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1 Introduction

Crystalline solids1 are characterized by the presence of long-range order and they exhibit
macroscopic shear rigidity [1]. From a more fundamental perspective, solids correspond
to ground states which spontaneously break translational invariance (usually down to a
discrete group defined by the lattice vectors) and whose low-energy dynamics is controlled
by the corresponding Goldstone modes — the phonons [2]. In a similar fashion, superfluids
are identified with ground states which support a non-dissipative flow with zero viscosity
— the superflow [3]. Superfluid states break spontaneously a U(1) global symmetry [4, 5]

1We will ignore in this manuscript the possibility of having solids lacking long-range order — amorphous
solids (e.g. glasses).
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and their low-energy physics is dominated by a Goldstone mode as well, accounting for the
propagation of second sound [6].2

A supersolid is a phase of matter that displays simultaneously the distinctive features
of solids and superfluids [7, 8]. How can a rigid body with “infinite” viscosity flow freely as
a superfluid? The questions of whether such a system could exist, how the superflow could
appear in a solid and where a supersolid could be experimentally observed have occupied
the minds of several physicists in the past seventy years [9–13] since the original observation
by O. Penrose and Onsager [14]. Despite the tremendous theoretical progress, supersolid
systems have eluded clear detection for the longest time, and it was in recent times only
that they have finally been observed in laboratories: historically, supersolid behavior has
been first looked for in solid helium [15–20], while in the last few years advancements in
the field of ultracold atom gases provided some clear signatures of it [21–23]. Nonetheless,
a complete understanding of this phenomenon is still lacking.

From an abstract point of view, a supersolid is a state which spontaneously breaks
translational (and rotational) invariance together with a U(1) global symmetry. This will
be our operative, and indeed agnostic in a microscopic sense, definition of a supersolid.
In this work, we will limit ourselves to analyzing the possible low energy dynamics and
physics of such a hypothetical system [24–30]. In the past decades, a lot of effort has been
devoted to this direction, especially into finding the correct low-energy effective description
and hydrodynamic framework for supersolids [31–37]. Recently, supersolids have been also
considered as possible ground states in low-energy effective field theories with spontaneously
broken Lorentz invariance [38–42], which will be closer in spirit to our approach.

Inspired by these ideas and questions, we will reformulate the problem of supersolids
and their low-energy description in terms of holographic methods [43–46]. Superfluid states
have been successfully incorporated in the holographic framework more than ten years ago,
using a simple abelian Higgs model [47, 48] (for a review of this model see [49]) and the
corresponding low energy spectrum has been successfully matched to the predictions of
relativistic superfluid hydrodynamics [50, 51] in [52].3 Holographic solids, i.e. holographic
systems spontaneously breaking translations, have attracted a lot of interest recently as
possible toy-models to understand the complex dynamics of strongly correlated materials
such as strange metals. A very convenient scenario is obtained by imposing large scale ho-
mogeneity and avoiding any spatial dependence in the stress tensor and related quantities.
Models of this sort are usually referred to as holographic homogeneous solids [55–60] and
have represented a very efficient platform to perform computations in a controllable way.
The simplest among the homogeneous setups is the holographic axion model [56], which
presents a well-defined elastic response together with the presence of propagating phonon
modes [61–63]. As in the case of superfluids, its low energy dynamics is well described by
hydrodynamics with broken translations [64–67].

2More precisely, second sound arises as a combination of the U(1) Goldstone mode and the original charge
diffusion mode. The same pattern holds for a solid in which the phonons are not exactly the Goldstone
excitations but a combination of them with momentum and energy fluctuations.

3The hydrodynamics description and the agreement with the holographic model has been also recently
extended to the case of softly broken U(1) symmetry [53, 54].
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In this work, we combine the holographic superfluid model of [47] with the holographic
solid model of [55] to build a holographic supersolid — a holographic system which breaks
spontaneously translations together with a global U(1) symmetry.4 The combination of
superfluidity with broken translations has been already discussed in the holographic liter-
ature [69–80] but always in the context of momentum dissipation, i.e. explicit breaking of
translations. A crucial novel ingredient is therefore to allow for translations to be broken
spontaneously and give rise to the rigidity of our holographic system.

The manuscript is organized as follows. In section 2 we describe a simple Ginzburg-
Landau (GL) theory for supersolids which will serve as our theoretical background; in
section 3 we introduce the holographic model for supersolids used in this work; in section 4
we present our main results and characterize in detail the thermodynamic and mechanical
properties of the holographic model, comparing it with the GL theory mentioned above;
finally, in section 5 we conclude and provide some thoughts for the future. Appendices A–
B are left for further details about the theory of nonlinear elasticity and for technicalities
regarding the holographic model; appendix C provides some additional results that are not
discussed in the main text.

Note added. This work is a direct continuation of the Master thesis of Giorgio Frangi “A
holographic study of a two-dimensional superconductor under strain deformations” [2021,
Università degli studi di Milano].

2 Ginzburg-Landau theory of supersolids

In this section, we review the simple effective description of supersolids presented in [35]
and its main features. For a more complete description of the low-energy physics and
hydrodynamics of supersolids we refer to [31–37].

The phenomenology of an isotropic s-wave superfluid near its transition can be cap-
tured via the Ginzburg-Landau (GL) formalism by writing the following free energy func-
tional [51]:

Fs[Ψ(x)] =
∫
ddx

[1
2 |∂Ψ|2 + as(T )|Ψ|2 + bs(T )|Ψ|4 + . . .

]
, (2.1)

where Ψ is the (complex) scalar order parameter and d is the number of spatial dimensions
of a flat space. This expression, usually referred to as the Mexican hat potential (see
figure 1), has to be taken as a low-energy effective description valid close to the phase
transition, where 〈Ψ〉 � 1. The ellipsis refers to possible higher order corrections, both in
Ψ and its derivatives. The functional in eq. (2.1) is clearly invariant under a global U(1)
transformation Ψ→ eiϕ Ψ.

Whenever 〈Ψ〉 6= 0, the ground state of the system breaks spontaneously the original
U(1) global symmetry and the system is in a superfluid phase. This state is often called
the broken phase, as opposed to the normal phase, 〈Ψ〉 = 0, in which the U(1) symmetry

4See [68] for a previous attempt of describing supersolids using holographic superfluid models with
momentum relaxation.
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is intact. The transition from one phase to the other is introduced phenomenologically
by imposing that the coefficient as(T ) changes sign at some critical temperature T

(0)
c ,

becoming negative below it and shifting the minimum of the free energy away from the
unbroken ground state 〈Ψ〉 = 0. Here, T (0)

c is used to indicate the value of the critical
temperature in the purely superfluid state, where translations are not broken in any way.
The additional requirement bs(T ) > 0 ensures that the argument of the functional in
eq. (2.1) is bounded from below and consequently the system is stable.

The as(T ) parameter in the GL functional (2.1) vanishes linearly at the critical tem-
perature:

as(T ) = a0
(
T − T (0)

c

)
+ . . . , (2.2)

below which, if the condition a0 > 0 is fulfilled, it acquires a negative value, causing the
condensation.

In a similar way, it is possible to write down the free energy of an elastic medium
deformed away from its equilibrium configuration as [1]:

Fe[u] =
∫
ddx

1
2 Cαβγδ uαβ uδγ + . . . , (2.3)

with u being the linear strain tensor, i.e. the symmetrized derivative of the displacement
vector uα = x′α− xα, and C the elastic tensor. Here, xα is the position of the atoms in the
initial configuration and x′α the one after the mechanical deformation. Indices refer only
to the spatial directions. For isotropic materials, C can be decomposed as:

Cαβγδ = K δαβδγδ + G
(
δαγδβδ + δαδδβγ −

2
d
δαβδγδ

)
, (2.4)

with d the number of spatial dimensions. G and K are respectively called shear and bulk
modulus, since they are related to volume-preserving and shape-preserving deformations.

Given this premise, the simplest way to think of a supersolid in its low-energy regime
is to combine the superfluid free energy (2.1) with the solid one (2.3), by making the
phenomenological coefficients of the former analytic functions of the linear strain tensor
uαβ . In this picture, the low-energy degrees of freedom are given by the phonons, together
with the superfluid Goldstone mode. At quadratic order in uαβ , the coupling between the
two types of degrees of freedom can be reconstructed via the following prescription:as(T ) −→ a(T, u) = as(T ) + a1(T )αβuαβ + 1

2a2(T )αβγδuαβuγδ +O(u3)
bs(T ) −→ b(T, u) = bs(T ) + b1(T )αβuαβ + 1

2b2(T )αβγδuαβuγδ +O(u3)
. (2.5)

Notice that, because the background metric is flat, at this point the position of the indices
is not important. All in all, the total free energy of a supersolid (ss) is given by:

Fss[Ψ, u] = Fs[Ψ] + Fe[u] +
∫
ddx

(
a1(T )|Ψ|2 + b1(T )|Ψ|4

)
αβ
uαβ+

+ 1
2
(
a2(T )|Ψ|2 + b2(T )|Ψ|4

)
αβγδ

uαβuγδ .
(2.6)
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Figure 1. Effect of small, homogeneous deformations (δ = ±0.1, ε = 0) on a slice of the Mexican
hat potential appearing in (2.6), at a given temperature T . We start with assuming as(T ) = −2
and bs(T ) = 1.5 (black, dashed curve), then apply (2.10) and its analogous expression for bs(T ),
neglecting δ2 terms and taking a1(T ) = b1(T ) = 1. For this choice of coefficients, a compression
(red, δ < 0) enhances the condensate, whilst a dilatation (blue, δ > 0) weakens it.

Before analyzing in detail the physics hidden in eq. (2.6), let us notice that, due to isotropy,
the tensorial coefficients of the expansion (2.5) can be decomposed in a way analogous to
the one reported in (2.4):

a1(T )αβ = a1(T ) δαβ , (2.7)

a2(T )αβγδ = a
(K)
2 (T )δαβδγδ + a

(G)
2 (T )

(
δαβδγδ + δαγδβδ −

2
d
δαδδβγ

)
. (2.8)

A similar decomposition holds for b coefficients as well.
In the remainder of this work, we restrict our attention to homogeneous deformations

of isotropic media with two spatial dimensions (d = 2). In appendix A, we show with
rigorous symmetry arguments that homogeneity allows us to parameterize our deformations
of interest with the following strain tensor:

ulin = 1
2

(
δ ε

ε δ

)
. (2.9)

The subscript emphasizes that the strain tensor in the equation above is the linear one
which is valid only for small deformations, i.e δ, ε� 1.5 This justifies the expansions in δ,
ε performed in the next subsections.

If ε = 0, δ describes a purely volumetric deformation with ∆V/V = δ,6 while in the
opposite case (δ = 0), ε gives rise to a purely deviatoric term which modifies the shape

5In the following, we will distinguish it from the non-linear Lagrangian strain tensor which will be
indicated with Eij .

6This definition will be kept also at the nonlinear level in the following.
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and the angles in the medium without changing its volume.7 Homogeneity implies that
the superfluid condensate Ψ is constant in space as well.

We now review the main effects that the coupling of elasticity and superfluidity pro-
duces in this framework.

Critical temperature The first important consequence of coupling the solid and super-
fluid sectors into the supersolid effective action (2.6) is that the value of the original critical
temperature T (0)

c is modified by the presence of a mechanical deformation. In particular,
using (2.7) and (2.9), one finds that the corrected coefficient of the quadratic term |Ψ|2 is
now given by:

a(T, u) = as(T ) + a1(T ) δ + a
(K)
2 (T ) δ2 + a

(G)
2 (T ) ε2 , (2.10)

so that it depends explicitly on the mechanical deformation parameters δ, ε. It is then
straightforward to obtain the corrections to the superfluid critical temperature T (0)

c induced
by the presence of a solid component in the medium. By identifying the new critical
temperature Tc as the zero of the corrected quadratic coefficient a(T, u) in eq. (2.10), we
find (respectively, for a purely deviatoric and a purely volumetric deformation):

δT (ε)
c = Tc − T (0)

c = −
a

(G)
2

(
T

(0)
c

)
a0
(
T

(0)
c

) ε2 , (2.11)

δT (δ)
c = Tc − T (0)

c = −
a1
(
T

(0)
c

)
a0
(
T

(0)
c

) δ − a
(K)
2

(
T

(0)
c

)
a0
(
T

(0)
c

) δ2 . (2.12)

Importantly, we already observe that the correction to the critical temperature is quadratic
in the shear parameter ε but linear in the volumetric deformation δ. This is a direct
consequence of isotropy.

Elastic moduli A second and important consequence which arises from the supersolid
effective action (2.6) is that the elastic moduli of the original solid are corrected by the
presence of a superfluid condensate 〈Ψ〉 6= 0. More precisely, the linear elastic tensor
becomes:

Ĉαβγδ = Cαβγδ + a2(T )αβγδ|Ψ|2 + b2(T )αβγδ|Ψ|4. (2.13)

In the isotropic case, using (2.7), this simply reduces to:K̂ = K + a
(K)
2 (T )|Ψ|2 + b

(K)
2 (T )|Ψ|4

Ĝ = G + a
(G)
2 (T )|Ψ|2 + b

(G)
2 (T )|Ψ|4

. (2.14)

Let us elaborate more about the correction to the shear modulus. The ground state in the
broken homogeneous phase which arises from the effective action in eq. (2.6) is defined as:

|Ψ|2(T ) = − a(T )
2 b(T ) , (2.15)

7At linear level ε/2 is both the off-diagonal component of the strain tensor and of the deformation
gradient. At nonlinear level, the two definitions will no longer coincide. We will keep defining ε as the
off-diagonal component of the deformation gradient.
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as it follows from free energy’s minimization. Substituting this expression in (2.14), and go-
ing in the vicinity of the superconducting transition (so that the quartic-in-the-condensate
term can be neglected), one obtains:

δG = Ĝ − G = a
(G)
2 |Ψ|2 = a

(G)
2

a0
2 b

∣∣∣T − T (0)
c

∣∣∣ , (2.16)

where all the parameters a(G)
2 , a0, b are evaluated at the original critical temperature T (0)

c .
An analogous formula holds for the bulk case. Most interestingly, though, we notice that,
since the fraction in (2.16) is positive, it follows that the corrections (2.11) and (2.16) must
have opposite sign:

δG · δT (ε)
c < 0. (2.17)

As a conclusive remark, we would like to stress that the GL model presented in this
section does not provide any of the phenomenological coefficients, which should be derived
by other means. In the remainder of this work, we will see how the adoption of holographic
methods, instead, gives us access to those coefficients, thus completing in a sense the GL
model.

3 The holographic model

We consider the following four dimensional gravitational action (in natural units ~ = c = 1):

Sgrav =
∫
d4x
√
−g

{ 1
2κ2

(
R− 2Λ− 2m2V (X)

)
− 1

4e2
0
F 2 − |Dψ|2 −M2|ψ|2

}
, (3.1)

which combines the original holographic superconductor model of [48] with the generalized
axions model of [55]. Here, Λ is the AdS4 cosmological constant (so that Λ = −3/L2 with
L being the AdS length), F = dA is the field strength of a U(1) bulk gauge field Aµ, ψ is a
complex scalar field charged under the U(1) symmetry and Dµ = ∂µ− iqAµ is the standard
covariant derivative. The equations of motion of the system allow to set the phase of the
complex scalar ψ to zero, at least at the level of the (homogeneous) background. Following
dimensional analysis, V (X) is a generic, dimensionless scalar potential defined in terms
of the scalar variable X ≡ 1

2∂µφ
I∂µφI with φI , I ∈ {x, y}, being a set of two massless

real scalar fields (the axion fields). The function V (X) is not entirely arbitrary as it must
obey specific consistency requirements, derived in [55]. Notice that by setting m = 0, one
recovers the action of [48] and the standard holographic superfluid model, which we can
then consider as a limiting case of our model. We adopt Poincaré coordinates: {t, x, y} for
the boundary temporal and spatial coordinates, and u for the radial bulk one. The UV
boundary is placed at u = 0 while the event horizon of the black brane solution at u = uh.

The action (3.1) is invariant under global shifts in the axion fields: φI → φI +aI , with
aI a constant two-dimensional vector. Because of this property, their equation of motion:

∂µ

(√
−g ∂V

∂X
gµν∂νφ

I
)

= 0, (3.2)

– 7 –
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is trivially solved by a background configuration which is linear in the spatial coordinates
of the boundary xi and taken for convenience as:

φI = ΘI
j
xj

L0
, (3.3)

where ΘI
j is a constant, dimensionless, rank 2 matrix, which we will identify, in the follow-

ing subsection 3.1, with the inverse of the deformation gradient tensor (about the physical
significance of this quantity, see appendix A), and L0 is a characteristic lengthscale neces-
sary to have the matrix Θ dimensionless. All in all, the axion fields φI are dimensionless,
as expected.

We will later identify the reference configuration with ΘI
j ≡ δI j . Therefore, L0 can

be thought to be related to the distance between the atomic positions in the reference
configuration. In order for this holographic model to be dual to a field theory exhibiting
spontaneous translational symmetry breaking, we will need to require the background so-
lution φIref = xI/L0 to correspond to the expectation value of the scalar operators dual to
the bulk axion fields. This is obtained by placing further constraints on the V (X) function,
as shown later (see [56] for more details).

Following [81], we parameterize the constant matrix appearing in (3.3) as:

Θ = α

(
cosh (Ω/2) sinh (Ω/2)
sinh (Ω/2) cosh (Ω/2)

)
. (3.4)

We also take the following ansatz for the rest of the bulk fields:

ds2 = L2

u2

(
−f(u)e−χ(u)dt2 + du2

f(u) + γij(u)dxidxj
)
,

γ(u) =
(

cosh h(u) sinh h(u)
sinh h(u) cosh h(u)

)
, A = At(u)dt, ψ = ψ(u),

(3.5)

with γ(u) obeying the property det(γ) = 1. We restrict to black-brane solutions where
f(u) = 0 at u = uh. The bulk equations of motion which follow are presented in appendix B
together with a more detailed analysis of the symmetries of our system and their meaning.
Such analysis allows us to set the AdS length L to unity (L = 1); we then make a choice for
the other parameters appearing in the action (3.1), namely: κ/L = 1/

√
2, e0 = 1, mL = 1,

q = 3 and (ML)2 = −2. This choice sets the UV asymptotics of the charged scalar field ψ
to be:

ψ ' ψ(1)u+ ψ(2)u2 + . . . . (3.6)

Assuming a standard quantization scheme, the leading term in this expansion, ψ(1), corre-
sponds to the source of the dual operator O and the subleading one, ψ(2), to its expectation
value 〈O〉. Background solutions in the broken phase (T < Tc) are found by solving numer-
ically the bulk equations of motions. Details are reported in appendix B. As a benchmark
model, we will consider a potential of the form:

V (X) = XN , with N > 5/2 . (3.7)

– 8 –
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The choice of the exponent guarantees that (in the standard quantization scheme) the
operators dual to the axion fields φI break the translational invariance of the dual field
theory spontaneously, making such a system a solid. For a complete description and un-
derstanding of this mechanism we refer to [56, 62, 82]. For the remainder of this work,
we set N = 3. In making such a choice, we focus on a field theory that has no canonical
kinetic term. This may raise a question on whether the time evolution of the system is
non-unitary; however, we stress that the theory at hand does not have any higher derivative
kinetic term, rather a higher power of the usual two-derivative one. As such, no unitarity
problem arises; instead, the unusual feature of theories of this form is that they make sense
only around non-trivial vacuums (and not around the trivial one φI = 0 where the model
becomes strongly coupled). We refer to [62] for a more detailed discussion as for why that
is the case and which are the physical implications.

Finally we can define the temperature T , the charge density ρ and the chemical po-
tential µ of the dual field theory using the standard AdS-CFT dictionary [43, 46]:

T = −f
′(uh)
4π e−χ(uh)/2 , µ = At(0) , ρ = −A′t(0) , (3.8)

where primes indicate differentiation with respect to the radial coordinate u.
To summarize, any state of the boundary theory can be then parametrized by the

value of the three following dimensionless parameters:

{TLα, ρL2
α, Ω}, (3.9)

where we have defined Lα = L0/α. Unsheared configurations corresponds to Ω = 0.

3.1 On the definition of mechanical deformations in holography

Before proceeding to the results of our work, let us briefly describe how the holographic
model at hand naturally includes mechanical deformations. Our notations follow closely
the ones adopted in the EFT framework of [83, 84]. Importantly, we will assume the
deformations to be finite, or even large, and we will therefore consider the full framework
of nonlinear elasticity. For a brief summary of nonlinear elasticity theory we refer to
appendix A; a more in depth treatment can be found in [85].

The starting point of our analysis is the definition of the Lagrangian strain tensor
(see [64]). Let us consider a medium in a space equipped with a background flat metric
gµν = ηµν . The distance between points in such a medium can be computed by using the
crystal metric defined as:

ds2
cr = hIJ

(
eIµ dx

µ
) (
eIν dx

ν
)
, (3.10)

where µ, ν are indices running on spacetime coordinates, and eIµ(x) are a set of one-form
fields, with I ∈ {1, . . . , d}. Deformations are then defined with respect to an initial reference
configuration:

ds2
ref = hrefIJ

(
eIµdx

µ
) (
eIνdx

ν
)
. (3.11)

For practical purposes, we will later make the convenient choice hrefIJ = δIJ .

– 9 –
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Once a reference configuration is selected, it is straightforward to define the Lagrangian
strain tensor EIJ [1] as:

ds2
cr − ds2

ref = 2EIJ
(
eIµdx

µ
) (
eIνdx

ν
)

=⇒ EIJ = 1
2
(
hIJ − hrefIJ

)
. (3.12)

In absence of defects, the medium can be smoothly parametrized by mean of the crystal
fields ϕI which serve as the material coordinates (see appendix A for more details). Then,
the one forms eIµ(x) can be written as:

eIµ = ∂µϕ
I . (3.13)

The material coordinates ϕI are related to the axion fields φI appearing in our holographic
model via the simple identification:

ϕI = L0 φ
I . (3.14)

Making such a combination is necessary to take into account the fact that the axion fields
φI are dimensionless Goldstone phases, and cannot be directly identified with spatial coor-
dinates. As a direct consequence of eq. (3.14), the reference configuration8 is then given by:

ϕIref = δI j x
j . (3.15)

Using the previous results, the inverse of the crystal metric can easily be written in
terms of the crystal fields as:

hIJ = (hIJ)−1 = gµν∂µϕ
I∂νϕ

J . (3.16)

This provides us with everything that we need to compute the strain tensor (3.12) in our
holographic model. By using (3.14) along with (3.3) in the above expression, we find:

hIJ = δijΘI
iΘJ

j ⇐⇒ h−1 = ΘTΘ . (3.17)

Using (3.12), we then obtain:

E = 1
2
(
(Θ−1)TΘ−1 − I

)
. (3.18)

By comparing this expression with the standard definition of the Lagrangian strain tensor
in nonlinear elasticity theory, eq. (A.6), we find the important result:

Ξ = Θ−1, (3.19)

where Ξ is the deformation gradient tensor. As expected, the inverse of the deformation
gradient tensor is given by the Jacobian matrix of the material coordinates with respect
to the spacetime ones.

8Within the holographic picture, this configuration does not minimize the free energy and possesses a
residual background stress labelled crystal pressure in [64]. Nevertheless, one can still consider linearized
perturbations around such a state, and show that their dynamics is perfectly consistent with the hydrody-
namics expectations [65, 67].
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In the rest of the manuscript, we will consider two separate cases: (I) a pure volumet-
ric, shape-preserving deformation, and (II) a purely deviatoric strain, which preserves the
volume of any subregion of the medium throughout the deformation process.

The first scenario is realized by setting Ω = 0 and identifying:

δ = ∆V
V

= Tr [Eij ] = det Ξ =
( 1
α2 − 1

)
. (3.20)

From this expression, a dilatation, δ > 0, corresponds to the choice α < 1 and a compression
with α > 1. This is consistent with the fact that Lα is related to the lattice size of the
system; the case α = 1 corresponds to absence of mechanical deformations (with respect
to the reference configuration (3.15)). Finally, a linear isotropic deformation corresponds
to an infinitesimal shift α→ α+ ∆α, under which:

δ = ∆V
V

= −2 ∆α, (3.21)

where we have fixed α = 1. This minus sign is consistent with previous arguments [55,
66, 86] and with the physical picture that ∆α > 0 implies a reduction of the solid length-
scale Lα.

The second scenario, that of a deviatoric strain that causes no changes in the volume
of any subregion of the medium, can be realized by setting α = 1 and by noticing that the
shear strain is parameterized by:

Ξxy ≡
1
2 ε = − sinh

(Ω
2

)
. (3.22)

As anticipated, at nonlinear level, we define ε through the off-diagonal component of the
deformation gradient tensor, which no longer exactly coincides with the off-diagonal com-
ponent of the nonlinear strain tensor Exy.9

Finally, the minus sign appearing in (3.22) can be dropped if we extend the SO(2)
symmetry to the full orthogonal group O(2). It can indeed easily be seen that, given the
rank 2 representation of the reflection with respect to the x axis, which we denote by σx:

σx =
(

1 0
0 −1

)
;
(

cosh (Ω/2) − sinh (Ω/2)
− sinh (Ω/2) cosh (Ω/2)

)
= σx

(
cosh (Ω/2) sinh (Ω/2)
sinh (Ω/2) cosh (Ω/2)

)
σx, (3.25)

so that the minus sign appearing in (3.22) can be reabsorbed by the action of the reflection
σx. Because of this reason, the minus sign will be dropped in the rest of the manuscript.

In summary, to compare the effective description presented in section 2 with the results
from holography, we just need to use the simple identifications:

δ =
( 1
α2 − 1

)
, ε = 2 sinh

(Ω
2

)
, (3.26)

9For completeness, we report that:
Exy = − sinh Ω

2 , (3.23)

which is slightly different from Ξxy in eq. (3.22) in the nonlinear regime. In the linear regime, the two
coincide:

Ξlin
xy = Elin

xy = −Ω
2 . (3.24)
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Figure 2. Left: the critical temperature as a function of the charge density for unsheared config-
urations (ε = 0). Colored circles indicate the following values: green (ρL2

α = 1), red (ρL2
α = 2) and

cyan (ρL2
α = 4). The grey area is the set of normal states that would be superfluid in absence of

elasticity (cf. [48]). Right: the normalized condensate as a function of the temperature, normalised
by its critical value, for the highlighted values of ρL2

α. Inset: a zoom close to the transition, where
the condensate scales like |Ψ| ∼

√
t, with t ≡ |T − Tc|/Tc being the reduced temperature.

where now the parameters δ, ε are taken at full nonlinear level. The linear regime can be
re-obtained by taking the limits α, Ω� 1.

Let us emphasize that since the reference configuration defined in eq. (3.15) does not
minimize the free energy, all configurations φI = αxI/L0 could be taken as legitimate
reference choices. Given an initial state with α = αi and a final state with α = αf , the
parameter δ encoding a purely volumetric deformation can be more generally defined as:

δ =
(

1
α2
f

− 1
α2
i

)
, (3.27)

which boils down to the previous definition (3.26) when αi = 1 and αf = α, as in our
choice of reference configuration.

4 Results

In this section, we outline the results obtained via the holographic model (3.1) and we
compare them with the effective theory of section 2.

4.1 The phase diagram of the unsheared solid

As a first step of our study, we build the phase diagram of the theory described by (3.1) for
unsheared (ε = 0) configurations. More precisely, we compute the dimensionless critical
temperature TcLα, at which the global U(1) symmetry is spontaneously broken, in terms
of the dimensionless charge density ρL2

α. Unlike the global U(1), translational invariance
is always broken, indicating that our system in the normal phase (T > Tc) is a solid phase
with finite shear rigidity. From a physical perspective, we can therefore identify the broken
phase with the supersolid phase in which both translations and the U(1) symmetry are
spontaneously broken.

After these few premises, we present, in the left panel of figure 2, the phase diagram
for the unsheared configurations of our system. The blue shaded area below the solid curve
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indicates the supersolid phase. The dashed grey line, instead, is the critical temperature
in absence of any solid component, corresponding to the original model of [48], with the
grey area indicating all those states that would break the U(1)-symmetry if the system
were not a solid. The grey shaded curve follows a square-root law as a consequence of the
fact that, in the model of [48], the dimensionless critical temperature cannot be tuned,
Tc /
√
ρ = const. This does not happen in presence of translational symmetry breaking,

due to which a second dimensional scale — the lattice spacing Lα — appears.
We observe that higher values for the adimensional charge density correspond, in

general, to a higher critical temperature Tc. As expected, we also find that the effects
of a solid component, Lα 6= 0, become more important in the small charge density limit.
On the contrary, for large ρL2

α, the bulk axions fields can be neglected and the system
effectively behaves as in the original superfluid model of [48].

In the right panel of figure 2 we show the superfluid condensate 〈Ψ〉 as a function
of the temperature for three different values of parameters (highlighted in the left panel);
the larger the value of the adimensional charge density, the larger the (adimensional)
superfluid condensate. We also find, in accordance with [48], that the supersolid transition
is a mean field one, as emphasized in the inset where the typical square-root in the reduced
temperature t behavior of the condensate is observed:

〈Ψ〉 ∼ Ψ0 t , t ≡ T − Tc
Tc

, (4.1)

with the slope Ψ0 too increasing with the charge density.

4.2 Response to shear deformations across the supersolid phase transition

Among the reasons behind holography’s success is the relative ease with which it allows to
compute Green functions. In this section, we take advantage of this feature to characterise
how the holographic supersolid system reacts mechanically under an infinitesimal (within
linear response theory) shear deformation. We will use the holographic prescription (see
for example [46]) to calculate numerically the retarded Green function of the off-diagonal
component of the stress tensor T xy, which at zero momentum and small frequency is:10

GRTxyTxy (k = 0, ω) ' G − iωη +O(ω2) , (4.2)

where G is the shear modulus, and η the corresponding viscosity. We will take advantage
of this expansion to write the corresponding Kubo formulas:

G = lim
ω→0

ReGRTxyTxy (0, ω), η = lim
ω→0
− ImGRTxyTxy (0, ω)

ω
. (4.3)

From a holographic point of view, the Green function (4.2) is computed by introducing
a spatial, transverse metric perturbation of the metric, δgxy(u, t) = ζ(u)e−iωt. One then

10Here, we have already subtracted the standard contribution δT xy ∼ p hxy, with p being the thermo-
dynamic pressure, which appears in the holographic computation as a counterterm from the holographic
renormalization. See for example [87].
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needs to solve numerically (with appropriate boundary conditions, outlined e.g. in [61]) its
finite-frequency equation of motion:

ζ ′′ +
(
f ′

f
− χ′

2 −
2
u

)
ζ ′ +

(
ω2eχ

f2 −
L2m2∂uV (X)

uf

)
ζ = 0 . (4.4)

Near the UV boundary:

ζ(u) ' ζ0 (1 + . . .) + ζ3 u
3 (1 + . . .) , (4.5)

so that we can read off:
GRTxyTxy (ω) = −3

2
ζ3
ζ0
. (4.6)

Albeit the theory outlined in section 2 provides predictions only for the real part of the
Green function (4.2) (the shear modulus), we expand the scope of this section to include
results for the shear viscosity η as well. We do this for two reasons: on one hand, holography
provides such results with no additional effort, making our analysis more complete; on the
other hand, and most importantly, because we are interested in studying the Kovtun-Son-
Starinets (KSS) bound violation in the system at hand. Such violation is expected on the
general ground that the metric perturbation is massive — as outlined in [88]. KSS bound
violations in a holographic axion models are widely reported in the literature [61, 87–89]
but definitely not totally understood from a physical perspective [90]. The addition of a
superfluid transition on top of these affects has not been the subject of a study yet and it
is therefore interesting to be pursued.

For completeness, we show the response of our holographic model to shear deformations
at finite charge density in appendix C. From there, one can see that the presence of charge
density diminishes the rigidity of the system (the shear modulus) and increases the value
of the η/s ratio towards its maximal value corresponding to the KSS bound. We also find
that the effects of the charge density are more relevant at small temperature. Finally, we
briefly show how the charge density affects the nonlinear elastic response. Also in that case
we observe a decrease in the stress which is more dramatic at small shear strains.

4.2.1 Shear modulus

From a macroscopic point of view, the most important physical difference between a fluid
and a solid is the presence, in the latter, of a finite static shear modulus, which defines the
shear rigidity of the system; such a quantity vanishes in fluid phases of matter.11 In a wide
class of holographic axion models, to which the one considered in this work belongs, the
shear modulus has already been computed (in [61, 86, 93, 94]), and it has been directly used
to match the speed of the transverse phonon excitations extracted numerically from the
QNMs of the system with the hydrodynamic expectations [62]. In this work, we investigate
how the additional U(1) symmetry breaking affects the shear rigidity properties of a system
that condenses in a supersolid phase below a given temperature.

In figure 3, we plot the dimensionless shear modulus in function of the adimensional
temperature, spanning both the normal and the supersolid phases. We observe a strong

11See [91, 92] for more details about the subtle distinction between solids and liquids.
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Figure 3. Left: dimensionless shear modulus as a function of TLα. Data series are identified
by their colour, see figure 2. Dashed lines report the would-be value for the shear modulus in
absence of a superfluid condensate. Inset: the correction to the shear modulus near the transition,
as a function of |Ψ|2, showing the linear behaviour predicted by (2.16). Right: the coefficient a(G)

2
appearing in (2.16) as a function of ρL2

α.

enhancement of the shear modulus G taking place in the supersolid phase: coloured solid
lines indicate G in the full system, while dashed ones report its would-be value in a system
that does not condense. Upon the transition the shear modulus is continuous, but its first
derivative is not. Near the phase transition, at small values of the superfluid condensate
〈Ψ〉, we observe a linear-in-|Ψ|2 increase of the shear modulus:

δG ∼ |Ψ|2, (4.7)

where δG is defined as the difference between the shear modulus in the supersolid phase
and the corresponding value for the solid phase with no superfluid condensate. The inset
of the left panel of figure 3 shows more clearly this feature.

Our numerical findings are in agreement with the EFT expectations of eq. (2.16), thus
allowing us to derive the value of the EFT parameter denoted therein as a(G)

2 for a set of
values of the adimensional charge density. In the right panel of figure 3, we show that
such a parameter displays a distinct non-monotonic behaviour in function of ρL2

α. More
precisely, it increases for small values of ρL2

α up to a maximum (ρL2
α)max ≈ 1, before

decreasing monotonically towards zero. We find it significant that the maximum value,
which signals the maximum interplay between superfluidity and elasticity, occurs exactly
when the parameter ρL2

α is O(1). Physically that is the point at which the effects of charge
density and shear ridigity are comparable and none of the them can be neglected. On the
contrary, the regimes where ρL2

α � 1 or ρL2
α � 1, corresponds to situations where one of

the two dimensional scales prevails on the other rendering the other irrelevant. Finally, we
find that for, large charge density ρL2

α � 1, the effects of a small superfluid condensate
on the solid behaviour (parametrized by the leading order coefficient a(G)

2 ) are negligible.
Away from the transition (for large values of the condensate), on the contrary, the effect
seems to be stronger for those states. At the same time, we do expect that for small ρL2

α

the effects of the superfluid condensate are vanishing as well since the latter tends to zero
(see left panel of figure 2).
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Figure 4. Left: dimensionless shear viscosity as a function of TLα. Data series are identified by
their colour, see figure 2. Dashed lines report the would-be value for the shear viscosity in absence
of a superfluid condensate. The discontinuous points correspond to the critical temperature and
the onset of supersolidity. Right: KSS bound violation for the same data series; the dashed lines
indicate would-be values in absence of condensation, while the dot-dashed one is the KSS bound:
η
s = 1

4π .

Interestingly, a sudden increase of the shear modulus at the supersolid transition has
been reported experimentally [25–27].

4.2.2 Shear viscosity

We now turn to the information that we can extract from the imaginary part of the Green
function (4.2) — the shear viscosity η. Results coming from the numerical integration of
the equation of motion for the transverse metric perturbation are reported in figure 4. The
qualitative features of the adimensionalized η at the transition temperature — left panel
— are similar to the ones reported for the shear modulus G. The shear viscosity appears to
be continuous upon the transition, unlike its first derivative. Importantly, the correction
is negative implying that the viscosity in the supersolid phase is always lower than in the
solid one (with the same choice of parameters). This is intuitively in accordance with the
physical idea that in the supersolid phase part of the system, i.e. the superfluid component
(cf. two-fluid model), flows without friction, resulting in an overall lower viscosity. In the
right panel of figure 4 we report the behavior of the viscosity-to-entropy ratio η/s. There,
s is the entropy density of the dual field theory extracted from the Bekenstein-Hawking
entropy of the black hole in the bulk. With our notations, we have:

s = 2π
u2
h

, (4.8)

with uh being the radial coordinate’s value on the horizon. As anticipated before, the
KSS bound is violated for all values of the adimensional charge density considered, at all
temperatures and both in the solid and supersolid phases. This is expected because of the
massive nature of gravity in the model at hand. However, we find that the condensation
makes such violation even more pronounced. Interestingly, a pure holographic s-wave
superfluid is reported to not violate the KSS bound [95]. From this fact, we draw the
conclusion that the mechanism that enhances the KSS bound violation is to be found in
the gravity-mediated interaction between the condensate and the axions — that, in our
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Figure 5. Left: the critical temperature as function of the shear parameter ε for the notable values
of ρL2

α introduced in figure 2. The starting (ε = 0) point of each curve should be identified with
the corresponding highlighted point in figure 2. The inset shows how small deformations induce
a quadratic decrease of the critical temperature as a function of the shear parameter ε, again in
agreement with the GL theory (2.11). Right: the normalized coefficient a0 appearing in (2.11) as a
function of the adimensional charge density.

model, play the role of the phonons. From the dual field theory perspective, this interaction
is rooted in the low-energy description of the supersolid state and responsible for most of
the effects described in this work.

4.3 Critical temperature under mechanical deformations

Now we turn to investigate the supersolid critical temperature Tc of the system, with the
specific aim to understand how it is affected by the parameters describing the deformations
of the solid.

We start by considering a purely deviatoric deformation of the system, described by
the shear strain parameter ε.

In the left panel of figure 5, we show the dimensionless supersolid critical temperature
in function of the shear strain ε for some values of the dimensionless charge density. The
value of ρL2

α does not seem to be affecting the qualitative behaviour of the curves, which
all start horizontally with a negative concavity, then later have an inflection point while
continuing to decrease monotonically. No curve is observed to reach a vanishing critical
temperature for a finite value of the shear strain parameter ε; it is possible indeed to check
that the zero temperature state violates the near horizon BF bound, so that the supersolid
phase is expected to survive up to arbitrarily large strains and arbitrarly low temperatures.
Let us notice that the larger the charge density the larger the shear strain needed to affect
significantly the critical temperature.

By zooming in at small values of the strain, we observe a universal behavior:

|δTc| ∼ ε2 , (4.9)

where δTc is the difference between the critical temperature at zero strain and that at finite
strain. Such behavior is plotted, for some values of ρL2

α, in the inset of the left panel of
figure 5.
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Figure 6. Left: effects of a pure shear transformation (ε = 0.5) on a square lattice, and definition
of the pure shear angle ∆Θxy. Right: an alternative visualization of the phase diagram at fixed
charge density (ρL2

α = 4) in terms of the shear angle ∆Θxy. The blue dashed lines indicates the
range of values in which our numerical method loses precision and numerical extrapolation must be
used.

Once more, our numerical results are consistent with the prediction of the effective
field theory in section 2, specifically with eq. (2.11). Using the values of the coefficient a(G)

2
previously extracted, we are now able to obtain the second parameter appearing in the
EFT description: a0. We show the value of this parameter in function of the dimensionless
charge density in the right panel of figure 5. In the regime considered, we observe a
monotonically decreasing behaviour. Unfortunately, our numerical scheme does not allow
us to have control over the computations at small ρL2

α and we cannot therefore exclude a
possible non-monotonic behaviour for small values of the charge density. However, a0 is
a parameter of the pure superfluid phase, unlike a(G)

2 , which describes its interplay with
the breaking of translations; therefore, a qualitatively different behavior would not be
surprising.

Notice that the curves of the left panel of figure 5 provide the same information of
the phase diagram of the system at fixed charge density ρL2

α: indeed every (T, ε) point
below the appropriate critical curve lies within the supersolid phase, while the ones above
in the normal solid phase. Here, we present a more direct way to visualize the finite shear
strain by introducing, instead of the shear strain parameter ε, the shear angle ∆Θxy, whose
meaning is illustrated in the left panel of figure 6. In terms of our original parameter ε,
which is defined as the off-diagonal component of the deformation gradient tensor Ξ, the
finite angle can be expressed as:

∆Θxy = arctan
(

ε√
4 + ε2

)
. (4.10)
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Figure 7. Left: the universal function regulating the behavior of the critical temperature under
isotropic compressions (δ < 0) and dilatations (δ > 0). Right: the corrections to the critical
temperature from a purely volumetric deformation δ, for the notable values of adimensional charge
density defined in figure 2.

Notice that the support of this function is the interval (−π
4 ,

π
4 ). This is indicative of the

fact that for a pure shear , as opposed to a simple shear, the maximum shear angle, defined
as the one where the systems collapses on a line, is ±π

4 .
Exploiting this relation, we can provide an alternative visualization for the fixed-density

phase diagram, presented in the right panel of figure 6 for one ρL2
α value. Inside the lobe-

shaped curve, the system is supersolid, outside it is in its normal phase. Qualitatively
similar curves can be found for different values of the dimensionless charge density.

Then, we move to analyze the opposite scenario of a purely volumetric deformation
in which the shear strain ε is taken to be zero. A finite volume change δ = ∆V/V is
parameterize by the bulk parameter α as shown in eq. (3.27).

As a consequence of keeping constant the combination ρL2
α, we find that:

Tc Lαi = T ′c Lαf
−→ T ′c

Tc
= αi

αf
, (4.11)

where T ′c is the critical temperature after the deformation, and Tc the one before.
For simplicity, and without loss of generality, let us then consider (4.11) with the

reference state αi = 1. One would obtain:

T ′c = Tc α, (4.12)

after the deformation, where we have identified αf = α. To compare with the results of
section 2, we need to use the volumetric deformation parameter δ as defined in (3.26),
obtaining thus:

T ′c = Tc√
1 + δ

≈ Tc
(

1− 1
2δ + 3

8δ
2 + . . .

)
, (4.13)

where the first half of the equality is valid all orders in δ, while the second half follows
from the Taylor expansion of the right hand side for small deformations, δ → 0. The fully
non-linear results can be then expressed as:

Tc(δ)
Tc(0) = 1√

1 + δ
, (4.14)
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Figure 8. The corrections to the critical temperature from a volumetric strain appearing in
eq. (2.12) in function of ρL2

α. Left: the linear coefficient a1. Right: the quadratic term a
(K)
2 .

plotted in the left panel of figure 7. The behavior of the function suggests that, whenever
the system is compressed (δ < 0), the critical temperature rises, viceversa, whenever it
undergoes a dilatation (δ > 0) it decreases. Some notable additional features are the sin-
gularity at δ = −1, which is the limit of infinite compression at which the system shrinks to
a point, and the fact that the function has no zero; this latter fact provides a good consis-
tency check, as in our model it is the value of ρL2

α which decides whether the system must
have a supersolid phase or not, regardless of the value of Lα; as such, the zero temperature
broken phase must resist for all values of the deformation parameter. In the right panel of
figure 7, we show the effect of small deformations around the reference configuration for
various values of ρL2

α. The linear slope increases with the charge density ρL2
α.

Using the small deformation expansion in eq. (4.13), it is possible to extract the coef-
ficients a1 and a(K)

2 of the EFT of section 2 by comparing it with (2.12). They are:

a1 = 1
2 a0 Tc, a

(K)
2 = −3

8 a0 Tc. (4.15)

The results are reported in figure 8. The behavior of these coefficients, which is qualitatively
the same as one is a multiple of the other, is similar to the one of the a(G)

2 coefficient,
reported in the right panel of figure 3. The only notable differences come from the fact
that the maximum seems to be shifted towards higher values of ρL2

α, but still around order
O(1), and that it does not appear evident whether or not the coefficient is going to vanish
for large values of the adimensional charge density.

4.4 Interplay between large shear deformations and condensation

In the previous sections we outlined extensive evidence of the fact that the model at
hand exhibits a rich interplay between elasticity and superfluidity. We characterised how
deformations (small and large) change the critical properties of the system, and how the
condensation — even far from the transition — does have an impact on the response to
linear mechanical deformations. In this section, we investigate the fully nonlinear regime,
to estimate how large (shear) deformations affect the condensation, and how the stress
response to large deformations is changed by condensation.
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Figure 9. The superfluid condensate throughout an isothermal pure shear deformation process.
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close to the strain induced transition, as a function of the square root of the reduced strain parameter
εr ≡ |ε − εc|/εc with εc the point where superconductivity disappears. The linear behavior of the
curve points out the mean-field theory nature of the transition. Notice that in this panel, ρ has
been used to adimensionalise the condensate, for the sake of a better graphical representation.

4.4.1 Strain-induced transition
By looking at the curves of figure 5, it seems quite clear that this model predicts the
possibility to have an isothermal, shear-induced transition back to the normal state.

We report the results for such a study in figure 9. We find that, starting from an
adimensional temperature below the critical one (T ∗Lα < TcLα) and keeping it fixed
throughout the process, the adimensional condensate starts decreasing as the shear strain
parameter ε is increased, until a critical value of the latter occurs where the supersolid phase
disappears. Such critical value should be identified with the solution of the equation:

TcLα (ρLα, ε) = T ∗Lα, (4.16)

and indeed this is what we find, up to the precision of our numerical methods.
Interestingly, we can also study the condensate near the transition, to see what kind of

transition the shear-strain induced one is. In the inset of figure 9, evidence that it is a mean
field transition is reported. The condensate indeed obeys a square-root law in the reduced
shear strain parameter, which we have defined in analogy with the reduced temperature as:

εr = |ε− εc|
εc

, (4.17)

with εc being the critical shear strain parameter above which no supersolid phase is present.

4.4.2 Condensate-enhanced stress response
Another natural study is to extend the results of section 4.2.1 to the non-linear regime
and to see how the condensation affects the stress response when large deformations are
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involved. Instead of working with the shear modulus G, which is a linear quantity, we
work with the full stress-strain relation. In order to do so, we will generalise the results
of [81], which laid the groundwork for the calculation of such relations in a fully nonlinear,
holographic setup.

Let us review briefly what we mean by this. In a linear theory of elasticity — i.e. when
deformations are small —, the effective free energy regulating the processes described by
the theory is (2.3), so that the stress response σαβ that follows is:

σαβ = Cαβγδ εγδ, (4.18)

with εγδ the usual linear strain tensor. In the case of shear deformations, for a homogeneous
and isotropic medium, and adopting our parameterization, one finds:

σ = Gε, (4.19)

where σ = σxy. When deformations become large enough, the response is described by a
more general relation:

σ = σ(ε), (4.20)

where now σ(ε) is some generic nonlinear function of the parameter ε, that we expect to
be linear in the limit ε → 0. Holographically, σ can be shown to be proportional to the
subleading term of the UV expansion of the h(u) function appearing in the metric. Such
expansion can be found to be, in our case of interest:

h(u) ' h3 u
3 (1 + . . .). (4.21)

We refer to the original work [81] for further details. Here, we limit ourselves to report
the useful final formula:

σ = 3
2 h3, (4.22)

that can be used to compute the shear stress numerically. Figure 10 reports one compar-
ison between the stress-strain relation in the supersolid and solid states. The results are
consistent with what found before: the presence of the condensate enhances the stress re-
sponse. Clearly, this enhancement vanishes as the system transitions back into the normal
phase due to the increased strain.

5 Outlook

In this work we have initiated the study of supersolid phases of matter using the holographic
framework by considering solutions which break spontaneously translations together with
a global U(1) symmetry.

The first interesting observed feature is an increase of the shear modulus in the su-
persolid phase which can be rationalized as a contribution from the superfluid component.
As expected from the effective theory description [35] reviewed in section 2, close to the
supersolid critical temperature the increase is linearly proportional to the square of the su-
perfluid condensate |Ψ|2. This result is compatible with the experimental results appeared
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Figure 10. The stress-strain curve for TLα = 0.2 and ρL2
α = 4. The dashed line represent the

would-be mechanical response in absence of condensation (i.e. in the solid phase without superfluid
component). The red star indicates where the two curves join — at the critical strain parameter
εc, whose value is further stressed by the vertical red, dashed line.

so far in the literature [25–27]. The same behavior — with opposite sign though — has been
found by studying the shear viscosity. The latter further decreases in the supersolid phase
and presents a discontinuous derivative at the supersolid critical point. Qualitatively, this
behavior is in accordance with the notion that, upon a superfluid transition, the normal
component of the system, and therefore the associate friction, decrease. Additionally, we
find the Kovtun-Son-Starinets bound violation is enhanced by the presence of a condensate
and we indicate as a potential responsible for this fact the interactions between the solid
and superfluid degrees of freedom. Interestingly, in absence of the solid component and
these new interactions, no effects on the η/s ratio was found in the literature (at least for
the s-wave case) [95].

Moreover, we have characterized the nature of the supersolid phase transition as a
function of the mechanical deformation parameters. In the linear elasticity regime — for
small deformations — the qualitative behavior of the critical temperature is once more the
one predicted by the effective field theory (section 2). We find that a shear strain renders
the critical temperature smaller and therefore it tends to destroy the supersolid phase. On
the contrary, we observe that the behavior in terms of a volumetric deformation depends
on its sign. A volumetric compression increases the supersolid critical temperature, while
an isotropic expansion disfavours the broken phase.

Finally, we have studied the regime of large mechanical deformations and how they
do affect the supersolid critical temperature. We observe that the superfluid condensate
goes to zero at a critical value of the strain following a mean-field behaviour. On the other
hand, the condensed system appears to be stiffer even when deformation become large.

An obvious extension of our work would be to build a relativistic hydrodynamics
framework for supersolids and compare it with our holographic models. For example, it is
well known that a supersolid supports two different longitudinal sound modes with different
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speeds of propagation [96]. All this information can be obtained by extracting numerically
the quasinormal modes of our system. It would be also interesting to think about apply
an external rotation to our supersolid system in order to check in more detail how close is
the holographic model to what expected for real supersolid systems.

Let us conclude with two comments about the phenomenology of our holographic toy
model. Pair-density waves (PDWs) have been constructed holographically in [97–99]. To
the best of our knowledge, without appealing to microscopic details, the symmetry prop-
erties of PDWs and supersolids are very similar — they both break spatial translations to-
gether with a global U(1) symmetry. Therefore, at least at low energy (late time and large
scales) we do not expect major differences between our findings and the physics of PDWs.
It would be fruitful to make this point clearer and discuss the commonalities/differences
between our model and results and the holographic setups for PDWs mentioned above.
Another object of prospective further studies is the question regarding strain-induced in-
stabilities. In real-world materials, stress-strain curves are known to have an endpoint —
usually corresponding to the point where the sample breaks —. A first study on how to
determine these elasticity bounds in zero temperature effective field theories is included in
the analysis of [81] and used afterwards in [84]. Mechanisms proposed there as possible
signatures of strain-induced instabilities are imaginary speeds of sound in the bulk or the
appearance of ghosts. Such proposals, though, have been brought forward in the context
of the decoupling limit; the only reliable way to obtain such bounds — at least numer-
ically — would be to check whether the dispersion relation of perturbations around the
large-strained state develop any pathology. This requires a considerable effort and is left
for future investigations. From a holographic perspective, the analysis should be analogous
to that of holographic superfluids with background superfluid velocity [100]. Importantly,
this approach could put important bounds on supersolidity and/or shed some lights on
their instability properties in the nonlinear regime [24].

Finally, despite it is well-known (but too often ignored) that the HHH model [47] does
not represent the gravity dual of a superconducting state of matter (unless one imposes
mixed boundary conditions for the bulk gauge field [101]), we could still ask ourselves
whether our results might be relevant to discuss the impact of mechanical deformations
in the context of superconductors, and especially non BCS-like ones. Unfortunately, it
seems that no universal trend has emerged so far and all possible behaviors have been
experimentally observed [102–113]. By abusing of the model and considering the critical
temperature as the superconducting (SC) one, our computations suggest that a compression
always increases the SC critical temperature while a dilatation or a shear strain decrease
it. It would be interesting in the future to assess whether the holographic methods could
provide any useful information in this direction as well and compare to the experimental
trends reported above.
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A A brief review of finite elasticity theory

In this appendix, we briefly review some basics of finite elasticity theory following the
arguments and notations of [85]. For the sake of the present work, we will restrict our
attention to non-dissipative processes and materials with no defects. In such framework,
one can see any deformation process as a smooth, invertible map from one initial (reference)
to a final (current) configuration.

Given a reference frame, one way to uniquely identify any geometrical configuration
is by specifying the position of every of its constituents — be they atoms or more generic
infinitesimal volume elements —. This can be obtained by introducing a set of scalar fields
ϕI(xi), often referred to as crystal fields [64], in a number equal to the spatial dimensions
of the system.12 Symbolically:

Field profile ϕI ⇐⇒ Material configuration .

Notice that we used a different convention for the index of the coordinates xi (lowercase
Latin) and of the crystal fields ϕI (uppercase Latin). The meaning of such distinction will
be clarified in short.

With this in mind, we proceed to give a more precise mathematical formulation of our
problem. As we said, a deformation is a regular map going from one configuration to the
other. Because we are free to pick our reference frame, a very natural choice is to choose
one where the reference configuration coincides with the coordinates, in the sense that:

ϕI0(xi) = δI i x
i. (A.1)

where xj are the (spatial) coordinates adopted. Notice that in doing so we did not state
anything regarding the nature of this reference configuration; rather, we limited ourselves
to pick a convenient framework to work with. In most applications, such a configuration
is assumed to be the equilibrium one (for which the total stress vanishes), but there is no
necessity to assume this, so that the formalism presented here is valid even outside of such
hypothesis.

Another important observation regarding (A.1) is that in such a state there exist
virtually no distinction between upper- and lowercase indices. This is a feature of the

12Strictly speaking, the crystal fields could be less than the number of dimensions, as it is the case for
smectic crystals; for isotropic solids, though, the equality must hold.
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Figure 11. A representation of the reference configuration ϕI0 = xI (left), the current configuration
ϕI (center) and the displacement field ζI (right).

choice of reference frame, and we learn that, until we stick with this convention, lowercase
indices are associated to the reference configuration. In the literature, they are also called
Lagrangian. In more general terms, the Lagrangian framework of elasticity is the one where
the current configuration is expressed as a function of the reference one, while the opposite
standpoint — made possible by the invertibility of each deformation map — is referred to
as Eulerian.

In elasticity theory, the fundamental object is the displacement vector, a vectorial field
that specifies where each of the points is mapped when a deformation occurs. In our
language, this is equivalent to subtracting the reference configuration from the current one
ϕI(xi). In flat space, this gives the displacement vector:

ζI(xi) ≡ ϕI(xi)− δI j xj , (A.2)

where we assumed a Lagrangian point of view. A representation of this framework is
provided in figure 11.

In the theory of finite deformations, a prominent role is played by the mixed deforma-
tion gradient tensor, defined as:

ΞI j ≡
∂ϕI

∂xj
. (A.3)

This is nothing but the Jacobian of the transformation, which can be used as a building
block to construct various (nonlinear) versions of the strain tensor. Two of those can be
obtained by comparing the distance between two neighboring points before and after the
deformation. We have, indeed, that:

dϕI = ΞI j dxj , (A.4)

together with an inverse relation. Continuing on these lines, we can define the Green-
Lagrange strain tensor Eij via the relation:

dϕ2 − dx2 ≡ dxT · 2E · dx. (A.5)
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Using eq. (A.5) together with eq. (A.3), we then obtain:

E = 1
2
(
ΞTΞ− I

)
, (A.6)

where I is the identity. In components, we have:

Eij = 1
2
(
ΞiKΞKj − δij

)
, (A.7)

so that we are left with Lagrangian indices only. In terms of the displacements — with an
abuse of notation, all the indices have become Lagrangian — the relation reads:

Eij = 1
2 (∂iζj + ∂jζi + ∂iζk ∂jζk) . (A.8)

An analogous procedure can be followed to obtain a Eulerian strain tensor. It will suffice
to use the inverse of (A.4) in the defining relation:

dϕ2 − dx2 ≡ dϕT · 2E′ · dϕ. (A.9)

One obtains:
E′ = 1

2
(
I− (Ξ−1)TΞ−1

)
, (A.10)

which has indeed two Eulerian indices. Its expression in terms of the (Eulerian) displace-
ment vector ζ̄ is:

EIJ = 1
2
(
∂I ζ̄J + ∂J ζ̄I − ∂I ζ̄K ∂J ζ̄K

)
. (A.11)

It is worth noticing that at the linear level, when quadratic terms in the displacements
are negligible, both (A.6) and (A.10) reduce to the linear strain tensor εij typically used
in linear elasticity theory [1]. This can be seen as a consequence of the fact that, in that
regime, the difference between the two standpoint blurs, as the transformations themselves
are infinitesimal. In any case, the key lesson to be learned here is that in the nonlinear
regime multiple definitions for the strain tensor are available, and which to use reduces
to a matter of mathematical convenience. In this work, we adopt the Green-Lagrange
one (A.6).

To conclude this appendix, let us analyze in more detail the structure of the defor-
mation gradient tensor Ξ in light of some consistency and symmetry-imposed restrictions.
For convenience, let us stick to two spatial dimensions, where we would expect, on general
grounds, such an object to carry 4 independent degrees of freedom. Importantly, there is a
redundancy in this description, which reduces their number. Let us see why. Because Ξ is a
non-singular matrix, the polar decomposition theorem holds, which means that there exist
two (uniquely defined) symmetric matrices U and W , and a rotation matrix R such that:

Ξ = U ·R = R ·W. (A.12)

Using the definition of the strain tensor in eq. (A.6), and the property that RRT = I, it is
straightforward to verify that:

E(Ξ) = E(U) = E(W ) . (A.13)
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This implies that all the matrices Ξ, U and W give the same strain tensor: from the
point of view of mechanical deformations, they are completely equivalent.13 In operative
terms, the equivalence relation defined in eq. (A.13) allows us to always choose a symmetric
deformation gradient tensor with only 3 independent parameters.

In this work, we deal with isotropic systems. This notion allows us to push this reduc-
tion further using the invariance of the systems under rotations by defining an equivalence
class under the transformation:

Ξ′ = RT · Ξ ·R, (A.14)

which tells us that all deformation gradient tensors are equivalent up to a rigid rotation R.
Using this assumption, the resulting number of independent parameters appearing in the
gradient deformation tensor is reduced to 2 (in two dimensions).

In case of homogeneous deformations, then, the deformation gradient Ξ is constant.
Convenient parameterizations for matrices with the same symmetry properties that used
in this manuscript are:

Ξ = α

(
cosh (Ω/2) sinh (Ω/2)
sinh (Ω/2) cosh (Ω/2)

)
= α

(√
1 + ε2/4 ε/2
ε/2

√
1 + ε2/4

)
, (A.15)

where α parameterize a purely volumetric (bulk) deformation in case Ω vanishes, while Ω
(with α = 1) a purely deviatoric term which modifies the shape of the material but not its
volume (det [Ξ] = 1).

From the last equality, it is possible to derive the parametrization of the linear strain
tensor shown in the main text in eq. (2.9) by simply expanding (A.6) near the reference
configuration Ξ = I. An efficient way to do so is by operating the substitution:

Ξ = α

(√
1 + ε2/4 ε/2
ε/2

√
1 + ε2/4

)
−→ (1 + δ̃)

(√
1 + ε2/4 ε/2
ε/2

√
1 + ε2/4

)
, (A.16)

and consider both δ̃ and ε as small parameters. Then, inserting the new expression
into (A.6), one gets:

E = 1
2

(
(1 + δ̃)2

(
1 + ε2/2 ε

√
1 + ε2/4

ε
√

1 + ε2/4 1 + ε2/2

)
− I
)

=
(
δ̃ ε/2
ε/2 δ̃

)
+O(δ̃2, ε2, δ̃ε). (A.17)

Keeping the linear order in the deviation parameters gives the linear strain tensor. To
arrive to (2.9) one just need to recall that:

δ ≡ Tr(u) = 2δ̃. (A.18)

Using this relation one gets to the final form (2.9) reported in the main body of this work.

13We remind that the energy functional depends exclusively on the strain tensor and not on the deforma-
tion gradient tensor. Another way to see this is by recurring to the notion of material objectivity, mentioned
in [85].
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Importantly, this also shows that the ε parameter appearing in the linear strain tensor
coincides with the off-diagonal component of the nonlinear deformation gradient Ξxy as
stated in the main text as well.

B Details of the holographic model

This appendix is devoted to explain some details of the holographic model discussed in the
main text. The covariant equations of motion of the system can be retrieved by applying
the usual Euler-Lagrange procedure to the action (3.1) with respect to the fields φI , ψ, Aµ,
and gµν . One obtains:

∇
(
∂V

∂X
∇φI

)
= 0, (B.1)

∇2ψ−iq [(∇·A)+2(A·∇)]ψ−(q2A2+M2)ψ= 0, (B.2)

∇νF νµ−e2
0

[
iq (ψ∗∂µψ−ψ∂µψ∗)+2q2|ψ|2Aµ

]
= 0, (B.3)

Rµν−
1
2gµν (R−2Λ)−2m2

(
∂V

∂gµν
− 1

2gµνV (X)
)
−κ

2

e2
0

(
FµσF

σ
ν −

1
4gµνF

2
)
−

−κ2
[
(∂µψ−iqAµψ)(∂νψ∗+iqAνψ∗)+(µ↔ ν)−gµν |(∂−iqA)ψ|2−gµνM2|ψ|2

]
= 0,

(B.4)

where ∇ is defined to be the covariant derivative associated to the metric connection.
As argued in the main text, (B.1) is solved by (3.3), and to restrict to the homogeneous,
isotropic case we adopt the ansatz (3.5) for the rest of the bulk fields. After writing
ψ(u) = |ψ(u)|eiθ(u), one can readily check that the radial component of Maxwell’s equation
reads:

θ′(u) = 0 , (B.5)

so that θ(u) = const and we may make a phase choice for the condensate field. This reflects
the fact that only phase differences are physical, and give rise to measurable phenomena
(Josephson effect). Thus, we pick θ(u) = 0 and work with a real scalar field. Following the
notations presented in the main text, then, the bulk equations of motion are given by:

ψ′′ +
(
f ′

f
− χ′

2 −
2
u

)
ψ′ +

(
q2A2

t e
χ

f2 − L2M2

u2f

)
ψ = 0,

A′′t + χ′

2 A′t −
2e2

0L
2q2ψ2

u2f
At = 0

2uf ′h′ + f
(
2uh′′ − h′

(
uχ′ + 4

))
+ 4α2m2uVX(X)

L2
0

sinh(Ω− h) = 0,

−2κ2q2uA2
t e
χψ2

f2 − 1
2uh

′2 − 2κ2uψ′2 + χ′ = 0,

−κ
2u4eχA′2t
e2

0L
2 + 2uf ′ − ufχ′ − 6f − 2L2m2V (X)− 2κ2L2M2ψ2 + 6 = 0, (B.6)

where we used that:
X = α2 u2

L2
0L

2 cosh(Ω− h). (B.7)
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The arguments of the functions involved are not reported for readability’s sake and primes
indicate differentiation with respect to the radial coordinate u, while the X subscript with
respect to X.

It is vital to notice that the bulk equations of motion (B.6) do possess several sym-
metries, which turn out to be useful for both practical computations and to shed light on
some physical ambiguities as well.

• The first symmetry is given by the transformation:

eχ → a2eχ, t→ at, At →
1
a
At . (B.8)

This is a χ-shift symmetry, which can be used to set χUV ≡ χ(u = 0) = 0 and identify
the bulk time coordinate with the boundary one. As argued in the main text, this
can be used to reduce the number of physical parameters to be specified to select one
particular solution.

• A second symmetry is given by:

{t, x, y, u} → a{t, x, y, u}

⇒ {L, κ} → a{L, κ}, {m,M,At, ψ} →
1
a
{m,M,At, ψ},

(B.9)

which we use to conveniently set the AdS length L to 1.

• The last transformation is:

{t, x, y, u} → a{t, x, y, u}

⇒ L0 → aL0, At →
1
a
At,

(B.10)

which leaves all fields invariant, as well as X. From a practical point of view, this
can be understood as the possibility of consistently setting L0 = 1 throughout the
calculations; importantly, the way L0 scales in this symmetry is what suggests us
that L0 is indeed a length. There is also an additional redundancy in the sense that,
at the level of the equations (B.6), the following is a symmetry as well:

L0 → aL0 ⇐⇒ α→ 1
a
α . (B.11)

Finally, let us comment on the numerical method used to solve the bulk equations and
construct the gravitational solution.

We use a shooting method that starts integrating the EOMs from the black hole’s
horizon uh to the UV boundary, where the holographic dictionary allows us to read the
physical quantities we are interested into. By examining such equations in the vicinity of
the horizon — and requiring the fields to be regular on it —, we discover that they define
a map: (

ψ(uh), A′t(uh), χ(uh), h(uh), uh; α, Ω, L0
)
−→ Bulk fields, (B.12)
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where the three parameters on the right of the semicolon are the ones that define which
axion field profile we are considering. Once all eight parameters on the left hand side of
the map are picked, a unique profile for the bulk fields is selected. By using the above sym-
metries, it is possible to considerably lower the amount of free parameters to be specified.

To begin, one has to restrict the space of physical solutions by requiring the following
conditions:

1. ψ(1) = 0 along with ψ(2) 6= 0 (in the broken phase). This corresponds to the conden-
sate assuming a nonzero vacuum expectation value in absence of a source, i.e. to the
spontaneous global-U(1) breaking.

2. h(0) = 0, so that the boundary metric is Minkowski’s.

3. χ(0) = 0, so that boundary temperature corresponds to the one computed in the
bulk’s deep interior.

The first condition can be imposed algorithmically by creating a feedback loop in the
numerical integration of the equations of motion — thus fixing one of the initial values, in
our case the electric field on the horizon A′t(uh) –; the second, instead, can be attained by
defining an auxiliary field: η(u) = Ω−h(u), so that Ω becomes a quantity to be read on the
UV boundary,making it trivial to impose h(0) = 0; fixing η(uh), then, imposes condition 2
and avoids the need to specify Ω before integrating the equations of motion.

Additionally, we learn that the value of χ(uh) is totally irrelevant, as a suitable rescaling
of the time coordinate t will do the trick of setting χ(0) = 0. In other terms: we are allowed
to start with an arbitrary value of χ(uh), then to rescale the time coordinate. This will
shift the value of χ(uh) to the one realizing χ(0) = 0.

At last, it is possible to notice that the two quantities L0 and α appear, in the equations
of motion, always in the combination L0/α, making them virtually indistinguishable. This
does not come as totally unexpected: being L0 a generic length scale, and α a parameter
describing shape-preserving deformations, it makes sense that they are tied together. This
allows us to define a single scale length:

Lα ≡
L0
α
, (B.13)

that substitutes the two distinct parameters L0 and α. After this few considerations, then,
the map (B.12) becomes:

(ψ(uh), η(uh), uh; Lα) −→ Bulk fields, (B.14)

We can do better, and give a boundary-oriented physical meaning to this map. By making
use of these relations, the map (B.14), as seen from the boundary theory, is then:

(T, ρ, Ω; Lα) −→ Bulk fields. (B.15)

This means that once we fix the temperature, charge density and deformation state of the
system, we are provided with a unique set of profiles for the bulk fields. In this, we should
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Figure 12. Adimensional shear modulus (left) and viscosity-over-entropy ratio (right), for a set of
adimensional temperatures: TLα = 0.05, 0.1, 0.2, 0.4 (from yellow to red).

remember that the boundary theory still retains a property of scale invariance, so that the
system is invariant under rescalings:

T → aT, ρ→ a2ρ, Lα → a−1Lα, (B.16)

as fixed by the dimensionality of these parameters.
All in all, a good choice to identify a state in the dual field theory is given by:

{TLα, ρL2
α, Ω} (B.17)

which corresponds to the choice made in the main text.

C The effects of the charge density on the shear response

For completeness, in this appendix, we report some results which regard the effect of the
background charge density ρ on the mechanical response of the holographic system to shear
deformations. In particular, we are interested in the behavior of the shear modulus and
the shear viscosity in the solid phase in function of the charge density. Despite these same
results have been used in the previous literature [65, 67], we find useful to explicitly show
them again here. Additionally, we also consider the full nonlinear response at finite charge
density which, to the best of our knowledge, has not been considered explicitly in the
literature.

In figure 12, we show the (adimensional) shear modulus and the viscosity-over-entropy
ratio as a function of the charge density in the normal (solid) phase, at fixed temperatures.
From there, we notice that the presence of finite charge density universally decreases the
shear modulus and increases the value of the η/s ratio towards its KSS value. The effects
of the charge density are more pronounced for small temperatures and they become very
mild at high temperature.

In figure 13, we focus on how the charge density affects the isothermal stress response
of the system in the nonlinear regime. We find that the effects of the charge density are
important only for small values of the strain and are consistent with the previous discussion
about the shear modulus. In general, we see that the presence of charge density diminishes
the elastic response of our system and that the effect is more important in the linear regime,
i.e. at small shear strain.
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