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1 Introduction and summary

An important tool to study the AdS/CFT correspondence has been to construct super-
symmetric solutions by wrapping branes on supersymmetric cycles. Was originally done
by following the idea of [1], where in order for the lower dimensional solution to preserve
supersymmetry, the background R-symmetry gauge field cancels the spin connection on
the compactification manifold — a mechanism dubbed “topological twisting”. The holo-
graphic duals of these gravity theories are topologically twisted superconformal field theo-
ries (SCFTs) [2]. Such constructions with branes wrapped on a two dimensional constant
curvature Riemann surface Σg of genus g have been extensively studied e.g., for M2 branes
in [3], M5 branes in [4], D3 branes in [5], and D4 branes in [6].

Recently, new AdS/CFT constructions which do not rely on topological twisting have
been studied, starting with [7] where D3 branes wrapped on a two dimensional surface
known as a spindle were studied. The spindle is a weighted projective plane WCP1

[n±], with
weights given by two positive coprime integers n±. The metric on such a space is regular
everywhere except at the poles where there are conical singularities parametrized by the
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integers n±. This compactification preserves supersymmetry, not via a topological twist,
but rather via an “anti twist” [7] or a “topologically topological twist” [8]. This has paved
the way for a new class of constructions where branes are wrapped on a spindle instead
of a constant curvature Riemann surface. M5 and M2 branes were studied in [8] and [9],
a multicharge solution from D3 branes was studied in [10], and very recently, D4 branes
were studied in [11]. A family of charged rotating solutions of the form AdS2 × Σ were
constructed in 4d N = 4 gauged supergravity in [12]. Compactifications on a topological
disc, which preserve supersymmetry in a similar way, have been studied e.g. in [13, 14].
It was shown in [15] that D3 branes wrapped on a topological disc are a different global
completion of the same local solution as in [16]. Supersymmetric solutions corresponding
to D3 branes and M5 branes wrapped on a topological disc were constructed in [17], D4-D8
solutions were constructed in [18], and M2 branes in [19].

In this paper, we construct a new class of solutions of the form AdS2×Σ×Σg, starting
from six dimensional F(4) gauged supergravity. This arises as a consistent truncation
of massive IIA (mIIA) supergravity compactified on a warped S4. We find that these
solutions preserve supersymmetry via an “anti twist”. These solutions can be interpreted
in the four dimensional theory obtained by compactifying the six dimensional theory on
Σg. One such class of solutions exists for a specific choice of parameters and corresponds
to the “gauged T 3 supergravity”, while a second class corresponds to minimal gauged
supergravity in four dimensions. These four dimensional theories can also be uplifted to
eleven dimensional supergravity on AdS4 × S7, which is dual to three dimensional ABJM
theory [20]. So the four dimensional gravity solutions can also be related to the ABJM
theory. We compute the entropy by extremizing an off-shell entropy functional obtained by
appropriately gluing “gravitational blocks” [21]. Remarkably we find that the result agrees
with the computation in gravity. We also construct supersymmetric AdS4×Σ solutions in
the six dimensional F(4) gauged supergravity, where we instead find that supersymmetry
is preserved via “a topologically topological twist”. We expect this to be dual to a five
dimensional SCFT on the spindle. We again compute the free energy on S3 by extremizing
the entropy functional constructed by gluing gravitational blocks and find agreement with
the gravity result obtained from our solution.

The outline of this paper is as follows. We begin with a quick overview of the six
dimensional F(4) gauged supergravity theory in section 2. We then construct the super-
symmetric AdS4×Σ solution in section 3, and the supersymmetric AdS2×Σ×Σg solutions
in section 4. We conclude with some discussion in section 5.

Note. While writing up this paper, [11] appeared on arXiv whose results partially overlap
with ours. They construct AdS4 ×Σ solutions in 6d F(4) gauged supergravity and consis-
tent with our observations, they also find that the solution is realized as “a topologically
topological twist”.

2 6d F(4) gauged supergravity

We begin by recalling some important aspects of six dimensional F(4) gauged supergravity.
F(4) superalgebra is the minimal extension of the SO(2, 5) symmetry group of six dimen-
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sional AdS. It contains so(2, 5)⊗ su(2) as the maximal bosonic subalgebra, and is therefore
the natural candidate for a six dimensional supergravity theory with 16 supercharges i.e.,
N = 2 in d = 6. The minimal F(4) supergravity theory (containing only the gravitino
multiplet) was constructed in [22], while the theory coupled to vector multiplets (which
are the only possible massive long multiplets in N = 2) was constructed in [23, 24].

The bosonic fields contained in the gravitino multiplet are the metric gµν , four gauge
fields Aαµ corresponding to the symmetry group U(1) × SU(2)R (where α ∈ {0, r}, with
r ∈ {1, 2, 3} being an index in the adjoint representation of SU(2)R), a two form Bµν and
the dilaton σ, where µ, ν ∈ {0, 1 . . . , 5} are spacetime indices. The fermionic fields consist
of two gravitini ψAµ , and two spin-1/2 fermions χA, where A ∈ {1, 2}, transforming in the
fundamental representation of SU(2)R.

The gravity multiplet can be coupled to nV vector multiplets labelled by an index I ∈
{1, . . . , nV }. Each vector multiplet contains a gauge field Aµ, four scalars φα, and a spin-
1/2 fermion λA, where α and A are indices in the adjoint and fundamental representations
of SU(2)R respectively, as above. The 4nV scalars span the coset manifold

SO(4, nV )
SO(4)× SO(nV ) .

The scalars φα can be encoded in a coset representative LΛ
Σ ∈ SO(4, nV ), where Λ ∈ {α, I}

and I counts the number of vector multiplets I ∈ {1, . . . , nV }. The gauged six dimensional
theory can be obtained by a compact gauging of G = SU(2)R × G, where G is a nV

dimensional compact subgroup of SO(nV ). The six dimensional bosonic Lagrangian, in the
notation of [24] is:

L =− R

4 −
1
8e
−2σNΛΣF̂

Λ
µνF̂

Σµν + 3
64e

4σHµνρH
µνρ + ∂µσ∂µσ −

1
4P

IαµPIαµ

− 1
64ε

µνρσλτBµν

(
ηΛΣF̂

Λ
ρσF̂

Σ
λτ +mBρσF̂

0
λτ + 1

3m
2BρσBλτ

)
− V ,

(2.1)

where

NΛΣ = LΛ
α
(
L−1

)
αΣ
− LΛ

I
(
L−1

)
IΣ

,

P Iα =
(
L−1

)I
Λ
(
dLΛ

α − fΓ
Λ

ΠA
ΓLΠ

α

)
,

(2.2)

with fΛ
ΠΓ being the structure constants of the gauge group G. g is the gauge coupling

constant and m is the mass parameter associated to the two form. The minimal six
dimensional F(4) gauged supergravity theory can be obtained as a consistent truncation of
massive type IIA supergravity in ten dimensions on a warped S4 [25]. This was dualized to
a truncation of type IIB supergravity via a non-Abelian T-duality in [26], and was further
generalized to a large class of geometries in [27]. Substantial evidence was provided in [28]
that even the six dimensional theory coupled to a vector multiplet can be obtained as
a consistent truncation of ten dimensional mIIA supergravity. It was also shown in [29]
that the theory with one vector multiplet can be obtained from a consistent truncation of
type IIB supergravity on a general class of manifolds, which includes the Abelian T-dual
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of the mIIA background considered here. The parameter m is then related to Romans’
mass m = F(0).

The field strength F̂Λ
ρσ = FΛ

ρσ−mδΛ0Bµν is dressed with this mass parameter, and we use
the non-standard convention of [24] where F =Fµνdxµ ∧ dxν , with Fµν =(∂µAν−∂νAµ)/2.
Variation of the fermions (upto linear order in fermions) under an infinitesimal supersym-
metry transformation are given by

δψAµ = ∇µεA −
i

2gσ
r
ABArµε

B + 1
16e

−σ
[
T̂[AB]νλΓ− T(AB)νλ

] (
Γµνλ − 6δνµΓλ

)
εB

+ i

32e
2σHνλρΓ

(
Γµνλρ − 3δνµΓλρ

)
εA + SABΓµεB ,

δχA = i

2Γµ∂µσεA + i

16e
−σ
[
T̂[AB]νλΓ + T(AB)νλ

]
ΓνλεB + 1

32e
2σHνλρΓΓνλρεA +NABε

B ,

δλIA = iP Irµσ
r
ABΓµεB − iP I0µεABΓΓµεB + i

2e
−σT IµνΓµνεA +M I

ABε
B ,

(2.3)

where Γ is the six dimensional chirality matrix Γ = iΓ0 . . .Γ5, and the dressed vector field
strengths are defined as

T̂[AB]νλ = εAB
(
L−1

)
0Λ
F̂Λ
νλ , T(AB)νλ = σrAB

(
L−1

)
rΛ
FΛ
νλ , TIνλ =

(
L−1

)
IΛ
FΛ
νλ , (2.4)

and SAB, NAB,MAB represent the extra contributions to the fermion variations due to
gauging and the mass parameter. Greek indices are raised and lowered with the SO(4, nV )
invariant matrix ηΛΣ = diag (1, 1, 1, 1,−1, . . . ,−1), and Roman indices with the SU(2)R
tensor εAB

We further restrict ourselves to a theory which contains only one vector multiplet
nV = 1. We can consistently set all gauge fields to zero except Ar=3

µ and AI=1
µ which

will be necessary for the twisting, and for providing a magnetic charge for the black hole.
Additionally, we require that the scalar fields in the vector multiplet are singlets under
the gauge field Ar=3

µ . Furthermore, requiring that the black holes are purely magnetic
restricts the only non-zero component of the scalars to be φ3. Following [28, 30], we choose
a convenient parametrization of the scalar coset given by

LΛ
Σ =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 coshφ3 sinhφ3
0 0 0 sinhφ3 coshφ3

 . (2.5)

With this parametrization, the kinetic matrix for the vector fields follows from equa-
tion (2.2)

NΛΣ =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 cosh 2φ3 − sinh 2φ3
0 0 0 − sinh 2φ3 cosh 2φ3

 . (2.6)
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In this parametrization, the shifts SAB, NAB,MAB become

SAB = i

4
(
geσ coshφ3 +me−3σ

)
εAB ,

NAB = 1
4
(
geσ coshφ3 − 3me−3σ

)
εAB ,

MAB = −2geσ sinhφ3 σ
3
AB .

(2.7)

The 6d theory has AdS6 as a vacuum solution if g = 3m. We are interested in near horizon
solutions of higher dimensional objects whose full solution would represent a flow from
AdS6 to AdS4 × Σ or AdS2 × Σ× Σg respectively. So we will choose g = 3m in the rest of
paper.

3 The supersymmetric AdS4 ××× Σ solution

3.1 Supersymmetry equations

We are interested in a solution of the form AdS4×Σ. To find this, we consider the following
ansatz for the metric

ds2 = w(y)
[

4
9ds2

AdS4 −
dy2

q(y) −
q(y)
r(y)dz2

]
, (3.1)

and assume that the two-form vanishes i.e., Bµν = 0. Let us pick the non-zero components
of the two gauge fields to lie only along the spindle A3,I = A3,I

z (y)dz, where the index
I labels the gauge field from the vector multiplet. Maxwell’s equations follow from the
Lagrangian in equation (2.1), and in this case read

∂y
(√
−g e−2σNΛΣF

Σ
yzg

yygzz
)

= 0 . (3.2)

This determines the gauge field strengths along the spindle1

F 3 = −e
2σ

w
(f3 cosh 2φ3 + fi sinh 2φ3) volΣ , F I = −e

2σ

w
(f3 sinh 2φ3 + fi cosh 2φ3) volΣ ,

(3.3)

where f3, fi are constants. We choose the following representation for the gamma matrices

Γa = γa ⊗ σ3, Γ4 = 1⊗ iσ2, Γ5 = 1⊗ iσ1 , (3.4)

where a ∈ {0, 1, 2, 3} are frame indices along the AdS4 and indices 4, 5 are frame in-
dices along the spindle. In six Lorenzian dimensions, spinors form a symplectic-Majorana
pair which transform as B6εA = εABε∗B under the six dimensional matrix B6 defined by
B6ΓmB−1

6 = −Γ∗m, where m ∈ {0, . . . , 5}. We choose B6 = B4 ⊗ B2, where B4 and B2
are matrices in 4d Lorenzian and 2d Euclidean space defined by B4γaB−1

4 = γ∗a, and
1For brevity, we will often not write the y dependence of the functions explicitly.
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B2γiB−1
2 = −γ∗i respectively. γa and γi = (iσ2, iσ1), are the 4d Lorenzian and 2d Eu-

clidean gamma matrices respectively. In particular, B2 is proportional to σ1. With this
choice, B4B∗4 = −1, B2B∗2 = 1 and B6B∗6 = −1.

We make an ansatz for the 6d spinor to be of the form ε1 = β−⊗ η1, and ε2 = β+⊗ η2,
where β± satisfy ∇aβ± = ±(i/2)γaβ±. For the choice of B4 above, B4β± = ∓ (β∓)∗. The
action of B2 is given by B2η1 = η∗2,B2η2 = η∗1. In our conventions, −εABεB = εA, (σ3)AB
is the usual third Pauli Matrix and σ3

AB = −εAC
(
σ3)C

B. Furthermore, we choose a gauge
where the spinor is independent of the coordinate z.

We are looking for a supersymmetric solution. For simplicity, we pick a purely bosonic
background by setting all the fermions to zero, and further demand that they remain zero
under a supersymmetry transformation. This is imposed by demanding that the fermionic
variations in equation (2.3) vanish. For the gravitino variation, this implies:

δψ1a = γaβ− ⊗
(
−η1 −Aη1 −Bσ3η1 −

iw′
√
q

3w σ1η1

)
,

δψ2a = γaβ+ ⊗
(
η2 +Aη2 −Bσ3η2 −

iw′
√
q

3w σ1η2

)
.

(3.5)

where

A := eσ

6w3/2 (f3 coshφ3 + fi sinhφ3) , B :=
√
w

3
(
geσ coshφ3 +me−3σ

)
. (3.6)

The equations for η1,2 obtained above are invariant under the symplectic-Majorana condi-
tion, as expected. Since the two spinors η1 and η2 are related by η1 = B2η

∗
2, there is only

one independent 2d spinor, and all the equations can be written in terms of it. Relabelling
η2 as ξ, we can now rewrite the set of equations in (2.3) as:

δψAa :
[
1 + eσ

6w3/2 (f3 coshφ3 + fi sinhφ3)
]
ξ −
√
w

3
(
geσ coshφ3 +me−3σ

)
σ3ξ

−
iw′
√
q

3w σ1ξ
!= 0 ,

δψA4 : −3ieσ

8w2 (f3 coshφ3 + fi sinhφ3)σ1ξ −
1
4
(
geσ coshφ3 +me−3σ

)
σ2ξ +

√
q

w
ξ′

!= 0 ,

δψA5 : 3ieσ

8w2 (f3 coshφ3 + fi sinhφ3)σ2ξ −
1
4
(
geσ coshφ3 +me−3σ

)
σ1ξ −

ig

2

√
r

wq
A3
zξ

+i
√
r

2w

(√
wq

r

)′
σ3ξ

!= 0 ,

δχ : 1
2

√
q

w
σ′σ2ξ −

eσ

8w2 (f3 coshφ3 + fi sinhφ3)σ3ξ + 1
4
(
geσ coshφ3 − 3me−3σ

)
ξ

!= 0 ,

δλ :
√
q

w
φ′3σ2ξ −

eσ

w2 (f3 sinhφ3 + fi coshφ3)σ3ξ + 2g sinhφ3e
σξ

!= 0 .

(3.7)
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3.2 The solution

We solve the first equation by choosing q(y) = q1(y)q2(y), and ξ = n(y)
(√

q1(y), i
√
q2(y)

)
.

This determines q1, q2 to be

q1,2 = 3w
w′

[
±
(

1 + eσ

6w3/2 (f3 coshφ3 + fi sinhφ3)
)

+
√
w

3
(
geσ coshφ3 +me−3σ

)]
. (3.8)

With this choice of the spinor ε, the four components of the last two equations immediately
simplify to just two linearly independent equations which are solved by

e4σ = coshφ3 + f3
fi

sinhφ3 , w = (2fi cschφ3)2/3

34/3

(
coshφ3 + f3

fi
sinhφ3

)1/6
. (3.9)

Inserting these in the gravitino variation along Σ gives a full solution in terms of the scalar
field φ3. However, is convenient to choose a parametrization φ3 = arccoth(y) to further
simplify the solution. The full solution including the gauge field, the scalars, and the
normalization of the spinor, in this parametrization is as follows:

w = 22/3

34/3

√
fi (f3 + fi y)1/6

(
y2 − 1

)1/4
, r = r0 (f3 + fi y)2/3

(
y2 − 1

)
,

q1,2 = ±
(9f3

2fi
+ 9y

2

)
+ 2 · 61/3m (f3 + fi y)1/3

√
y2 − 1 ,

A3
z = 61/3 (3f3 y + 2fi + fi y

2)
fi (y2 − 1) , e4σ = f3 + fi y

fi
√
y2 − 1

,

n = n0 (f3 + fi y)−1/8
(
y2 − 1

)−3/16
.

(3.10)

3.3 Regularity of the solution

For the metric to have a definite signature, the functions q and r appearing in the metric
must be positive throughout the interval on which it is defined. Taking y > 0, the metric
function r is positive for y > 1, while the function q = q1q2 is a polynomial of degree 8.
We want to find conditions for which the metric

ds2
Σ = dy2

q
+ q

r
dz2 , (3.11)

is a smooth metric on the spindle i.e., a two dimensional weighted projective plane with
weights represented by two positive coprime integers n±: WCP1

[n+,n−]. For this, q must be
positive in an interval y ∈ [y1, y2] where q (y1) = q (y2) = 0, and y2 > y1 > 0.2 Near the
endpoints of this interval, the metric becomes (we denote both roots collectively as yi)

ds2
Σ = 1

q′(yi)

(
dy2

y − yi
+ (q′(yi))2 (y − yi)

r(yi)
dz2

)
= 1
|q′(yi)|

(
dx2 + x2 (q′(yi))2

4r(yi)
dz2

)
,

(3.12)
2In this article, we have chosen the roots to be positive. This is a choice and not a requirement.

Allowing for negative roots could lead to more solutions, possibly with both types of twists, as recently
found in [31, 32].
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where in the second step we have changed coordinates to a “near the pole” coordinate x
defined by y − yi = ±x2/4. We demand that the z coordinate is periodic with period ∆z.
This requires the following conditions

q′(yi)∆z
2
√
r(yi)

!= ± 2π
n±

, (3.13)

where the upper sign corresponds to y = y1 where q′(y1) > 0, and the lower sign to y = y2
where q′(y2) < 0. This corresponds to a metric on the spindle that is regular everywhere
except at the endpoints of the interval y ∈ [y1, y2] where there is a conical singularity with
a deficit angle α = 2π(1 − n−1

± ). Changing from y to ỹ defined by y 7→
(
ỹ3 − f3

)
/fi, we

can solve equation (3.13) to find an implicit equation for the roots yi

ỹ3
1,2 = f3 + ỹ1,2

(
37/3

211/3m2 ±
3π

16m3n±∆z

)
. (3.14)

We can now compute the Euler number for the metric in equation (3.11). This is given by
the integral of the Ricci scalar over the manifold

χ(Σ) = 1
4π

∫
Σ

dy dz√gRΣ = 1
4π

∫
Σ

dy dz
(
qr′− q′r
r3/2

)′
= ∆z

4π
qr′− q′r
r3/2

∣∣∣∣y=y3

y=y2

=
( 1
n−

+ 1
n+

)
,

(3.15)
which is indeed the right result for the spindle. Let us now compute the flux of the R-charge
gauge field on the spindle

g

2π

∫
Σ
F 3 =

( 1
n+

+ 1
n−

)
. (3.16)

Remarkably, this is equal to the Euler number of the spindle. The present situation re-
sembles the “topological twist” that happens when compactifying on a Riemann surface of
constant curvature. However, the local curvature on a spindle is not constant, therefore,
the twist is like a topological twist, but only topologically. Hence this was referred to
in [8] as a topologically topological twist. In contrast, the situation that we will find in
section 4.2 is usually called an “anti twist”.

3.4 Free energy on S3

We have found a solution of the form AdS4×Σ in 6d F(4) gauged supergravity. Since this
is a consistent truncation of mIIA supergravity, the solution can be uplifted to 10d. The
full 10d solution corresponding to this should be thought of as an interpolating solution
between AdS6 × S4 and AdS4 × Σ × S4. The AdS6 × S4 solution is dual to a 5d N = 1
SCFT. So we expect the AdS4 × Σ × S4 solution to be dual to the 3d SCFT obtained by
compactifying the 5d SCFT on Σ. The free energy can be computed holographically to get

FS3 =
πL2

AdS4

2GN
4d

=
2πL2

AdS4

9GN
6d

∫
dy dz w

2
√
r

=
2πL2

AdS4

9GN
6d

(∆z (ỹ2 − ỹ1)
4 · 61/3m2 − π (n+ỹ2 + n−ỹ1)

12 · 62/3m3n+n−

)
.

(3.17)
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Since the function q is a polynomial of order 8, the explicit form of the roots ỹ1,2 is difficult
to obtain. Instead, we expand the free energy as a perturbation series in the total magnetic
charge on the spindle Q, which is defined as

Q = g

2π

∫
Σ
F I = 16∆zfim3

3π

( 1
ỹ1
− 1
ỹ2

)
. (3.18)

Expanded around Q = 0, the free energy is3

FS3 =
2πL2

AdS4

9GN
6d
·[

− π (n+ + n−)3

96m4n+n−
(
n2

+ − n+n− + n2
−
) + πn+n− (n+ + n−) (n+ − 2n−) (2n+ − n−)Q2

192m4 (n2
+ − n+n− + n2

−
)2

]

+O
(
Q4
)
.

(3.19)

We want to compare this to the free energy of the 3d SCFT dual to this solution. This
can be obtained by computing the logarithm of the inverse of the partition function of the
5d SCFT placed on S3 × Σ, and then taking the large N limit. However, the same result
can also be obtained holographically by using the technology of “gravitational blocks”
introduced in [21]. This involves extremizing an entropy functional that is constructed by
gluing gravitational blocks. The gravitational blocks are constructed from the prepotential
which in this case is F (Xi) = (X1X2)3/2, and is given by B (Xi) = F (Xi) /ε. We then
define the entropy functional to be

I =
π2L4

AdS6

3GN
6d

8
27
[
B
(
X+
i

)
− B

(
X−i

)
+ λ (∆1 + ∆2 − 2)

]
, (3.20)

where

X±1 = ∆1 ∓
ε

2n±
± s ε

4 , X±2 = ∆2 ∓
ε

2n±
∓ s ε

4 . (3.21)

∆i and ε are chemical potentials conjugated to the electric charges and the rotational sym-
metry of the spindle respectively.4 λ is a Lagrange multiplier that enforces the constraint
on the chemical potentials. The ± index on Xi corresponds to the values at the north
and the south poles of the hemispheres which are glued together, and the relative minus
sign between the blocks corresponds to the “A-gluing” in [21]. The coefficient involving
LAdS6 and GN

6d in equation (3.20) is the free energy on S5, and the factor of 8/27 comes
from the coefficient in front of F , as well as our normalization of ε. This is an off-shell

3This perturbative expansion around an integer Q is just a trick that we have used due to the difficulty
of finding the analytic form of the roots ỹ1,2, which are solutions to an order 8 polynomial equation. If
one manages to find these analytical expressions, this trick can be avoided altogether and the computation
can be done exactly. We have checked numerically that the free energy matches the extremized entropy
functional for arbitrary Q, which justifies the trick in this case.

4Our entropy functional can related to that of [11] by taking their ri = 1, ni = (1±z)(n− +n+)/(n−n+),
and redefining z in terms of s.
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expression which needs to be extremized with respect to the chemical potentials. s is a
continuous flavor charge and should correspond to Q in equation (3.18). We can perform
the extremization

∂∆i
I = ∂εI = 0, (3.22)

perturbatively around s = 0. Upon extremization, we find that the entropy functional
evaluated at the saddle point is

I∗ =
8π2L4

AdS6

81GN
6d

[
− 3 (n+ +n−)3

8n+n−
(
n2

+−n+n−+n2
−
) + 3n+n− (n+ +n−) (n+− 2n−) (2n+−n−) s2

16
(
n2

+−n+n−+n2
−
)2

]

+O
(
s4
)
.

(3.23)
Comparing with equation (3.19), we see that they match with the identification s = Q.5

The result can be checked to arbitrary order in the perturbation series. This shows that
the free energy of the solution indeed matches the expectation from field theory and lends
support to the duality that we suspected. We have performed further numerical checks for
arbitrary charge Q and confirmed that the entropies are indeed equal.

4 Supersymmetric black hole solutions

4.1 Supersymmetry equations

We will now shift attention to solutions with a different topology, namely AdS2 × Σ× Σg,
where Σg is a smooth Riemann surface of genus g.6 This can be thought of as the spacetime
near the horizon of a black hole with the horizon geometry Σ × Σg. Let us consider the
following metric

ds2 = w(y)
[

4
9ds2

AdS2 −
dy2

q(y) −
q(y)
r(y)dz2

]
− w1(y)ds2

Σg
. (4.1)

We assume that the scalar field φ3(y) depends only on the coordinate y. This time, we
turn on a non-zero two-form, and pick the non-zero components of the gauge fields (where
again, the index i labels the gauge field from the vector multiplet) to be

A3 = A3
z(y)dz +A3

φ(θ)dφ , Ai = Aiz(y)dz +Aiφ(θ)dφ , B = Btr(y)dt ∧ dr ,

where θ, φ are along the Riemann surface. It is consistent to choose a two-form with zero
field strength i.e., Hµνρ = 0, and we will make this simplifying assumption. With this, the
only non-trivial equations of motion for the gauge field and the two-form are given by7

∂y
(√
−g e−2σNΛΣF

Σyz
)

= ∂θ
(√
−g e−2σNΛΣF

Σθφ
)

= 0 ,

m2

4
√
−g e−2σBtrg

ttgrr + 1
8ηΛΣF

Λ
yzF

Σ
θφ = 0 .

(4.2)

5Where we have used the identification L2
AdS4 = 16m4L2

AdS6 .
6Normalizing the metric such that Rmn = κgmn, volume of the Riemann surface is volΣg = 4π|g− 1| for

g 6= 1, and volΣg = 2π for g = 1. For κ = −1, the metric is locally H2, and can be quotiented to obtain a
constant curvature Riemann surface with g > 1.

7As before, for brevity of presentation, we will not write the y dependence of the fields explicitly.
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For the U(1) gauge fields, this implies

F 3 = e2σ

w1
(f3 cosh 2φ3 + fi sinh 2φ3) volΣ + f̃3volΣg ,

F I = e2σ

w1
(f3 sinh 2φ3 + fi cosh 2φ3) volΣ + f̃ivolΣg ,

(4.3)

where f3, fi, f̃3, f̃i are constants. The equation of motion for the two-form is purely algebraic
and can be solved to give

Btr = 2R4

9m2 , (4.4)

where R is a constant. Additionally, Hµνρ = 0 fixes the dilaton σ in terms of the scalar
field φ3, and the warp factor on the Riemann surface w1

e−4σw2
1R

4 =
(
f3f̃3 − fif̃i

)
cosh 2φ3 +

(
fif̃3 − f3f̃i

)
sinh 2φ3 := f·f̃ . (4.5)

We choose the following representation for the 8× 8 gamma matrices8

Γ0,1 = γ0,1⊗σ3⊗σ3, Γ2 = 1⊗iσ2⊗σ3, Γ3 = 1⊗iσ1⊗σ3, Γ4 = 1⊗1⊗iσ2, Γ5 = 1⊗1⊗iσ1 .

(4.6)
In this section, we will consider compactifications on a negatively curved Riemann surface
i.e., κ = −1. For the 6d spinor, we choose Γ45εA = iεA, and for the remaining 4d part
of the spinor, we proceed similar to section 3. In addition, we choose to work in a gauge
where the spinor is independent of the coordinate z as well as the coordinates on the
Riemann surface. The supersymmetric solution can now be obtained by imposing that the
fermionic variations in equation (2.3) vanish. Similar to section 3, we define an approprite
combination of the components of the spinor on the spindle, which we call ξ. In terms of
this, we obtain the following set of BPS equations

δχ :
(

9me−σ

32w Btr −
eσa1
8ww1

)
σ3ξ −

(
e−σa2
8w1

+ a5
4

)
ξ − 1

2

√
q

w
σ′σ2ξ

!= 0 ,

δλ : e
σa4
ww1

σ3ξ +
(
e−σa3
w1

+ 2geσ sinhφ3

)
ξ +

√
q

w
φ′3σ2ξ

!= 0 ,

δψAa :
(

1− eσa1
6
√
ww1

− 9me−σ

8
√
w
Btr

)
ξ −

(
e−σa2
6w1

+ a6
3

)
√
wσ3ξ −

iw′
√
q

3w σ1ξ
!= 0 ,

δψA2 : i
(

3eσa1
8ww1

+ 9me−σ

32w Btr

)
σ1ξ −

(
e−σa2
8w1

+ a6
4

)
σ2ξ +

√
q

w
ξ′

!= 0 ,

δψA3 : −i
(

3eσa1
8ww1

+ 9me−σ

32w Btr

)
σ2ξ −

(
e−σa2
8w1

+ a6
4

)
σ1ξ −

ig
√
r

2√wqA
3
zξ

+ i
√
r

2w

(√
wq

r

)′
σ3ξ

!= 0 ,

δψA4 :
(
− eσa1

8ww1
+ 9me−σ

32w Btr

)
σ3ξ +

(
3e−σa2

8w1
− a6

4

)
ξ +

w′1
√
q

4w1
√
w
σ2ξ

!= 0 ,

(4.7)
8As before, numerical indices are frame indices. 0, 1 lie along AdS2, 2, 3 lie along the spindle Σ, and 4, 5

lie along the Riemann surface Σg.
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where we have defined the following combinations

a1 = (f3 coshφ3 + fi sinhφ3) , a2 =
(
f̃3 coshφ3 − f̃i sinhφ3

)
,

a3 =
(
f̃i coshφ3 − f̃3 sinhφ3

)
, a4 = (f3 sinhφ3 + fi coshφ3)

a5 =
(
g coshφ3e

σ − 3me−3σ
)
, a6 =

(
g coshφ3e

σ +me−3σ
)
.

(4.8)

The remaining variation δψA5
!= 0 gives the same condition as δψA4

!= 0, along with the
condition that the R-symmetry gauge field along Σg cancels the spin connection. This is
the usual topological twisting condition when compactifying on a Riemann surface9

f̃3 + κ

2g = 0⇒ f̃3 = 1
6m. (4.9)

Note that all of the BPS equations above should be supplemented with the constraint in
equation (4.5) and the value of the two-form in equation (4.4). For the sake of brevity, we
don’t write them explicitly.

4.2 Solution with a constant scalar

We will now solve the BPS equations. To simplify the system of equations, we further
restrict to a family of solutions in which the fluxes on the Riemann surface are identified:
f̃3 = f̃i. With this choice, equation (4.5) becomes

e−4σw2
1R

4 = f̃i (f3 − fi) e−2φ3 . (4.10)

Motivated by this, we pick a particular value of R that simplifies the equations significantly:

R4 = 144m4f̃i (f3 − fi) . (4.11)

This fixes the two-form Btr, which we take to be real and therefore restrict ourselves to
the family of fluxes which have f3 > fi. As a further simplification, we assume φ′3 = 0. We
will drop this assumption in the next subsection and construct a solution for arbitrary φ3.
With these simplifications, we can solve the BPS equations to find a simple solution

q1,2 = 1
w′

[
±
(
3w − 24 · 31/8m2fi

√
w
)

+ 4 · 33/8mw3/2
]
,

w1 = 1
4 · 33/4m2 , e2φ3 = 1

3 , r = r0
w3

(w′)2 ,

A3
z = 2 · 33/8

√
wr0

(√
w − 16 · 31/8m2fi

)
, n = n0

√
w′

w
,

(4.12)

with f3 = 2fi. r0 is again an unphysical parameter that can be absorbed in a coordinate
redefinition of z. It does not appear in any physical quantity and so we will not bother to
specify it here.

9Recall that we have chosen κ = −1 and g = 3m.
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4.2.1 Regularity of the solution

We have obtained a solution of the form AdS2×Σ×Σg where the scalar field φ3 as well as
the size of Σg is constant, while the metric factors q and r depend on the warp factor w.
Let us now examine the function q to ensure that the metric on Σ is smooth everywhere
except at the poles. We choose a parametrization of the function w as w(y) = y2. With this
explicit choice, the metric coefficient r is positive, and q is a reduced quartic polynomial

q = q1q2 = 4 · 33/4m2y4 − 9y2

4 + 36 · 31/8m2fi y − 144 · 31/4m4f2
i . (4.13)

For fi > 0, it has four real roots10 given by

y1,2 = 31/8

8m

(
−
√

3∓
√

3 + 128
√

3m3fi

)
, y3,4 = 31/8

8m

(√
3∓

√
3− 128

√
3m3fi

)
, (4.14)

where the order of the indices correspond to the upper and lower signs respectively. The
function q is positive when y lies in the closed interval y2 ≤ y ≤ y3, and both roots are
positive when 0 < 128m3fi <

√
3. In fact, y2 comes from q1 = 0, while y3 comes from

q2 = 0. Equation (3.13) can now be solved to find the period of z and to determine the flux

fi =
√

3
128m3

(
n2
− − n2

+
n2
− + n2

+

)
, ∆z = πr0

3
√

233/8m

√
1
n2
−

+ 1
n2

+
. (4.15)

As a consistency check, we can again compute the Euler number for the metric in equa-
tion (3.11). This is given by the integral of the Ricci scalar

χ(Σ) = 1
4π

∫
Σ

dy dz√gR = ∆z
4π

qr′ − q′r
r3/2

∣∣∣∣y=y3

y=y2

=
( 1
n−

+ 1
n+

)
, (4.16)

which is indeed the right result for the spindle. Let us now evaluate the total R-charge
on the spindle. This integral receives contributions only from the endpoints of the interval
to give

g

2π

∫
Σ
F 3 = g

2π∆z
[
A3
z(y3)−A3

z(y2)
]

=
( 1
n+
− 1
n−

)
. (4.17)

As alluded to in the previous section, this is not equal to the Euler number, but rather
corresponds to an “anti twist” Finally, we can compute the Bekenstein-Hawking entropy
of this black hole

SBH =
AreaΣ×Σg

4GN
6d

=
volΣg

4GN
6d

∫
dydzww1√

r
= −

π
(
n− + n+ −

√
2
√
n2
− + n2

+

)
48
√

3m4n−n+

1
4GN

4d
, (4.18)

where in the last step we have used GN
4d = GN

6d/volΣg . Note that the expression within the
parenthesis is always negative, and so the area has the correct sign.

10We have restricted ourselves to positive roots as discussed in footnote 2.
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4.3 Solution with non-constant scalar

Let us now drop the assumption that φ′3 = 0 and look for a solution with a non-constant
scalar. We will still restrict ourselves to the family of fluxes where

f̃3 = f̃i, R4 = 144m4f̃i (f3 − fi) . (4.19)

The BPS equations (4.7) now have the following solution

q1,2 = e−2φ3

8 (f3 − 2fi)φ′3

[
±
(
3 (f3 − fi)− 6e2φ3 (2f3 − fi) + 9e4φ3 (f3 + fi)

)
−128e3φ3m3 (f3 − 2fi)2

]
,

w1 = e−φ3/2

12m2 , w = 256e7φ3/2m4
(
f3 − 2fi
3e2φ3 − 1

)2
, r = r2

0
e2φ3

(φ′3)2 ,

A3
z = 2m2e−2φ3

r0

[(
3e4φ3 + 4e2φ3 − 3

)
f3 +

(
3e4φ3 − 2e2φ3 + 3

)
fi
]
,

n = n0e
3φ3/8

√
φ′3

3e2φ3 − 1 .

(4.20)

We have now obtained a solution in which the scalar field is not constant. The dilaton as
well as the metric factors are determined in terms of the arbitrary scalar φ3. The solution
has two free parameters f3 and fi corresponding to the fluxes, in contrast to the solution
with constant scalars which had only one free parameter fi. So we expect this solution to
reduce to the one in the previous subsection under a specific choice of fluxes. To see this,
let us trade φ3 for a new function A(y) which we define by the following relation

e2φ3 = f3 − 2fi +A

3A , (4.21)

and rescale the arbitrary constant r0 to r0 = r̃0 (f3 − 2fi). The solution in equation (4.20)
can be rewritten in terms of A as follows

w1 = 1
4 · 33/4m2

(
A

f3 − 2fi +A

)1/4
, w = 256m4A1/4

3 · 33/4 (f3 − 2fi +A)7/4 ,

r = 4Ar̃2
0

3 (A′)2 (f3 − 2fi +A)3 , n = n0
√
A′

√
2
[
27A3 (f3 − 2fi +A)5

]1/16 ,

q1,2 = ∓9 (f3 + fi − 2A) + 128
√

3m3√A (f3 − 2fi +A)3/2

12A′ .

(4.22)

As before, the constraint in equation (4.10) determines σ. We have checked explicitly that
this solution in terms of A is a solution to the BPS equations. It is now easy to see that
imposing f3 = 2fi takes us back to the solution with a constant scalar in section 4.2.
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4.3.1 Regularity of the solution

We have obtained a solution with the scalars and the metric factors depending on a single
arbitrary function A. To analyse the structure of the metric, we will pick this function
to be A(y) = y. We will further define fluxes g1, g2 as the following linear combinations
of f3, fi

g1 = f3 + fi , g2 = f3 − 2fi . (4.23)

In terms of these fluxes, setting g2 = 0 takes us back to the solution in section 4.2. With
this choice,

q = 1024
3 m6y (y + g2)3 − 9y2

4 + 9g1y

4 − 9g2
1

16 , (4.24)

which is again a quartic equation (but now including a y3 term as well) with a positive
coefficient for the leading term. This has four roots, with constraints on g1, g2 for all the
roots to be real. In particular, we are interested in the cases where the middle two roots (we
will call them y2, y3 like before) are positive. The interval 0 < y2 ≤ y ≤ y3 then corresponds
to a positive q. The metric coefficient r on the other hand is positive for f3 ≥ 2fi. It is
much more difficult to find the roots analytically in our present solution. Therefore, we
have repeated the regularity analysis of section 4.2.1 by picking numerical values of the
fluxes, and checked that it correctly reproduces the Euler character of the spindle, as well
the total flux in equation (4.17).

Furthermore, to get an analytic handle on the entropy, we have performed a pertur-
bative expansion as a series in g2 around g2 = 0 and checked against numerical results.
We will briefly present this here. The strategy is the following: the two equations (3.13)
describing the deficit angles determine the flux g1 as well as the periodicity ∆z in terms
of g2, y2, y3, and positive coprime integers n±. This leaves g2 undetermined. Further,
q (y2) = q (y3) = 0 determines y2,3 in terms of g2, n±. Since g2 = 0 corresponds to the con-
stant scalar solution of section 4.2, it is natural to expand all quantities as a perturbation
series in g2. The roots y2,3 expanded in g2 read

y2 = − 3
√

3
128m3

1−
√

2n−√
n2

+ + n2
−

− 3g2
4 + 4

√
2m3n−g

2
2√

n2
+ + n2

−

+O
(
g3

2

)
,

y3 = 3
√

3
128m3

1−
√

2n+√
n2

+ + n2
−

− 3g2
4 −

4
√

2m3n+g
2
2√

n2
+ + n2

−

+O
(
g3

2

)
.

(4.25)

We can now also compute the area as an expansion in g2. The relevant physical quantity
corresponding to g2 is the magnetic charge on the spindle

Q := g

2π

∫
Σ
F I . (4.26)

In the absence of g2, the flux on the spindle is Q0 = (n+ − n−) / (4n−n+). Subtracting
this constant flux from Q, we define Q̃ := Q −Q0, and rewrite g2 as an expansion in this
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parameter to get

g2 =
√

6n+n−Q̃

16m3
√
n2

+ + n2
−

+
n2

+n
2
−

(
n+ + n− +

√
2
√
n2

+ + n2
−

)
Q̃2

2
√

6m3 (n2
+ − n2

−
)√

n2
+ + n2

−

+O
(
Q̃3
)
. (4.27)

We can now compute the area as an expansion in Q̃,

SBH =
AreaΣ×Σg

4GN
6d

=
volΣg

4GN
6d

∫
dy dzww1√

r

= 1
4GN

4d

−π
(
n− + n+ −

√
2
√
n2
− + n2

+

)
48
√

3m4n−n+
− πn+n−Q̃

2

72
√

6m4
√
n2
− + n2

+

+O
(
Q̃3
)
,

(4.28)

where in the last line we have used GN
4d = GN

6d/volΣg . As expected, this indeed reduces to
equation (4.18) for Q̃ = 0.

4.4 Subtruncation to 4d gauged T 3 supergravity

Let us now interpret the AdS2×Σ×Σg solutions that we have found in sections 4.2 and 4.3,
in terms of solutions to the 6d theory compactified on the Riemann surface Σg. A general
compactification of this form gives a four dimensional N = 2 gauged supergravity [33], a
particular subtruncation of which is the “gauged T 3 model”. This theory consists of a single
vector multiplet whose scalars parametrize the coset manifold SU(1, 1)/U(1). The same 4d
theory can also be obtained as a consistent truncation of the “gauged STU model”, which
is the maximal four dimensional N = 8 supergravity obtained from a reduction of eleven
dimensional supergravity on S7 [34, 35].

The truncation from 6d F(4) gauged supergravity to the 4d “gauged T 3 model” was
performed in [33], and the 6d solutions that we have found turn out to correspond to this
subtruncation. To see this, we can compare properties of our solution to those presented
in [33]. The 4d fields (χ1, χ2, σ) can be identified with combinations of the 6d fields as
follows

e4χ1 = e4σ

w2
1
, χ2 = φ3 , e2φ = e−2σ

w1
. (4.29)

In the T 3 model, these scalars should have e2φ = e2χ1−χ2 = 12m2. Using equation (4.20)
or (4.22), we see that indeed our solution reproduces this. Additionally, if we rewrite the
fluxes through Σg in terms of s1 and s2

2
∫

Σg

F 3 = s1 + s2 , 2
∫

Σg

F I = s1 − s2 , (4.30)

then the T 3 model has s1 = 1/ (3m) , s2 = 0. Recalling from equation (4.3) that
∫

Σg
F 3 =∫

Σg
F I = 1/(6m), we see that indeed the solutions that we have found correspond to the

4d gauged T 3 subtruncation of the 6d theory.
Analogous to the discussion in section 3, we expect the full solution to interpolate

between AdS2 × Σ × Σg × S4 and AdS4 × Σg × S4. The AdS4 × Σg × S4 solution is dual

– 16 –



J
H
E
P
0
6
(
2
0
2
2
)
1
4
5

to a 3d SCFT [4]. So it is natural to expect that our solution is dual to this 3d theory on
a spindle. To find support for this duality, we compute the Bekenstein-Hawking entropy
and compare it with a holographic computation where we minimize an entropy functional
obtained by gluing gravitational blocks. To construct this off-shell entropy functional, we
start from the on-shell free energy of the AdS4 × Σg solution, which is the free energy on
S3 and in the large N limit is given by FS3 = πL2

AdS4
/GN

4 . We then promote this to an off-
shell quantity by using the prepotential of the four dimensional magnetic STU model (and
identifying three of the four fields, corresponding to the T 3 model) F =

√
X1X3

2 . Using
gravitational blocks defined by B (Xi) = F (Xi) /ε, we construct the following entropy
functional [21]

I =
πL2

AdS4

2GN
4d

[
B
(
X+
i

)
+ B

(
X−i

)
+ λ (∆1 + 3∆2 − 2)

]
, (4.31)

where

X±1 =
(

∆1 −
ε

2n±
∓ s ε

2

)
, X±2 =

(
∆2 −

ε

2n±
± s ε

6

)
. (4.32)

As before ∆i and ε are chemical potentials conjugated to the electric charges and the
rotational symmetry of the spindle respectively, and λ is a Lagrange multiplier that enforces
the constraint ∆1 + 3∆2 = 2.11 The ± index on Xi refers to the north and the south
pole across which the gravitational blocks are glued. The plus sign between the blocks in
equation (4.31) corresponds to the identity gluing in [21]. To find the entropy, we now need
to extremize this functional with respect to ∆i and ε. We do this perturbatively in the
parameter s that corresponds to the flavor charge, to find the following extremized value

I∗ =
πL2

AdS4

2GN
4d

−
(
n− + n+ −

√
2
√
n2
− + n2

+

)
2n−n+

− n+n−s
2

3
√

2
√
n2
− + n2

+

+O
(
s3
)
. (4.33)

The four dimensional AdS length is determined from the scalar potential of the four dimen-
sional theory to give 1/L2

AdS4
= 48

√
3m4 [33]. Remarkably this reproduces the Bekenstein-

Hawking entropy in equation (4.28) with the identification s = Q̃. The agreement can be
checked to arbitrary orders in the perturbation series. We have also repeated the exact
computation numerically and we see that the entropies indeed match exactly. This lends
support to our expectation about the holographic duality.

4.5 Solution without equal fluxes

So far we have solved the BPS equations on the locus given by f̃3 = f̃i. We will now
drop this assumption, as well as keep κ arbitrary, and look for new solutions. However,
we restrict ourselves only to solutions with a constant scalar φ′3 = 0. Solutions to the BPS

11Our entropy functional can be related to [11] by taking their ri = 1/2, n1 = (1+z)(n−−n+)/(4n−n+),
n2 = (1− z/3)(n− − n+)/(4n−n+) so that n1 + 3n2 = (n− − n+)/(n−n+), and redefining z in terms of s.
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equations are obtained in a way analogous to that outlined in the previous sections. The
functions appearing in the metric are

w1 = −κ
√
f3
(
f2

3 − f2
i

)3/4
6
√

6m2 (f2
3 − 2f2

i

) , r = r0w
3

(w′)2 ,

q1,2 = ±
(
κ

12 · 23/431/4m2√w
(
f2

3 − 2f2
i

)
f

3/4
3

(
f2

3 − f2
i

)1/8
w′

+ 3w
w′

)
+ 25/433/4mf

3/4
3 w3/2(

f2
3 − f2

i

)3/8
w′

.

(4.34)

The scalar φ3 and the normalization of the spinor n are

e2φ3 = f3 − fi
f3 + fi

, n = n0

√
w′

w
. (4.35)

The R-charge gauge field along the spindle is

A3
z = 48m2κ

(
f2

3 − 2f2
i

)
+ 21/433/4f

3/4
3

(
f2

3 − f2
i

)1/8√
w√(

f2
3 − f2

i

)
r0w

, (4.36)

and the fluxes f̃i are related to f3,i by

f̃i = − κf3fi
2g
(
f2

3 − 2f2
i

) . (4.37)

This solution also turns out to have an interpretation in terms of the 6d F(4) gauged super-
gravity compactified on a Riemann surface. The particular subtruncation this corresponds
to, is minimal supergravity in 4d. Its properties were discussed in [33], and we can check
that the explicit solution obtained here has the correct properties. Parametrizing the fluxes
in terms of s1, s2 using equation (4.30) as before, we find

s1 + s2 = −κ
g
, s1 − s2 = − κf3fi

g
(
f2

3 − 2f2
i

) . (4.38)

We can then compute the 4d scalars using the identification in equation (4.29) to find

e−2σ

w1
= 24m2

−κ+m
√

9 (s1 − s2)2 + 4s1s2

,

e4σ

w2
1

= 96m3

m
(
9 (s1 − s2)2 + 12s1s2

)
− κ

√
9 (s1 − s2)2 + 4s1s2

,

e2φ3 = 2s1√
9 (s1 − s2)2 + 4s1s2 + 3 (s1 − s2)

,

(4.39)

which exactly matches the result for the 4d truncation in [33].
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4.5.1 Regularity of the metric

This solution is valid for a Riemann surface with arbitrary κ. However, to study the
structure of the metric near the poles, we choose κ = −1, and pick the arbitrary function
w to be w = y2. The function q is a reduced quartic polynomial with a positive leading
coefficient

q = 3
√

6f3/2
3 m2y4(

f2
3 − f2

i

)3/4 −9y2

4 + 18 · 23/4 · 31/4 (f2
3 − 2f2

i

)
m2y

f
3/4
3

(
f2

3 − f2
i

)1/8 −72
√

6
(
f2

3 − 2f2
i

)2
m4

f
3/2
3

(
f2

3 − f2
i

)1/4 . (4.40)

This has four roots

y1,2 =
31/4f

1/8
1

(
−f1/4

1 ±
√
f

1/2
1 + 64f2m3

)
4 · 21/4m (2f1 − f2)3/8 ,

y3,4 =
31/4f

1/8
1

(
f

1/4
1 ±

√
f

1/2
1 − 64f2m3

)
4 · 21/4m (2f1 − f2)3/8 ,

(4.41)

where we have defined the combination of fluxes f1 = f2
3 − f2

i , and f2 = f2
3 − 2f2

i . For
the metric to be a smooth metric on the spindle, the middle two roots must be positive,
when then specify the interval for y i.e., y ∈ [y2, y3]. The function r in the metric is
always positive for r0 > 0. There are conical singularities at the ends of this interval.
Parametrizing the deficit angles by coprime integers n±, we have

37/421/4 (2f1 − f2)3/8m
√
f

1/2
1 ± 64f2m3

√
r0f

5/8
1

= ± 2π
n±∆z . (4.42)

This determines one of the fluxes and the periodicity in z in terms of the other flux and
integers n±. We can then compute the R-symmetry flux through the spindle, which turns
out to be

g

2π

∫
Σ
F 3 =

( 1
n+
− 1
n−

)
. (4.43)

Similar to the solutions in sections 4.2 and 4.3, this is of the “anti twist” type. The Euler
character of the spindle can be computed similarly and indeed gives the correct result

χ(Σ) =
( 1
n+

+ 1
n−

)
. (4.44)

Finally, let us compute the area of the horizon of this black hole, which is given straight-
forwardly in terms of the single free flux parameter. It is, however, more useful to use
a different parametrization. Let us rewrite the R-symmetry flux and the magnetic flux
through the Riemann surface in terms of a parameter ζ corresponding to the topological
twist on Σg which parametrizes the difference between the fluxes as follows

s1 = − κ

6m

(
1 + ζ

κ

)
, s2 = − κ

6m

(
1− ζ

κ

)
. (4.45)
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Restoring an arbitrary κ, the Bekenstein-Hawking entropy is

SBH =
AreaΣ×Σg

4GN
6d

= 1
4GN

4d

−
(
n+ + n− −

√
2
√
n2

+ + n2
−

)
π

n+n−
·

(√
κ2 + 8ζ2 − 3κ

)2

864m4
√

2κ
(
κ−

√
κ2 + 8ζ2

)
+ 4ζ2

 .
(4.46)

where in the last line, we have used GN
4d = GN

6d/volΣg . The second factor in the entropy is
precisely L2

AdS4
for the four dimensional minimal supergravity obtained as a subtruncation

of the six dimensional theory as obtained in [6, 33]. The first factor matches the entropy
for AdS2 × Σ solution in 4d N = 4 gauged supergravity found in [9], in the absence of
rotation. As a check, taking κ = −1 and s2 = 0 (which corresponds to ζ = −1) in the
above, gives 1/L2

AdS4
= 48

√
3m4, and correctly reproduces the entropy in equation (4.18).

We can again compute the entropy holographically using gravitational blocks. The
prepotential is simply given by F (X) = X2, which defines the gravitational block B (X) =
F (X) /ε. The constraint now fixes ∆ = 1/2 to give

I =
πL2

AdS4

2GN
4d

[
B
(
X+

)
+ B

(
X−

)
+ λ (4∆− 2)

]
, (4.47)

where

X± =
(

∆− ε

2n±

)
. (4.48)

Extremizing this with respect to ε gives

I∗ =
πL2

AdS4

2GN
4d

−
(
n+ + n− −

√
2
√
n2

+ + n2
−

)
2n+n−

 , (4.49)

which exactly matches the entropy in equation (4.46) with L2
AdS4

identified as above.

5 Discussion

By solving the BPS equations in six dimensional F(4) gauged supergravity, we have found
two classes of solutions: AdS4 ×Σ and AdS2 ×Σ×Σg. We conjectured that the AdS4 ×Σ
solution is dual to a five dimensional N = 1 SCFT on a spindle Σ, while the AdS2×Σ×Σg

is dual to a three dimensional SCFT on Σ. We computed the entropy holographically
by extremizing the entropy functional constructed from gravitational blocks and found
that it agrees with the entropy computed from gravity. One class of our AdS2 × Σ ×
Σg solutions corresponds to the gauged T 3 supergravity, while the other corresponds to
minimal supergravity theory in four dimensions.
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Our solutions are obtained in a six dimensional truncation of mIIA supergravity, and
an uplifted solution in ten dimensions can be constructed. The four dimensional T 3 sub-
truncation of the six dimensional theory further admits an uplift in eleven dimensional
supergravity. The solutions that we have found in this paper should then be expected to
represent near horizon geometries of wrapped branes in ten or eleven dimensions. It would
be very interesting to construct these uplifted solutions and understand the objects that
they correspond to.

The solutions presented in this paper should be seen as fixed points of a flow from
the supersymmetric AdS6 solution. Constructing the full flow is often a challenging task.
While there are a few examples of full analytic flows e.g., a rotating black hole in AdS4
in [9, 12, 36], it can often only be done numerically. Nevertheless, it would be interesting
to construct the full flow for the present solutions to better understand the objects they
describe.

Lastly, we have constructed entropy functionals by appropriately gluing gravitational
blocks and we have seen that they reproduce the entropy of the gravitational solutions.
Finding an explanation of these entropy functionals from field theory would be very useful.
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