3.4.2 Inflation, modulus stabilization and the η problem

The problem is that the τ -dependence of V does tend to ruin inflation, at least when τ is
stabilized using the superpotential. To see why we now repeat the argument given in [28]
that shows why stabilizing the volume modulus often introduces new issues. The problem
is that the mechanism used in [28] to fix the volume modulus also induces a mass term for
the would-be inflaton field ϕ that makes the slow-roll parameter η of order one. This is a
special case of a more general problem for supergravity-based inflationary models, called
the η problem.

The η problem. The problem arises because the Kähler potential very generally depends
on both τ and φ: K = −3 ln[τ − k(φ, φ̄) + · · · ], where k(φ, φ̄) ' φ̄ φ + · · · is responsible
for the kinetic term for φ. So once τ is fixed by adding a holomorphic non-perturbative
superpotential Wnp(T ), the dependence of K on φ introduces a potential energy that
generates a mass for φ because of the potential’s overall dependence on eK :

V = eK V̂0 '
V̂0

[τ − φ̄ φ+ · · · ]3
' V̂0
τ3

[
1 + 3φ̄ φ

τ
+ · · ·

]
' V̂0
τ3

[
1 + ϕ̄ ϕ+ · · ·

]
. (3.41)

It is the superpotential terms within V̂0 that contain the small warp factors that allow
V̂0 to depend so weakly on φ that inflation can be possible. The value of V̂0 also fixes
the value of the Hubble scale whenever the universal energy density is dominated by
V , since then H2

I ' V/M2
p ' V̂0/(τ3M2

p ). But when this is so eq. (3.41) shows (once
the Mp factors are reinstated) that φ inevitably has a mass contribution that is of order
m2
φ ∼ V̂0/(τ3M2

p ) ∼ H2
I which therefore contributes a factor of order unity to the second

slow-roll parameter η = M2
p Vϕϕ/V ' m2

φ/H
2
I . Slow roll is only achieved in the standard
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Figure 3. A plot showing the inflationary region in which the potential is temporarily fixed at a
minimum in the modulus τ direction while the inflaton ϕ slowly rolls. At the end of inflation the
two fields run to their minimum at τ0, ϕ0 with τ0 � τinf .

construction by including a large (unwarped) φ̄ φ contribution into V̂0 and tuning this to
cancel against the term coming from eK . Even though inflation is achievable in this way, it
needs a very particular fine tuning and the Coulomb potential is essentially replaced by a
tuned inflection-point inflation [90, 91].

The problem is quite generic because the Kähler potential very generally depends only
on P = τ −k+ · · · but because the superpotential must be a holomorphic function it cannot
depend on P and must only depend on T and φ separately. But — as already pointed out
in [28] — this also shows that it is potentially evaded if the modulus-stabilization mechanism
can arise from corrections to K rather than to W , provided these directly stabilize P rather
than just τ . The modulus-stabilization mechanism presented here evades the η-problem
in precisely this way: the stabilizing potential naturally arises as a function of P directly.
Inflation is therefore driven by an expression like (3.41) regarded as a function of φ for fixed
P rather than for fixed τ (see figure 3).

Inflating with Kähler stabilization. We now return to the combined τ and φ dynam-
ics when W is independent of T and modulus stabilization instead arises through RG
stabilization, with the potential generated using (3.36). There are two ways to proceed. The
first simply uses the analysis given in section 3.3, which explicitly follows the potential as a
function of τ and φ, specializing it to the superpotential (3.38) and Kähler function (3.36).
This leads to expressions (3.18) and (3.19) for the slow-roll parameters, and to the condi-
tion (3.20) for inflation, which notably translates into the following conditions that really
can now be satisfied by choosing sufficient warping

4g
|φ|5
� C|w0|

BM3
p τ

3/2
+
∼ ε2Mp

τ
3/2
+

and 20g
|φ|6
� C|w0|

BM4
p τ

2
+
∼ ε2

τ2
+
. (3.42)

The second approach uses the effective potential Veff(φ) = V [φ, τ+(φ)] given in (3.14)
obtained by evaluating τ = τ+(φ) at its φ-dependent minimum. Single-field methods are
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then directly applicable. Writing (3.14) as

Veff(φ) ' D|wX(φ)|4
|w0|2

, (3.43)

we can directly differentiate to evaluate the slow-roll parameters. For these purposes we can
neglect the φ-dependence of D because this is inherited from the lnP-dependence of A, B
and C, which have been argued to involve subdominant powers of αg. Differentiating with
respect to the canonically normalized field ϕ ' φ/

√
3P gives (for real wX) the slow-roll

parameters

ε = 1
2

(
MpVϕ
V

)2
= 8

(
MpwXϕ
wX

)2
' 8P

3

(4Mpg

t|φ|5
)2
' 8

( 3
P

)4 (4Mpg

t|ϕ|5
)2

, (3.44)

and

η =
M2
pVϕϕ

V
'

4M2
pwXϕϕ

wX
+ 12

(
MpwXϕ
wX

)2
(3.45)

' −4
( 3
P

)2
(

20M2
p g

t|ϕ|6

)
+ 12

( 3
P

)4 (4Mpg

t|ϕ|5
)2

where the warping suppression enters through the factor g/t ∝ e−4ρ.
To see the need for warping it is useful to estimate the size of the factors that enter

into η and ε. To this end consider the following factor

η 3 4
( 3
P

)2
(

20M2
p g

t|ϕ|6

)
' 80P

3

(
g

t|φ|4
)(

M2
p

|φ|2

)
. (3.46)

Estimating t ∼ e−2ρM2
s and g ∼ e−6ρM6

s and taking the inter-brane separation to be no
bigger than the extra dimensions, which means

φ ∼M2
s y .M2

s /MKK ∼MsV1/6 ∼Ms P1/4 ∼Mp P−1/2 (3.47)

then allows the lower bound on (3.46) to be written

η &
80P

3

(
e−4ρ

P

)
P . (3.48)

Although the requirement P � 1 precludes η being small for unwarped geometries [26],
a slow roll is possible provided e−4ρ � O(P−1) ∼ O(V−2/3), which is consisent with the
lower bound e−ρ & V−2/3 given in (3.22).

We see that large enough warping now leads to the predictions η < 0 and ε� |η| � 1,
and this is consistent with the stabilization of the modulus τ without the η problem because
it is actually the full quantity P that is stabilized. Because ε is hierarchically smaller than
η it is clear that the tensor to scalar ratio is so small that there should be no observable
primordial tensor fluctuations. If these should be observed in the next few years this
inflationary scenario would be decisively ruled out.
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As inflation proceeds the value of wX decreases until at some point the above slow-roll
analysis breaks down. Then the fields roll more quickly until they are captured by the
minimum or the 4D EFT breaks down and we become unable to predict what happens (such
as by having brane and antibrane annihilate and release prodigious amounts of energy).
One scenario would be to have φ reach the zero of wX before the EFT breaks down (such as
in figure 2), in which case the fields can be trapped by the late-time modulus-stabilization
solution near wX ∼ 0 described in section 3.2. It is not in general guaranteed that the
volume modulus must get trapped at its new minimum, since it can also overshoot and
crest the nearby local maximum, followed by a decompactification runaway to infinity.

Although trapping by the local minimum is not guaranteed, given efficient enough
reheating the ruthless efficiency of Hubble friction often makes it much more robust than
might naively be expected (as can be seen by numerical evolution in the presence of a
thermal background in similar examples [10, 11, 23]). When such trapping occurs the value
of the τ modulus stabilized in its late time minimum τ = τ0 can be exponentially larger
than its values during inflation. Since τ determines the sizes of the string and Kaluza-Klein
scales relative to the Planck scale such a change can allow the possibility of inflation being
controlled by a much larger energy scale than is associated with low-energy supersymmetry
breaking and the later universe.

Any large excursion by τ between inflation and now can easily require the canonical
field χ ∼ Mp ln τ to run a distance larger than Mp. This need not be in contradiction
with the distance conjecture [30, 76, 77] since the Kaluza-Klein levels provide explicit
realizations of the hypothesized infinite tower of states that descend into (and so ruin) the
low-energy theory. The only control issue concerns whether the evolution can be described
purely within the low-energy 4D EFT used here. As we have checked, this is easy to
ensure during inflation because the fields roll so slowly. It is also fairly easy to arrange for
cosmological evolution at later times since the late-time 4D EFT breaks down at scales of
order Mp/τ0 [11]. Whether a 4D description suffices in between depends somewhat on the
nature of the post-inflationary evolution that intervenes between inflation and now, and for
some choices of this its evolution might require a more comprehensive UV treatment (such
as perhaps along the lines of [80]).

3.5 Annihilation and the tachyon superpotential

We close with more speculative remarks about the small-φ limit. Typically the anti D3
brane also hosts other matter fields, including Higgs-like scalar fields H. These again appear
in the low-energy supergravity in a nonsupersymmetric way, appearing in the superpotential
only coupled to the goldstino superfield X such as through terms like W (H) = X|H|2.

Including this kind of coupling in the superpotential together with the Coulomb
interaction gives rise to a superpotential like:14

W = w0 +XwX with wX = t− g

|Φ|4 − λ|H|
2 . (3.49)

14Recall that XH is chiral for a constrained superfield representing a spinless state, allowing terms like
X|H|2 to appear in the superpotential.
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In this case the scalar potential is15 (assuming all constants real and positive)

V ∝ |wX |
2

P2 =
(
t|φ|4 − g

)2
P2|φ|8

+ 2λ
(
t|φ|4 − g

)
P2|φ|4

|H|2 + λ2|H|4

P2 (3.50)

and so as long as the combination t− g/|φ|4 is positive, the field H has a positive mass and
the potential is minimized at H = 0. But once φ is small enough that t− g/|φ|4 < 0 the
canonically normalised field H ∝ H/

√
P acquires a tachyonic mass

m2 = 2λ
P

(
t− g

|φ|4
)
< 0 . (3.51)

This captures the same behaviour as would be expected within string theory for a
mode of an open string stretching between the brane and the antibrane.16 Such a state
becomes lighter as the branes approach one other until at a critical distance it becomes
tachyonic (believed to herald the onset of the brane-antibrane annihilation instability).
Indeed for large separations, φ, the mass for H predicted by (3.51) becomes proportional
to t/P ∝ e−2ρ/P, which has the same warping and volume dependence as does the square
of the warped string scale. See figure 4 for a plot of the potential as a function of φ and
H, showing in particular a flat inflaton direction with a waterfall-style end of inflation
occuring when the H field becomes tachyonic.17 Notice that such a tachyonic field is easily
‘integrated in’ within our inflationary picture simply by using (3.49) when evaluating |wX |4
in the scalar potential (3.43). Most of our discussion goes through unchanged because most
of our conclusions are independent of the detailed functional dependence of wX(φ).

This simple supersymmetric 4D EFT provides a transparent toy model that captures
many features of the full string brane-antibrane annihilation picture [92]. Since the tachyon
field’s expectation value breaks the gauge symmetries to which it couples this evolution of φ
to an H waterfall provides a dynamical description of symmetry breaking in the antibrane
gauge sector.18 Depending on the scales chosen one might build models for which H breaks
a Grand Unified symmetry at very high scale, or perhaps break the symmetry group of the
standard model itself. As noted in [26] the tachyon plays other key roles in the physics of
the brane-antibrane inflation (besides providing its waterfall finish) such as by giving rise

15Notice that when two fields appear in a potential V ∝ |wX(Φ,H)|2 there is generically a flat direction
H(Φ) defined by the condition wX(Φ,H) = 0. This direction is generically lifted by the D-term potential
when the fields carry charge (as would the brane-antibrane tachyon).

16The standard discussion assumes a mass term for the tachyon proportional to (φ2 − m2)H2 which
becomes tachyonic once φ reaches the mass scale m. A similar expression can be obtained from (3.51) by
expanding φ = φ0 − δφ with δφ� φ0 as done in [47].

17We here consider only the simplest potential for the tachyon. Further options can be chosen in order to
match the different proposals in the literature [92].

18The current intuition about the end-point of brane-antibrane annihilation within the full string theory is
that no perturbative states remain after tachyon condensation. A puzzle arises because the tachyon field only
breaks one combination of the two U(1) gauge symmetries that live on the two branes. It has been conjectured
that the second U(1) survives, but in a confining phase that is not manifested perturbatively [93–96]. It is
tantalising to propose that this late-time behaviour is instead governed by a brane-antibrane bound state —
similar to branonium [97] but corresponding to a nontrivial zero of wX — rather than continuing to the
singularity at φ = 0.
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Figure 4. The 4D scalar potential as a function of brane separation φ and the tachyon H.

to topological defects such as cosmic strings [98, 99]. For a discussion on reheating after
brane inflation see [100].

4 Conclusions

In this paper we explore the consequences of the RG modulus-stabilization mechanism of [10,
11] to string vacua, showing that it can generate both de Sitter and non-supersymmetric
anti-de Sitter solutions. For the de Sitter vacua no particular uplifting mechanisms are
required (unlike for KKLT or LVS stabilization19). We further explore its implications for
relatively simple inflationary scenarios, for which we find it can evade other commonly
encountered problems (such as the η problem).

Because the RG mechanism is at heart a perturbative process, it must confront the
generic no-go arguments whose roots lie within the old Dine-Seiberg problem [1] (and have
been recently revived in the context of swampland conjectures [30, 76, 77]). We argue:

• The Dine-Seiberg issue relies on the scalar potential’s runaway behaviour in the weak-
coupling limit, and this runaway itself can be interpreted in terms of approximate
symmetries of the EFT that are inherited from symmetries of the underlying 10D
supergravity (and string theory) underlying the robustness of the problem.

• The behaviour of the potential and of evolution in its presence can be addressed
within the runaway region using semiclassical expansions without losing calculational
control. We argue that the control issues encountered — such as domain of validity of
EFT methods in time-dependent situations for both perturbative and nonperturbative
physics — arise more generally in, and do not undermine conclusions for, other
areas of physics and that there is no evidence that string theory effective actions
behave differently.

19It is worth emphasising that even though we introduced anti D3 branes to address inflation, we do not
need them to get de Sitter. Furthermore, unlike KKLT, the contribution of the brane tension is only the
constant contribution of a field dependent wX which essentially vanishes at the overall minimum.
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• Although the Dine-Seiberg argument is true generically — there are doubtless many
solutions in regions of strong coupling (gs ' O(1)) and small volume (τ ' O(1)) —
it can be evaded in specific situations. The RG approach exploits mild hiearchies of
coefficients in perturbative expansions of the action (which allows minima to arise
with small expansion parameter, α� 1) together with RG methods that both identify
a dependence on ln τ and allow controlled resummations that work to all orders in
α ln τ . As a bonus solutions naturally arise at very large values ln τ ' 1/α.

Although the RG scenario provides alternatives to the standard KKLT and LVS in IIB
string theory, there are plenty of moduli to go around and specific solutions might exploit
several of these mechanisms at the same time. For instance, our mechanism may be used
to stabilise the overall volume modulus whereas the other Kähler moduli may be fixed by
non-perturbative effects as in KKLT or LVS. Furthermore, the O(1/10) hierarchy required
in the RG approach to obtain exponentially large volumes might itself be obtained if these
parameters are functions of other fields, such as the complex structure moduli, fixed in
other ways.

There is also nothing intrinsically IIB about the RG mechanism, which can in principle
also be put to work in other types of string vacua, such as heterotic models, for in which
modulus stabilization has proven to be more challenging (see for instance [101]) than for IIB.
We leave it as an open question to explore this scenario through more explicit constructions,
both in IIB string compactifications and in heterotic and type IIA theories.

Combining RG stabilization with string-inflation models can be done by adding a
sector with badly broken supersymmetry (to provide the large positive inflationary energy
density) and an inflaton field whose evolution slowly interpolates between the early-time
large-potential regime and the more negligible scalar potential at later times. The tools
of nonlinearly realized supersymmetry and approximate accidental scale invariance are
well-suited to the situation where the inflaton is the brane antibrane separation of D3-D3
inflation scenarios. Because RG stabilization evades the usual η problem of these models
found in [28], it revives their initial motivation: warping can itself provide the slow roll
needed for successful inflation. Moreover, because the volume modulus takes on different
values during and after inflation it allows us to have inflation take place at high (eg GUT)
scales and still end at late times with a low enough gravitino mass with TeV supersymmetry
breaking in the visible sector.

Although the purely Coulombic interaction potential moves beyond the domain of
validity of 4D EFT methods when separations are at the string scale, attractive cosmologies
would emerge if the inflaton were to reach a regime with wX = 0 while still in the 4D
regime. This is because this naturally becomes a local minimum for which the natural
relaxation described more fully in [11] acts to suppress the value of Vmin at the minimum.
The resulting cosmologies then provide an explicit classical transition between an early
inflationary regime and a later de Sitter universe with a suppressed curvature with the
inflaton as the relaxation field.

Finally, we remark how the 4D EFT with non-linearly realized supersymmetry to which
we are led, actually shares many other features of brane-antibrane annihilation as well, such
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as the transition between relative motion and tachyon condensation. As such it can be
regarded as a useful toy model for thinking through what brane annihilation might look like
at the end of inflation. This simple scenario is very attractive: it addresses the two main
challenges of string inflation — the η problem and the separation of scales while explicitly
addressing moduli stabilization — in a relatively simple framework. We leave to the future
the study of concrete string theory models that more fully include all these ingredients.
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A Trapping efficiency and effective single-field evolution

In the main text we follow [91] in assessing the inflationary slow-roll using an approximate
single-field model with the volume modulus trapped at a local minimum τ = τ(φ) as the
inflaton rolls. In this appendix we briefly explore the efficacy of this assumption. In principle
the gravitational response should be done using the full multi-field model, and it need not
be true that an effective single-field description suffices (although it generally does if the
non-inflationary field is sufficiently massive). For more detailed discussions of these issues
see [84, 102].

For a general multi-scalar lagrangian

L = −
√
−g

[1
2 Gij(φ) ∂µφi ∂µφj + V (φ)

]
(A.1)

the classical equations governing a homogeneous roll are

φ̈i + 3Hφ̇i + Γijk φ̇j φ̇k +Gij∂jV = 0 , (A.2)

where as usual
Γijk := 1

2 G
il
(
∂jGkl + ∂kGjl − ∂lGjk

)
(A.3)

is the Christoffel symbol for the target space metric Gij . The energy density and pressure
for such a homogeneous roll is

ρ = 1
2 Gij φ̇

i φ̇j + V (φ) and p = 1
2 Gij φ̇

i φ̇j − V (φ) . (A.4)

In a slow roll the kinetic energy is negligible 1
2 Gij φ̇

i φ̇j � V and the evolution is
approximately governed by

H2 = ρ

3 '
V

3 and 3Hφ̇i +Gij∂jV ' 0 . (A.5)
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These equations allow the requirement of small kinetic energy to be cast as a condition on
the scalar potential

ε := Gij∂iV ∂jV

2V 2 � 1 , (A.6)

which also satisfies Ḣ ' −εH2 when time derivatives are evaluated using (A.5).
Having ample inflation requires ε to be small for a sufficiently long time and so also

requires its time-derivative to be small. Since using (A.5) to evaluate the time derivatives
of ε gives

ε̇

H
' −

V|ijv
ivj

V
+ 4ε2 , (A.7)

where V|ij := Vij − ΓkijVk and vi := GijVj/V , we see that a field-redefinition invariant
representation of the slow-roll conditions |Ḣ/H2| � 1 and |ε̇/(Hε)| � 1 is

ε = 1
2Gijv

ivj � 1 and ηijv
ivj � ε where ηij :=

V|ij
V

. (A.8)

Brane example. In the supersymmetric case the target space is a Kähler manifold with
complex coordinates φa and φā, for which Gab = Gāc̄ = 0 and the only nontrivial metric
components are Gac̄ = ∂a∂c̄K. In this case the only nonzero Christoffel symbols are the
purely holomorphic combinations

Γabc = 1
2G

ēa
(
∂bGcē + ∂cGbē − ∂ēGbc

)
= Gēa∂b∂c∂ēK (A.9)

and their complex conjugates. The evolution for the homogeneous roll of φa is then

φ̈a + 3Hφ̇a + Γabc φ̇b φ̇c +Gc̄a∂c̄V = 0 . (A.10)

For the case considered in the main text we have two complex fields φa = {T, φ} with
K = −3 lnP with P = T + T − φφ, where τ = T + T is the real dilaton. In this case the
leading derivatives are KT = KT = −3/P, Kφ = 3φ/P and Kφ = 3φ/P, and the Kähler
metric has components

KTT = 3
P2 , K

Tφ = − 3φ
P2 , KφT = − 3φ

P2 and Kφφ = 3
P

+ 3φφ
P2 = 3τ

P2 . (A.11)

The components of the inverse metric then are

KTT = P3
(
P + φφ

)
= τP

3 , KTφ = Pφ3 , KφT = Pφ3 and Kφφ = P3 . (A.12)

To compute the Christoffel symbols we require the derivatives Kabc̄, which are

KTTT = − 6
P3 , KφTT = 6φ

P3 , KφφT = −6φ2

P3 (A.13)

and
K
TTφ = 6φ

P3 , K
Tφφ = − 3

P2 −
6φφ
P3 , Kφφφ = 6τφ

P3 , , (A.14)
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and so the holomorphic Christoffel symbols are

ΓTTT = 2 Γφ
Tφ = − 2

P
, ΓTTφ = φ

P
, Γφφφ = 2φ

P
and ΓφTT = ΓTφφ = 0 . (A.15)

The field equations (A.10) for T and φ therefore become

T̈ + 3HṪ − 2Ṫ 2

P
+ 2φφ̇Ṫ
P

+ PτVT3 +
PφVφ

3 = 0 , (A.16)

and

φ̈+ 3Hφ̇+ 2φφ̇2

P
− 2φ̇Ṫ
P

+ PφVT3 +
PVφ

3 = 0 . (A.17)

Note the absence of the φ̇2 terms in the T evolution equation and the absence of the Ṫ 2

term in the φ equation. These kinds of term could be dangerous in that e.g. φ̇ 6= 0 could
become an obstruction to having Ṫ = 0 even if the potential term in the T equation were
to vanish. Such a term tries to drive T along a target-space geodesic, which need not align
with the direction towards which the potential encourages the field to move.

It is clear from (A.17) that starting at rest near a zero of VT allows φ to evolve with
the speed expected for the single-field model with Veff(φ) = V (φ, τ(φ)), but the question is
whether (A.16) also pushes T to evolve so that it remains at its local minimum as φ evolves.
This should occur if the VT term is the dominant one (for slow motion) in the T equation
since then slow roll naturally seeks to adjust T to find the zero of VT .

We can estimate the size of different terms using the potential (3.8) of the main text
evaluated in the vicinity of the local minimum τ(φ), where all terms — w2

X/P2, wXw0/P3

and w2
0/P4 — are similar in size. This allows the estimates

τVT ∼ V ∼ H2 ∼ w2
0
P4 and Vφ ∼

w0wXφ
P3 . (A.18)

In slow roll we therefore expect

φ̇ ∼
PVφ
H
∼ P(w0wXφ/P3)

w0/P2 ∼ wXφ (A.19)

and so requiring |φ̇|2/P be much smaller than V ∼ H2 implies wXφ � w0/P3/2. But this
makes the Vφ ∼ w0wXφ/P3 . w2

0/P9/2 term in the T equation smaller than the τVT ∼ V ∼
w2

0/P4 term. Because there are also no φ̇2 terms this means that an initially motionless T
preferentially evolves towards the zero of VT , as required by a single-field treatment.

Of course real multi-field evolution can be complicated, perhaps oscillating around the
trough at τ = τ(φ), depending on the precise initial conditions. When such evolution is
studied in detail for brane-antibrane inflation — as, for example, in [102] — it can be the
case that the full multi-field evolution gives more inflationary e-foldings than would have
been inferred using the approximate single-field estimate.
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