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Abstract: Defects in two-dimensional conformal field theories (CFTs) contain signatures
of their characteristics. In this work, we analyze entanglement properties of subsystems
in the presence of energy and duality defects in the Ising CFT using the density matrix
renormalization group (DMRG) technique. In particular, we compute the entanglement
entropy (EE) and the entanglement negativity (EN) in the presence of defects. For the
EE, we consider the cases when the defect lies within the subsystem and at the edge of
the subsystem. We show that the EE for the duality defect exhibits fundamentally dif-
ferent characteristics compared to the energy defect due to the existence of localized and
delocalized zero energy modes. Of special interest is the nontrivial ‘finite-size correction’
in the EE obtained recently using free fermion computations [1]. These corrections arise
when the subsystem size is appreciable compared to the total system size and lead to a
deviation from the usual logarithmic scaling characteristic of one-dimensional quantum-
critical systems. Using matrix product states with open and infinite boundary conditions,
we numerically demonstrate the disappearance of the zero mode contribution for finite sub-
system sizes in the thermodynamic limit. Our results provide further support to the recent
free fermion computations, but clearly contradict earlier analytical field theory calculations
based on twisted torus partition functions. Subsequently, we compute the logarithm of the
EN (log-EN) between two disjoint subsystems separated by a defect. We show that the
log-EN scales logarithmically with the separation of the subsystems. However, the coeffi-
cient of this logarithmic scaling yields a continuously-varying effective central charge that
is different from that obtained from analogous computations of the EE. The defects leave
their fingerprints in the subleading term of the scaling of the log-EN. Furthermore, the
log-EN receives similar ‘finite size corrections’ like the EE which leads to deviations from
its characteristic logarithmic scaling.
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1 Introduction

Entanglement plays a central role in the development of long-range correlations in quan-
tum critical phenomena. Thus, quantification of the entanglement in a quantum-critical
system provides a way to characterize the universal properties of the critical point. For
1+1D quantum-critical systems described by conformal field theories (CFTs), entangle-
ment measures provide a viable way to extract characteristics of the CFT. For instance,
the von-Neumann entropy (SA) in the ground state [i.e., the entanglement entropy (EE)] for
a subsystem (A) exhibits universal logarithmic scaling with the subsystem size [2, 3]. Here,

SA = −TrρA ln ρA, ρA = TrBρ, (1.1)

where the total system with density matrix ρ is partitioned into A and B. The coefficient
of this scaling determines a fundamental property of the CFT: the central charge, which
quantifies, crudely speaking, the number of long-wavelength degrees of freedom. The afore-
mentioned scaling, together with strong subaddivity property of entropy [4] and Lorentz
invariance, leads to an alternate proof [5] of the celebrated c-theorem [6] in 1+1 dimensions.
At the same time, the scaling of the EE in these gapless systems [7–9] and their gapped
counterparts [10] lies at the heart of the success of numerical techniques like density matrix
renormalization group (DMRG) [11, 12] in simulating 1+1D quantum systems.
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Given the widespread success of the EE in characterizing bulk properties of quantum-
critical points, it is natural to ask if the EE also captures signatures of boundaries in
conformal-invariant systems [13]. For finite systems with boundaries at a conformal crit-
ical point, the EE receives a universal, subleading, boundary-dependent contribution, the
so-called ‘boundary entropy’ [14, 15]. The latter, related to the ‘ground-state degeneracy’
of the system, plays a central role in a wide-range of problems both in condensed matter
physics [16, 17] and in string theory [18]. The boundary contribution in the EE is a valu-
able diagnostic for identifying the different boundary fixed points of a given CFT [19–21].
In particular, the Ishibashi/Cardy states for the rational CFTs [22] lead to a direct com-
putation of the different boundary entropies [13, 20].

Defects constitute the more general setting where one CFT, instead of being termi-
nated with a given boundary condition, is glued to another CFT. Despite being ubiquitous,
such defects are relatively less understood as far as their entanglement properties are con-
cerned. A major difficulty is that lattice Hamiltonians for defects of rational CFTs are not
yet available, although some progress has been made in this direction [23–25]. The notable
exception is the free, real fermion (Ising) CFT, for which the defects have been completely
classified and corresponding lattice Hamiltonians have been found [26–30]. Of particular
interest are topological or purely transmissive defects. Such defects commute with the gen-
erators of conformal transformations [31–35] and thus, can be deformed without affecting
the values of the correlation functions as long as they are not taken across field inser-
tions (hence the moniker topological). They reflect the internal symmetries of the CFT
and relate the order-disorder dualities of the CFT to the high-low temperature dualities of
the corresponding off-critical model [33, 36, 37]. They also play an important role in the
study of anyonic chains and in the correspondence between CFTs and three-dimensional
topological field theories [38].

The importance of defects in the analysis of CFTs provides a natural motivation for
the investigation of their entanglement properties. Consider the EE of a subsystem for two
distinct geometries [see figure 1(a,b)]: i) where the defect is symmetrically located within
the subsystem and ii) when the defect is located at the interface between the subsystem and
the rest. For case i), as long as the defect sufficiently far from the edge of the subsystem,
the leading order dependence of the EE (referred to as symmetric EE), is governed entirely
by the bulk correlations around the edge of the subsystem. The subleading term depends
on the defect. After usual folding maneuvers, the subleading term can be equated to a
boundary entropy with double the bulk degrees of freedom [17, 29, 39]. This leads to
predictions for the subleading term in the symmetric EE for defects in rational CFTs [40]
when the size of the subsystem is much smaller than the system size. The situation for
case ii) is more subtle. In particular, both the leading and subleading order terms of the
EE (referred to as interface EE) depend on the defect. The leading order term has been
computed using the replica trick for the free, compactified boson CFT [41] and the Ising
CFT [42] (see also [43–45]). The coefficient of this leading order term defines an effective
central charge that depends continuously on the defect strength. The subleading term,
initially computed only for the topological defects [40, 42] using the corresponding twisted
torus partition functions [31], was shown recently to be incorrect in ref. [1] for the Ising
CFT using free-fermion computations.

– 2 –
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Figure 1. Geometric arrangements of the subsystem(s) and the rest of the system considered for
the bipartite EE (a,b) and the log-EN (c) computations. The defect is indicated by a green dot.
(a) Subsystem A is located symmetrically around the defect. (b) The defect lies at the interface
between the subsystem (A) and the rest (B). (c) Two subsystems, B1 and B2, separated by a
segment A, with the defect symmetrically located within A.

In this work, we analyze the entanglement properties of subsystems for the Ising
CFT [1] with energy and duality defects using the density matrix renormalization
group (DMRG) technique. The primary goals of this work are the following. First, DMRG
provides a completely independent check of the free-fermion computations performed for
the topological defect (a special case of the duality defect) in ref. [1]. Second, DMRG allows
numerical computations to be performed in both finite and infinite systems by appropri-
ately choosing boundary conditions (bcs) [12, 46]. As shown in ref. [1], the existence of a
nonlocal zero mode in the topological case leads to nontrivial ‘finite size corrections’ [47]
for both the symmetric and interface EEs. Here, we show that the same is also true for
general duality defects away from the topological point [13]. Furthermore, by choosing infi-
nite bc in our simulation, we explicitly verify that this correction disappears in the infinite
system case. Third, we analyze the entanglement between two disjoint blocks, B1 and B2
separated by a segment containing a defect. Despite von-Neumann entropy’s success in
quantifying entanglement in CFTs, it does not quantify entanglement between subsystems
when the total system (in this case B1 ∪ B2) is in a mixed state, i.e., when Trρ2 < 1. To
that end, we consider the logarithmic entanglement negativity (log-EN) [48] between the
two blocks with the defect located symmetrically between them [see figure 1(c)]:

EB1,B2 = ln ||ρTB2 || = ln Tr|ρTB2 |, (1.2)

where ||ρTB2 || is the trace-norm given by the sum of the absolute values of the eigenvalues
of ρTB2 . We compute the log-EN using DMRG. The latter allows us to compute the log-
EN directly for the spin-system. This is important since the log-EN for a spin system is
not, in general, the same as that of a fermionic model obtained after Jordan-Wigner (JW)
transformation. This is because of the nonlocal nature of the JW transformation, where
the fermionic degree of freedom in B2 depends on the spin degrees of freedom in A (see,
for instance, ref. [49] for quantification of this effect for the EEs of disjoint intervals). We
show that the log-EN also exhibits logarithmic scaling as a function of the separation of the
blocks for reasons similar to the case of the EE. We determine the coefficient of this scaling
as well as the subleading term from our simulations. The former defines an effective central
charge which depends continuously on the defect strength. While there are no analytical
results available for the log-EN in the presence of defects, we verify that we recover the
expected results for the leading order term in the different extremal cases, while providing
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numerical results for the rest. Interestingly, the effective central charge obtained from the
log-EN scaling is different from that obtained from the interface EE computations. Similar
to the EEs, the duality defect, due to the existence of zero energy modes, manifests itself
through an offset in the log-EN, which we determine numerically. Finally, we address the
question of finite size effects in the log-EN due to the nonlocal zero energy mode present
in the duality defect. We show that similar to the EE, the nonlocal zero energy mode
leads to nontrivial finite size corrections for the log-EN. These lead to deviations from the
logarithmic scaling that is expected in systems without zero energy modes.

The paper is organized as follows. Section 2 summarizes the lattice Hamiltonians for
the different defects of the Ising CFT. Section 3 describes the entanglement properties
of the Ising model in the presence of defects. In section 3.1, we summarize the different
scaling behaviors of the EE in the absence and presence of defects. This is followed by
DMRG results of the symmetric and interface EE for open and infinite bcs (section 3.2.1
and section 3.2.2). Section 4 discusses the log-EN for two disjoint blocks separated by a
defect. We summarize the scaling behavior of the log-EN in section 4.1, followed by DMRG
results in section 4.2. Section 5 provides a concluding summary and outlook. We note that
the symmetric EE and the log-EN, unlike the interface EE, do not follow immediately
from the DMRG simulations. Additional computation is necessary to extract the relevant
quantities. The technical details of this computation are summarized in appendix A.

2 Defects in the Ising CFT

In this section, we introduce the lattice Hamiltonians for the energy and duality defects in
the Ising CFT for open and infinite bcs. The bcs are important since we are interested not
only in the leading order scaling of the EE and EN, but also in the subleading terms.

The energy defect constitutes altering a ferromagnetic coupling of two adjacent spins.
The resultant Hamiltonian is:

Hε = −
L−1∑
i=1
i 6=j

σxi σ
x
i+1 −

L∑
i=1

σzi − bεσxj σxj+1, (2.1)

where L is the length of the open chain and bε is the defect strength for a defect located
between sites j and j+1. Note that one can also view the open bc as another energy defect
inserted between sites L and 1 with zero defect strength. This model has been analyzed
extensively in the past in the context of 2D classical Ising model with defect lines (see, for
example, refs. [26–29, 50, 75, 80, 81]). The perturbing local defect term is marginal and
gives rise to continuous scaling exponents [51, 52]. The Casimir term of the ground state
energy depends continuously on the defect strength [26, 27]:

E0(bε) = −A0L−A1(bε)−
A2(bε)
L

+ . . . , (2.2)

where . . . indicate subleading terms. Here, A0 = 4/π and

A2(bε) = π

6 − 2π[F (bε)− F (0)]2, F (bε) = 1
4 −

1
π

tan−1 bε. (2.3)
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The explicit form of A1 is not relevant for our purposes. For bε = 1, we have a homogeneous
chain with open bc. For this case, we recover the well-known result of A2(1) = π/24 [recall
that with the conventions of eq. (2.1), the velocity of light is 2]. An antiferromagnetic
defect (bε = −1) yields the same result since the defect can be removed by applying a
unitary transformation on one half of the chain. This is possible because we are dealing
with an open chain.1 For more on the algebraic properties for the Ising chain with multiple
defects, we refer the reader to refs. [26, 27, 53].

The duality defect consists of altering the ferromagnetic interaction of one bond to
bσσ

x
j σ

y
j+1 where bσ is the interaction strength. Equally important, there is no transverse

field at the j + 1th site. The Hamiltonian reads [29, 30]

Hσ = −
L−1∑
i=1
i 6=j

σxi σ
x
i+1 −

L∑
i=1
i 6=j+1

σzi − bσσxj σ
y
j+1. (2.4)

The duality defect at bσ = 1 is the topological defect in the Ising CFT.2 The nontrivial na-
ture of the duality defect is manifest in the fermionic language after a JW transformation [1]
(see figure 2):

γ2k−1 = σxk

k−1∏
j=1

σzj , γ2k = σyk

k−1∏
j=1

σzj , (2.5)

where γj-s are real, Majorana fermion operators obeying {γj , γk} = 2δj,k. In the fermionic
language, the duality defect Hamiltonian is

Hf
σ = i

2

L−1∑
i=1
i 6=j

γ2iγ2i+1 + i

2

L∑
i=1
i 6=j+1

γ2j−1γ2j + ibσ
2 γ2jγ2j+2. (2.6)

The fermionic formulation also clarifies that the duality defect part of the Hamiltonian (the
last term in the previous equation) is also a marginal perturbation and thus, gives rise to
continuously varying scaling exponents. Note that the operator γ2j+1 does not occur in
Hf
σ . It commutes with the Hamiltonian and anticommutes with the conserved Z2 charge Q:

[γ2j+1, H
f
σ ] = 0, {γ2j+1, Q} = 0, Q =

L∏
i=1

(−iγ2j−1γ2j). (2.7)

Thus, it is a zero-mode of the model which is perfectly localized in space. It has a partner
zero-mode which is completely delocalized:

Λ(bσ) = bσ

j∑
k=1

γ2k−1 +
L∑

k=j+1
γ2k. (2.8)

1For a periodic ring with a single defect, A2(bε) = π/6− 2πF (bε)2. In particular, for bε = 1 (a periodic
ring), we recover the standard result A2(1) = π/6 and the expected central charge 1/2. On the other hand,
for an antiperiodic chain, A2(−1) = −π/3, yielding the effective central charge −1. [30].

2We use the duality defect Hamiltonian of refs. [1, 30], which is related by a local unitary rotation on
the j + 1th spin to the one considered in ref. [29].
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Figure 2. Schematic of the defect Hamiltonians in the spin and fermionic pictures. The JW trans-
formation maps each spin to a pair of Majorana fermions [see eq. (2.5)]. The ferromagnetic couplings
in the spin picture leads to couplings between Majorana fermions on neighboring sites (black links),
while the transverse field corresponds to couplings between Majoranas within each site (blue links).
The altered ferromagnetic coupling of the energy defect is indicated in maroon. The duality defect
entails a σxj σ

y
j+1 coupling indicated by a green bond, together with a missing transverse field on

site j + 1. In the fermionic picture, this leads to a Majorana zero mode (γ2j+1). The other zero
mode is delocalized throughout the system [see eq. (2.8)].

Note that the zero-modes exist for all values of bσ and are not special features of the
topological point. The fermionic Hamiltonian also reaffirms a CFT result [30]:Hf

σ describes
a chain of 2L− 1 Majorana fermions or equivalently, L− 1/2 spins. This is important for
quantifying finite-size effects [1].

3 Entanglement entropies in the Ising CFT with defects

In this section, we briefly summarize the known properties of the EE in the Ising CFT for
the two geometries considered in figure 1(a,b). First, we describe the logarithmic scaling
of the EE in the absence of defects. Subsequently, we discuss the modifications of the
aforementioned behavior of the EE due to the existence of defects. This is followed by a
presentation of numerical results obtained using DMRG. All lengths are measured in units
of the lattice spacing and are dimensionless.

3.1 Scaling of entanglement entropies

In the absence of defects, the behavior of the EE can be inferred from standard computa-
tions based on the replica trick [2, 3, 15]. For an infinite system, the EE for a subsystem
of size l is given by

S(l) = c+ c

6 ln l + S0 = c

3 ln l + S0, (3.1)

where c = 1/2 the central charge of the Ising model and S0 is a nonuniversal constant.
Here, in the first equality, we have explicitly shown that each edge of the subsystem (the
entanglement cuts) contribute a factor of c/6 to the leading logarithmic dependence. For a
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finite system of length L, in the absence of zero-energy modes, the dependence is similar,
with l replaced by the chord length L sin(πl/L)/π [3, 15]. The presence of the defect
changes this dependence. This is explained below.

Consider first the case when the defect is not at the boundary between the subsystem
and the rest (of an infinite system). For simplicity, we consider the case when the subsystem
is located symmetrically around the defect, i.e., the case of the symmetric EE (SS). In this
case, the leading order logarithmic dependence is not altered. This is because the leading
logarithmic contribution, which arises from the correlations around the entanglement cut,
is totally oblivious of the defect. The defect strength could even be chosen such that
the chain is cut into half without changing the leading logarithmic scaling. However,
the subleading O(1) contribution contains information about the defect. This becomes
apparent in the after folding the system at the defect, thereby transforming the defect
problem to a boundary CFT one. Then, the subleading O(1) term can be equated to
a boundary entropy with double the bulk degrees of freedom [17, 29, 39]. The resulting
expression is

SS(l) = c

3 ln l + S̃0, (3.2)

where we have indicated the modified subleading expression by S̃0. For a finite-size system,
as for without any defects, the scaling behavior is obtained by replacing the subsystem-
length by the chord-length.

Now, consider the case when the defect lies exactly at one of the edges of the subsystem,
i.e., the case of the interface EE. The other end of the subsystem is somewhere in the bulk
of the total system. It turns out that for the Ising CFT with defects, the interface EE,
also exhibits a logarithmic scaling. But, both the leading order logarithmic scaling and the
subleading O(1) terms are modified:

SI(l) = ceff + c

6 ln l + S′0, (3.3)

where ceff is an effective central charge that depends continuously on the defect strength
with ceff ≤ c. Note that this equation is valid for an infinite total system size. The co-
efficients of the logarithm, ceff and c, arise from the entanglement cuts at the defect and
the other end of the subsystem respectively. This logarithmic scaling and the continuous
dependence of ceff on the defect strength is a non-generic scenario that arises due to the
fact that the defect terms in the Hamiltonian are marginal perturbations, which gives rise
to continuous scaling exponents. It is also worth noting that the effective central charge
is merely the coefficient of the logarithmic scaling and bears little algebraic significance.
Importantly, ceff is different from the central charge obtained from the ground state en-
ergy dependence (see section 2). Note also that the subleading term, S′0, is also different
compared to the case without defects. For a finite total system of length L, often one
can consider the interface EE between the left and right halves of the system. Then, the
interface EE is

SI(L) = ceff
6 lnL+ S′′0 . (3.4)

– 7 –
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Note that there is no factor of c in the coefficient arising from the second entanglement cut,
which now coincides with the physical boundary of the system. Also, the subleading term
is different compared to eq. (3.3) since now it depends explicitly on the bcs of the system.3

In this way, both the symmetric and interface EEs serve as viable diagnostics for
detection of defects. The case of the interface EE is particularly interesting since there
is no simple folding maneuver that converts the defect problem to a boundary CFT one.
Clearly, in the absence of a defect, the ceff = c, which can be viewed as a manifestation of
perfect transmission of modes carrying information. In the presence of a defect, reflection
of these information-carrying modes causes ceff to be less than c. However, there exist
nontrivial defects, which still leave ceff = c. Topological defects are precisely such perfectly-
transmissive defects, which leave their fingerprints only in the subleading term, S′0 or S′′0 ,
in the interface EE (see section 3.2).

The preceding discussion about the logarithmic dependence of the symmetric and
interface EEs is applicable only in the absence of zero energy modes. Defects in the Ising
CFT can give rise to both local and nonlocal zero energy modes: e.g., the critical Ising
chain with antiperiodic bc [54] and the Ising CFT with duality defects (see section 2). In
the computation of ground-state properties, one can consider the case when the zero energy
modes are filled or empty. The system could also be considered in a statistical mixture
of the filled and empty states. The purity of the system has nontrivial consequences on
the entanglement properties of its subsystems [47, 55]. For Hamiltonians with zero energy
modes, the logarithmic dependence of the EE is valid, in general, only in the limit when
subsystem size is infinitesimal compared to the system size. When the subsystem occupies
a finite fraction of the system, the nonlocal zero energy modes give rise to nontrivial finite
size corrections [1, 47]. The latter are particularly important for the interface EEs between
the left and right halves of the system, where the subsystem is necessarily a finite fraction of
the total system. Next, we consider the case when the total state of the system is pure (see
ref. [1] for results when the total system is mixed) and present numerical results for the
symmetric and interface EEs.

3.2 DMRG results

Here, we consider the various defect Hamiltonians of section 2 and compute the EEs for dif-
ferent subsystems using DMRG. The DMRG simulations were performed using the TeNPy
package [46]. We consider two cases: i) where the size of the total system is infinite and
ii) when the size of the total system is finite with open bcs at the ends. We consider
these two different cases to explicitly demonstrate the influence of the non-local zero mode
for the topological defect of the Ising CFT. For technical details of the computation, see
appendix A.

3In the absence of a defect, the EE between the left (of length l) and the right (of length L − l) parts
of the system is given by [3, 15]: S(l) = c

6 ln
(

2L
π

sin πl
L

)
+ . . ., where the dots indicate the subleading

contributions. In the absence of the defect, eq. (3.4) is a special case: l = L/2. However, in the presence of
a defect, only the interface EE between left and right halves is known for finite systems.
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3.2.1 Symmetric entanglement entropy

Consider the EE of a subsystem located symmetrically around the energy defect for an
infinite system (left panel of figure 3). The DMRG simulations were performed using
the single-site DMRG algorithm for different defect strengths bε. The maximum bond
dimension (χ) used was 100. While the ground state can be obtained, in general, for much
larger values of χ, the computation of the symmetric EE (and the log-EN performed later)
scales as χ4 and thus, prevents us from using larger values of χ. However, as shown below,
this low bond-dimension is already sufficient to capture the universal properties of the
model. The state was obtained by converging the relative ground state energy to 10−11

for and the average von-Neumann entropy up to 10−8 for the chosen χ = 100. Recall
that bε = +1 corresponds a homogeneous infinite chain without any defect. For both the
energy defects of different strengths, as expected from eq. (3.2), the symmetric EE scales
with ln l, l being the system size with a coefficient c/3, where c = 1/2. The subleading
term S̃0, consisting of universal and non-universal parts, is also independent of the defect
strength bε. In the folded picture, the universal part corresponds to the same boundary
entropy due to the same g-function (= 1) [29, 56]. The specific case of bε = −1 can be
verified explicitly since the defect can be removed by a unitary transformation on one half
of the infinite chain. Similar computations were done for the finite system (right panel of
figure 3). The results are identical after substituting the l→ L sin(πl/L)/(π).

The duality defect on the other hand shows dramatically different behavior. As ex-
pected, the leading logarithmic scaling is identical to the case of the energy defect for the
same reasoning. However, the subleading term, S̃0, is different. For all subsystem sizes in
an infinite system and for subsystem sizes l� L in the finite system,

S̃0 = S0 + 1
2 ln 2 (3.5)

This result is true for all strengths, (bσ), of the duality defect and not just the topological
point: bσ = 1. Note that only the difference between S̃0 and S0 is universal. Physically,
this extra contribution arises due the presence of the localized unpaired Majorana zero
mode localized within the subsystem [see eq. (2.7)]. In the folded picture, this defect
corresponds to the ‘continuous Neumann boundary fixed point’ [29], with a g-function
=
√

2. The difference in the symmetric EEs between the duality and the energy defects
is given precisely by difference of the logarithm of the two g-functions. As shown in
figure 3 (right panel), for a finite system size L, when subsystem occupies an appreciable
fraction of the total system, the symmetric EE no longer exhibits the usual logarithmic
scaling. This is because of the delocalized Majorana zero mode [see eq. (2.8)] present in
the system. The complete functional dependence of the subleading term is [1]:

S̃0 = S0 + 1
2∆S

(
1− l

L

)
, (3.6)

where [47]

∆S
(
l

L

)
= πl

L

∫ ∞
0

dh tanh
(
πlh

L

)
[coth(πh)− 1], (3.7)
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Figure 3. Scaling of the symmetric EE, SS(l), for a segment A of length l located symmetrically
around a defect. We show the results for infinite (left) and open (right) bcs. For finite bc, the total
system length is denoted by L. (Left) The symmetric EE scales logarithmically with l for both
energy and duality defects for all defect strengths [see eq. (3.2)]. The coefficient of the logarithm
for every case gives the expected central charge c = 1/2 (the errors in the fits occur in the fourth
decimal places). Recall that this coefficient is sensitive to correlations around the entanglement cut,
which in this case is located far from the defect (see discussions in section 3.1). The subleading is
sensitive to the defect type. For the duality defect of a given strength, this subleading term is (ln 2)/2
higher than the energy defect of the corresponding strength. This can be viewed as a consequence
of the zero-energy mode localized at the defect [see eq. (2.7)]. We note that the symmetric EE
does not seem to depend, at least up to O(1) corrections, to the actual defect strength value for a
given defect class. (Right) For finite systems, the results are similar to the infinite case for l � L

with the subsystem size replaced by the chord-length. As l is increased to values comparable to L,
deviations occur from usual logarithmic scaling for the duality defect cases due to the existence of
the delocalized zero-energy mode [see eq. (2.8)]. The predicted values of the duality defect cases
are indicated by the blue crosses, which are obtained by adding ∆S(1 − l/L)/2 to the symmetric
EE without any defect.

Note that l/L � 1, ∆S ∼ π2l2/12L2, while ∆S(1) = ln 2. This nontrivial expression
for the EE was first computed for an antiperiodic Ising chain in ref. [47]. In contrast
to the latter problem, which had two nonlocal zero modes, the Ising model with duality
defects contains one local and one nonlocal zero mode. This accounts for the factor of 1/2
difference between our result and those obtained in ref. [47].
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3.2.2 Interface entanglement entropy

Next, we investigate the scaling of the interface EE. We compute the EE for different bi-
partionings of an infinite system and a finite system with open bc. The defect is located at
the center of the system and thus, one specific choice of partitioning yields the interface EE
for the model. For the scaling analysis, we consider only the interface EE between the left
and right halves of the infinite/finite system. In this case, for a finite system, the scaling
behavior of the interface EE is given eq. (3.4). For an infinite system, the scaling is more
nontrivial. In principle, for the infinite system in the presence of defects, the correlation
length is still infinite (recall that the defect perturbations are marginal perturbations of the
Ising CFT). However, in an actual DMRG simulation of an infinite system, the correlation
length is rendered finite due to ‘finite entanglement truncation’ [8, 9]. The entanglement
truncation is a direct consequence of the finite number of Schmidt states kept during the
numerical simulation. The resulting finite correlation length provides a natural length-scale
for the scaling of the interface EE. In the absence of defects, this scaling is analogous to the
finite-size scaling, with the system size being replaced by the computed finite correlation
length in eq. (3.4). In this work, we show that the scaling obtained due to finite entan-
glement truncation works (surprisingly well) for the case with defects, with the correlation
length computed for the system without defects keeping the entanglement truncation the
same. We also note that this issue arises only for the scaling of the interface EE between
left and right halves of an infinite system. In the other cases, the block size provides the
relevant length-scale for scaling (see section 3.1).

First, consider the energy defect. For bε = ±1, the EEs are identical and constant
for different bipartitionings for an infinite system. That they are identical and constant
is because the system is translation-invariant (recall that the Hamiltonian for bε = −1
can be reduced to that for bε = 1 by a unitary transformation). For bε = 0.2, the EE
is similar to the case without defects sufficiently far away from the defect (left panel of
figure 4). However, as the defect is approached, the EE dips below the value obtained
without defects. This entanglement dip is due to the reflections of entanglement carrying
modes at the defect. For finite systems, similar results arise with the important distinction
that in absence of the defect, the EE is not a constant value, but rather obeys a logarithmic
dependence with subsystem size (see footnote 3). As for the infinite case, introduction of
a defect leads to a dip in the EE for partitionings of the system close to the defect bond.
In the presence of defects, the explicit form of the dependence of the EE for arbitrary
bipartionings is not known. However, the interface EE (when the bipartioning is done by
cutting the system at the defect bond) exhibits the predicted logarithmic scaling with the
total system size (correlation length) for finite (infinite) systems [see eq. (3.4) and figure 5].
The central charge obtained is close to the predicted value [42–45]:

ceff(s) = s

6 −
1
6 −

1
π2

[
(s+ 1) ln(s+ 1) ln s+ (s− 1)Li2(1− s) + (s+ 1)Li2(−s)

]
, (3.8)

where s = | sin(2φ0)| and Li2 is the dilogarithm function [57] and bε = cotφ0. The complete
dependence of the effective central charge and the analytical predictions are shown in the
left panel of figure 7. The offset, S′′0 , for different defect strengths is plotted in the top right

– 11 –



J
H
E
P
0
6
(
2
0
2
2
)
1
6
5

A Bbα

l

0 200 400
0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

l

S(
l)

Infinite Boundary Conditions

200 256 300
1.126

1.127

0 200 400

0.20

0.40

0.60

0.80

l

S(
l)

Open Boundary Conditions

bε = 1.0
bε = −1.0
bε = 0.2
bσ = 1.0
bσ = 0.2

Figure 4. The EE, S, for different bipartionings of the system for infinite (left) and open (right)
bcs obtained by the DMRG calculation for energy and duality defects for χ = 100. In the middle of
the system is an energy ε-defect or a duality σ-defect of various strength. As for the symmetric EE,
the results for the bε = ±1 are identical. For the latter, in the infinite system case, the result is a
constant EE for different bipartitionings. The actual value of this constant depends on the amount
of entanglement truncation [8, 9] and will be different for different values of χ. The corresponding
results for the finite system follow the dependence given in footnote 3. For defect strengths bε,σ < 1,
the EE exhibits a dip centered at the defect-bond due to the reflections of the entanglement-carrying
modes at the defect. On the other hand, the EE is discontinuous for the duality defect with bσ < 1
as the defect is traversed. This is a consequence of the zero energy mode localized at the defect. The
situation is different for the topological defect: bσ = 1, which is associated with a higher interface
EE compared to bε = 1 (see inset of the left panel for infinite and right panel for finite system
results). The scaling of the interface EE with correlation length (system size) for infinite (finite)
systems is shown in figure 5.

panel of figure 7. We are not aware of any analytical predictions for the universal part, if
any, of this offset for the energy defect.

Now, consider the duality defect away from the topological point (bσ 6= 1). As expected,
sufficiently far away from the defect, the EEs approach the case without defects. As the
defect location is approached from the left, the EE goes down as in the energy defect.
However, upon crossing the duality defect, the EE exhibits a discontinuous jump (see
figure 4). This is due to the localized zero mode that is included in the subsystem (see
figure 2 and surrounding discussions). Despite this discontinuous behavior, for partioning
at the defect bond, the interface EE exhibits a logarithmic scaling with an effective central
charge which is identical to the energy defect case [eq. (3.8)]. We see that the offset
computed for the duality defect is different from that obtained for the energy defect for a
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Figure 5. Scaling of the interface EE, SI, with correlation length (ξ) and system size (L) for
infinite (left panel) and open (right panel) bcs. For the infinite bc, the bond dimension (χ) was
increased from 50 to 100 to increase the correlation length. For both bcs, the bε = ±1 and bσ = 1,
the coefficient of the logarithmic scaling [see eq. (3.3), with L → ξ for infinite bc] gives a central
charge of c ' 0.5. The same for bε,σ = 0.2 leads to an effective central charge ceff ' 0.112, in
agreement with see eq. (3.8). The fit errors obtained are in the fourth decimal places. We notice
that the infinite system scaling results are slightly worse than the finite system. We believe this is
due to the fact that the correlation length computed for the translation-invariant system is close,
but not the same as the system with defects. Fitting to eq. (3.3), with L → ξ for infinite bc, we
compute the offsets, S′′

0 for the different defects. The full dependence of the offsets on the defects
is shown in figure 7. In particular, the obtained difference between the bσ = 1.0 and bε = 1.0 cases
equals ln(2)/2 − 1/4 up to second digit of precision. This is in agreement with eq. (3.9) for both
infinite and open bcs and compatible with the result obtained for periodic bcs in ref. [1].

given defect strength. However, we are not aware of an analytical prediction for the offset
for bσ 6= 1. Only for the topological case are both the effective central charge and the offset
analytically predictable [1]. This is discussed next.

The topological point corresponds to the case when the interface EE satisfies eq. (3.4)
with ceff = c = 1/2 (see section 3.1), which is indicative of the perfect transmission of
information across the defect. The results for this case are shown in figure 4. As the
non-topological case, the EE for partitioning the system far from the defect is close to
the results obtained for without any defect. However, as the subsystem size increases, the
deviation from the no-defect case becomes apparent. Unlike the non-topological case, the
dip in the EE is replaced by a peak that is higher than the EE curve for the case without
defects. That there is no dip is due to the perfect transmission of information. That the
interface EE is even higher than the no-defect case is due to the presence of the zero energy
modes in the system. The scaling of the interface EE with the correlation length (system
size) for infinite (open) bc reveals that the offset S′′0 is larger than that obtained for the
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no-defect case by:

∆S′′0 = S′′0 (bσ = 1)− S′′0 (bε = 1) = 1
2∆S

(1
2

)
= −1

4 + 1
2 ln 2, (3.9)

where ∆S is defined in eq. (3.7). As pointed out in ref. [1], this offset occurs entirely due to
a ‘finite-size effect’ correction arising due to the existence of nonlocal zero-modes. This fi-
nite size effect is unavoidable since the interface EE here is computed between left and right
halves of the system, i.e., between subsystem and the rest each being of size L/2. Impor-
tantly, this positive offset bears no relationship to the specific modular S-matrix elements
and the claimed offset of − ln 2 predicted in refs. [40, 42]. The source of the discrepancy
can be traced back to the fact that the twisted torus partition functions do not faithfully
capture the geometric setup of the interface EE computation. It is worth emphasizing that
this discrepancy plagues only the subleading/boundary term of the interface EE and not
the logarithmic/bulk scaling for all values of bσ. This is why the effective central charge is
consistent with the field theory computations [see eq. (3.8)], but not the subleading term.
For more details regarding subtle finite size effects in the topological case, we refer the
reader to ref. [1].

To summarize, in this section, we have computed the symmetric and interface EEs
for the Ising CFT with energy and duality defects. The two computed EEs quantify the
entanglement between the subsystem and the rest when the defect is located symmetrically
within and at the edge of the subsystem respectively. However, the two computed EEs are
measures of entanglement only when the total system is in a pure state. In the next section,
we analyze the role of defects in entanglement between subsystems when they together are
in a mixed state.

4 Entanglement negativity in the Ising CFT with defects

Here, we compute the entanglement between two disjoint subsystems, B1 and B2, separated
by a segment of size l, with the defect located symmetrically within A [see figure 1(c)]. In
this case, the von-Neumann entropy does not quantify the entanglement between B1 and
B2 since the state of B1 ∪B2 is mixed, even though A∪B1 ∪B2 is in a pure state [58, 59].
Measures quantifying mixed state entanglement are nontrivial to compute for many-body
systems. A well-known exception is the log-EN [48] [see eq. (1.2)]. The latter has been
computed analytically for CFTs using the replica technique [60–62] and has been shown to
reveal certain characteristics of the CFTs. The EN computations have since been general-
ized to other systems: massive deformations of CFTs [63], non-equilibrium systems [64, 65]
and Kondo spin chains [76–78] to name a few.

As we show here, the log-EN finds a natural application in quantifying entanglement
between the subsystems in the configuration described in figure 1(c). Thus far, to the best
of our knowledge, the log-EN has never been computed for defect CFTs analytically or
numerically. Here, we compute the log-EN using DMRG. As shown in appendix A, the
computation of the log-EN is as resource-consuming as that of the symmetric EE. Yet, as
shown below, in the presence of defects, the log-EN shows dramatically different results
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compared to the symmetric EE. Before presenting our numerical results, we summarize the
expected scaling behavior of the log-EN.

4.1 Scaling of entanglement negativity

Consider first the case without any defect. It is known that for certain configurations of
subsystems, the log-EN exhibits logarithmic scaling behavior similar to the EE. In fact, for
A = ∅ in figure 1(c), the log-EN reduces to the Renyi entropy with Renyi index n = 1/2 [60].
The latter exhibits the characteristic logarithmic scaling of EEs with the system size. The
situation is more complex when A has a finite extent. In particular, it can be shown that
without a defect, for two disjoint semi-infinite intervals, B1, B2, the log-EN scales as

E(l) = − c4 ln l + E0, (4.1)

where l, the size of the segment A, is the separation between B1 and B2 and E0 is a non-
universal constant. Note the negative sign in front of the logarithm. It is useful to contrast
this setup with the symmetric EE setup of figure 1(a). The symmetric EE scales also
logarithmically with the size of the segment A, but with a coefficient +c/3 [see eq. (3.1)].
Importantly, the symmetric EE quantifies the entanglement between A and B1 ∪ B2 and
not between B1 and B2.

Now, consider the case when there are defects. Unlike the symmetric EE, the log-EN
contains signatures of the defect both in the leading logarithmic scaling and the subleading
terms. As we numerically demonstrate below, the defects, being marginal perturbations,
lead to a continuously varying central charge in the scaling of the log-EN:

E(l) = − c̃eff
4 ln l + Ẽ0, (4.2)

where c̃eff depends on the defect strength [compare eq. (3.2)]. In particular, for perfectly
reflective (bε,σ = 0) and perfectly transmissive (bε,σ = 1) defects, c̃eff = 0 and 1/2 re-
spectively. This is indicative of the expected zero and maximal entanglement between the
blocks B1 and B2. In between these two points, c̃eff grows monotonically. We emphasize
that except for the two special points, c̃eff 6= ceff , the latter being the effective central
charge obtained for the interface EE [see eq. (3.8)]. This difference can be traced to the
partial transposition in the definition of the EN. The subleading term, Ẽ0, also contains
information about the defects, similar to S̃0 and S′′0 for the symmetric and interface EEs.
Note that eq. (4.1) is valid only when the two blocks B1 and B2 are both semi-infinite.
For finite-size systems, we find an analogous scaling with the usual substitution of l by
L sin(πl/L)/π, where L is the total system-size.

We are not aware of any analytical computation of c̃eff and Ẽ0 in the presence of
defects. In the following section, we present numerical results obtained using DMRG. As
shown below, the zero energy modes associated with the duality defect (see section 2) also
lead to nontrivial finite-size corrections that lead to deviation from the logarithmic scaling
given in eq. (4.2) for the log-EN. We exhibit this explicitly by performing the DMRG
simulations with infinite and open bcs.
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Figure 6. Scaling of the log-EN, E , for infinite (left) and open (right) bcs. With increasing
separation, l, the entanglement between B1 and B2 decreases logarithmically [see eq. (4.2)], as
is expected from the intuition that correlation function of the degrees of freedom in B1 and B2
diminishes algebraically. The effective central charges, c̃eff , obtained from the scaling of the log-EN
is different from that obtained from the scaling of the interface EE. The fit errors obtained are in
the fourth decimal places. Note also that the offset for the duality defects are smaller than those
for the energy defects of corresponding strengths. This is in contrast to the corresponding results
for the interface EE (see figure 5 and maintext for further discussion). For the duality defect results
with open bc, as for the interface EE, the presence of zero energy modes leads to deviations from
the logarithmic scaling of the log-EN. This leads to poorer estimates of the effective central charges
for the open bc case compared to the infinite case.

4.2 DMRG results

The log-EN is computed from the ground state obtained using DMRG (see appendix A for
technical details). Figure 6 shows the results for the energy and the duality defects. As
expected, the results are identical for bε = ±1 (see section 3.2 for similar results for the
EE), with c̃eff = 1/2 (see figure 7). Lowering the defect strength leads to a monotonically
decreasing c̃eff culminating in c̃eff = 0 for zero defect strength, when the 1D system is
cut into half and there is zero entanglement between B1 and B2. As is evident from
figure 7, c̃eff ≥ ceff with equality being satisfied only for perfectly reflective and perfectly
transmissive defects. When the size of A ∪ B1 ∪ B2 is finite (say L), the scaling is similar
after the substitution of l by L sin(πl/L)/π.
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Figure 7. Variation of the effective central charges (left) and the sub-leading corrections (right)
with the defect strength for the energy and duality defects. The effective central charges, ceff ,
obtained from the scaling of the interface EE, SI, for the energy and duality defects are identical
for a given defect strength and are compatible with the predictions of eq. (3.8), denoted in this
plot by cana

eff . The computed values c̃eff from the log-EN again agree in between the defects of
equal strength. The subleading corrections on the right increase with their difference (shown in
the respective inserts) eventually saturating towards a fixed value. For the interface EE, this offset
∆S ′′

0 is in good agreement with the analytic prediction for bσ = 1 of eq. (3.9), shown as the pink
line. The corresponding subleading corrections for the log-EN are shown in the bottom right panel.

The duality defect for the corresponding defect strengths gives rise to identical c̃eff as
the energy defect. Recall that the same was also observed for ceff during the computation
of the interface EE (see also figure 7). This can be viewed as a consequence of the fact
that the microscopic Hamiltonians for the two kinds of defects are essentially identical
barring the zero energy modes for the duality defect. This is clearly visible in the fermionic
formulation (see section 2). However, as for the EE, the zero energy modes give rise to
two distinct effects. First, they affect the subleading term, Ẽ0 in eq. (4.1). This manifests
itself in a difference between the offsets for energy and duality defects for a given defect
strength [see figure 6, infinite bc and l � L part of the open bc]. Interestingly, the
subleading term is lower for the duality defect compared to the energy defect for the
same defect strength. This is in contrast to the symmetric and interface EEs, where the
subleading term was higher for the duality defect. In fact, the higher symmetric EE due
to the unpaired zero mode within the interval A is directly related to the lower log-EN
between B1 and B2. Intuitively, the enhanced EE of A must be accompanied by a lowering
of entanglement between B1 and B2 since the system overall remains in a pure state.
Second, the local and nonlocal zero modes of the duality defect give rise to finite-size
corrections to the log-EN, similar to what is described for the EE in section 3.2. This is
visible in the deviations from the logarithmic scaling the log-EN for the open bc (figure 6,
right panel, l ∼ L). Notice there is no such effect for the energy defect with open bc since
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the latter has no zero modes. Figure 7 summarizes the results for the effective central
charges and offsets computed for the interface EE and log-EN.

5 Conclusion and outlook

To summarize, we analyzed the rich entanglement properties of the Ising CFT in the
presence of defects. In particular, we computed the EEs (symmetric and interface) and
the log-EN for subsystems in the presence of energy and duality defects using DMRG. We
showed that for the duality defect, due to the existence of zero energy modes, the EEs and
the log-EN respectively receive positive and negative additional contributions compared to
the energy defect of the same defect strength. For finite systems, the same zero energy
modes also give rise to finite-size corrections for both the EE and the log-EN, which lead
to deviations from the usual logarithmic scaling that is characteristic of one-dimensional
critical systems.

Before concluding, we present some potential future directions of research. First, we
computed the log-EN numerically using DMRG for the case with defects. In the absence of
defects, the log-EN can be computed using replica techniques for CFTs [60–62]. Potentially,
the existing computations of the interface EE [41, 42] can be generalized to compute the
leading term of the logarithmic scaling of the log-EN. The computations of the sublead-
ing term for the log-EN and the associated finite-size corrections due to the zero energy
modes remain also open problems, which are likely beyond the scope of the aforementioned
computation. Second, in this work, we have focussed on the EE and the log-EN as entan-
glement measures for the defect setting. Yet another quantity of particular significance is
the entanglement or modular Hamiltonian [66]. The latter plays a central role in the anal-
ysis of topological phases of matter in 2+1 space-time dimensions [67]. For 1+1D CFTs,
the spectra of the entanglement Hamiltonians can be related to the Hamiltonian spectra
of corresponding boundary CFTs [20, 21, 68]. It will be interesting to generalize these re-
sults to the case of defects. We note that some progress has been made for massless Dirac
fermions [69] and the chiral fermions with zero modes (equivalently the antiperiodic Ising
chain) [47]. Third, in recent works, the concept of entanglement Hamiltonian, which is typ-
ically written for the total system being in pure state, has been generalized to the case when
the total system is mixed. This leads to the concept of negativity Hamiltonian [70, 71]. It
is an interesting open problem to consider generalizations of these concepts to the cases
with defects. Fourth, we note that defect Hamiltonians for other rational CFTs contain
more complicated set of zero modes [24]. The question of subleading corrections in the EEs
for these models remains open. Finally, the zero modes in the Ising model with the du-
ality defects are reminiscent of the zero modes of gapless symmetry-protected-topological
phases [72]. It will be interesting to further analyze this relationship. We hope to return
to some of these questions in the future.

Note added in proof. After the completion of the paper, the authors became aware
of the fact that the values of c̃eff shown in figure 7 are in excellent agreement with the
results of refs. [79, 82]. The latter works analyze a different geometric configuration, that
of two segments connected through a conformal defect. We are grateful to Viktor Eisler
for bringing this to our attention.
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A Computation of symmetric entanglement entropy and negativity with
matrix product states

Density Matrix Renormalization Group (DMRG) calculations use the fact that ground
states of a local 1D lattice Hamiltonian can be efficiently represented by Matrix Product
States (MPS). Such a state |Ψ〉 is nicely visualized in Penrose tensor notation as

|Ψ〉 = A1 A2 A3 A4 A5 A6 . (A.1)

Each box is a tensor of rank equal to the number of legs connected to it. In this example, all
tensors are of rank 3. The unconnected lose legs represent the physical dimension D which
is in the case of Spin- 1

2 Systems D = 2. The horizontal virtual bonds are of dimension χ,
the bond dimension. The bond dimension is a controllable parameter directly governing
the entanglement captured by the MPS.

In the following we assume that |Ψ〉 is in left canonical form such that

Ai

A∗i

= 1 (A.2)

and

Ai

A∗i

= Λ2 . (A.3)

Λ is a diagonal matrix carrying the Schmidt values of a bipartition on that bond. This
efficient tensor network representation can be used to construct reduced density operators
in an economical way [73, 74]. Using the formal definition of the density operator

ρ̂ = |Ψ〉〈Ψ| (A.4)
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for matrix product states gives

ρ̂ =
A∗1 A∗2 A∗3 A∗4 A∗5 A∗6

A1 A2 A3 A4 A5 A6

(A.5)

the so-called matrix product density operator. As each tensor represent a specific lattice
site, different system partitions can be applied to the operator.

The Symmetric Entanglement entropy is obtained by assigning a central segment to
subsystem A (red) and the rest to subsystem B (blue):

ρ̂ =
A∗1 A∗2 A∗3 A∗4 A∗5 A∗6

A1 A2 A3 A4 A5 A6

. (A.6)

After tracing over the subsystem A

TrA ρ̂ =
A∗1 A∗2 A∗3 A∗4 A∗5 A∗6

A1 A2 A3 A4 A5 A6

(A.7)

the center can be represented very similar to a transfer matrix TA

TrA ρ̂ = TA

A∗1 A∗2 A∗5 A∗6

A1 A2 A5 A6

. (A.8)

The possibly infinite segments of subsystem B can be compressed without any losses by
using the properties of the canonical form. This can be understood by first tracing over
each half of B as well:

T̃rAρ̂ = TA

A∗1

A1

A∗2

A2

A∗5

A5

A∗6

A6

(A.9)

Due to the canonical form this simplifies to

T̃rAρ̂ = TA1 Λ2 . (A.10)
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After splitting the outside matrices by matrix factorizing the compressed form of the re-
duced density matrix is

TrA ρ̂ =

1

1

TA

Λ

Λ

χ

χ

χ

χ

. (A.11)

As DMRG already gives access to the Schmidt values Λ at each bond, only the contraction
of TA must be performed. This scales with O(χ5) in computational complexity and O(χ4)
in memory. The final operator is of dimension χ4 independent of the number of lattice
sites involved. This is in contrast to a naive construction. If the tensor network structure
of the state is neglected the matrix will scale exponentially in memory with D2l where l
is the segment size. We want to emphasize that no additional approximations apart from
the finite bond dimensions of the DMRG calculations were performed. A nearly identical
method can be used to calculate the negativity of two segments touching the possibly
infinite boundaries separated by a finite interval. The segmentation used in this case is

ρ̂ =
A∗1 A∗2 A∗3 A∗4 A∗5 A∗6

A1 A2 A3 A4 A5 A6

(A.12)

where segment B1 is shown in red, segment B2 in blue and the separating gap A in gray.
After following analogous steps to the above, this results in

TrA ρ̂TB2 =

1

1

TA

Λ

Λ

χ

χ

χ

χ

. (A.13)

After tracing over the separating interval the individual subsystems are still individually
accessible. This allows to partially transpose segment B2 by twisting the corresponding legs.
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