
J
H
E
P
0
6
(
2
0
2
2
)
1
5
4

Published for SISSA by Springer

Received: March 31, 2022
Accepted: May 23, 2022

Published: June 28, 2022

Magnetising the N = 4 Super Yang-Mills plasma

Alfonso Ballon-Bayona,a Jonathan P. Shockb,c,d and Dimitrios Zoakose,f
aInstituto de Física, Universidade Federal do Rio de Janeiro,
Caixa Postal 68528, RJ 21941-972, Brazil

bDepartment of Mathematics and Applied Mathematics, University of Cape Town,
Private Bag, Rondebosch 7700, South Africa

cThe National Institute for Theoretical and Computational Sciences,
Private Bag X1, Matieland, South Africa

dInstitut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications,
1650 Boul. Lionel Boulet, Varennes, Québec J3X 1S2, Canada

eDepartment of Physics, National and Kapodistrian University of Athens,
15784 Athens, Greece

fDepartment of Engineering and Informatics, Hellenic American University,
436 Amherst st, Nashua NH 03063, U.S.A.
E-mail: aballonb@if.ufrj.br, jonathan.shock@uct.ac.za,
zoakos@gmail.com

Abstract: We investigate the thermodynamics of the anisotropic magnetic AdS5 black
brane solution found by D’Hoker and Kraus [1]. This solution is the gravity dual of a
strongly coupled N = 4 Super Yang-Mills plasma in R3,1, with temperature T , in the
presence of a magnetic field B. Following the procedure of holographic renormalisation we
calculate the Gibbs free energy and the holographic stress tensor of the conformal plasma.
We evaluate several thermodynamic quantities including the magnetisation, the anisotropic
pressures and the speeds of sound. Our results are consistent with an RG flow from a
perturbed AdS5 black brane at small B/T 2 to a BTZ × R2 black brane at large B/T 2.
We also perform a phenomenological analysis where we compare the thermodynamics of a
magnetised conformal plasma against the lattice QCD results for the thermodynamics of
the magnetised quark-gluon plasma.

Keywords: AdS-CFT Correspondence, Black Holes in String Theory, Gauge-Gravity
Correspondence

ArXiv ePrint: 2203.00050

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP06(2022)154

mailto:aballonb@if.ufrj.br
mailto:jonathan.shock@uct.ac.za
mailto:zoakos@gmail.com
https://arxiv.org/abs/2203.00050
https://doi.org/10.1007/JHEP06(2022)154


J
H
E
P
0
6
(
2
0
2
2
)
1
5
4

Contents

1 Introduction 1

2 The magnetised conformal plasma 2
2.1 Equation of state 3
2.2 Stress tensor 5

3 Gravity dual of the magnetised conformal plasma 6
3.1 The asymptotically AdS5 magnetic black brane 6

3.1.1 Near horizon and near boundary asymptotics 8
3.1.2 Temperature and entropy density 9

3.2 Thermodynamics from holography 9
3.2.1 The renormalised on-shell action 9
3.2.2 The Gibbs free energy density 12

3.3 The holographic stress tensor 13
3.4 The non-diffeomorphism invariant counterterm and the conformal anomaly 15

4 Numerical results for thermodynamic quantities 16
4.1 Gibbs free energy and entropy densities 16
4.2 Magnetisation, susceptibility and the pyro-magnetic coefficient 18
4.3 The anisotropic pressures 20
4.4 Specific heats and speeds of sound 20
4.5 Comparison against lattice QCD 23

5 Conclusions 26

A The perturbative solution at small B/T 2 29
A.1 Free energy and magnetisation 30
A.2 Stress energy tensor 32
A.3 Susceptibilities and the speed of sound 33

B The BTZ× R2 solution at large B/T 2 34

C Details on the calculation of the holographic stress tensor 36

– i –



J
H
E
P
0
6
(
2
0
2
2
)
1
5
4

1 Introduction

The description of macroscopic properties of strongly coupled matter is a challenging problem
due to the necessity of non-perturbative methods. In the case of the quark-gluon plasma
(QGP), produced in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and
the Large Hadron Collider (LHC), it is important to reach a proper understanding of the
thermodynamic and hydrodynamic properties of Quantum Chromodynamics (QCD) at
temperatures where non-perturbative effects are relevant.

A very interesting theoretical framework for understanding strongly coupled matter is
the AdS/CFT (Anti-de-Sitter/Conformal Field Theory) correspondence and more generally
the gauge/gravity duality (for a recent book see for example [2]). According to the AdS/CFT
correspondence, a strongly coupled fluid with conformal symmetry at finite temperature in
d dimensions is mapped to a d + 1 dimensional asymptotically AdS black brane. In the
case of d = 4 very precise predictions were done for the strongly coupled conformal plasma
formed in the N = 4 Super Yang-Mills theory in the large Nc limit [3–6]. The latter is the
maximal supersymmetric extension of 4d Yang-Mills theory. Although this theory is quite
different from real QCD, some of the macroscopic properties at finite temperature were
found to be close to those of real QCD. The most striking example was the prediction of
the shear viscosity to entropy density ratio [5, 6] which is very close to the expected result
for the quark-gluon plasma observed in heavy ion collisions.

In this work we will describe some thermodynamic and hydrodynamics properties of
the strongly coupled N = 4 Super Yang-Mills plasma in the presence of a magnetic field.
We revisit the magnetic black brane solution found by D’Hoker and Kraus [1, 7] in order
to provide a systematic description of the thermodynamic properties of this magnetised
conformal plasma, focusing on the anisotropic effects caused by the magnetic field. From
a theoretical point of view, a non-zero magnetic field is considered a useful method for
investigating non-perturbative aspects of QCD [8]. From an experimental point of view,
anisotropic effects in the quark-gluon plasma are expected when intense magnetic fields, of
the order of eB/Λ2

QCD ∼ 5− 10, are produced by the spectator nuclei in off-central heavy
ion collisions [9]. Even in the absence of magnetic fields it is expected that anisotropic
effects should play an important role in the description of the quark-gluon plasma soon
after the collision [10]. Lastly, an interesting prediction for the magnetised quark-gluon
plasma is the so-called chiral magnetic effect, associated with topological charge changing
transitions [11]. This effect has not yet been observed in heavy ion collisions because there
are anisotropies in the directions transverse to the magnetic field, that produce similar
effects that are difficult to disentangle. Since the description of anisotropic effects in the
QCD quark-gluon plasma is a very hard problem due to the non-perturbative behaviour of
QCD at strong coupling, investigating this problem in the strongly coupled N = 4 Super
Yang-Mills plasma can provide very useful insights.

Anisotropic effects in 3 + 1 dimensional strongly coupled fluids have been previously
investigated in AdS/CFT [1, 7, 12–21] and holographic models for QCD [22–40]. An
interesting consequence of anisotropy is the violation of the shear viscosity bound in the
strongly coupled plasma [15, 19, 27]. There are two other interesting phenomena associated
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with the presence of a magnetic field that have been investigated in holographic models for
QCD. Magnetic catalysis, which refers to the enhancement of chiral symmetry breaking
due to the magnetic field, originally discovered in effective field theory models [41, 42] and
confirmed in QCD (for a review see [43]), was investigated extensively in holography [44–52].
Inverse magnetic catalysis, which refers to the enhancement of chiral restoration due to the
magnetic field, was initially discovered at finite chemical potential [53] and also described
in holographic QCD [54–56]. The staggering observation of inverse magnetic catalysis
at zero chemical potential in lattice QCD [57–59] motivated further effort in holographic
QCD [29, 39, 60–69]. For a recent book and review on holographic QCD models in the
presence of a magnetic field see [70] and [71] respectively. Finally, the study of magnetic field
effects in 2+1 dimensional strongly coupled fluids via the AdS/CFT correspondence and the
gauge gravity/duality has a very rich history starting with the pioneering works of [72, 73].

The outline of this paper is as follows. In section 2 we describe some thermodynamic
and hydrodynamic properties of a conformal fluid in the presence of a magnetic field. In
particular, we derive the equation of state of a magnetised conformal plasma and useful
relations for the components of the stress-energy tensor. In section 3 we describe the gravity
dual of a 4d magnetised N = 4 Super Yang-Mills plasma in terms of the asympotically AdS5
magnetic black brane solution found by D’Hoker and Kraus. We implement a holographic
renormalisation procedure that allows us to obtain a Gibbs free energy consistent with the
thermodynamics of a conformal plasma and a thermodynamic entropy consistent with the
Bekenstein-Hawking entropy.

Moreover, our results for the Gibbs free energy will be consistent with an RG flow from
a perturbed AdS5 black brane at small B/T 2 to a BTZ× R2 black brane at large B/T 2.
This is shown in section 4 where we numerically evaluate several thermodynamic quantities
including the magnetisation, anisotropic pressures and the speeds of sound. We finish that
section with a phenomenological analysis where the thermodynamic results of a strongly
coupled magnetised conformal plasma are compared against the lattice QCD results for the
quark-gluon plasma obtained in [74]. We also describe the two analytical solutions found
in the regimes of small B/T 2and large B/T 2. The perturbed AdS5 black brane solution at
small B/T 2 is described in appendix A whilst the BTZ × R2 black brane at large B/T 2

is described in appendix B. Details of the calculation of the holographic stress tensor are
given in appendix C.

2 The magnetised conformal plasma

In this section we describe both thermodynamic and hydrodynamic properties of a conformal
fluid in the presence of a magnetic field. We will follow [75] and describe the equation of state
and the stress-energy tensor of the fluid. From there we will derive some universal relations
for the components of the stress tensor that will prove very useful when investigating the
holographic stress tensor dual to the 5d metric describing the magnetic black brane.
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2.1 Equation of state

We start with the Gibbs free energy

G = E − TS = G(T, V,B) , (2.1)

where E is the magnetic enthalpy [76, 77], related to the internal energy U and magneti-
sation M by E = U −MB. We are working in the grand canonical ensemble where the
thermodynamic variables are B, T and V and the relevant thermodynamic potential is the
Gibbs free energy.1 From conformal symmetry and extensivity, the Gibbs free energy of a
conformal fluid in D dimensions takes the form

G = V TD g(b) , (2.2)

where b = B/T 2 is the dimensionless ratio of the magnetic field and the temperature squared.
Under scaling symmetry x→ αx, we have

T → α−1T , V → αD−1V , B → α−2B , G→ α−1G . (2.3)

Defining λ ≡ α−1, the transformation rule for the Gibbs free energy can be written as

G
(
λT, λ1−DV, λ2B

)
= λG(T, V,B) . (2.4)

We denote the rescaled quantities as

T ′ ≡ λT , V ′ ≡ λ1−DV , B′ ≡ λ2B , G′ ≡ G
(
T ′, V ′,B′

)
. (2.5)

Differentiating (2.4) with respect to λ and setting λ = 1 we obtain

G =
[
dG′

dλ

]
λ=1

=
[
∂G′

∂T ′
∂T ′

∂λ
+ ∂G′

∂V ′
∂V ′

∂λ
+ ∂G′

∂B′
∂B′

∂λ

]
λ=1

=
[
− S′T − P ′(1−D)λ−DV − VM(2λ)B

]
λ=1

= −TS − (1−D)PV − 2VMB , (2.6)

where we used the definitions of entropy S, pressure P and magnetisation density M

given by
S = −∂G

∂T
, P = −∂G

∂V
= −G

V
, M = − 1

V

∂G

∂B
, (2.7)

Combining (2.1) and (2.6) we find the equation of state for the magnetic enthalpy:

E = (D − 1)PV − 2VMB . (2.8)

Since PV = −G, the CFT identity (2.6) can be written as

DG = −TS − 2VMB . (2.9)
1In the canonical ensemble the thermodynamic variables would be M , T and V and the relevant

thermodynamic potential would be the Helmoltz free energy F = U − T S.
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For the specific case of D = 4 we obtain the thermodynamic relations

G = −1
4TS −

1
2VMB = −PV ,

E = G+ TS = 3
4TS −

1
2VMB = 3PV − 2VMB . (2.10)

For fixed volume V , it is convenient to define the densities

G = G

V
, F = F

V
, ρ = E

V
, U = U

V
, S = S

V
. (2.11)

We are able to write these quantities by very simple relations in terms of the dimensionless
Gibbs free energy density

g(b) = G
T 4 , (2.12)

defined previously in (2.2), with b = B/T 2. The thermodynamic quantities in (2.11) become

Entropy Density: S = −∂G
∂T

= T 3
[
2b g′(b)− 4g(b)

]
= −2T 3b3∂b

(
g/b2

)
Magnetisation Density: M = −∂G

∂B
= −T 2g′(b) .

Helmholtz free energy Density: F = G +MB

= T 4
[
g(b)− bg′(b)

]
= −T 4b2∂b (g/b) .

Internal energy density: U = F + TS

= T 4
[
bg′(b)− 3g(b)

]
= T 4b4∂b

(
g/b3

)
,

Magnetic enthalpy density: ρ = U −MB = G + TS

= T 4
[
2bg′(b)− 3g(b)

]
= 2T 4b

5
2∂b

(
g/b

3
2
)
. (2.13)

where the Gibbs free energy, entropy and magnetisation densities satisfy the conformal
identity

G = −1
4TS −

1
2MB . (2.14)

From the magnetisation we can extract the magnetic susceptibility

χ = ∂M

∂B
= −T 2g′′(b) ∂b

∂B
= −g′′(b) , (2.15)

and the pyro-magnetic coefficient

ξ = ∂M

∂T
= −2Tg′(b)− T 2g′′(b) ∂b

∂T

= 2T
[
bg′′(b)− g′(b)

]
. (2.16)
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These quantities are related by the conformal identity

M = χB + 1
2ξT . (2.17)

Finally, we obtain the specific heat

CV,B = ∂ρ

∂T
= T 3

[
− 12g(b) + 10bg′(b)− 4b2g′′(b)

]
. (2.18)

Note that
CV,B = T

∂S
∂T

= S ∂ lnS
∂ ln T . (2.19)

We can thus calculate all thermodynamic quantities in terms of derivatives of the dimen-
sionless Gibbs free energy density g(b). This will prove very useful later for our numerical
calculations.

2.2 Stress tensor

In order to calculate the speed of sound and the hydrodynamic pressures, it is necessary to
calculate the stress-energy tensor of the fluid. This can be written as

Tµν = (ρ+ P )uµuν + Pηµν −MµρFνρ , (2.20)

where ρ is the magnetic enthalpy density and P is the thermodynamic pressure, both
defined at thermodynamic equilibrium. We remind the reader that we are working in the
grand canonical ensemble where the thermodynamic variables are B, T and V , the relevant
thermodynamic potential is the Gibbs free energy G and the thermodynamic pressure is
given by P = −G/V .

The last term in (2.20) represents the coupling between the electromagnetic field
strength and the polarisation tensor. The latter is defined by

Mµρ ≡ − 1
V

∂G

∂Fµρ
. (2.21)

For a 4d conformal fluid in the presence of a magnetic field in the z direction, the only
non-zero components of the polarisation tensor are

M12 = −M21 = − 1
V

∂G

∂B
= M . (2.22)

In the rest-frame of the fluid uµ = (1, 0, 0, 0), so the anisotropic stress tensor becomes

Tµν = diag(ρ, Px, Px, Pz) , (2.23)

where

ρ = G + TS = 3
4TS −

1
2MB ,

Px = P −MB = 1
4TS −

1
2MB ,

Pz = P = −G = 1
4TS + 1

2MB (2.24)
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where G and S represent the Gibbs free energy density and entropy density respectively.
The trace of the stress tensor is given by −ρ+ 2Px + Pz and vanishes as a consequence of
conformal symmetry.

Note that we distinguish between the hydrodynamic pressures Px and Pz and the
thermodynamic pressure P . It turns out that the hydrodynamic pressure parallel to the
magnetic field is equal to the thermodynamic pressure, i.e. Pz = P . Since we are working
in the grand canonical ensemble we further identify Pz with −G with G the Gibbs free
energy density. Note also that the hydrodynamic pressure transverse to the magnetic field
is identified with minus the Helmoltz free energy density, i.e. Px = P −MB = −F .

If we consider sound propagation in the x and z directions we have two different values
for the squared speed of sound:

c2
s,x =

(
∂Px
∂ρ

)
B

= S − ξB
CV,B

, c2
s,z =

(
∂Pz
∂ρ

)
B

= S
CV,B

. (2.25)

Note that
1
c2
s,z

= CV,B
S

= ∂ lnS
∂ ln T . (2.26)

This concludes the derivation of all hydro and thermodynamic quantities which we will be
able to calculate for the magnetic plasma.

3 Gravity dual of the magnetised conformal plasma

In this section we will present the gravity solution that interpolates between an AdS5 space
on the boundary and a BTZ×R2 black hole in the deep IR. This is a solution that was first
investigated by D’Hoker and Kraus in [1] (with a very interesting extension after the addition
of an electric charge density in [7, 12]). However, in contrast with [7], we will introduce a
diffeomorphism invariant counterterm that leads naturally to a Gibbs free energy and a
stress tensor consistent with a conformal fluid. We will also discuss the non-diffeomorphism
invariant counterterm of [7] and show how it generates a conformal anomaly.

After the holographic renormalisation procedure we will further subtract the action
at zero temperature in order to ensure that the end of the RG flow is the BTZ solution.
Moreover, the subtracted thermodynamic and hydrodynamic quantities will be equivalent
for the diffeomorphism invariant renormalisation proposed in this work and the non-
diffeomorphism invariant considered in [7]. In particular, the subtracted stress tensor will
be traceless, as expected for a conformal plasma. This will be analysed in full detail in the
rest of this section.

3.1 The asymptotically AdS5 magnetic black brane

The Einstein-Maxwell action in five dimensions with a negative cosmological constant is
given by the following expression

S = σ

∫
d5x
√
−g
[
R+ 12

`2
− c

4 FmnF
mn

]
with σ = 1

16πG5
(3.1)

– 6 –
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where the five dimensional Newton constant G5 is fixed by the AdS/CFT dictionary to be
G5 = (π/2)`3N−2

c . The gauge field coupling is set to c = 4 `2 and in the following we work
in units where ` = 1. The Einstein-Maxwell equations are

Rmn −
R

2 gmn − 6 gmn = 2Tmn & ∇mFmn = 0 (3.2)

where
Tmn = FmpF

p
n −

1
4 gmn Fpq F

pq (3.3)

is the five dimensional stress energy tensor associated with the gauge field. Note that taking
the trace of the first equation in (3.2) leads to the following form for the Ricci scalar

R = −20− 4
3 T = −20 + 1

3 FpqF
pq . (3.4)

The aim is to find an asymptotically AdS5 black brane solution dual to an N = 4 Super
Yang-Mills plasma in the presence of a magnetic field. Denoting the boundary coordinates
by (t, x, y, z) and choosing z as the direction of the magnetic field, we look for a metric
that preserves the SO(2) symmetry in the (x, y) plane. A suitable ansatz for the metric
and field strength can be written as [1]

ds2 = −U(r)dt2 + dr2

U(r) +e2V (r)
(
dx2 + dy2

)
+e2W (r)dz2 & F = B dx∧dy . (3.5)

The five dimensional radial coordinate r goes from the horizon radius r = rh (where
U(rh) = 0) to the boundary at r →∞. As noted in [1], the magnetic field B in the Einstein
Maxwell ansatz has to be rescaled as B =

√
3B in order to define the correct parameter on

the N = 4 SYM side. For the numerical analysis, it is convenient to define the dimensionless
radial coordinate r̃ ≡ r/rh and rescale the fields and coordinates as follows

U(r) ≡ r2
h Ũ(r̃) ,

(
eV (r), eW (r)

)
≡ rh

(
eṼ (r̃), eW̃ (r̃)

)
, B ≡ r2

h B̃ & xµ ≡
x̃µ
rh
.

(3.6)
Note that the horizon radius is located at r̃ = 1. The ansatz (3.5) keeps the same form in
terms of the rescaled fields and coordinates. Plugging this ansatz into (3.2) we find that
the nonzero components of the Einstein-Maxwell equations take the form

Ũ
(
Ṽ ′′ − W̃ ′′

)
+
[
Ũ ′ + Ũ

(
2 Ṽ ′ + W̃ ′

) ] (
Ṽ ′ − W̃ ′

)
= −2 B̃2 e−4 Ṽ

2 Ṽ ′′ + W̃ ′′ + 2
(
Ṽ ′
)2

+
(
W̃ ′
)2

= 0
1
2 Ũ

′′ + 1
2 Ũ
′
(
2 Ṽ ′ + W̃ ′

)
= 4 + 2

3 B̃
2 e−4 Ṽ

2 Ũ ′ Ṽ ′ + Ũ ′ W̃ ′ + 2 Ũ (Ṽ ′)2 + 4 Ũ Ṽ ′ W̃ ′ = 12− 2 B̃2 e−4 Ṽ (3.7)

where ′ represents d/dr̃. The first three differential equations are dynamical whereas the
last differential equation is a constraint. One of the dynamical equations can be omitted
when solving the system, since it can be obtained from the others. We exclude the final
dynamical equation and include the constraint when solving numerically.

– 7 –



J
H
E
P
0
6
(
2
0
2
2
)
1
5
4

3.1.1 Near horizon and near boundary asymptotics

Near the horizon r̃ = 1, regularity implies that the solutions to the field equations (3.7)
admit a Taylor expansions and take the form

Ũ(r̃) = Ũh,1 (r̃ − 1) +
[

5 B̃2

3 ṽ4
h,0
− 2

]
(r̃ − 1)2 +O(r̃ − 1)3

eṼ (r̃)

ṽh,0
= 1− 4

3
B̃2 − 3 ṽ4

h,0

Ũh,1 ṽ
4
h,0

(r̃ − 1)− 4
9
B̃2 − 3 ṽ4

h,0

Ũ2
h,1 ṽ

8
h,0

B̃2 (r̃ − 1)2 +O(r̃ − 1)3 (3.8)

eW̃ (r̃)

w̃h,0
= 1 + 2

3
B̃2 + 6 ṽ4

h,0

Ũh,1 ṽ
4
h,0

(r̃ − 1) + 8
9
B̃2 − 3 ṽ4

h,0

Ũ2
h,1 ṽ

8
h,0

B̃2 (r̃ − 1)2 +O(r̃ − 1)3 .

The near horizon solutions are characterised by the three parameters Ũh,1, ṽh,0 and w̃h,0.
The parameters ṽh,0 and w̃h,0 are the coefficients in the near horizon expansion for the fields
ṽ = exp(Ṽ ) and w̃ = exp(W̃ ). For simplicity, we choose coordinates such that ṽh,0 = 1, i.e.
Ṽ (r̃ = 1) = 0. The remaining two parameters Ũh,1 and w̃h,0 will be the initial data for the
numerical solutions to the field equations (3.7). These parameters will be determined as a
function of B̃ by imposing the AdS boundary conditions Ṽ (r̃ →∞) = W̃ (r̃ →∞) = ln r̃.2

To summarise, we initially have five integration constants in the Einstein-Maxwell equations.
Regularity at the horizon reduces these to three: Ũh,1, ṽh,0 and w̃h,0. We also have the
freedom to redefine the x and y coordinates allowing us to set the integration constant
ṽh,0 to 1 and the remaining two constants are obtained numerically by imposing the AdS
asymptotic form at large r̃.

Near the boundary the asymptotic solutions to the field equations (3.7) take the form

Ũ (r̃)
r̃2 = 1 + Ũ∞,1 r̃

−1 +
Ũ2
∞,1
4 r̃−2 − 2

3 B̃
2 r̃−4 ln r̃ + Ũ∞,4 r̃

−4

+ 2
3 B̃

2 Ũ∞,1 r̃
−5 ln r̃ − 1

3 Ũ∞,1
(
B̃2 + 3 Ũ∞,4

)
r̃−5 +O

(
r̃−6 ln r̃

)
+O

(
r̃−6

)
eṼ (r̃)

r̃
= 1 + Ũ∞,1

2 r̃−1 + 1
6 B̃

2 r̃−4 ln r̃ + ṽ∞,4 r
−4

− 1
4 B̃

2 Ũ∞,1 r̃
−5 ln r̃ + 1

12 Ũ∞,1
(
B̃2 − 18 ṽ∞,4

)
r̃−5 +O

(
r̃−6 ln r̃

)
+O

(
r̃−6

)
eW̃ (r̃)

r̃
= 1 + Ũ∞,1

2 r̃−1 − 1
3 B̃

2 r̃−4 ln r̃ − 2 ṽ∞,4 r−4

+ 1
2 B̃

2 Ũ∞,1 r̃
−5 ln r̃ − 1

6 Ũ∞,1
(
B̃2 − 18 ṽ∞,4

)
r̃−5 +O

(
r̃−6 ln r̃

)
+O

(
r̃−6

)
.

(3.9)

The three UV parameters Ũ∞,1, Ũ∞,4 and ṽ∞,4 will be extracted from the numerical solutions
and are all functions of B̃. We will see later that the UV parameters Ũ∞,4 and ṽ∞,4 will be
associated with the time and space components of the dual stress tensor describing the four
dimensional conformal fluid in the presence of a magnetic field.

2The boundary condition Ũ(r̃ →∞) = r̃2 is automatically satisfied.
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3.1.2 Temperature and entropy density

The temperature is fixed in terms of the horizon parameters by requiring the absence of a
conical singularity at r = rh. This is given by the well-known formula

T = U ′(rh)
4π ⇒ T = rh

4π Ũh,1 (3.10)

The entropy density is related to the horizon area Ah by the Bekenstein-Hawking formula

S ≡ S

V3
= Ah

4G5 V3
= 4π σ e2V (rh)+W (rh) ⇒ S = 4π σ r3

h ṽ
2
h,0 w̃h,0 (3.11)

where V3 =
∫ ∫ ∫

dxdydz is the three dimensional spatial volume. It is convenient to define
the dimensionless ratio of the magnetic field and the temperature as follows

B
T 2 = 16

√
3π2 B̃

Ũ2
h,1

. (3.12)

As a reminder, we have chosen coordinates in such a way that ṽh,0 = 1 and the numerical
solution is characterised by the initial data Ũh,1 and w̃h,0, at the horizon r̃ = 1. These
parameters are determined as functions of B̃ from the boundary conditions Ṽ (r̃ →∞) =
W̃ (r̃ →∞) = ln r̃ and in figure 1 we present the result of the numerical evaluation. Notice
that for small values of B̃, w̃h,0 is close to 1 and the background is isotropic. As B̃ increases
w̃h,0 deviates from 1 (which is the value of ṽh,0 for any B̃) and the background becomes
anisotropic. The more we increase B̃, the more anisotropic the background becomes.

Using (3.12), on the right panel of figure 1, we present the dimensionless ratio B/T 2 as
a function of B̃ and we find a monotonically increasing behaviour. In particular, the limit
B̃ →

√
3 corresponds to the limit B → ∞ (very strong magnetic fields) or T → 0 (very low

temperatures). This last observation can also be seen from the plot of Ũh,1 as a function
of B̃ in the left panel of figure 1. More precisely, when B̃ →

√
3 then Ũh,1 → 0 and the

temperature goes to zero.
The dimensionless ratio S/T 3 of the entropy density and the temperature can be

obtained using (3.10) and (3.11), but we will display our results in the next section, where
we recover the entropy formula also from the holographic calculation of the Gibbs free energy.

3.2 Thermodynamics from holography

An alternative and in principle complementary way to calculate the entropy of a gravity
background is by using holographic renormalisation in order to calculate the free energy
from the Euclidean on-shell action. This is the path we are going to follow in this subsection
and we will use the (Gibbs) free energy to study the thermodynamics. In the main text we
present the case for a general magnetic field, whilst in appendix A we elaborate on the case
of small B/T 2 using a perturbative solution.

3.2.1 The renormalised on-shell action

The Euclidean version of the renormalised Einstein-Maxwell action in (3.1) can be written
as follows

Sren = SM + S∂M + Sct (3.13)
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Figure 1. Left panel: the horizon parameters Ũh,1 and w̃h,0 as functions of B̃. Notice that both Ũh,1
and w̃h,0 are defined in units where the horizon radius is at r̃ = 1. Right panel: the dimensionless
ratio B/T 2 as a function of B̃.

where
SM = −σ

∫
M
d5x
√
g
(
R+ 12− F 2

mn

)
= σ

∫
M
d5x
√
g

(
8 + 2

3 F
2
mn

)
(3.14)

is the Einstein-Maxwell bulk term,

S∂M = −2σ
∫
∂M

d4x
√
γ K (3.15)

is the Gibbons-Hawking boundary term and the counter-term action Sct will be determined
later. Note that to obtain (3.14) we have plugged the expression (3.4) for the Ricci scalar.
In (3.15) the quantity K is the trace of the extrinsic tensor Kµν and γ is the determinant
of the boundary induced metric γµν .

Plugging the ansatz (3.5) into the bulk term (3.14) and using (3.6) we obtain

SM = σ V3 β r
4
h

∫
dr̃ e2Ṽ+W̃

[
8 + 4

3B̃
2e−4 Ṽ

]
(3.16)

where β is the period of the imaginary time τ = i t, related to the temperature by β = T−1.
To further simplify (3.16), we use the third Einstein equation in (3.7) to write the integrand
as a total derivative

SM = σ V3 β r
4
h

∫ r̃0

1
dr̃ ∂r̃

[
e2 Ṽ+W̃ Ũ ′

]
= σ V3 β r

4
h

[
e2 Ṽ+W̃ Ũ ′

]r̃=r̃0

r̃=1
(3.17)

where r̃ = r̃0 and r̃ = 1 are the radial positions of the boundary and horizon respectively. In
the end we will take the limit r̃0 →∞. The trace of the extrinsic tensor can be written as

K = ∇mηm = 1
√
g
∂m (√g ηm) with ηm =

(√
U(r), 0, 0, 0, 0

)
. (3.18)

Using these results the Gibbons-Hawking term (3.15) takes the form

S∂M = σ V3 β r
4
h

[
e2 Ṽ+W̃ Ũ ′ − 2

(
e2 Ṽ+W̃ Ũ

)′ ]
r̃=r̃0

. (3.19)
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Summing (3.17) and (3.19) we obtain the following expression for the first two terms in (3.13)

SM + S∂M = −σ V3 β r
4
h

{
2
[
Ũ
(
e2 Ṽ+W̃

)′ ]
r̃=r̃0

+
[
e2 Ṽ+W̃ Ũ ′

]
r̃=1

}
. (3.20)

Plugging the asymptotic solutions (3.8) and (3.9) into the on-shell action (3.20) we obtain

SM + S∂M = −σ V3 β r
4
h

{
6
[
r̃4

0 + 2 Ũ∞,1 r̃3
0 + 3

2 U
2
∞,1 r̃

2
0 + 1

2 Ũ
3
∞,1 r̃0

− 2
3 B̃

2 ln r̃0 + 1
16 Ũ

4
∞,1 + Ũ∞,4

]
+ Ũh,1ṽ

2
h,0w̃h,0

}
. (3.21)

Note that the UV parameter Ũ∞,1 leads to multiple UV divergences for the on-shell action.
However, we can perform the renormalisation procedure for non-zero values of Ũ∞,1 as we
will show below. In this work we consider a diffemorphism-invariant counterterm action
given by

Sct = σ

∫
d4x
√
γ [a1 + a2 FµνF

µν ln (FµνFµν) + a3 FµνF
µν ]

= σ V3 β r
4
h

{
a1

[
r̃4

0 + 2 Ũ∞,1 r̃3
0 + 3

2 Ũ
2
∞,1 r̃

2
0 + 1

2 Ũ
3
∞,1 r̃0 −

1
3 B̃

2 ln r̃0

+ 1
16 Ũ

4
∞,1 + 1

2 Ũ∞,4

]
+ 2 B̃2 a2

[
ln
(
2B̃2

)
− 4 ln r̃0

]
+ 2B̃2a3

}
(3.22)

where we have used the asymptotic expansions (3.8) and (3.9). In order to cancel the
power-law and logarithmic divergences in (3.21) we choose a1 = 6 and a2 = 1

4 . The value of
a3 is not fixed. The renormalised action (3.13) reduces to

Sren = −σ V3 β r
4
h

[
3 Ũ∞,4 + Ũh,1 ṽ

2
h,0 w̃h,0 − B̃2 ln B̃ −

(
2a3 + 1

2 ln 2
)
B̃2
]
. (3.23)

Notice that the renormalised action in (3.23) depends both on UV data (through Ũ∞,4)
and IR data (through Ũh,1, ṽh,0 and w̃h,0) but it is also scheme dependent, since we have
not fixed the parameter a3.

Our holographic renormalisation procedure differs from previous approaches, for exam-
ple [7], by the logarithmic term that brings a non-trivial dependence on the magnetic field.
The diffeomorphism-invariant counterterm in (3.22) does not break conformal invariance
and leads naturally to a Gibbs free energy and a stress tensor consistent with the thermody-
namics and hydrodynamics of a conformal plasma described in section 2. We will describe
later in this section that the non-diffeomorphism invariant counterterm considered in [7]
can be thought as a deformation of the counterterm in (3.22) that leads to the breaking of
conformal invariance and the emergence of a conformal anomaly for the stress tensor.

– 11 –



J
H
E
P
0
6
(
2
0
2
2
)
1
5
4

3.2.2 The Gibbs free energy density

The renormalised Gibbs free energy density takes the form

G = T Sren
V3

= −σ r4
h

[
3 Ũ∞,4 + Ũh,1 ṽ

2
h,0 w̃h,0 − B̃2 ln B̃ −

(
2 a3 + ln 2

2

)
B̃2
]
≡ r4

h G̃ .
(3.24)

We remind the reader that σ = 1/(16πG5) = N2
c /(8π2) and that rh and B̃ are related

by r2
hB̃ = B = B/

√
3. Note that the last two terms in (3.24) depend only on B2. This

B2 contribution to the free energy is scheme dependent and does not contribute to the
entropy density.

The magnetic enthalpy density can be written as ρ = r4
hρ̃ with

ρ̃ = G̃ + T̃ S̃ = N2
c

8π2

[
− 3 Ũ∞,4 + B̃2 ln B̃ +

(
2 a3 + 1

2 ln 2
)
B̃2
]
, (3.25)

and T̃ and S̃ are defined by the relations T = rhT̃ , S = r3
hS̃.

At this point we can calculate various thermodynamic quantities analytically in the
cases of zero magnetic field and zero temperature.

Zero magnetic field. In the case of B = 0, we find the following analytic solution

eṼ = r̃ , eW̃ = r̃ & Ũ = r̃2
(
1− r̃−4

)
(3.26)

from which we can easily extract the quantities that enter in (3.24), namely

Ũ∞,4 = −1 , ṽh,0 = w̃h,0 = 1 & Ũh,1 = 4 . (3.27)

Temperature, entropy density and free energy density take the form

TB=0 = rh
π
, SB=0 = π2

2 N
2
c T

3 & GB=0 = −π
2

8 N
2
c T

4 . (3.28)

Our results for the entropy and free energy densities of the strongly coupled N = 4 super
Yang-Mills plasma in the limit of zero magnetic field reduces to those obtained in the
pioneer work [3]. These quantities satisfy the following thermodynamic relations

GB=0 = −1
4(TS)B=0 & ρB=0 = 3

4(TS)B=0 . (3.29)

Zero temperature. Solving the equations of motion numerically, we know that when
the dimensionless parameter B̃ approaches

√
3, B →∞ and the value of Uh,1 approaches

zero, and this is identified as the zero temperature limit. Indeed as there is only a single
dimensionless parameter, B

T 2 , the limit B → ∞ is equivalent to T → 0. Putting all this
information together we arrive to the following zero temperature (numerical) solution

B̃T=0 =
√

3 , ŨT=0
h,1 = 0 , ŨT=0

∞,4 = Ũ∞,4
(√

3
)

& rT=0
h =

√
B√

3
=

√
B
3

(3.30)

– 12 –



J
H
E
P
0
6
(
2
0
2
2
)
1
5
4

where we have used (3.6) to determine rT=0
h as a function of B (and B). Substituting (3.30)

in (3.24) we have

GT=0 = ρT=0 = −σ3 B
2
[
Ũ∞,4

(√
3
)
− ln

(√
3
)]

+ σ

3

(
2a3 + ln 2

2

)
B2 . (3.31)

We can use this result to define a new version of the renormalised free energy, that is

Gr ≡ G − GT=0

= −σ r4
h

[
3 Ũ∞,4 + Ũh,1 ṽ

2
h,0 w̃h,0 − B̃2 ln B̃

]
+ σ

3 B
2
[
Ũ∞,4

(√
3
)
− ln

(√
3
)]

.

(3.32)

The free energy as it is defined in (3.32) has two important advantages with respect to
the expression in (3.24). The first one is that it is scheme independent since it does not
depend on a3 and the second is that it describes the RG flow between an AdS5 background
on the boundary and a BTZ× R2 black hole in the deep IR. Without the subtraction we
propose in (3.32), in the IR we obtain the entropy of the BTZ × R2 solution (since the
derivative of the term that contains a3 with respect to the temperature is zero) but not its
magnetisation. The subtraction procedure of (3.32) will effectively fix the value of a3 to
the value that is needed in order for the free energy to flow from AdS5 to BTZ× R2.

In practice we can evaluate the renormalised free energy as follows

Gr = r4
h G̃(B̃)− 1

9 G̃
(√

3
)
B2 (3.33)

where rh can be obtained for a given T and B by the relation

T = rhT̃ (B̃) (3.34)

where B̃ is a function of b = B/T 2. We will be interested in the subtracted version of the
dimensionless free energy

gr(b) ≡
Gr
T 4 = g(b)− 1

9 G̃
(√

3
)
b2 where g(b) = G̃(B̃)[

T̃ (B̃)
]4 . (3.35)

This result explicitly shows that the subtracted renormalised Gibbs free energy density is
consistent with conformal invariance because the dimensionless ratio Gr/T 4 depends only
on the dimensionless ratio b = B/T 2. The relation between B/T 2 and the parameter B̃ was
displayed on the right panel of figure 1.

3.3 The holographic stress tensor

The 4d stress-energy tensor is given by the on-shell variation of the Einstein-Maxwell action,
in Lorentzian signature, with respect to the source γ(0)

µν = r−2
0 γµν

Tµνren = 2√
−γ(0)

δSren

δγ
(0)
µν

= 2 r6
0√
−γ

δSren
δγµν

= Tµνreg + Tµνct (3.36)

– 13 –



J
H
E
P
0
6
(
2
0
2
2
)
1
5
4

where

Tµνreg
r6

0
= 2√
−γ

δ(SM + S∂M)
δγµν

= −2σ (Kµν −Kγµν) & Tµνct
r6

0
= − 2√

−γ
δSct
δγµν

, (3.37)

where −Sct is the Lorentzian version of the counter-term action (3.22). Here Kµν = ∇µην
is the extrinsic curvature tensor with ηm given in (3.18), K = γµνKµν is the trace of the
extrinsic curvature tensor and γµν the induced metric that takes the form

γµν = diag
(
− U , e2V , e2V , e2W

)
r0
. (3.38)

Varying the counter-term action (3.22) we obtain

Tµνct
2σ r6

0
= −a1

2 γµν + 2 a2
[
T µν ln(FρσF ρσ) + FµρF νρ

]
+ 2 a3T µν

with T µν = FµρF νρ −
1
4 FρσF

ρσγµν , (3.39)

and we choose a1 = 6 and a2 = 1
4 as before in order to cancel the UV divergences. Substi-

tuting the ansatz (3.5) in (3.37) and (3.39) and using the UV asymptotic behaviour (3.9),
together with the zero temperature subtraction that we introduced in the previous subsection,
we arrive at the following expressions for the components of the stress-energy tensor

ρ = −〈T tt〉r = − 3 r4
h

8π2

[
Ũ∞,4 −

B̃2

6

[
2 Ũ∞,4

(√
3
)

+ ln
(
B̃2

3

)]]
(3.40)

Px = 〈T 1
1〉r = 〈T 2

2〉r = − r4
h

8π2

[
Ũ∞,4 − 8 ṽ∞,4 −

B̃2

2

[
2 Ũ∞,4

(√
3
)

+ ln
(
B̃2

3

)]]
(3.41)

Pz = 〈T 3
3〉r = − r4

h

8π2

[
Ũ∞,4 + 16 ṽ∞,4 + B̃2

2

[
2 Ũ∞,4

(√
3
)

+ ln
(
B̃2

3

)]]
. (3.42)

More details about the intermediate steps that lead to the equations (3.40), (3.41) & (3.42)
can be found in appendix C. Notice that by setting Ũ∞,4 = −1 (this is the value of Ũ∞,4 in
the limit of small B) to (3.40) we obtain the expression for the energy density in (A.27). It
can be easily checked that the trace of the stress tensor vanishes, i.e.

〈Tµµ〉r = −ρ+ 2Px + Pz = 0 (3.43)

as expected for a conformal fluid. In the next section we will obtain the hydrodynamic
pressures from the components of the holographic stress tensor. Using the holographic
dictionary (3.40) we will find that the components of the stress-energy tensor are consistent
with conformal magnetohydrodynamics, in particular it will satisfy the thermodynamic
relations (2.24) found at the end of section 2. But before that we briefly discuss below how
the deformation of the diffeomorphism invariant counterterm into a non-diffeomorphism
invariant counterterm leads to conformal anomaly.
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3.4 The non-diffeomorphism invariant counterterm and the conformal anomaly

We end this section with a brief discussion of the non-diffeomorphism invariant counterterm
proposed in [7]. We will show that this leads to a non-zero contribution to the trace of
the stress tensor and can be interpreted in terms of a conformal anomaly in the 4d field
theory [78–80]. We will find, however, that despite the presence of the conformal anomaly
the subtracted quantities obtained in the previous subsections remain conformally invariant.

The counterterm action considered in [7] can be written as

S
(2)
ct = σ

∫
d4x
√
γ
[
a1 + a2FµνF

µν ln
(
r−4

0

)
+ a3FµνF

µν
]
. (3.44)

The non-diffeomorphism invariant counterterm S
(2)
ct in (3.44) can be thought as a deformation

of the diffeomorphism invariant counterterm Sct in (3.22). Namely, we have

S
(2)
ct = Sct + ∆Sct , (3.45)

where
∆Sct = −σ a2

∫
d4x
√
γFµνF

µν
[

ln(FµνFµν) + 4 ln r0
]
, (3.46)

where a2 = 1/4.3 This difference can be interpreted as a finite counterterm that leads to
conformal symmetry breaking. Indeed, the finite counterterm (3.46) leads to the following
contribution to the Gibbs free energy density:

∆G = 1
V3
T∆Sct = −1

2σB
2 ln

(
2B2

)
. (3.47)

This term breaks conformal symmetry because the dimensionless ratio ∆G/T 4 does not
depend only on b = B/T 2. However, since the term in (3.47) depends only on the magnetic
field it does not contribute to the subtracted free energy density Gr = G − GT=0, which
is still given by (3.32) and consistent with conformal invariance. The subtraction of
the zero temperature free energy is also a natural way to construct quantities that are
scheme independent.

Similarly, the Lorentzian version of the finite counterterm (3.46) leads to the following
contribution to the stress-energy tensor:

∆〈Tµν〉 = −1
2σB

2 diag
(
ln
(
2B2

)
, 2 + ln

(
2B2

)
, 2 + ln

(
2B2

)
,− ln

(
2B2

))
.

(3.48)
This in turn leads to a non-zero contribution to the trace

∆〈Tµµ〉 = −2σB2 , (3.49)

which agrees with previous results for the 4d conformal anomaly [78–80]. Again, since
the tensor components in (3.48) depend only on the magnetic field they do not contribute
to the subtracted stress-energy tensor 〈Tµν〉r = 〈Tµν〉 − 〈Tµν〉T=0 given by (3.40)–(3.42).
The subtracted stress-energy tensor has a vanishing trace and is consistent with conformal
magnetohydrodynamics.

3The coefficient a2 is fixed in the same way when we renormalise the action using the counterterm action
Sct or the counterterm action S

(2)
ct .
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4 Numerical results for thermodynamic quantities

In the previous section we obtained the holographic dictionary for the Gibbs free energy
density and for the components of the stress-energy tensor of the 4d magnetised conformal
plasma dual to the AdS5 magnetic black brane. In this section we present our numerical
results for several thermodynamic quantities. From the Gibbs free energy density we will
derive the entropy density, magnetisation, susceptibility and pyro-magnetic coefficient using
the identities obtained in section 2. For the entropy density we will find agreement with
the result obtained from the Bekenstein-Hawking area formula (3.11).

In terms of the stress-energy tensor properties, we present our numerical results for the
hydrodynamic pressures in the directions parallel and perpendicular to the magnetic field as
well as the speeds of sound. We show that these quantities display an evolution consistent
with an RG flow of a 4d CFT in the regime of weak magnetic fields (high temperatures) to
a 2d CFT in the regime of strong magnetic fields (low temperatures).

We finish this section with a comparison of a number of thermodynamic quantities to
the lattice QCD results found in [74].

4.1 Gibbs free energy and entropy densities

Using the results described in subsection 3.2.2 we numerically evaluate the dimensionless
Gibbs free energy gr = Gr/T 4, divided by N2

c , as a function of the dimensionless ratio
b = B/T 2. This is displayed as the solid blue curve in figure 2. At small b the dimensionless
Gibbs free energy is well described by the formula:

gr(b� 1) = N2
c σ̃

[
−π4 + 1

3b
2
(
Ũ∞,4

(√
3
)

+ ln
(
b/3π2

))
+ . . .

]
, (4.1)

where Ũ∞,4(
√

3) ≈ −0.25, and σ̃ = σ/N2
c = 1/(8π2) is the effective gravitational coupling,

fixed previously to match the thermodynamics of the strongly coupled N = 4 super Yang-
Mills plasma at B = 0. The analytic result in (4.1) is derived in appendix A by considering
a perturbative expansion around the solution with b = 0. It is plotted as an orange dashed
line in figure 2.

At large b the dimensionless Gibbs free energy is well described by the formula:

gr(b� 1) = N2
c

[
− 4

3
√

3
π2σ̃b+ g∞ + . . .

]
(4.2)

where g∞ ≈ −0.77. This is displayed as a red dashed line in figure 2. The leading term
in (4.2) is derived in appendix B using the BTZ× R2 solution and the sub-leading term is
obtained from fitting to the full numerical solution. We would like to emphasise that the
agreement between the thermodynamics of the BTZ×R2 solution and the thermodynamics
of the full numerical solution was possible thanks to the subtraction of the renormalised
free energy with the zero temperature result described in the previous section.

The dimensionless entropy density is obtained from the thermodynamic relation

s = S
T 3 = 2b g′r(b)− 4gr(b) , (4.3)
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Figure 2. The dimensionless free energy density gr = Gr/T
4 (solid blue line), divided by N2

c , as a
function of b = B/T 2, compared with the analytical solution at small b (orange dashed line) and
large b (red dashed line). The analytical solutions at small b and large b, shown in equations (4.1)
and (4.2), were obtained in appendices A and B respectively. The green dashed line depicts the
limit at b = 0.

found in section 2 for a 4d conformal magnetic fluid. Note that the quadratic term in (3.35)
does not contribute to the dimensionless entropy density. In figure 3 we plot the dimensionless
entropy density s = S/T 3, divided by N2

c , as a function of b = B/T 2. The solid blue line
represents the full numerical result whereas the orange and red dashed lines correspond
to the analytical results at small and large b respectively, found in appendices A and B.
The green dashed line represents the limit s = 4π4N2

c σ̄ = (π2/2)N2
c for the dimensionless

entropy at b = 0.
Our results for the entropy density S, obtained from the renormalised Gibbs free energy

Gr, are equivalent to those obtained from the Bekenstein-Hawking formula (3.11) and are
compatible with those obtained in [1]. This is a non-trivial consistency check for our
holographic renormalisation procedure. Notice that the formula (4.3) is valid in general as
long as we consider the subtracted Gibbs free energy density Gr = G(T ) − G(0) which is
consistent with conformal invariance as described in the previous section.

The subtraction was also important in order to reproduce the result for the Gibbs free
energy density associated with the BTZ× R2 solution at large b from the full numerical
solution, as described in the previous subsection.

At small b the entropy density is well described by the formula:

s(b� 1) = N2
c σ̃

[
4π4 + 2

3b
2 + . . .

]
, (4.4)

found using equations (4.1) and (4.3). At large b, the entropy density takes the BTZ form

s (b� 1) = N2
c

[
8

3
√

3
π2σ̃b− 4g∞ + . . .

]
, (4.5)

found using (4.2) and (4.3).
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Figure 3. The dimensionless entropy density s = S/T 3 (solid blue line), divided by N2
c , as a

function of b = B/T 2, compared with the analytical solution at small b (orange dashed line) and
large b (red dashed line). The analytical solutions at small b and large b, shown in equations (4.4)
and (4.5), were obtained in appendices A and B respectively. The green dashed line depicts the
Stefan-Boltzmann limit at b = 0.

4.2 Magnetisation, susceptibility and the pyro-magnetic coefficient

We calculate the dimensionless magnetisation density using the formula

mr = Mr

T 2 = −g′r(b) , (4.6)

obtained in section 2. Our results for the dimensionless magnetisation mr, divided by N2
c ,

as a function of b = B/T 2 are displayed in figure 4. The solid blue line represents the
full numerical result whereas the orange and red dashed lines correspond to the analytical
results at small and large b respectively, found in appendices A and B.

We observe that the dimensionless magnetisation density mr = Mr/T
2 increases

monotonically from zero at b = 0 to a positive constant value in the limit b → ∞. The
latter corresponds to the regime of very high values of B at fixed T or very low values of T
at fixed B. In this limit we expect a dimensionality reduction from a 4d CFT to a 2d CFT.
Indeed, the asymptotic form of the magnetisation density coincides with the analytical
result found in appendix B for the BTZ× R2 solution.

We also calculate the magnetic susceptibility χ and the dimensionless pyro-magnetic
coefficient ξ/T using the formulae

χ = −g′′r (b) , ξ

T
= 2

[
bg′′r (b)− g′r(b)

]
, (4.7)

found in section 2. Our results for the magnetic susceptibility and the dimensionless
pyro-magnetic coefficient, both divided by N2

c , are displayed on the left and right panels of
figure 5 respectively. In both plots the blue solid curve represents the full numerical result
whereas the orange and red dashed lines represent the analytical results at small and large
b, found in appendices A and B.
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Figure 4. The dimensionless magnetisation mr = Mr/T
2, divided by N2

c , as a function of b = B/T 2

(solid blue line), compared with the analytical solutions at small b (orange dashed line) and large b
(red dashed line). The analytical solutions at small b and large b are derived in appendices A and B.
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Figure 5. Left panel: magnetic susceptibility χr, divided by N2
c , as a function of b = B/T 2. Right

panel: dimensionless pyro-magnetic coefficient ξ/T , divided by N2
c , as a function of b = B/T 2. In

both panels the blue lines represent our numerical results whilst the orange and red dashed lines
represent the analytical solutions at small and large b respectively, obtained in appendices A and B.

As shown in figure 5, the magnetic susceptibility χ is a non-negative monotonically
decreasing function of b whilst the dimensionless pyro-magnetic coefficient ξ/T is a non-
negative monotonically increasing function of b. Note that χ diverges in the limit b → 0
which corresponds to very low values of B at fixed T or very high values of T at fixed
B. This divergence is logarithmic, as can be seen from (4.1) and (4.7). In the opposite
limit, b → ∞, the magnetic susceptibility vanishes. Meanwhilst, the dimensionless pyro-
magnetic coefficient vanishes in the limit b→ 0 and reaches a positive constant value in the
limit b→∞.

At the end of this section we will compare the results for the magnetisation density
and the susceptibility in the N = 4 Super Yang-Mills plasma against lattice QCD results.
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Figure 6. The dimensionless longitudinal pressure Pz/T
4 (blue) and the dimensionless transverse

pressure Px/T
4 (red), both divided by N2

c , as functions of b = B/T 2. The green dashed line depicts
the limiting case b = 0.

4.3 The anisotropic pressures

The anisotropy of the 4d conformal fluid due to the presence of the magnetic field is
characterised by the difference between the pressure along the direction parallel to the
magnetic field (Pz) and the pressure along the directions transverse to the magnetic field
(Px = Py). The holographic dictionary for the longitudinal and transverse pressures Pz
and Px was obtained in subsection 3.3 in terms of the UV coefficients of the metric. As an
alternative method, we have also evaluated the hydrodynamic pressures using the identities
Pz = −G and Px = P − MB found at the end of section 2. Both methods yield the
same results, which is a non-trivial consistency check of our holographic renormalisation
procedure. In appendix A, where we used an analytical solution at small b, the agreement
between the pressures obtained from the stress tensor holographic dictionary and the results
using the identities Pz = −G and Px = P −MB is explicit.

In figure 6 we present our numerical results for the hydrodynamic pressures. The
solid blue line represents the evolution of the dimensionless longitudinal pressure Pz/T 4,
divided by N2

c , with b = B/T 2 whereas the solid red line represents the evolution of the
dimensionless transverse pressure Px/T 4, divided by N2

c , with b = B/T 2. The green dashed
horizontal line corresponds to the limiting case b = 0 where isotropy is restored in the
conformal fluid. From figure 6 it is clear that the difference between the longitudinal and
transverse pressures increases with B/T 2 which means that the anisotropy increases when
the magnetic field increases or the temperature decreases. At the end of this section we will
compare the results for the anisotropic pressures in a magnetised conformal plasma against
the results found in lattice QCD for the magnetised quark-gluon plasma.

4.4 Specific heats and speeds of sound

The specific heat is obtained from the thermodynamic relation

CV,B = T 3
[
− 12gr(b) + 10bg′r(b)− 4b2g′′r (b)

]
, (4.8)
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Figure 7. Dimensionless specific heat CV,B/T
3 (solid) as a function of b = B/T 2 (solid blue line),

compared with the analytical solutions at small b (orange dashed line) and large b (red dashed line).
The analytical solutions at small b and large b were obtained in appendices A and B.

obtained in section 2. Since the specific heat is related to the entropy density, the quadratic
term in the renormalised Gibbs free energy density (3.35) does not contribute to it. In
section 2 we also showed that the squared speeds of sound along the z and x directions are
given by

c2
s,x = S − ξB

CV,B
, c2

s,z = S
CV,B

, (4.9)

where S is the entropy density, ξ the pyromagnetic coefficient and CV,B the specific heat.
Figure 7 shows our numerical results for the dimensionless specific heat CV,B/T 3 as a

function of b = B/T 2 (solid blue line) compared with the analytical solutions at small b
(orange dashed line) and large b (red dashed line). The latter are obtained by plugging (4.1)
and (4.2) into (4.8). We observe that CV,B/T 3 is a non-monotonic function of b = B/T 2

and reaches a linear asymptotic behaviour consistent with the BTZ× R2 analytic solution
only at very large values of b.

Our results for the speeds of sound along the z direction (parallel to the magnetic field)
and x direction (transverse to the magnetic field) are presented in figure 8. The plot on
the left panel displays the squared speeds of sound as a function of b = B/T 2. The blue
and red lines correspond to c2

s,z and c2
s,x respectively. The green dashed line represents

the limiting case b = 0 where c2
s,z = c2

s,x = 1/3. The plot on the right panel displays the
squared speeds of sound as functions of the temperature T for fixed values of the magnetic
field B. The red, blue and green lines correspond to B = 0.2GeV2, B = 0.3GeV2 and
B = 0.4GeV2 respectively. Note that as the temperature decreases the squared speed of
sound c2

s,z grows from 1/3 to 1 whereas the squared speed of sound c2
s,x decreases from

1/3 to 0. This is consistent with an RG flow of the 4d CFT at high temperatures to a 2d
CFT low temperatures. The same pattern occurs when increasing the magnetic field B
for fixed values of T . At small b the squared speeds of sound are well described by the
analytic expressions (A.37) and (A.39) of appendix A whilst the large b limit c2

s,z → 1 for
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Figure 8. Left panel: squared speeds of sound along the z and x directions (blue and red
respectively) as a function of b = B/T 2. The green dashed horizontal line represents the isotropic
result c2

s,x = c2
s,z = 1/3 in the absence of magnetic field. Right panel: squared speeds of sound as

a function of T for fixed values of B. The red, blue and green lines correspond to B = 0.2GeV2,
B = 0.3GeV2 and B = 0.4GeV2 respectively. The asymptotic values of c2

s,z and c2
s,x in the large b

limit are 1 and 0 respectively. This corresponds to the T → 0 limit on the right panel.

the longitudinal direction and c2
s,x → 0 for the transverse direction is consistent with the

BTZ× R2 solution, as confirmed in (B.20) of appendix B.
We finish this subsection with a brief analysis of local thermal equilibrium, based on [81].

The conditions for local thermal equilibrium follow from considering the variation of the
Gibbs free energy G = U − TS −MB due to small variations of the extensive quantities S
andM.4 Expanding the internal energy U in terms of S and M and imposing that the
variation of G is positive (condition of minimum at equilibrium) one finds the following two
conditions: (

∂T

∂S

)
M

= T

CV,M
> 0 ,

(
∂B
∂M

)
T

= 1
χ
> 0 , (4.10)

where CV,M is the specific heat at constant magnetisation and χ the magnetic susceptibility.
We note that the second condition is automatically satisfied in our framework because
the magnetic susceptibility found in this work is always positive, as shown in figure 5. As
regards the first condition, following [81] we obtain a relation between CV,M (specific heat
at fixed magnetisation) and CV,B (specific heat at fixed magnetic field):

CV,M = CV,B − T
(∂M/∂T )2

B
(∂M/∂B)T

= CV,B − T
ξ2

χ
, (4.11)

where ξ is the pyro-magnetic coefficient and χ the magnetic susceptibility, both described
in subsection 4.2. Using this formula we can evaluate the specific heat CV,M in terms of
the thermodynamic quantities found before. Figure 9 shows the dimensionless specific heat
CV,M/T

3 as a function of b = B/T 2 (blue solid line), compared against the dimensionless
specific heat CV,B/T 3 (red dashed line). Interestingly, this plot indicates the emergence

4The quantities M and B here correspond to V and −P in [81].
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Figure 9. Dimensionless specific heat at fixed magnetisation CV,M/T 3 as a function of b = B/T 2

(blue solid line), compared against the dimensionless specific heat at fixed magnetic field CV,B/T
3

(red dashed line).

of an instability at around B = 12T 2. Similar instabilities have been found previously in
anisotropic backgrounds [13, 14].

4.5 Comparison against lattice QCD

We end this section with a phenomenological analysis where we compare some of the
thermodynamic quantities of a (strongly coupled) magnetised conformal plasma to lattice
QCD results for the quark-gluon plasma [74].

For this comparison, we depart from the strongly coupled N = 4 Super Yang-Mills
plasma, where the 5d gravitational constant σ = 1/(16πG5) = N2

c /(8π2) was fixed by string
theory. We will instead consider a phenomenological approach where σ is fixed in such a way
that in the absence of the magnetic field we reproduce the result for the free energy density
of a free Yang-Mills plasma in the large Nc limit. Namely, we will take σ = N2

c /(45π2) so
that we recover the Stefan-Boltzmann result

GB=0 = −π
2

45N
2
c T

4 . (4.12)

This phenomenological approach was successfully pursued in the improved holographic
QCD models of [82, 83].

We start this phenomenological analysis by comparing our results for the longitudinal
and transverse pressures of a magnetised conformal plasma against the lattice QCD results
for the pressures of a magnetised quark-gluon plasma [74], as shown in figure 10. The figure
shows the evolution of the pressures, divided by N2

c , with the magnetic field B for fixed values
of the temperature. The red, blue and green colours correspond to T = 0.15 GeV, 0.25 GeV
and 0.3 GeV respectively. For each colour, the upper and lower solid lines represent our
results for the longitudinal and transverse pressures, divided by N2

c , respectively. Likewise,
the upper and lower dots with error bars represent the lattice QCD results for the longitudinal
and transverse pressures (divided by N2

c = 32). The main conclusion from this figure is that
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Figure 10. Longitudinal pressure Pz (upper solid line for a given colour) and transverse pressure
Px (lower solid line for a given colour), both divided by N2

c , as functions of the magnetic field B for
fixed values of the temperature, compared with lattice results (dots with error bars), divided by
N2

c = 32, obtained in [74]. The red, blue and green colours correspond to T = 0.15 GeV, 0.25 GeV
and 0.3 GeV respectively.

the anisotropy between the longitudinal pressure Pz and the transverse pressure Px in a
magnetised conformal plasma increases with the magnetic field in a way that is qualitatively
similar to the anisotropic increase found for the QCD quark-gluon plasma.

Note that at small temperatures (red) the holographic model does not reproduce
quantitatively the lattice QCD anisotropy (the angle between the lines corresponding to Pz
and Px in the figure). This is because confinement and chiral symmetry breaking effects
are important in this region. At high temperatures (blue and green) the holographic model
captures well the anisotropy increase between the longitudinal and transverse pressures.

Next, in figure 11, we compare our results for the magnetisation density Mr and the
magnetic susceptibility χr of a magnetised conformal plasma against those obtained in
lattice QCD for a magnetised quark-gluon plasma [74]. The left panel of figure 11 shows the
magnetisation density, divided by N2

c , as a function of the temperature for fixed values of the
magnetic field. The red, blue, green and gray lines correspond to B = 0 GeV2, B = 0.2 GeV2,
B = 0.3 GeV2 and B = 0.4 GeV2. The solid lines represent our results whilst the dots with
error bars correspond to lattice QCD results (the latter divided by N2

c = 32). In the regime
of high temperature the magnetisation density of the conformal plasma and the quark-gluon
plasma show a similar increasing behaviour. However, in the low temperature regime the
results for the conformal plasma differ significantly from the lattice QCD results. The reason
for this is that conformal symmetry breaking, chiral symmetry breaking and confinement
play an important role in this regime and those effects are absent in the conformal plasma.
We also note that the magnetisation density in the conformal plasma goes to zero in the
limit of zero temperature. This is a consequence of our renormalisation procedure where
we subtracted the full zero temperature result to eliminate the scheme dependence. This
procedure is not exactly the same as that used in lattice QCD, where only the quadratic
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Figure 11. Left panel: magnetisation density Mr, divided by N2
c , as a function of the temperature

(solid lines), compared with lattice results (dots with error bars), divided by N2
c = 32, for fixed values

of the magnetic field. The red, blue, green and gray lines correspond to B = 0 GeV2, B = 0.2 GeV2,
B = 0.3 GeV2 and B = 0.4 GeV2. Right panel: magnetic susceptibility χr, divided by N2

c , as a
function of temperature, compared with lattice results, divided by N2

c = 32, for fixed values of the
magnetic field. The red, blue and green lines correspond to B = 0.01 GeV2, B = 0.1 GeV2 and,
B = 0.2 GeV2 respectively. The lattice results (black dots with error bars) were obtained in the
limit B → 0.

term of the zero temperature result is subtracted [74]. The right panel of figure 11 shows
our results for the magnetic susceptibility (solid lines), divided by N2

c , as a function of the
temperature for fixed values of the magnetic field. The red, blue and green lines correspond
to B = 0.01 GeV2, B = 0.1 GeV2 and, B = 0.2 GeV2 respectively. This is compared with the
lattice QCD results for the magnetic susceptibility (black dots with error bars), divided
by N2

c = 32, obtained in the limit of zero magnetic field [74]. In the high temperature
regime the results for the conformal plasma are qualitatively similar to the lattice QCD
results showing a monotonically increasing behaviour. At low temperatures the magnetic
susceptibility goes to zero whilst the magnetic susceptibility found in lattice QCD becomes
negative. Again, the differences between the results for the conformal plasma and the
lattice QCD results are expected due to the fact that conformal symmetry breaking, chiral
symmetry breaking and confinement are dominant effects in this regime.

Lastly, in figure 12 we present our results for the variation of the squared speeds of
sound in the longitudinal and transverse directions with the magnetic field (solid lines)
compared with a numerical estimate that we made based on the lattice QCD results obtained
in [74] (dashed lines), for fixed values of the temperature. The red, blue and green colours
correspond to T = 0.15GeV, T = 0.2GeV and T = 0.3GeV respectively. The variation
of the squared speeds of sound is defined as c2

s,i(B) − c2
s,i(B = 0). The lines above zero

correspond to the longitudinal direction i = z whereas the lines below zero correspond
to the transverse direction i = x. Whilst the variations of the squared speeds of sound
in the conformal plasma always display a monotonic behaviour (increasing for i = z and
decreasing for i = x) the lattice QCD results display a similar behaviour only in the regime
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Figure 12. Squared speeds of sound (solid lines) c2
s,i as functions of B, with their values at B = 0

subtracted„ compared to a numerical estimate obtained from lattice QCD results (dashed lines) for
fixed values of the temperature. For simplicity, we omitted the error bars in the numerical estimate.
The lines above zero correspond to the longitudinal direction i = z whereas the lines below zero
correspond to the transverse direction i = x. The dotted upper and lower lines correspond to the
values 2/3 and −1/3 respectively, expected in the limit B → ∞. The red, blue and green colours
correspond to T = 0.15GeV, T = 0.2GeV and T = 0.3GeV respectively.

of high temperatures. As explained above, we expect significant differences between the
results for the conformal plasma and the lattice QCD results at low temperatures due to
effects of conformal symmetry breaking, chiral symmetry breaking and confinement.

5 Conclusions

In this paper we investigated, using the holographic framework, the thermodynamics of the
strongly coupled N = 4 Super Yang-Mills plasma in the presence of a magnetic field. We
introduced a holographic renormalisation procedure that allowed us to obtain a Gibbs free
energy and a stress-energy tensor consistent with the thermodynamics and hydrodynamics
of a conformal fluid. Moreover, this procedure allowed us to obtain scheme independent
thermodynamic quantities that are consistent with the thermodynamics of the BTZ × R2

solution at large values of the magnetic field. We also found a thermodynamic entropy
consistent with the Bekenstein-Hawking entropy.

We evaluated several thermodynamic quantities with an emphasis on the anisotropic
effects that the magnetic field induces. Our analysis is twofold: initially we performed
a magnetohydrodynamic analysis to derive the equation of state and the stress-energy
tensor of the conformal fluid and following this we introduced the magnetic brane solution,
which interpolates between an AdS5 boundary and a BTZ × R2 black hole in the deep
IR. We implemented a holographic renormalisation procedure that allowed us to find a
Gibbs free energy and a stress-energy tensor consistent with the thermodynamics and
hydrodynamics of a conformal fluid. The renormalisation procedure included a subtraction
of the action with the zero temperature result. This ensured that the end of the RG flow is
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given by the BTZ × R2 solution and allowed us to obtain thermodynamic quantities that
are scheme independent.

Regarding the conformal anomaly due to the presence of the magnetic field when
considering a non-diffeomorphism invariant counterterm we conclude that, although the
field theory deserves further investigation, our results suggest that it does not affect the
thermodynamics and the, 0th order, hydrodynamics of the fluid. Moreover, we have provided
a prescription for removing the conformal anomaly from the very beginning by considering
a diffemorphism invariant counterterm.

Having obtained the renormalised action, we performed both analytical (for small and
large values of the dimensionless parameter b = B/T 2) and numerical computations of
thermodynamic quantities. We note that, besides the dimensionless specific heat CV,B/T 3,
all of these thermodynamic quantities display a monotonic behaviour with b. The presence
of the anisotropy due to the magnetic field leads to differing transverse and longitudinal
pressures as well as the corresponding speeds of sound. This anisotropy in the hydrodynamic
quantities shows up as a renormalisation flow from isotropy in the limit of the 4d conformal
plasma to the anisotropy in the IR. This is most clearly seen in figure 6. Close to the
AdS5 boundary (corresponding to small b) the conformal plasma is isotropic, but as we
move towards the IR (corresponding to large b) the anisotropy becomes significant and
the longitudinal pressure gets much higher than the transverse pressure. The plot for the
two speeds of sound in figure 8 was even more illuminating, both because of the induced
anisotropy and of the RG flow that the gravity solution depicts. As b increases the squared
longitudinal speed of sound grows from 1/3 to 1 whereas the squared transverse speed of
sound decreases from 1/3 to 0. This behaviour is consistent with an RG flow between a
4d CFT at small b to a 2d CFT at large b. With the above results being said, we note a
caveat whereby a thermodynamic instability appears at around B = 12T 2.

In addition to our analytical and numerical analysis of magnetohydrodynamic quantities,
we presented a phenomenological comparison between a number of these quantities for the
magnetised conformal plasma and the lattice QCD results for a magnetised quark-gluon
plasma. As far as the hydrodynamic pressures are concerned the main conclusion is that the
anisotropy between the two pressures in a magnetised conformal plasma and in the QCD
quark-gluon plasma increases with the magnetic field in a qualitatively similar way. For
the speeds of sound whilst the variations of the squared speeds of sound in the conformal
plasma always display a monotonic behaviour, the lattice QCD results display a similar
behaviour only in the regime of high temperatures, as expected from asymptotic freedom.

Moving forward, an important set of phenomena of interest in QCD in the presence of
a magnetic field are those of magnetic catalysis and inverse magnetic catalysis. They are
characterised by the strengthening and weakening of the chiral condensate, respectively in
the presence of a magnetic field. The magnitudes of the magnetic field and the temperature,
with respect to the deconfinement scale, determine which one of these will be realised.

Whilst the physical mechanism behind MC is well understood, that of IMC remains an
open problem. A promising explanation that has come from the lattice perspective [59], but
it is also supported by arguments from holography [29], is the following: in the path integral,
there is a competition between the trace of the inverse of the Dirac operator (the valence
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contribution) and the quark determinant (the sea contribution). Close to the deconfinement
temperature, due the intricate dependence of the determinant on B and T , the condensate
is suppressed. In the holographic manifestation of those ideas, the valence contribution
is from the tachyon field equation and the sea contribution is from the backreaction of
the magnetic field on the gravitational background. The important ingredient for IMC is
exactly this presence of the backreaction.

The bottom line is that whilst the realisation of MC is straightforward in a holographic
framework, IMC is much harder to engineer. The approach of [29] is based on the so-
phisticated Veneziano-QCD [84] (V-QCD) holographic model. It is a combination of the
improved holographic QCD for the gluon sector [85, 86] and the tachyon-DBI for the quark
sector [87, 88]. It would be very interesting to investigate whether the emergence of IMC is
related to the complexity of V-QCD or whether a simpler gravity model that contains only
the essential ingredients could also realise IMC. In particular, it would be desirable to build
a holographic QCD model that not only describes MC and IMC but also reduces to the
anisotropic magnetic black brane solution of D’Hoker and Kraus in some limit. In fact, there
have been some interesting developments for describing IMC starting with the D’Hoker and
Kraus solution [61, 63, 64] in the small b regime where the solution is analytical.

Hence, the natural extension of the current paper is the addition of flavor through a
tachyon-DBI (with predetermined potentials) that will backreact on the colour dynamics.
This may or may not be enough to realise IMC. The simplicity of the aforementioned
construction will allow us to consider the effect of both massless and massive quarks on the
potential appearance of IMC.

A very interesting extension of these holographic ideas is claiming that the cause for
IMC is not the charge dynamics that the magnetic field creates, but rather the anisotropy
that it induces [30, 31]. It would be very interesting to further test those ideas in the
D’Hoker and Kraus framework (or in 4d using, as a starting point, the Hartnoll-Kovtun
solution [72]), either by replacing the magnetic field with an anisotropy or, in a more complex
setup, by combining anisotropy and a magnetic field to further explore the competition and
interplay between them (in this direction see also [39, 40]).

We would like to finish this paper stressing the importance of investigating QCD in the
presence of magnetic field. This is relevant to the phenomenology of heavy ion collisions at
non-zero impact parameter where the strong and time dependent magnetic field generated
by the charged spectators induces electric currents in the quark-gluon plasma [89, 90]. These
currents have a significant contribution to the so called “directed flow” coefficient v1 in
the hadronic spectrum which is being tested in Au+Au collisions at RHIC [91]. Moreover,
recently a new window in the study of QCD at high density has opened, through advances
coming from astrophysical observations of compact stars. Constraints on the masses and
radii of these stars coming from LIGO, Virgo and the X-ray telescope NICER provide
information on the equation of state of dense matter [92]. There is also an ongoing search
for gravitational wave signals in the case of compact stars with strong magnetic fields, the
so called magnetars [93].

Numerical code available. We have made the code for the numerical calculations
available within this work as supplementary material attached to this paper.
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A The perturbative solution at small B/T 2

In this section, we will study the system perturbatively in powers of B around the analytically
known solution for B = 0. This expansion is expected to be reliable for B/T 2 � 1. To
perform such an analysis we have to solve the usual set of equations of motion (3.7) in
this limit. In section 6 of [7] there are semi-analytical expressions for the different metric
functions in the presence of charge density in that limit. However, if we restrict to the
magnetic field the perturbative equations for the metric functions can be solved analytically.
In order to be self contained we will repeat this analysis here and then we will use those
results to study the thermodynamics.

The functions U , V & W are even in B and we expand them up to order B2

U(r) = r2− r
4
h

r2 +B2 U2(r) , V (r) = log r+B2 V2(r) & W (r) = log r+B2W2(r) .
(A.1)

As in [7] we introduce the following combinations

S2 = 2V2 +W2 & T2 = V2 −W2 (A.2)

to diagonalise the system of equations we have to solve. The equation for T2 becomes

∂r

[
r3
(
r2 − r4

h

r2

)
T ′2

]
+ 2
r

= 0 (A.3)

and imposing smoothness for the first derivative of T2 at the horizon and the vanishing of
T2 at infinity the solution is

T2 (r) = 1
r4
h

[
π2

48 + ln2
(
r

rh

)
+ 1

8 Li2

[
1− r4

r4
h

]]
. (A.4)

The equation for S2 and the corresponding solution is

∂r
[
r3 S′2

]
= 0⇒ S2(r) = 0 , (A.5)

since we need the expression for S2 to fall off faster than 1/r2 at infinity. Finally, the
equation for U2 becomes

∂r
[
r3 U ′2

]
− 4

3 r = 0 . (A.6)

The solution of the equation above is the following

U2(r) = −2 ln r + 1 + γ3
3 r2 , (A.7)
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where the first integration constant was fixed by the requirement that U2 vanishes at infinity
and γ3 is the second (undetermined) integration constant. To summarise the analysis so far,
the perturbative solution of the equations of motion in (3.7) up to order B2 is the following

U(r) = r2 − r4
h

r2 −B
2 2 ln r + 1 + γ3

3 r2

V (r) = log r + 1
3
B2

r4
h

[
π2

48 + ln2
(
r

rh

)
+ 1

8 Li2

[
1− r4

r4
h

] ]
(A.8)

W (r) = log r − 2
3
B2

r4
h

[
π2

48 + ln2
(
r

rh

)
+ 1

8 Li2

[
1− r4

r4
h

] ]
.

The constant γ3 is fixed to
γ3 = −1− 2 ln rh , (A.9)

by the requirement U(rh) = 0 for the horizon function. Using the above expressions we can
calculate the temperature and the entropy density in the usual fashion

T = U ′(rh)
4π ⇒ T = rh

π

[
1− 1

6
B2

r4
h

]
(A.10)

and
S ≡ Ah

4G5 V3
= N2

c

2π e
W (rh)+2V (rh) ⇒ S = N2

c

r3
h

2π . (A.11)

Notice that whilst there is a correction for the temperature at the order B2, there is no
correction for the entropy.

A.1 Free energy and magnetisation

Next step in the analysis will be the calculation of the on-shell action (and correspondingly
of the free energy). The Einstein-Maxwell action is given by the following expression

S = 1
16πG5

∫
d5x
√
−g

[
R+ 12− F 2

]
with F 2 ≡ Fµν Fµν (A.12)

and substituting the perturbative analytical solution of (A.8) the action integral becomes

8πG5
V3 β

S = −
∫ Λ

rh

dr

[
4 r3 + 2

3
B2

r

]
= r4

h − Λ4 − 2
3 B

2 ln
( Λ
rh

)
(A.13)

where β is the inverse temperature and Λ is the UV cut-off. The sum of the Gibbons-
Hawking boundary term S∂M and the counterterm Sct, needed to cancel the UV divergences,
is given by the following expression (see also (3.15) and (3.22))

S∂M + Sct = 1
8πG5

∫
d4x
√
−γ

[
K − 3− 1

8 F
2 lnF 2 − a3

2 F 2
]

(A.14)

and after substituting the perturbative solution (A.8) it becomes

8πG5
V3 β

(
S∂M + Sct

)
= Λ4 − r4

h

2 +B2
[

1
12 ln

(
Λ8

8B6

)
− 1

2 −
γ3
6 − a3

]
. (A.15)
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Summing equations (A.13) and (A.15) we calculate the renormalised action

8πG5
V3 β

Sren = r4
h

2 +B2
[

1
12 ln

(
r8
h

8B6

)
− 1

2 −
γ3
6 − a3

]
. (A.16)

The renormalised (Gibbs) free energy density takes the following form

G = −Sren
V3 β

⇒ G = − N2
c

4π2

[
r4
h

2 +B2
[

1
12 ln

(
r8
h

8B6

)
− 1

2 −
γ3
6 − a3

] ]
. (A.17)

Using (A.10) and (A.17) we can differentiate the free energy with respect to the temperature
and calculate the entropy. In this way we can identify the two different (but complementary)
computations for the entropy: the first one coming from the first law of thermodynamics
and the second one from the Bekenstein-Hawking formula (A.11).

Using the value for γ3 from (A.9) the expression for the free energy density becomes

G = − N2
c

4π2
r4
h

2

[
1− B2

r4
h

[
1
2 ln

(
2B2

r4
h

)
+ 2

3 + 2 a3

] ]
. (A.18)

Following the reasoning we fully described in the main body of the text, we will subtract
the free energy density at zero temperature. From (3.31) we have

GT=0 = −N
2
c B

2

8π2

[
Ũ∞,4

(√
3
)
− ln

(√
3
)]

+ N2
c B

2

4π2

(
a3 + 1

4 ln 2
)
. (A.19)

Subtracting (A.19) from (A.18) we obtain the following expression for the renormalised
free energy

Gr = − N2
c

4π2
r4
h

2

[
1− B2

r4
h

[
1
2 ln

(
B2

3 r4
h

)
+ 2

3 + Ũ∞,4
(√

3
)] ]

. (A.20)

This is the free energy we will use in the rest of the analysis to calculate all the thermodynamic
quantities. Using (A.10), (A.20) and the well known relation between the physical magnetic
field B and the parameter B (namely B =

√
3B) we can express the free energy as a

function of the temperature and the dimensionless ratio B/T 2. It reads

Gr
N2
c T

4 = −π
2

8 + 1
24π2

B2

T 4

[
Ũ∞,4

(√
3
)

+ ln
( 1

3π2
B
T 2

)]
. (A.21)

The thermodynamic entropy density is obtained from the first law of thermodynamics.
Namely, we use the relation S = −∂Gr/∂T and find

S
N2
c T

3 = π2

2

(
1 + 1

6π4
B2

T 4

)
. (A.22)

This agrees with the Bekenstein-Hawking entropy density (A.11), which is a non-trivial check
of the renormalisation procedure. Now that we have fully specified the expression for the
free energy density we can calculate the magnetisation density using the following formula

Mr = −∂BGr ⇒ Mr

N2
c T

2 = − 1
12π2

B
T 2

[
Ũ∞,4

(√
3
)

+ 1
2 + ln

( 1
3π2

B
T 2

)]
.

(A.23)
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Combining the expressions for the entropy, temperature and magnetisation we can write
the expression of the free energy density solely in terms of field theory quantities

Gr = −1
4 S T −

1
2 BMr . (A.24)

This is exactly the expression for the Gibbs free energy that was computed in the main text
using the different approach of conformal magnetohydrodynamics. The same result was also
obtained is a different holographic model in [22]. That was a top-down construction with D3
branes, a large number of backreacted smeared D7 branes, temperature and a magnetic field.
The solution was perturbative in the backreaction parameter and the magnetic field was
sourcing an anisotropy. All the thermodynamic quantities were computed at first order in
the backreaction parameter and relation (A.24) was verified. Notice that it makes complete
sense that the on-shell action we calculate from holography is related to the Gibbs free
energy, since the computation is performed in an ensemble with fixed magnetic field.

A.2 Stress energy tensor

The calculation of the different components of the energy momentum tensor is presented in
full detail in the main text. Here we will substitute on those expressions the perturbative
analytical solution of (A.8) and focus the attention on the vev of the SE tensor

〈T ij〉 =
√
−γ T ij , (A.25)

since the components of the vev are related to the transverse and the longitudinal pressures.
An important comment is in order: in order to construct a solution that flows from AdS5
on the boundary to BTZ × R2 in the IR, we performed two consecutive holographic
renormalisations of the initial action. In the first renormalisation we added the covariant
counterterms and in the second renormalisation we subtracted the zero temperature result.
The second step is equivalent to fixing the a3 coefficient of the counterterm action (3.22) to
the following value

a3 = 1
2 Ũ∞,4

(√
3
)
− 1

4 ln 6 . (A.26)

After that procedure, we can substitute the perturbative analytical solution of (A.8) on
the general expressions for the components of the energy momentum tensor. For the tt
component we have

〈T tt〉 = − 3 r4
h

8π2 N
2
c

[
1 + B2

6 r4
h

[
2 Ũ∞,4

(√
3
)

+ ln
(
B2

3 r4
h

)]]
⇒ 〈T tt〉 = −3

4 S T + 1
2 M B

(A.27)
where in the last step we have expressed everything in terms of field theory quantities.
The result we obtain is minus the energy density and agrees with the computation that is
detailed in the main text from the conformal magnetohydrodynamics approach. For the
rest of the components of the SE tensor we obtain the following results

〈T 1
1〉 = 〈T 2

2〉 = 1
4 S T −

1
2 M B ≡ Px (A.28)

〈T 3
3〉 = 1

4 S T + 1
2 M B = 〈T 1

1〉+M B ≡ Pz . (A.29)
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The transverse and longitudinal pressures as functions of the temperature and B/T 2 read

Px
N2
c T

4 = π2

8

[
1 + 1

3π4
B2

T 4

[
1 + Ũ∞,4

(√
3
)

+ ln
( 1

3π2
B
T 2

)]]
(A.30)

Pz
N2
c T

4 = π2

8

[
1− 1

3π4
B2

T 4

[
Ũ∞,4

(√
3
)

+ ln
( 1

3π2
B
T 2

)]]
. (A.31)

The results for the hydrodynamic pressures obtained above were obtained using the holo-
graphic dictionary for the stress-energy tensor, described in 3.3, and is consistent with the
identification of the longitudinal pressure Pz with minus the Gibbs free energy density, i.e.
Pz = −G, and the identification of the transverse pressure Px with minus the Helmoltz free
energy density, i.e. Px = −F = −G −MB. These relations were expected for a magnetised
conformal plasma, as described in section 2. This is a non-trivial consistency check of the
holographic renormalisation procedure and it is also consistent with [14, 22].

From (A.30), which according to the identification we already discussed corresponds to
minus the Helmholtz free energy, and (A.23) we can verify the following thermodynamic
relations

S = −∂FH
∂T

∣∣∣∣∣
M

& B = ∂FH
∂M

∣∣∣∣∣
T

with FH = −Px . (A.32)

More specifically, to work at fixed magnetisation we have to specify the way that B
changes with the temperature. For that we have to consider that B in (A.23) depends on
temperature and set the derivative with respect to T to zero. Solving this equation we
obtain the following relation

∂TB = 4B
T

[
3 + 2 Ũ∞,4

(√
3
)

+ 2 ln
( 1

3π2
B
T 2

)]−1
. (A.33)

A.3 Susceptibilities and the speed of sound

Taking the derivative of the magnetisation it is possible to calculate the two susceptibilities,
pyro-magnetic (ξ) and magnetic (χ). In the majority of the holographic constructions the
pyro-magnetic susceptibility is vanishing, but in this model due to the backreaction it is
not. We obtain the following results

ξ

N2
c T

= 1
6π2

B
T 2 & χ

N2
c

= − 1
24π2

[
3 + 2 Ũ∞,4

(√
3
)

+ 2 ln
( 1

3π2
B
T 2

)]
. (A.34)

Using (A.22), (A.23) and (A.34) it is easy to confirm that the relation between magnetisation,
temperature and the two susceptibilities that is dictated by conformal magnetohydrody-
namics in (2.17), is satisfied up to second order in B.

Finally we will analyse the speed of sound in the magnetic plasma. Since there is an
anisotropy in the gravity solution, there two directions for the pressure waves to propagate,
each one with a different speed. For a perturbation along the direction of the magnetic
field we have

c2
s,z = ∂Pz

∂ρ
=
− ∂G
∂T

∣∣
B

∂ρ
∂T

∣∣
B

= S
CV,B

(A.35)

– 33 –



J
H
E
P
0
6
(
2
0
2
2
)
1
5
4

where ρ is the magnetic enthalpy density and CV,B is the specific heat at fixed magnetic
field. At second order in B the specific heat is given by the following expression

CV,B
N2
c T

3 = 3π2

2

[
1− 1

18π4
B2

T 4

]
. (A.36)

Plugging (A.36) into (A.35) we can calculate the speed of sound in the direction of the
magnetic field

c2
s,z = 1

3

[
1 + 2

9π4
B2

T 4

]
(A.37)

which is above the conformal result at zero magnetic field.
Moving to the direction orthogonal to the magnetic field, the speed of sound is given

by the following expression

c2
s,x = ∂Px

∂ρ
= S
CV,B

− B

CV,B

∂M

∂T

∣∣∣∣∣
B

. (A.38)

Plugging the expressions for the different quantities up to second order in B we obtain the
following result

c2
s,x = 1

3

[
1− 1

9π4
B2

T 4

]
(A.39)

which is below the conformal result at zero magnetic field.

B The BTZ× R2 solution at large B/T 2

In this section we will present the solution of the equations of motion and elaborate on
the thermodynamics at large values of B/T 2. Contrary to the case of small B/T 2 that we
analysed in the previous section of the appendix, here we have not succeeded in expanding
perturbatively around the BTZ solution. However, even without subleading terms we will
compute the leading behavior for all of thermodynamic quantities at the end of the RG
flow, that connects a 3+1 CFT at short distance with an 1+1 CFT at long distance.

Using the ansatz for the background metric and the magnetic field given in (3.5), we
look for a solution that is the product of a BTZ black hole [94] (in t, z and r) and R2.
Hence, we consider the ansatz

V (r) = constant = V0 . (B.1)

Using this ansatz, the Einstein-Maxwell equations reduce to

2B2 e−4V0 − U ′W ′ = 0 (B.2)(
W ′
)2 +W ′′ = 0 (B.3)

−12 + 2B2e−4V0 + U ′W ′ = 0 . (B.4)
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We remind that reader that the magnetic field B of the dual field theory is related to B by
B = B/

√
3, as described in [1]. Summing (B.2) and (B.4) we determine the constant V0

B2 e−4V0 = 3⇒ V0 = −1
2 ln

(
B√

3

)
. (B.5)

The most general solution to the differential equation (B.3) can be written as

W (r) = ln a+ ln (r + δ) . (B.6)

We fix δ = 0 because this integration constant simply represents a shift in the radial
coordinate. In order to reproduce the AdS3 asymptotics, with radius ` = 1/

√
3, of the BTZ

solution we impose that a =
√

3. Plugging (B.5) into (B.2) or (B.4) we find the following
differential equation for U

U ′ = 6 r ⇒ U(r) = 3 r2 + c . (B.7)

The condition U(rh) = 0, with rh the horizon radius, allows us to fix c = −3 r2
h. The

temperature is obtained from the usual formula

T = 1
4π U

′(rh) = 3 rh
2π . (B.8)

The entropy density is given by the Bekenstein-Hawking area formula

S = Ah
4G5 V3

= N2
c

2π e
2V (rh)+W (rh) = N2

c

3
√

3
B T , (B.9)

where we used the relation B =
√

3B. The on-shell action can be written as

8πG5
V3 β

S = 3B
(
r2
h − Λ2

)
. (B.10)

The sum of the Gibbons-Hawking boundary term S∂M and the counterterm Sct, needed to
cancel the UV divergence, is given by

S∂M + Sct = 1
8πG5

∫
d4x
√
−γ (K − a1)

⇒ 8πG5
V3 β

(
S∂M + Sct

)
= B

[
Λ2 − r2

h

2

] [
6− a1

√
3
]
. (B.11)

Note that there are no other possible counterterms in this case and in particular, there is no
ambiguity due to the presence of finite counterterms. In order to cancel the UV divergences
we choose a1 =

√
3. Then the renormalised action becomes

8πG5
V3 β

Sren = 3
2 B r

2
h . (B.12)

The renormalised free energy density becomes

G = Sren
V3 β

= −3N2
c

8π2 B r
2
h = − N2

c

6
√

3
B T 2 = −1

2 T S . (B.13)
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The magnetisation density takes the form

M = −∂G
∂B

= N2
c

6
√

3
T 2 . (B.14)

The magnetic susceptibility χ vanishes and the pyro-magnetic coefficient becomes

ξ = ∂M

∂T
= N2

c

3
√

3
T . (B.15)

Note that the Helmholtz free energy density vanishes and the internal energy density
reduces to

U = TS = N2
c

3
√

3
B T 2 . (B.16)

The enthalpy density takes the form

ρ = G + T S = 1
2 T S . (B.17)

The components of the stress-energy tensor become

〈T tt〉 = −ρ , 〈T 1
1〉 = 〈T 2

2〉 = Px = 0 & 〈T 3
3〉 = Pz = −G = 1

2 T S . (B.18)

Note that ρ− Pz = 0, which is expected for a 2d CFT. The specific heat takes the form

CV,B = ∂ρ

∂T
= S . (B.19)

Finally, the squared speed of sound in the x and z direction reduce to

c2
s,x = S − ξ B

CV,B
= 0 & c2

s,z = S
CV,B

= 1 . (B.20)

C Details on the calculation of the holographic stress tensor

In this appendix we present details of the calculation of the holographic stress tensor that
appears in subsection 3.3. Substituting the ansatz (3.5) in (3.37) we obtain

T ttreg
2σ r6

0
=
[
− 2V ′ +W ′√

U

]
r0

,
T 11

reg
2σ r6

0
=

T 22
reg

2σ r6
0

=
[
U ′ + 2 U (V ′ +W ′)

2
√
U e2V

]
r0

&
T 33

reg
2σ r6

0
=
[
U ′ + 4UV ′

2
√
U e2W

]
r0

(C.1)

whilst (3.39) becomes

T ttct
2σ r6

0
=

a1e
4V + 2a2B

2 ln
(
2B2e−4V

)
+ 2a3B

2

2U e4V


r0

T 11
reg

2σ r6
0

=
T 22

reg
2σ r6

0
= −

[
e−6V

2
[
a1e

4V − 2a2B
2 ln

(
2B2e−4V

)
− 2 (2a2 + a3)B2

]]
r0

&
T 33

reg
2σ r6

0
= −

[
e−4V−2W

2
[
a1e

4V + 2a2B
2 ln(2B2e−4V ) + 2a3B

2
]]
r0

. (C.2)
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Plugging the UV asymptotic behaviour (3.9) and choosing a1 = 6, a2 = 1/4 we obtain

ρ = −〈T tt〉 = − r4
h

8π2 N
2
c

[
3 Ũ∞,4 − B̃2 ln B̃ −

(
2a3 + 1

2 ln 2
)
B̃2
]

(C.3)

Px = 〈T 1
1〉 = 〈T 2

2〉 = − r4
h

8π2 N
2
c

[
Ũ∞,4 − 8 ṽ∞,4 − B̃2 ln B̃ −

(
2a3 + 1

2 ln 2
)
B̃2
]

(C.4)

Pz = 〈T 3
3〉 = − r4

h

8π2 N
2
c

[
Ũ∞,4 + 16 ṽ∞,4 + B̃2 ln B̃ +

(
2a3 + 1

2 ln 2
)
B̃2
]
. (C.5)

In the subsection 3.2.2 we introduced a zero temperature subtraction in order to get rid
of the scheme dependent parameter a3. This subtraction is equivalent to fixing the a3
coefficient by the expression found in (A.26). In this case (C.3), (C.4) & (C.5) are modified
to obtain (3.40), (3.41) & (3.42).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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