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1 Introduction

Quantum field theory (QFT) is arguably the pinnacle of human knowledge of the mi-
croscopic world. It is the language used in the standard model of particle physics and
condensed matter physics. Despite its success in many areas of physics, there is no rigor-
ous definition of QFT in continuum yet. There has recently been, however, a considerable
effort to use the resurgence theory [1–11] to study QFT and to give a continuum definition
of it. There have been particularly a lot of progress in quantum mechanics: the resurgent
structure in double-well and periodic potentials [12–19], the valley method [20–24], exact
quantization conditions and constructive resurgence [25–35], bion cancellation mechanism
and the other cancellation mechanics [36–54]. The resurgent structure of two-dimensional
quantum field theories has been also investigated: sigma models [55–70], principle chiral
models [84–86], and 2D Yang-Mills theory [87]. This paper is a continuation of such an
effort to study QFT in the framework of resurgence theory.
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In most of continuum quantum field theories, the exact solution is not known, and one
of the most reliable approaches may be the semiclassical method, which uses a transseries
with powers of nonperturbative exponential e−A/λµ (A : const.) and divergent power series
in coupling λµ, where the subscript µ indicates that the coupling constant is renormalized
at the momentum scale µ. Schematically, the expectation value of an observable O may
be written as

〈O〉 =
∞∑
l=0

e−lA/λµCl(λµ), Cl(λµ) =
∞∑
n=0

c(l,n)λ
n
µ. (1.1)

The l = 0 sector is the usual perturbative expansion around the trivial vacuum, while
the l > 0 sector is a small-coupling expansion around the l-th nonperturbtive background
configuration. The latter contains an essential singularity e−1/λµ in the complex λµ plane,
and therefore it is nonperturbative in nature. Generically Cl(λµ) are divergent asymptotic
series: the sum over all n is neither convergent nor Borel summable. Typically the expan-
sion coefficients are factorially divergent c(l,n) ∼ n!, and this gives rise to singularities in
the Borel plane. These Borel singularities are sometimes located on the real positive axis
in the Borel plane, which leads to an imaginary ambiguity of the resultant Borel resum-
mation. They are expected to cancel with each other when all the ambiguities (including
those from discontinuous jumps of Stokes constants) are taken into account. As a con-
sequence, it connects the perturbative and nonperturbative contributions in the physical
quantities via the imaginary ambiguities. This is one of the final goals of the application of
the resurgence theory: resurgence theory attempts to find out a nontrivial relation between
the perturbative and nonperturbative sectors that enables us to extract the nonperturba-
tive information just from the perturbative series through the Borel resummation and its
imaginary ambiguity.

The Borel singularities of the factorially divergent perturbative series can be classified
into two classes. The first one comes from the proliferation of the number of Feynman
diagrams. Ambiguities associated with this type of Borel singularities are found to be
cancelled by nonperturbative contributions of saddle point configurations such as a bion (a
fractional instanton-anti-instanton composite) [55, 56]. The second one is the “renormalon”
type [88, 89], whose imaginary ambiguities can not naively be cancelled by those of saddle
point configurations. In general, the renormalon type ambiguity is related to contributions
of a selected set of the Feynman diagrams with loop momentum integrations written in
terms of the renormalized coupling constant. They also contribute a factorially divergent
series, whose Borel resummation gives an imaginary ambiguity. In particular, ambiguities
of renormalon type remain even at large N , while those associated with the proliferation
of diagrams vanish in the large-N limit. There is a conjecture that the renormalon can
be identified as a certain semiclassical object (e.g. bion) in the compactified spacetime
in the Euclidean path integral formulation [55, 56], on which both the affirmative and
negative arguments have been developed [66–70]. The way how the renormalon ambiguity
is cancelled out by nonperturbative contributions is still an open question.

In this paper, we would like to shed light on these issues by revisiting the O(N)
non-linear sigma model in two dimensions at large N . The resurgence structure and renor-
malons in the O(N) sigma model have been studied by using method such as the large-N
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analysis and integrability [71–83]. The model is an asymptotically free theory with a mass
gap, and many important properties can be exactly solved at large N . In this paper, we
mainly focus on the condensate

〈
δD2〉 of fluctuations of an auxiliary field D(x), as the

perturbative expansion is known to have a renormalon. Intended to simulate the mass-
less perturbation theory, we compute the transseries coefficients c(l,n) using the transseries
expansion of the momentum integrand, which can be exactly determined in the large-N
limit, in powers of the nonperturbative exponential e−2π/λp = Λ/p and the coupling con-
stant λp = 2π/ log(p/Λ) renormalized at momentum scale p. In this approach, we encounter
IR divergences like in the massless perturbation theory, since the model is perturbatively
massless even though there is a nonperturbative mass gap. We obtain transseries and
examine both renormalons and IR divergences in the model with our semiclassical ansatz.

In the rest of this section, we outline the paper and highlight our main results. In
section 2, we briefly review how renormalon type ambiguities appear in a generic asymp-
totically free theory. In section 3, we review the O(N) sigma model at large N and write
down the exact large-N expression of the condensate 〈δD2〉. The asymptotic series of the
exact result contains a divergent perturbative expansion, which is not Borel summable.
The singularity in the Borel plane gives an renormalon type ambiguity of order Λ4. Since
the exact expression is real and unambiguous, such a renormalon ambiguity must be can-
celled. The question we would like to address is how the cancellation of the renormalon
occurs in the context of the semiclassical expansion. In section 4.1, we argue that the
expected form for the semiclassical (s.c.) expansion of the condensate can be written as〈

δD2
〉
∼
s.c.

∞∑
l=0

e−4πl/λµ
∞∑
n=0

λn+1
µ

∫
ddp

(2π)dh(l,n)(p), (1.2)

in d dimensions. It is beyond the scope of this paper to derive the semiclassical expansion
by explicitly computating the perturbation series around the vacuum and nontrivial back-
grounds. Instead, we simply deduce the semiclassical form (1.2) from the exact solution
at large N . In our semiclassical ansatz, the momentum integral becomes IR divergent
for higher orders in l since the model is perturbatively massless. We therefore need to
introduce an IR momentum cutoff a (|p| > a). In each sector labeled by l (of order
e−4πl/λµ = (Λ/µ)2l), the sum over n can contain a factorially divergent series, but their
Borel resummations have no imaginary ambiguities at any l when the IR cutoff is larger
than the dynamical scale a > Λ. In section 4.2, we show that when the IR cutoff is small,
0 < a < Λ, the imaginary ambiguities arise at order Λ0, Λ4, and Λ8. This shows that
the presence of imaginary ambiguities depends on the IR cutoff a. In section 4.3, we in-
vestigate the origin of the imaginary ambiguities by explicitly computing the semiclassical
expansion up to order Λ8. We first identify that the ambiguity at Λ0 is the well-known
renormalon in perturbation theory. We then show that this imaginary ambiguity is can-
celled by the combined imaginary ambiguities that come from order Λ4 and Λ8 in the
semiclassical ansatz, and not only from order Λ4 as previously known for the transseries
of the exact large-N result with a = 0. This is one of our main results in this paper. In
section 5, we examine the result of the semiclassical ansatz by comparing it with the exact
result with a = 0. We find that the ambiguities at order Λ8 can be understood as the result
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of an analytic continuation in λa below the dynamical mass a < Λ, where λa < 0. We also
find how to obtain a→ 0 limit. In section 6, we generalize the discussion to the correlation
function 〈δD(x)δD(0)〉. In section 7, we discuss the generalization to the CPN−1 sigma
model including the case of the ZN twisted periodic boundary condition. We show that
the resurgence structure changes discontinuously when each Kaluza-Klein mass (Matsub-
ara frequency) 2πn/L (n ∈ Z) becomes smaller than Λ as we vary the compactification
period L. Section 8 gives conclusion and discussion.

2 Renormalons in asymptotically free theories

In this section, let us briefly review how renormalons appear in two-point functions and
condensates in asymptotic free theories. Suppose that there is a renormalized coupling
constant λµ depending on the renormalization scale µ as determined by the renormalization
group equation

µ
∂

∂µ

2π
λµ

= β(λµ), (2.1)

where β(λµ) is the beta function, whose expansion takes the form

β(λµ) = β0 + β1λµ + β2λ
2
µ + · · · . (2.2)

We assume that the first coefficient is positive β0 > 0 so that the coupling constant λµ
becomes small for µ→∞, i.e. the model is asymptotically free.1 We define the dynamically
generated scale Λ as the scale at which the renormalized coupling constant diverges

λµ(µ/Λ) µ→+Λ−→ ∞. (2.3)

Note that λµ is a function of µ/Λ. In the following, we assume that the model has no
parameter with a mass scale other than Λ.

Suppose that we are interested in the two-point function of a local operator O

〈O(x)O(0)〉 =
∫

ddp

(2π)d e
ip·x∆(p), (2.4)

where ∆(p) is the (Euclidean) momentum space propagator, that is, the correlation function
of the Fourier transform Õ(p) of O(x)

〈Õ(p)Õ(p′)〉 = δ(p+ p′)∆(p). (2.5)

We assume that ∆(p) has no singularity as a function of pi ∈ Rd and the integral (2.4) is
well-defined. In particular, the regularity of the propagator at the origin implies that there
is a mass gap in this model. The semiclassical expansion with respect to the renormalized
coupling constant λµ would give the following transseries expression for the propagator

∆(p) = p[∆]
∞∑
l=0

exp
(
−2πσl

λµ

)
hl

(
p

µ
, λµ

)
, hl

(
p

µ
, λµ

)
=
∞∑
n=0

aln

(
p

µ

)
λnµ, (2.6)

1In this paper, the symbol λµ stands for the renormalized ’t Hooft coupling, for which β0 = 1 in the
O(N) and CPN−1 sigma models.
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where [∆] is the mass dimension of the propagator ∆(p) related to that of the operator O
as [∆] = 2[O] − d, σl (0 < σ1 < σ2 < · · · ) are the nonperturbative exponents, aln(p/µ)
are the n-th expansion coefficients in the l-th nonperturbative sector. In the following, we
call expressions like (2.6) “semiclassical ansatz” since transseries of this type would be the
expected form obtained in the semiclassical expansion: the l-th sector is the contribution
from the l-th saddle point configuration characterized by the action Sl ∝ σl and hl stands
for the power series obtained through the perturbative expansion around the saddle point
configuration. For simplicity, we assume that the semi-classical expansion for the propaga-
tor (2.6) is convergent for p > µ > Λ. This assumption is true in the large-N case discussed
below. Using the renormalization group, we can change the renormalization scale from µ

to p. Then the transseries for the propagator becomes

∆(p) = p[∆]
∞∑
l=0

exp
(
−2πσl

λp

)
h̃l(λp), h̃l(λp) =

∞∑
n=0

bln λ
n
p . (2.7)

In this expression, the expansion coefficients bln are constants without p-dependence since
there is no other mass scale. Note that each term in this transseries is singular at p = Λ due
to the singularity of the renormalized coupling λp. The singularity structure becomes more
manifest by expanding the renormalized coupling constant λp in powers of the one-loop
coupling constant λ′p as2

λp (p) = λ′p −
β1
β0
λ′p

2 log 4π
λ′p

+ · · · with λ′p = 2π
β0 log p/Λ . (2.8)

Then, the transseries (2.7) would be rewritten as

∆(p) = p[∆]
∞∑
l=0

(Λ
p

)β0σl

fl(λ′p), fl(λ′p) = λ′p
α
∞∑
n=0

clnλ
′
p
n
, (2.9)

where α = 2πσlβ1/β0 and cln are functions of log 4π/λ′p. Because of the asymptotic free-
dom, this transseries expression can also be viewed as the large-p expansion of the prop-
agator. If the function fl(λ′p) is divergent in the limit λ′p → ∞, the l-th term of the
transseries (2.9) has a singularity at p = Λ originating from that of the renormalized cou-
pling λp. Due to this singularity at p = Λ, each term in the transseries for the two point
function

〈O(x)O(0)〉a =
∞∑
l=0

∫
|p|>a

ddp

(2π)d e
ip·x p[∆]

(Λ
p

)β0σl

fl(λ′p), (2.10)

has an ambiguity depending on the regularization if the singularity at p = Λ is contained in
the integration domain |p| > a. Here we have introduced an IR cutoff scale a to regularize
the singularity at p = 0 in the integration for each term in the transseries (2.9). Such an
IR cutoff is always necessary in the semi-classical computation in a perturbatively massless

2In the large-N sigma model discussed below, λ′p is identified with λp since the correction is subleading
in the large-N limit.
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model even though there is a dynamically generated mass gap.3 On the other hand, the
existence of the mass gap guarantee that there is a well-defined limit a→ 0 for the full two
point function. Since the propagator itself has no singularity, all the ambiguities cancel
out and the a→ 0 limit is regular.

We can associated the ambiguity from the singularity at p = Λ with a singularity in the
Borel plane. For simplicity, let us focus on the case x → 0, where the two point function
reduces to the condensate

〈O(x)O(0)〉a → 〈O(0)2〉ã,a =
∫
a<|p|<ã

ddp

(2π)d ∆(p), (2.11)

where we have introduced another cutoff scale ã to regularize the UV divergence. Assume
that the transseries for the propagator (2.9) has the following Borel resummed form

∆(p) = 2πp2
∞∑
l=0

(Λ
p

)β0σl ∫ ∞
0

dt

(Λ
p

)t
Pl(t). (2.12)

By a change of variable and some manipulation (see appendix A), we can rewrite the
condensate as

〈O(0)2〉ã,a = C µ2[O]
∞∑
l=0

(Λ
µ

)β0σl ∫ ∞
0

dt

(Λ
µ

)t
Bl(t) with C =

d log µ
Λ

(4π)
d
2 Γ(d/2 + 1)

.

(2.13)
The function Bl(t) are given by4

Bl(t) = 1
el

[(
µ

a

)el
fl

(
elλ
′
µ

t+ ta

)
−
(
µ

ã

)el
fl

(
elλ
′
µ

t+ tã

)]
, (2.14)

where

el = β0σl − 2[O], tp = el
log p/Λ
logµ/Λ . (2.15)

If fl(λ′p) is divergent in the limit λ′p →∞ (p→ Λ), the Borel transform Bl has a singularity
at t = −ta. This singularity is on the integration contour and gives rise to an ambiguity
if ta is negative, i.e. the IR cutoff scale a is smaller than the dynamically generated scale
Λ. We can see that this singularity and the corresponding ambiguity do not vanish even
in the large-N limit. For example, the singularity and the corresponding ambiguity is
independent of N in the O(N) sigma model since β0 = 1, σl = 2l. The factorial divergence
of the perturbation series can also be seen from the fact that the Taylor expansion of
Bl(t′) around t = 0 has a finite radius of convergence due to the singularity. In this way,
the singularity of the renormalized coupling constant at p = Λ results in renormalon type
ambiguities. In the next section, we will explicitly examine these renormalon ambiguities
in the O(N) sigma model in the large-N limit.

3Instead of the IR momentum cutoff, we may introduce other deformations such as mass deformations,
chemical potentials or background fields like the Ω-background.

4This “Borel transform” Bl(t) has a λ′µ-dependence. The standard coupling independent Borel transform
will be denoted as Bl(t) in section 4.3. We will use the same symbol t for the variables of Bl(t) and Bl(t)
although they are not exactly identical.
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3 O(N) sigma model at large N

In this section, we give a brief review of the O(N) sigma model in two dimensions at
large N in order to establish our notations and to write down the exact expression for the
correlation functions and the condensate. More comprehensive reviews on this subject can
be found in refs. [74, 89, 90].

In the two-dimensional O(N) sigma model, the target space is the unit sphere in
Euclidean N -dimensional space. The action is given by

S = 1
2g2

∫
d2x

[
(∂iφa)2 +D

{
(φa)2 − 1

} ]
, (3.1)

where φa with a = 1 . . . N are real scalar fields and the field D is a Lagrange multiplier
field that imposes the constraint, (φa)2 = 1. The parameter g is a bare coupling constant
that needs to be renormalized. The theory is asymptotically free, has a mass gap, and is
therefore a good toy model for the Yang-Mills theory in four dimensions.

The expectation value of the Lagrange multiplier field, 〈D〉, serves as the mass for the
φ fields. At large N , the mass gap

√
〈D〉 can be computed exactly by looking for the saddle

point of the effective potential for D. Assuming that D is a constant and integrating φa,
we obtain the effective potential for D as

Veff(D) = N

2

[∫
d2p

(2π)2 log
(
p2 +D

)
− D

λ

]
, (3.2)

where λ = g2N is the ’t Hooft coupling that is kept finite in the large-N limit. After sub-
tracting the UV divergence and renormalizing the coupling, the effective potential becomes

Veff(D) = −N8πD
(

log D

Λ2 − 1
)
, (3.3)

where the renormalization group (RG)-invariant dynamical scale Λ is defined by the renor-
malized ’t Hooft coupling λµ at the renormalization scale µ as

Λ = µ exp
(
−2π
λµ

)
, (3.4)

in the MS-bar scheme. The effective potential gives the unique minimum at

〈D〉 = Λ2. (3.5)

Let us consider two-point correlation functions of the fluctuation field δD(x) of the
Lagrange multiplier field D(x) around the expectation value 〈D〉 = Λ2. Since the correla-
tion function is nontrivial only at the next-to-leading order of 1/N expansion, we choose a
normalization

D(x) = Λ2 + δD(x)√
N

. (3.6)
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At the leading order in the large-N limit, the two-point correlation function ∆(p) of the
fluctuation field δD(x) in the momentum space (propagator) is given as

∆(p) ≡

1
2

∫
d2q

(2π)2
1

(q2 + Λ2)
(
(q + p)2 + Λ2

)
−1

= 8π
√
p2 (p2 + 4Λ2)

sp
, (3.7)

where sp is the function of p defined as

sp = 4 log

√ p2

4Λ2 + 1 +

√
p2

4Λ2

 (
= 4 arcsinh p

2Λ

)
. (3.8)

The correlation function in the position space can be obtained by the Fourier trans-
formation

〈δD(x)δD(0)〉 =
∫

d2p

(2π)2 e
ip·x∆(p). (3.9)

This is a well-defined UV (and IR) convergent integral. However, it becomes UV divergent
in the limit x = 0

〈δD2〉 ≡ lim
x→0
〈δD(x)δD(0)〉 → ∞. (3.10)

This quantity appears as one of the operator basis On of the operator product expansion

D(x)D(0) =
∑
n

Fn(x)On, (3.11)

where Fn(x) are the coefficient functions. For that reason, we are interested in the limit
x→ 0 and call the quantity as a condensate, in analogy to the gluon condensate in QCD.
To regularize the UV divergence, we introduce the UV cutoff ã to limit the momentum
integration |p| < ã 〈

δD2
〉
ã
≡
∫
|p|<ã

d2p

(2π)2 ∆(p). (3.12)

Changing the variable from |p| to s = sp, we obtain

〈
δD2

〉
ã

= 2Λ4
∫ sã

0
ds

cosh s− 1
s

= 2Λ4 Chin(sã), (3.13)

where Chin(sã) is an entire function of sã related to the hyperbolic cosine integral Chi and
Euler’s constant γE as

Chin(sã) = Chi(sã)− log(sã)− γE . (3.14)

This is the regular and well-defined exact result in the large-N limit [74]. In the next
section, instead of directly evaluating the integral (3.12), we use the large p/Λ expansion
of the integrand (3.12) to simulate the semiclassical expansion, which has an IR divergence
and a renormalon type ambiguity.
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4 Semiclassical expansion

In section 4.1, we first expand the propagator (3.7) into a transseries of
Λ2/p2 = exp(−4π/λp) and λp in order to imitate massless perturbation theory around
the vacuum and nontrivial backgrounds. We then discuss IR divergences and imaginary
ambiguities in the expansion in section 4.2, and finally compute the semiclassical expansion
up to order Λ8 in section 4.3

4.1 Expansion of the propagator in powers of Λ2/p2

Here we consider the x → 0 limit of the correlation function, i.e. the condensate, of the
fluctuation of the Lagrange multiplier field δD(x) in eq. (3.12).

In most of interesting theories like QCD, the gap equation to generate the mass gap
is not known explicitly, contrary to the two-dimensional large-N O(N) model. In such
a situation, we can use only the weak coupling perturbation theory with massless fields.
We are interested in studying properties of perturbation theory and associated resurgence
structure when only perturbative series with massless fields are available. In order to mimic
such a situation, we use the large p2/Λ2 expansion of the propagator ∆(p) to obtain a
transseries in powers of Λ2/p2 = exp(−4π/λp) and λp. In this way, we can study quantities
such as the condensate as if we perform massless field perturbation theory on various
backgrounds corresponding to possible nonperturbative saddle points. Hence we wish to
expand the propagator ∆(p) in eq. (3.7) in powers of Λ2/p2. The asymptotic behavior for
Λ2 � p2 of the denominator sp of the propagator is given by

sp = 4 log

√ p2

4Λ2 + 1 +

√
p2

4Λ2

 = 8π
λp

+ up, (4.1)

where the leading term is the inverse coupling λp renormalized at the momentum scale p,5

λp ≡
2π

log (p/Λ) , (4.2)

and the remaining term up can be expanded in a power of Λ2/p2

up = 4 log

1
2 +

√
1
4 + Λ2

p2

 = 4Λ2

p2 −
6Λ4

p4 +O(Λ6). (4.3)

Thus, we obtain a power series expansion for large momenta as a power series in upλp/8π

∆(p) = p2λp

√
1 + 4Λ2

p2

∞∑
n=0

(
−upλp8π

)n
, (4.4)

which is convergent if upλp/ (8π) < 1. We can expand
√

1 + 4Λ2/p2 and up in powers of
Λ/p to obtain

∆(p) = p2
∞∑
l=0

(Λ
p

)2l
fl(λp), (4.5)

5In the large-N limit, we do not distinguish the full renormalized coupling λp and the one-loop coupling
λ′p used in section 2 since the higher order coefficients of the beta function in (2.2) are of order 1/N .
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where fl(λp) is a polynomial of degree l+ 1. A convenient way to derive the explicit forms
of fl(λp) is to use the Borel resummed form of ∆(p)

∆(p) = 2πp2
∞∑
l=0

(Λ
p

)2l ∫ ∞
0

dt

(Λ
p

)t
Pl(t), (4.6)

where Pl(t) is a polynomial of t

Pl(t) ≡
(−1)l

l!
[
(t+ l + 1)(l) − 4l(t+ l)(l−1)

]
with (a)(l) = Γ(a+ l)

Γ(a) . (4.7)

From this expression, we find that fl(λp) can be obtained as

fl(λp) = Pl(Λ∂Λ)λp. (4.8)

To obtain the condensate, we need to perform the momentum integral (3.12). We
now use the large momentum expansion (4.5) to all momentum regions, including p < Λ
region. This is intended to imitate the calculation with massless fields, even though the
large momentum expansion is valid only for |p| � Λ. Then we need to introduce an IR
regularization, which is achieved by a momentum cutoff at a (|p| > a). The condensate is
now given as

〈
δD2

〉
ã,a

=
s.c.

∞∑
l=0

Λ2lC2l, (4.9)

with

C2l =
∫
a<|p|<ã

d2p

(2π)2 p
2−2l fl(λp), (4.10)

with fl(λp) in eq. (4.5). In this work, we call the transseries expression (4.9) the semiclas-
sical ansatz (s.c.), since this would be the transseries obtained through the semiclassical
expansion of the path integral. We have introduced a UV cutoff at ã and IR cutoff at a
in momentum integration in order to eliminate the UV and IR divergences. However, it
is not clear if the semiclassical ansatz for

〈
δD2〉

ã,a gives the exact expression in the limit
a → 0, since the series in powers of Λ may not be convergent for Λ > a and the ordering
of summation and integration is exchanged. We will come back to this point in section 5.

Using the relation

λp
4π =

[
4π
λã

+ log
(
p2

ã2

)]−1

=
∞∑
n=0

(
λã
4π

)n+1 [
− log

(
p2

ã2

)]n
, (4.11)

we can expand the integrand in (4.10) in powers of the coupling λã at scale ã to

C2l =
∞∑
n=0

λn+1
ã c(2l,n), (4.12)

whose explicit computations for l = 0, . . . , 4 are given in the appendix B.

– 10 –



J
H
E
P
0
6
(
2
0
2
2
)
1
5
1

The power series in eq. (4.12) can contain factorially divergent parts, which have
a precise meaning by the Borel resummation. If such divergent series are Borel non-
summable, the associated imaginary ambiguities should be of the renormalon type, since
only renormalon type ambiguities are expected to remain in the large-N limit. The l = 0
terms c(0,n) correspond to the usual perturbative expansion on the trivial vacuum. The
physical interpretation of c(2l,n) for higher l > 0 is that it is a contribution of the fluctuation
at order λn+1

ã around a possible semi-classical configuration (Λ/ã)2l ∼ e−4πl/λã , although
we have no understanding of such a semiclassical configuration explicitly.

4.2 Infrared divergence and imaginary ambiguities

It is evident that there are three issues with the semiclassical expansion obtained above
due to the IR behavior. The first one is that the integral C2l is IR divergent when l ≥ 2
due to the factor p2−2l in the integrand, which requires an IR cutoff a. We need to take
the limit a → 0 at the end of the calculation. The second issue then arises when the IR
cutoff is small a � Λ, because the semiclassical ansatz above involves a power series in
Λ2/a2 and requires a care to take the limit a → 0. We will come back to this point in
section 5. The third issue is that there is a possible singularity at p = Λ due to the terms
involving the renormalized coupling constant λp = 4π/ log(p2/Λ2) in eq. (4.10). In fact,
the renormalon ambiguity in the usual perturbation theory is due to this type of singularity
in the integrand of C0. Below we identify these singularities in the integrand of all C2l.
Changing variables from p to t̃ = log(ã2/p2) = 4π/λã − 4π/λp, we can rewrite it as

C2l = 1
4π

∫ log(ã2/a2)

0
dt̃
(
ã2e−t̃

)2−l
fl

( 4π
4π/λã − t̃

)
. (4.13)

This form resembles the Borel resummation of a divergent perturbative series. For l < 2
we can take a → 0 at this point, and C2l becomes a Borel resummation. For l ≥ 2, we
cannot take a → 0 due to the IR divergence. Since fl(λp) is a polynomial of order l + 1
and hence the integrand has a pole at t̃ = 4π/λã. If a < Λ, this pole is on the integration
contour of (4.13) since 0 < 4π/λã < log(ã2/a2).

In order to circumvent the poles, we use an analytic continuation of the coupling λã
to the complex plane. After the integration over t, we then analytically continue back to
the real axis in two different directions:

λã → λã ± iε, (4.14)

with ε > 0, or equivalently Λ→ Λ (1± iε′) with ε′ = 2πε/λ2
ã > 0. We then take ε to zero in

the end. This can be understood as a deformation of the integration contour in eq. (4.13)
in the upper or lower t-plane.

The deformation of the integration contour can give rise to an ambiguity, since the
imaginary part of C2l depends on whether we take λã + iε or λã − iε. The imaginary
ambiguities, however, should cancel once we sum over all l, regardless of the prescription.
We can find the imaginary ambiguities by computing the residue. Using eq. (4.13) and
computing up to order Λ8, we find that our semiclassical ansatz (4.9) as a whole is indeed
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free of imaginary ambiguity:

Im
〈
δD2

〉
ã,a

=
s.c.
±π

[(
ã2e
− 4π
λã

)2
Λ0 − 2Λ4 +

(
ã2e
− 4π
λã

)−2
Λ8
]
θ(Λ− a) = 0. (4.15)

We show that only the three terms, C0, C4, and C8, have non-zero residues at t = 4π/λã
that give rise to the imaginary ambiguities in section 4.3. We also show that the first
term at order Λ0 in the bracket corresponds to the renormalon ambiguity due to the
Borel resummation of the divergent perturbative series on the trivial vacuum. Thus, the
ansatz (4.9) gives a surprising result that the renormalon ambiguity on the trivial vacuum
(order Λ0) is cancelled not solely by the ambiguity from the term at order Λ4 as one would
naively expect, but the combination of the terms at order Λ4 and Λ8.

4.3 Perturbative expansion around vacuum and nontrivial background

In this section, we compute the coefficients C2l of the expansion (4.9) and investigate the
origin of each ambiguity in eq. (4.15). We first take a large IR cutoff, Λ� a < ã, where the
expansion in powers of Λ2/p2 (a < p < ã) of the integrand is convergent and well-defined.
This allows us to obtain unambiguous C2l without any imaginary parts. We then take a
small cutoff a < Λ. As explained in the previous section, we use an analytic continuation
of λã (or Λ) as (4.14) to avoid a possible singularity at p = Λ. Depending on the sign of
±iε, we show that C2l picks up an imaginary part in accordance with eq. (4.15).

The integral for C2l gives

C2l =
∫ ã

a

dp

2π p
3−2l fl(λp) = C2l(p)|ãa = C2l(ã)− C2l(a), (4.16)

where we have defined C2l(p) as an indefinite integral of the p-integration. We call C2l(ã)
and C2l(a) as the UV and IR contributions, respectively, although only the difference is
unambiguously defined.

We now compute C2l for l = 0, . . . , 4. In the semiclassical expansion, one would first
need to compute the coefficients c2l of perturbative expansion, and then (Borel) resum it
to obtain C2l =

∑∞
n=0 λ

n+1
ã c(2l,n). We demonstrate this for the case of l = 0 here, and the

rest in appendix B. Alternatively we can directly compute C2l from eq. (4.10).
The leading contribution, the term at order Λ0, is given as

c(0,n) =
∫
a<|p|<ã

d2p

(2π)2 p
2
(

1
4π log ã

2

p2

)n
= ã4

(8π)n+1

[
Γ(n+ 1)− Γ

(
n+ 1, 2 log ã

2

a2

)]
,

(4.17)
where Γ(n+ 1, α) is the incomplete Gamma function

Γ(n+ 1, α) =
∫ ∞
α

dt e−ttn. (4.18)

If we turn off the IR cutoff a → 0, the second term vanishes, and we arrive at the known
perturbative result. If we keep an arbitrary IR cutoff a, then we have C0 = C0(ã)− C0(a)
with

C0(p) = ã4
∞∑
n=0

(
λã
8π

)n+1
Γ
(
n+ 1, 2 log ã

2

p2

)
. (4.19)
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This is a divergent asymptotic series since Γ(n+ 1, α) ∼ n! for large n. Applying the Borel
resummation, we obtain

C0(p) = −p4
∫ ∞

0
dt

e−t

t− 8π
λp

= p4e−8π/λp

[
γE + log

(
−8π
λp

)
− Ein

(
−8π
λp

)]
, (4.20)

where Ein(z) denotes the entire function defined as6

Ein(z) =
∫ z

0
dt

1− e−t

t
. (4.22)

Due to the branch cut of log(−8π/λp) = log(−2 log p2/Λ2), the function C0(p) is ambiguous
for p > Λ

Im C0(p) = ±πp4 exp
(
−8π
λp

)
θ(p− Λ) = ±πΛ4 θ(p− Λ). (4.23)

The total imaginary ambiguity at the leading order can be then expressed as

ImC0 = Im C0(ã)− Im C0(a) = ±{π − πθ(a− Λ)}Λ4 = ±πΛ4 θ(Λ− a), (4.24)

where we have assumed that the UV scale ã is always larger than Λ. While there is a usual
renormalon ambiguity when a < Λ, the imaginary ambiguity is absent when a > Λ. In this
paper we focus on the case when the infrared cutoff is small, a < Λ, because this is when
the well-known renormalon ambiguity arises in perturbation theory. We show below how
this ambiguity is cancelled in our semi-classical expansion.

The Λ2 and Λ6 can be readily computed without any imaginary ambiguities. For
notational simplicity, we use vp defined as

vp ≡
4π
λp

= log p2

Λ2 , (4.25)

instead of λp. At order Λ2, we have

C2(p) =
∫
dp

4p (−1 + vp)
v2
p

= 2p2

vp
, (4.26)

while at Λ6, we obtain

C6(p) =
∫
dp
−48− 24vp + 20v2

p + 24v3
p

3p3v4
p

=
8 + 2vp − 12v2

p

3p2v3
p

. (4.27)

We thus find that the IR contribution C2(a) goes to zero, while C6(a) diverges as a goes
to zero. Note that each of the integrands for C2(p) and C6(p) has a pole at p = Λ but the
residue is zero and hence it does not give any ambiguities.

6The standard exponential integral Ei(z) is related to the entire function Ein(z) as

Ei(z) = γE + log z − Ein(−z), (4.21)
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At order Λ4, we have

C4(p) =
∫
dp

8− 2vp − 4v2
p

pv3
p

= −2 log (vp)−
2− vp
v2
p

. (4.28)

This term is also IR divergent C4(a) → ∞ (a → 0). Moreover the logarithm gives rise to
the imaginary ambiguity when vp < 0:

ImC4 = Im C4(ã)− Im C4(a) = ∓2πθ(Λ− a). (4.29)

Compared to the renormalon ambiguity (4.24), this ambiguity at order Λ4 has the opposite
sign but its magnitude is twice as large, so the renormalon ambiguity is not cancelled if we
stop the calculation at this order.

At order Λ8, we have

C8(p) =
∫
dp

96 + 120vp + 22v2
p − 59v3

p − 60v4
p

3p5v5
p

= 1
Λ4

[
−Ein

(
8π
λp

)
+ log

(
8π
λp

)
+ γE

]
−

24 + 24vp − 13v2
p − 33v3

p

6p4v4
p

. (4.30)

At this order, the logarithm remains as in the case of C0(p). Therefore it has the imaginary
ambiguity when va < 0 or a < Λ:

ImC8 = ±θ(Λ− a) πΛ4 . (4.31)

Using eq. (B.5) in appendix, we can write the perturbative expansion as

C8(p) ⊃ 1
ã4

∞∑
n=0

(
−λã8π

)n+1
Γ
(
n+ 1,−2 log ã

2

p2

)
= − 1

p4

∫ ∞
0

dt
e−t

t+ 8π
λp

. (4.32)

The integrand has a pole at t = −8π/λp and the residue gives the imaginary ambiguity of
eq. (4.30). One should note that the t-plane pole for C2l(p) is at t = −8π/λp, in contrast
to t = 8π/λp for C0(p) in (4.20).

By using eq. (4.8), we can show that C2l(p) for general l is given by

C2l(p) = p4−2l
∫ ∞

0
dt

(Λ
p

)t Pl(t)
4− 2l − t = −Pl(Λ∂Λ)

[
Λ−2l+4 Γ

(
0, (l − 2) log p2

Λ2

)]
. (4.33)

From this expression, we can check that there is no ambiguity for l ≥ 5.
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We now combine all the results up to order Λ8 obtained above and write the semi-
classical expansion of the condensate for any values of ã > Λ and a 6= Λ

〈
δD2〉

ã,a
=
s.c.

∞∑
l=0

Λ2l
[
{C2l(ã)} − {C2l(a)}

]
(4.34)

= Λ0
[
ã4
{
e−8π/λãEi

(
8π
λã

)}
− a4

{
e−8π/λaEi

(
8π
λa

)}
± iπΛ4θ(Λ− a)

]
+Λ2

[
ã2
{
λã
2π

}
− a2

{
λa
2π

}]
+Λ4

[
ã0
{
λã
4π −

λ2
ã

8π2 − 2 log
(

4π
λã

)}
− a0

{
λa
4π −

λ2
a

8π2 − 2 log
∣∣∣∣4πλa

∣∣∣∣}∓ 2πiθ(Λ− a)
]

+Λ6
[

1
ã2

{
−λã
π

+ λ2
ã

24π2 + λ3
ã

24π3

}
− 1
a2

{
−λa
π

+ λ2
a

24π2 + λ3
a

24π3

}]
+Λ8

[
1
ã4

{
e8π/λãEi

(
−8π
λã

)
+ 11λã

8π + 13λ2
ã

96π2 −
λ3
ã

16π3 −
λ4
ã

64π4

}
− 1
a4

{
e8π/λaEi

(
−8π
λa

)
+ 11λa

8π + 13λ2
a

96π2 −
λ3
a

16π3 −
λ4
a

64π4

}
± iπ

Λ4 θ(Λ− a)
]

+O(Λ10),

where the exponential integral Ei(z) is defined as

Ei(z) = γE + log z − Ein(−z) = γE + log z −
∫ −z

0
dt

1− e−t

t
. (4.35)

The imaginary ambiguity at each order depends on the value of the IR cutoff a as denoted
by the Heaviside step function θ(Λ− a). For a large IR cutoff a > Λ, there is no ambiguity
at any order. Once we take the small cutoff a < Λ, imaginary ambiguities appear at order
Λ0, Λ4, and Λ8. We have identified the imaginary ambiguity at order Λ0 as the renormalon
ambiguity in perturbation theory on the trivial vacuum. The imaginary ambiguities at
order Λ4 and Λ8 also arise when a < Λ, and the combination of the two cancels the
renormalon ambiguity, leaving the semiclassical expansion free of imaginary ambiguities as
a whole. This result agrees with eq. (4.15).

Using the general form C2l in eq. (4.33), the all-order transseries can be written as

〈δD2〉ã,a =
s.c.

µ4
∞∑
l=0

(Λ
µ

)2l ∫ ∞
0

dt

(Λ
µ

)t
Bl(t). (4.36)

The Borel transform Bl(t) is given by

Bl(t) = 1
2µ
−2ηl(t)

[
ã2ηl(t) − a2ηl(t)

]Pl(t)
ηl(t)

, with ηl(t) = 2− l − t

2 , (4.37)

where Pl(t) is the polynomial given in eq. (4.7). Since the Borel transform Bl(t) has no
pole on the positive real axis, there is not ambiguity in this expression. However, the
integral converges only when a > Λ. For a < Λ (λa < 0), the Borel resummation for the
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a-dependent term must be performed along the negative real axis7, or equivalently, the
Borel resummation must be rewritten as

〈δD2〉ã,a =
s.c.

µ4
∞∑
l=0

(Λ
µ

)2l ∫ ∞
−∞

dt

(Λ
µ

)t
B̃l(t), (4.39)

with

B̃l(t) = 1
2µ
−2ηl(t)

[
ã2ηl(t)θ(t) + a2ηl(t)θ(−t)

]Pl(t)
ηl(t)

, (4.40)

where θ(t) is the step function. In this case, B̃l(t) with l = 0, 2, 4 have singularities at
t = 4, 0,−4 and give rise to the imaginary ambiguities at order Λ0, Λ4 and Λ8, respectively.
It is worth noting that the singularity on the negative real axis on the Borel plane is
relevant when a < Λ. This is related to the fact that the condensate contains terms with
the negative coupling constant λa = 2π/ log(a/Λ) and the non-perturbative factors (Λ/a)2l

that become more dominant for higher l. This is a typical situation in which renormalons
give rise to imaginary ambiguities.

Although the condensate in the semiclassical expansion is real for any value of the IR
cutoff a, the expansion is convergent only if the IR cutoff is large, a� Λ. When the cutoff
is small, a � Λ, the terms in the series for the IR contribution, Cl(a), becomes divergent
for l ≥ 2. This tells us that we need to consider taking a� Λ in order to sum over l. We
can take the limit a→ 0 only after summing over l. We now discuss this procedure in the
next section.

5 Transseries from the exact result

We reanalyze the exact result for the condensate 〈δD2〉 in eq. (3.13), in order to understand
the newly found imaginary ambiguities at higher powers of Λ and to take the a→ 0 limit
properly in our result in eq. (4.34). To compare the exact result with the semiclassical
expansion eq. (4.34), we now work out the transseries representation of the exact result in
eq. (3.13). From dimensional reasons, the condensate is a function of a single variable Λ/ã
apart from the factor Λ4〈

δD2
〉
ã

= Λ4F (sã) = 2Λ4
∫ sã

0
ds

cosh s− 1
s

, (5.1)

where the upper end sã of the integral is a function of Λ2/ã2 as defined in eq. (4.4)

sã = 8π
λã

+ uã, uã = 4 log

1
2 +

√
1
4 + Λ2

ã2

 . (5.2)

7The integration path of the Borel resummation must be chosen depending on the sign (or, more precisely,
argument) of the variable as

∞∑
n=0

anλ
n =


+
∫ +∞

0
dt e−t/λB(t) for λ > 0

−
∫ 0

−∞
dt e−t/λB(t) for λ < 0

with B(t) =
∞∑
n=0

an
Γ(n) t

n−1. (4.38)
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As given in eq. (C.1) in appendix C, the variable uã can be expanded in powers of Λ2/ã2

with the finite radius of convergence. On the other hand, the function F (sã) can be
expanded in powers of uã with a finite radius of convergence. Therefore, we find that
contributions from the integration region 8π/λã < s < sã in the integral representation in
eq. (5.1) of the exact solution gives a power series in Λ2/ã2. Moreover, it is easy to see
that each l-th order terms Λ2l/ã2l contains only up to l powers of λã. The remaining term,
however, gives a divergent power series in λã and needs to be Borel resummed. In fact,
the contribution from 0 < s < 8π/λã can be rewritten into the Borel resummation of the
factorially divergent series

F

(8π
λã

)
= − ã

4

Λ4

∫ ∞
0

dt
e−t

t− 8π
λã
± i0

+
[
2 log

(
λã
8π

)
− 2γE ∓ iπ

]
− Λ4

ã4

∫ ∞
0

dt
e−t

t+ 8π
λã

. (5.3)

We note that the first term is the result of Borel resummation of Borel-nonsummable
divergent power series and has an imaginary ambiguity, which is cancelled by the imaginary
ambiguity in the second term [74]. The third term is the result of Borel resummation of
Borel-summable divergent series without imaginary ambiguity. Combining contributions
from the integration region 8π/λã < s < sã, we obtain up to terms of order Λ8 as

〈
δD2

〉
ã

= Λ0ã4
{
−
∫ ∞

0
dt

e−t

t− 8π
λã
± i0

}
+ Λ2ã2

{
λã
2π

}

+Λ4
{
λã
4π −

λ2
ã

8π2 + 2 log
(
λã
8π

)
− 2γE ∓ iπ

}
+ Λ6

ã2

{
−λã
π

+ λ2
ã

24π2 + λ3
ã

24π3

}

+Λ8

ã4

{
−
∫ ∞

0
dt

e−t

t+ 8π
λã

+ 11λã
8π + 13λ2

ã

96π2 −
λ3
ã

16π3 −
λ4
ã

64π4

}
+O

(
Λ10

ã6

)
. (5.4)

This is the Borel resummed transseries for the exact result without an IR cutoff, which is
valid for ã � Λ. We can see that the ambiguity structure of this transseries without the
IR cutoff is different from that with the IR cutoff (4.34).

Although the condensate itself has no IR divergence, we can introduce the IR cutoff
a for the momentum integration in order to compare the result of the semiclassical ansatz
with the exact result 〈

δD2
〉
ã,a

= Λ4 {F (sã)− F (sa)} . (5.5)

The contribution F (sa) is defined by the integral representation in eq. (5.1), with the upper
end of integration given by sa instead of sã. We find that it is expandable in power series
of a/Λ as given in eq. (C.3) in appendix C. In particular, F (sa)→ 0 in the limit of a→ 0:

F (sa) = a

Λ +O
(
a2

Λ2

)
. (5.6)

On the other hand, the function F (sa) has an interesting analytic structure. It has a
Borel resummed transseries form for a� Λ whose functional form is precisely identical to
that in eq. (5.4). In this region, the Borel non-summable divergent series in λã > 0 gives
imaginary ambiguities which cancel those from the contribution F (sã).
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To understand the result in eq. (4.34) of the semiclassical ansatz, let us first consider
the Borel resummed transseries valid for a� Λ. It consists of a series in powers of Λ2/a2,
whose l-th power coefficient is a (divergent) power series of λa, in exactly the same form
as that in eq. (5.4) with a replacing ã. If we take the coefficient of each term of (Λ/a)2l

and analytically continue each coefficient to the region a < Λ, we find the following formal
expression similar to a transseries

Λ4F (sa)formal = Λ0a4
{
−
∫ ∞

0
dt

e−t

t− 8π
λa

}
+Λ2a2

{
λa
2π

}
(5.7)

+Λ4
{
λa
4π−

λ2
a

8π2 +2log
(−λa

8π

)
−2γE±iπ

}
+ Λ6

a2

{
−λa
π

+ λ2
a

24π2 + λ3
a

24π3

}

+Λ8

a4

{
−
∫ ∞

0
dt

e−t

t+ 8π
λa
∓i0

+ 11λa
8π + 13λ2

a

96π2−
λ3
a

16π3−
λ4
a

64π4

}
+O

(
Λ10

a6

)
.

Since λa = 4π/ log(a2/Λ2) < 0 for a < Λ, the Λ0 term becomes Borel summable, whereas
the Λ8 term becomes Borel nonsummable, resulting in an imaginary ambiguity. We also
need an analytic continuation for the Λ4 term. Thus this formal transseries exhibits imagi-
nary ambiguities in the Λ4 and Λ8 terms. We now observe that the result of the semiclassical
ansatz in eq. (4.34) is precisely recovered as the difference of F (sã) in eq. (5.4) and this
formal transseries F (sa) in eq. (5.7). In the semiclassical ansatz, we note that only the
difference between the UV and IR contributions is determined.

Now we can understand the imaginary ambiguities found for a < Λ in eq. (4.34)
using the semiclassical ansatz in eq. (4.10). In the semiclassical ansatz, we first expand the
momentum integrand in powers of Λ2/p2 which is valid only for p2 � Λ2. We then evaluate
the momentum integral of each powers of Λ2/p2 using an IR cutoff |p| > a. As a result, the
IR contribution C2l(a) for the Λ2l term involves powers of (Λ/a)2l. However, we are using
the expansion in powers of Λ2/p2 outside of its validity, when we take the IR cutoff a smaller
than the dynamical mass Λ. This is the reason why we obtain the imaginary ambiguity
corresponding to the Borel non-summable series in λ(a) at order Λ8/a4 in eq. (5.7) of the
formal transseries F (sa)formal.

In order to properly take the limit of a→ 0 of the result in eq. (4.34) of the semiclassical
ansatz, we need to first continue a from the region a < Λ to the region a � Λ, where
the transseries would be convergent. Then the formal transseries becomes a well-defined
transseries and gives back an analytic function defined in eq. (3.13):

F (sa) = 2
∫ sa

0
ds

cosh s− 1
s

= 2Chin(sa). (5.8)

After obtaining the analytic function, we can safely continue it to the region a < Λ and
find that

lim
a→0

F (sa) = 0. (5.9)

Thus the final result of the a→ 0 limit is that we can neglect the contribution F (sa)formal
altogether, including those imaginary ambiguities contained in F (sa)formal. We also note
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that the imaginary ambiguities in the IR contribution F (sa)formal changes from the Λ8

term to the Λ0 term in the process of the analytic continuation to the region a > Λ. It is
interesting to note that the function F (sa) is an example of functions of the renormalized
coupling λa that can be continued analytically beyond the Landau singularity at a = Λ to
the negative values λa < 0 exhibiting an entirely different behavior [68] compared to the
region λa > 0: power expandable in a/Λ in the region a < Λ, and Borel resummations of
divergent power series in λa as coefficients of power series in Λ/a in the region a� Λ.

6 Two point function

So far we have seen the resurgence structure of the condensate 〈δD2〉. A similar but more
complicated structure can be seen in the transseries expansion of the two point function

〈δD(x)δD(0)〉 =
∫

d2p

(2π)2 e
ip·x ∆(p). (6.1)

In the following we assume that 1/x is larger than Λ (Λx < 1) for simplicity. A convenient
way to obtain the transseries expansion of two point function is to use its relation to the
condensate with a UV cutoff ã

〈δD(x)δD(0)〉 =
∫ ∞

0
dã xJ1(ãx)〈δD2〉ã, (6.2)

which can be shown by using the property of the Bessel functions Jl(px)∫
d2p

(2π)2 e
ip·x f(p) =

∫ ∞
0

dp

2πJ0(px)f(p) =
∫ ∞

0
dã

[
xJ1(ãx)

∫ ã

0

dp

2πf(p)
]
, (6.3)

for any function f(p). As in the previous case, it is necessary to introduce an IR cutoff
a to obtain each term in the transseries. As we have seen above, the transseries for the
condensate with UV cutoff ã and IR cutoff a can be written as

〈δD2〉ã,a = 1
2

∞∑
l=0

Λ2l
∫ ∞

0
dtΛt

[
ã2ηl(t) − a2ηl(t)

]Pl(t)
ηl(t)

, for Λ < a < ã, (6.4)

where Pl(t) and ηl(t) are given by

Pl(t) = (−1)l

l!
[
(t+ l + 1)(l) − 4l(t+ l)(l−1)

]
, ηl(t) = 2− l − t

2 , (6.5)

where (a)(l) = Γ(a + l)/Γ(a) = a(a + 1) · · · (a + l − 1) denotes the Pochhammer symbol.
Note that Pl(t) are polynomials of t and have no singularity. From this expression and the
relation (6.2), we obtain the transseries for the two point function with IR cutoff a > Λ as

〈δD(x)δD(0)〉a =
∫ ∞
a

dã xJ1(ãx)〈δD2〉ã,a (6.6)

= Λ4

2

∞∑
l=0

∫ ∞
0

dt

(
Λ2x2

4

)−ηl(t) [ Γ(ηl(t))
Γ(1− ηl(t))

−Fl(ax, t)
]
Pl(t),
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n\l 0 1 2 3 4 5 6 7 · · ·
0 −1 0 2 0 −1 0 0 0 · · ·
1 1 −2 −1 4 −1 −2 1 0 · · ·
...

Table 1. Coefficients Al,n.

where

Fl(ax, t) = 1
ηl(t)

1F 2

(
ηl(t); 1, 1 + ηl(t),−

a2x2

4

)(
a2x2

4

)ηl(t)

=
∞∑
n=0

(−1)n

(n!)2
1

ηl(t) + n

(
a2x2

4

)ηl(t)+n
. (6.7)

We can show that each integrand in eq. (6.6) has no pole on the positive real axis on the
complex t-plane and hence the Borel resummation gives a finite result with no ambiguity.
Therefore, it would be possible to obtain a closed form for the two point function with
a = 0 by an analytic continuation.

Next, let us consider what becomes of each term in the transseries when the IR cutoff
a becomes smaller than Λ. To obtain the correct series in each non-perturbative sector
for a < Λ, the Borel resummation for the a-dependent term must be performed along the
negative real axis of the t-plane. In other words, the integral must be modified as

〈δD(x)δD(0)〉a = Λ4

2

∞∑
l=0

∫ ∞
−∞

dt

(
Λ2x2

4

)−ηl(t) [ Γ(ηl(t))
Γ(1− ηl(t))

θ(t) + Fl(ax, t)θ(−t)
]
Pl(t),

where θ(t) is the step function. Since each integrand has singularities at points such that
ηl(t) = −n (n = 0, 1, 2, · · · ), i.e. t = 2(2 − l + n), we need to regularize the integral.
Although we can regularize the integral by shifting the integration contour as Im t = ±ε,
the result depends on the sign of t. Each singularity gives rise to the ambiguity

Im 〈δD(x)δD(0)〉a = ±πΛ4
∞∑
l=0

∞∑
n=0

Al,n

(
Λ2x2

4

)n
, (6.8)

where the coefficients Al,n are given by

Al,n = (−1)l+n 1
(n!)2

[(
2n+ 4
l

)
− 4

(
2n+ 2
l − 1

)]
, (6.9)

where
(p
q

)
= Γ(p+1)

Γ(q+1)Γ(p−q) denotes the binomial coefficient. Summing over n = 0, 1, 2 · · · , we
find that each term in the transseries has an ambiguity that is a non-trivial function of Λx

Im 〈δD(x)δD(0)〉a
∣∣
l=0 = ±πΛ4J0(Λx), Im 〈δD(x)δD(0)〉a

∣∣
l=1 = ±πΛ5xJ1(Λx), · · · ,
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where Jl(Λx) are the Bessel functions. For higher l, the ambiguities can be determined as
follows. Let Gl and Hl be functions of Λx defined as

Gl = Λ4
∞∑
n=0

(−1)l+n

(n!)2

(
2n+ 4
l

)(
Λ2x2

4

)n
, Hl = Λ4

∞∑
n=0

(−1)l+n

(n!)2

(
2n+ 2
l − 1

)(
Λ2x2

4

)n
.

(6.10)
We can show that these function satisfy the recursion relations

Gl+1 = − 1
l + 1

[
Λ∂Λ − l

]
Gl, Hl+1 = −1

l

[
Λ∂Λ − (l + 1)

]
Hl. (6.11)

Starting with the initial terms H0 = 0 and G0 = −H1 = Λ4J0(Λx), we can determine Gl,
Hl and the ambiguity of the two point funciton

Im 〈δD(x)δD(0)〉a = ±π
∞∑
l=0

(Gl − 4Hl) = ±π
∞∑
l=0

Λ2lPl(Λ∂Λ)
[
Λ4−2lJ0(Λx)

]
. (6.12)

On the other hand, summing over l = 0, 1, 2, · · · and using the binomial theorem
∑
q

(p
q

)
zq =

(1 + z)p, we can show that the total ambiguity cancel (see table 1)

Im 〈δD(x)δD(0)〉a = 0. (6.13)

As in the case of the condensate, the singularities on the negative real axis of the Borel
plane (t < 0) are relevant to the cancellation of the imaginary ambiguities for a < Λ.

7 CP N−1 sigma model

It is straightforward to apply our computations above to the CPN−1 sigma model

L = 1
g2

[ N∑
a=1
|Diφa|2 +D

(
|φa|2 − 1

) ]
, (7.1)

where D is a Lagrange multiplier, Diφa = (∂i + iAi)φa is the covariant derivative and
Ai is an auxiliary U(1) gauge field. Here we compute the cancellation of the imaginary
ambiguities following section 4.2.

Integrating out the complex scalar fields φa with the ansatz Aµ = 0 and D = const.,
we obtain the same effective potential as (3.3), whose minimum is given by

〈D〉 = Λ2 = µ2e
− 4π
λµ , (7.2)

where λµ = g2
µN is the ’t Hooft coupling renormalized at µ. Like the O(N) sigma model,

the theory is asymptotically free, and the mass gap at large N is identical to that in the
O(N) model in eq. (3.4).

In addition to the condensate of the auxiliary field 〈δD2〉, we can consider the conden-
sate of field strength, which takes the form

〈
F 2
µν

〉
= −8π

N

∫
d2p

(2π)2 p
2

√
p2

p2 + 4Λ2
1
sp

+O(N−2), (7.3)
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with sp = 4 arcsinh(p/2Λ). We can explicitly perform the integral to obtain the exact
expression in the large-N limit〈

F 2
µν

〉
ã

= 2
N

Λ4
[
4Chin

(sã
2
)
− Chin(sã)

]
, (7.4)

where ã is the UV cutoff, and Chin(x) is the entire function defined by the integral in (3.13).
On the other hand, the transseries expression with an IR cufoff a > Λ takes the form〈

F 2
µν

〉
ã,a

= − 1
2N

∞∑
l=0

Λ2l
∫ ∞

0
dtΛt

[
ã2ηl(t) − a2ηl(t)

] P̃l(t)
ηl(t)

, (7.5)

where P̃l(t) and ηl(t) are given by

P̃l(t) = (−1)l

Γ(l + 1)
Γ(t+ 2l + 1)
Γ(t+ l + 1) , ηl(t) = 2− l − t

2 . (7.6)

For a > Λ, there is no singularity on the positive real axis on the Borel plane and hence
the exact expression (7.4) can be obtained by an analytic continuation to a→ 0.

If we consider the continuation of the transseries to the region where a < Λ, the Borel
resummation should be modified as〈

F 2
µν

〉
ã,a

= − 1
2N

∞∑
l=0

Λ2l
∫ ∞
−∞

dtΛt
[
ã2ηl(t)θ(t)− a2ηl(t)θ(−t)

]Pl(t)
ηl(t)

(7.7)

In this case, the terms with l = 0, 1, 3, 4 have imaginary ambiguities associated with the
poles at

t = 4− 2l (l = 0, 1, 3, 4). (7.8)

The term with l = 2 also has an ambiguity since it contains log λã and log λa. Although each
term has an imaginary ambiguities,

〈
F 2
µν

〉
has no imaginary part due to the cancellation

Im
〈
F 2
µν

〉
ã,a

=±π
N

[(
ãe
− 2π
λã

)4
−4

(
ãe
− 2π
λã

)2
Λ2+6Λ4−4

(
ãe
− 2π
λã

)−2
Λ6+

(
ãe
− 2π
λã

)−4
Λ8
]

= 0.

We next look at the compactified model on R × S1 with the ZN symmetric twisted
boundary conditions. We first take the circumference of the compactified dimension L

small LΛ� 1 but fixed in the large N limit NLΛ� 1. This conventional large-N limit is
different from the Abelian large N limit NLΛ� 1 where the monopole-instantons can be
computed [91]. We impose the twisted boundary conditions on the field as

φa(x1 + nL, x2) = einLm
a
φa(x1, x2), with n ∈ R and ma = 2πa/(NL), (7.9)

where the coordinates of R and S1 are denoted by x1 and x2, respectively. We set the
periodic boundary conditions for the auxiliary field D and the gauge field. The effective
action for the auxiliary field D is given as

Veff(D) = 1
2L

N∑
a=1

∑
n∈Z

∫
R

dp2
2π log

[
(kan)2 + p2

2 +D
]
− D

2g2 , (7.10)
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where the Matsubara frequency is given as kan = 2πn/L + ma. At large N , we obtain the
same effective action as R2:

Veff(D) = N

2
1
NL

∑
n∈Z

∫
R

dp2
2π log

[(2πn
NL

)2
+ p2

2 +D

]
− D

2g2

→ N

2

∫
R2

d2p

(2π)2 log
(
p2 +D

)
− D

2g2 . (7.11)

This is a consequence of the volume independence at large N [65]. Therefore the gap
equation is unchanged, and we obtain the same mass gap as before in eq. (3.4).

To compute the condensate, we need to write the momentum integral in (7.3) as

〈
F 2
µν

〉
= − 8π

NL

∑
n∈Z

∫ ã

a

dp2
2π p

2

√
p2

p2 + 4Λ2
1
sp

+O(N−2), (7.12)

with p =
√

(2πn/L)2 + p2
2. We still need the momentum cutoff a due to the IR divergence

in the semiclassical expansion. To compute the imaginary ambiguities for small L, we only
need to look at the zero Matsubara mode, because the nonzero Matsubara mode acts as a
large momentum cutoff for and eliminates the pole in the momentum integral. Following
section 4.2, we can compute the imaginary ambiguities as

Im
〈
δD2

〉R×S1

ã,a
(7.13)

= ±π
L

[
2
(
ãe
− 2π
λã

)3
+ 2

(
ãe
− 2π
λã

)
Λ2 − 2

(
ãe
− 2π
λã

)−1
Λ4 − 2

(
ãe
− 2π
λã

)−3
Λ6
]
θ(Λ− a),

for the condensate in the O(N) sigma model while

Im
〈
F 2
µν

〉R×S1

ã,a
(7.14)

= ±π
NL

[
2
(
ãe
− 2π
λã

)3
− 6

(
ãe
− 2π
λã

)
Λ2 + 6

(
ãe
− 2π
λã

)−1
Λ4 − 2

(
ãe
− 2π
λã

)−3
Λ6
]
θ(Λ− a),

for the condensate in CPN−1 model. They both vanish but have a different structure than
the case of R2. The first term in eq. (7.14) is computed in ref. [67] and they agree.

In the calculation above, we have assumed that the only zero mode is relevant to
the imaginary ambiguity. However, we have to take into account the contributions of the
higher Matsubara modes to see how the results in the compact and non-compact cases
are related. For that purpose, it is convenient to consider the imaginary ambiguity of the
correlation functions. For the two point function of the fluctuations of the auxiliary field,
it is convenient to use the Poisson resummation formula∑

n∈Z
f(2πn/L) =

∑
ν∈Z

1
L

∫
dp

2πe
ipνLf(p). (7.15)

The two point function of the auxiliary field δD in the compactified case is given by

〈δD(x)δD(0)〉a = 8π
∑
ν∈Z

∫ ∞
a

d2p

(2π)2 e
ip(x+νL)

√
p2 (p2 + 4Λ2)

sp
+O(N−1), (7.16)
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where we have fixed the position of the first operator δD(x) at (x1, x2) = (x, 0) for simplic-
ity. From the ambiguity of the two point function on R2 in (6.8), we obtain the ambiguity
of the O(Λl) term for a < Λ as

Im〈δD(x)δD(0)〉a
∣∣
l

= ±π
∑
ν∈Z

[
Gl(x+ νL)− 4Hl(x+ νL)

]
, (7.17)

where the functions Gl and Hl are defined in (6.10). By using the Poisson resummation
formula, the summation over the integer ν can be rewritten back into the Kaluza Klein
momentum number n. For example, G0 = −H1 = Λ4J0(Λx) can be rewritten as

π
∑
ν∈Z

G0(x+ νL) = −π
∑
ν∈Z

H1(x+ νL) = Λ3

R

∑
n∈Z

e−i
n
R
x√

1− n2

R2Λ2

θ

(
Λ2 − n2

R2

)
, (7.18)

where R = L/2π is the compactification radius. The higher order terms can also be
determined by using the recursion relation (6.11) as

Im 〈δD(x)δD(0)〉a
∣∣
l

= ±π
∑
n∈Z

Λ2lPl(Λ∂Λ)

Λ3−2l

R

e−i
n
R
x√

1− n2

R2Λ2

θ

(
Λ2 − n2

R2

) , (7.19)
where Pl(t) is the polynomial given in eq. (6.5). The step function θ(Λ2 − n2/R2) in the
imaginary ambiguity (7.19) implies that Stokes phenomena occur every time one of Kaluza
Klein masses (Matsubara frequencies) n/R becomes smaller than the scale Λ. In particular,
the ambiguity of the perturbative part (l = 0) changes from O(Λ3/R) to O(Λ4) due to the
infinitely many Stokes phenomena which occur as the compactification radius R is varied
from zero to infinity

Im 〈δD(x)δD(0)〉a
∣∣
l=0 = ±

Λ3/R for R < Λ−1

Λ4 + · · · for R→∞
. (7.20)

This explains the discrepancy between the imaginary ambiguities in the models on R2 and
R× S1 with the Zn twisted boundary condition [67].

8 Conclusions

We have studied the resurgence structure of the condensate and two-point function in the
O(N) sigma model at large N using the semi-classical expansion. We have deduced the
semi-classical ansatz in eq. (4.9) from the exact solution at large N by using an expansion
in powers of Λ2/p2 and a small-coupling λp expansion before performing the momentum
integral. The expansion suffers from the renormalon and IR divergences, both of which are
typical in the semiclassical expansion in QFT. In order to circumvent the IR problem at
higher order, we have introduced the IR cutoff a in the momentum integral.

We have shown that the leading term of our semi-classical expansion agrees with the
well-known perturbative result. It does not have IR divergences but gives rise to the
renormalon ambiguity. We stress that we did not construct the semi-classical expansion
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using nontrivial saddle-point configurations in the theories: as far as we know, there is no
known saddles in the theory, and thus no one has computed beyond the leading perturbative
result. Instead what our analysis may suggest is that if we could compute the semi-classical
expansion in a systematic way, then we would have to compute up to order Λ8, rather than
Λ4 as previously thought, to see the cancellation of the renormalon ambiguity.

We have also examined the result in eq. (4.34) of the semiclassical ansatz comparing it
to the exact solution. We find that the result of the semiclassical ansatz can be understood
in terms of the transseries expansion of the exact result at large N . To understand the
behavior as a function of the IR cutoff a, we have first taken the transseries expansion of
the condensate in powers of Λ2/a2 and λa. Their coefficients c(2l,n) at order Λ2l/a2l−4 and
λna can be analytically continued in λa to the region a < Λ where λa < 0, which reproduces
the result of the semiclassical ansatz. In this way, the imaginary ambiguity at order Λ8/a4

can be understood as coming from the Borel resummation of the IR contribution. We
have also found that the limit of a → 0 of the result of the semiclassical ansatz can be
taken if we first make an analytic continuation to a � Λ and then sum over l (the Borel
resummation) and over n of the transseries to obtain an analytic function, which leads to
the correct a→ 0 limit. With this procedure we have been able to recover the exact result
at large N .

We have computed the cancellation of the renormalon in the semiclassical expansion
in other models, such as the O(N) and CPN−1 models on R × S1 at large N . They turn
out to be more complicated as multiple nonperturbative sectors give rise to imaginary
ambiguities. In particular, we found that there exist infinitely many Stokes phenomena
which occur as the compactification radius R is varied from zero to infinity. It is important
to further investigate these models in the future.
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A Generic structure of Borel transform for condensate

In this appendix, we derive the Borel transforms for the condensate (2.11)

〈O(0)2〉|a,ã =
∫
|a|<|p|<|ã|

ddp

(2π)d ∆(p) =
∞∑
l=0

∫
|a|<|p|<|ã|

ddp

(2π)d p
[∆]
(Λ
p

)β0σl

fl(λ′p),

where λ′p = 2π/(β0 log p
Λ). By the change of variable,

p = Λ
(
µ

Λ

)υ
,

(
υ =

λ′µ
λ′p

= log p/Λ
logµ/Λ

)
, (A.1)
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the condensate (A.1) can be rewritten as

〈O(0)2〉|ã,a = C Λ2[O]
∞∑
l=0

∫ υã

υa
dυ

(Λ
µ

)el υ
fl(λ′µ/υ) with C =

d log µ
Λ

(4π)
d
2 Γ(d/2 + 1)

,

(A.2)
where

el = β0σl − 2[O], υp = log p/Λ
logµ/Λ . (A.3)

To rewrite (A.2) into a Borel resummed form, let us decompose the integral as∫ υã

υa
dυ

(Λ
µ

)el υ
fl(λ′µ/υ) =

∫ ∞
υa

dυ

(Λ
µ

)el υ
fl(λ′µ/υ)−

∫ ∞
υã

dυ

(Λ
µ

)el υ
fl(λ′µ/υ). (A.4)

Then, by change of variables υ = t/el + υa and υ = t/el + υã, we obtain

Λ2[O]
∫ υã

υa
dυ

(Λ
µ

)el υ
fl(λ′µ/υ) = µ2[O]

(Λ
µ

)β0σl ∫ ∞
0

dt

(Λ
µ

)t
Bl(t), (A.5)

with

Bl(t) = 1
el

[(
µ

a

)el
fl

(
elλ
′
µ

t+ elυa

)
−
(
µ

ã

)el
fl

(
elλ
′
µ

t+ elυã

)]
. (A.6)

B Perturbative expansions

In this appendix, we explicitly calculate the expansion coefficients c(2l,n). Defining c(2l,n) =
c(2l,n)(ã)− c(2l,n)(a), we have

c(0,n)(p) =
∫
dp

2p3tnp

(4π)n+1

= ã4

(8π)n+1 Γ(n+ 1, 2tp) (B.1)

c(2,n)(p) =
∫
dp

4p2
(
tnp − ntn−1

p

)
(4π)n+1

=
2p2tnp

(4π)n+1 (B.2)

c(4,n)(p) =
∫
dp

2
(
−2tnp − ntn−1

p + 2 (n)2 t
n−2
p

)
(4π)n+1 p

=
2tn+1
p

(4π)n+1 (n+ 1)
+
tnp − 2ntn−1

p

(4π)n+1 (B.3)

c(6,n)(p) =
∫
dp

4
(
6tnp + 5ntn−1

p − 3 (n)2 t
n−2
p − 2 (n)3 t

n−3
p

)
3 (4π)n+1 p3

=
2
(
−6tnp + ntn−1

p + 2 (n)2 t
n−2
p

)
3 (4π)n+1 p2

(B.4)

– 26 –



J
H
E
P
0
6
(
2
0
2
2
)
1
5
1

c(8,n)(p) =
∫
dp
−60tnp − 59ntn−1

p + 11 (n)2 t
n−2
p + 20 (n)3 t

n−3
p + 4 (n)4 t

n−4
p

3 (4π)n+1 p5

= (−1)n+1

ã4 (8π)n+1 Γ(n+1,−2tp) +
33tnp + 13ntn−1−12 (n)2 t

n−2
p −4 (n)3 t

n−3
p

6 (4π)n+1 p4
, (B.5)

where tp = log
(
ã2/p2) and (n)k = n (n− 1) (n− 2) . . . (n− k + 1) is the falling factorial.

To compute the integrals, we have used the property of the incomplete Gamma function

Γ(n+ 1, z) = nΓ(n, z) + zne−z. (B.6)

To sum C2l =
∑∞
n=0 λ

n+1c(2l,n), we set x = λtp/4π and use
∞∑
n=0

xn+1

n+ 1 = − log(1− x) and dk

dxk
xn = (n)k x

n−k. (B.7)

We find that they are equivalent to the ones computed in section 4.3, as they should, up
to a constant for C4.

C Power series expansion in Λ2

In this appendix, we show the transseries expansion of the condensate. We first expand
the variable uã in powers of Λ2/ã2 as

uã = −4
∞∑
k=1

1
k

 ∞∑
l=1

(2l − 3)!!
l!2

(
−2Λ2

ã2

)lk . (C.1)

Summation over l is convergent when 2Λ/ã < 1, and the sum over k is also convergent
when

√
1 + (4Λ2/ã2) < 2.

We can expand the function F (sã) around F (8π/λ(ã)) in powers of uã = sã−8π/λ(ã) as

F (sã)− F
(8π
λã

)
=
∫ 8π

λã
+uã

8π
λã

ds
es − 2 + e−s

s
(C.2)

=
∞∑
m=1

(uã)m

m

[
ã4

Λ4

m−1∑
n=0

(−1)n

(m− n− 1)!

(
λã
8π

)n
+2

(
−λã8π

)m
−Λ4

ã4

m−1∑
n=0

(−1)m

(m− n− 1)!

(
λã
8π

)n]
.

The radius of convergence is given by |uã| < 8π/λã. Therefore we can obtain the transseries
expansion of the condensate using the power series expansion (C.2) together with the Borel
resummed transseries expansion of F (8π/λã) in (5.3).

To find the power series expansion in a/Λ of the function F (sa) for the IR contribution
of the condensate, we first expand F (sa) in powers of sa and then sa in powers of a/Λ as

F (sa) =
∫ sa

0
ds

[
es − 1
s

+ e−s − 1
s

]
=
∞∑
k=1

1
(2k)!ks

2k
a (C.3)

=
∞∑
k=1

1
(2k)!k

{ ∞∑
m=1

4(−1)m−1

m

(
a

2Λ +
∞∑
l=1

(−1)l−1(2l − 3)!!
l!2l

(
a

2Λ

)2l
)m}k

,

where the sum overm is convergent if a < 2Λ, the sum over l is convergent if
√

1+a2/(2Λ)2+
a/(2Λ) < 2.
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