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1 Introduction and summary

In this work, we perform an explicit computation demonstrating the ability of the recent
proposal [1] to holographically reconstruct operators behind black hole horizons, while
relying entirely on boundary data.
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The framework of [1] outlines an intrinsically holographic method for transporting local
operators along the trajectory of a selected bulk “observer” or probe, which propagates in
some ambient geometry.1 The central idea is that upon tracing out the probe’s internal
degrees of freedom, the rest of the Universe, which we call the system, is endowed with
a reduced density matrix, ρ, as a consequence of its initial entanglement with the probe.
The key observation was that, in certain states, the unitary flow ρis, called modular flow,
propagates bulk operators, initially localized near the probe, along the probe’s worldline by
translating them in proper time by an amount equal to

τproper = βprobe
2π s (1.1)

while keeping their location relative to the worldline fixed. The parameter βprobe is an
effective inverse temperature associated with the probe’s mixed state which we will make
precise in the main text.

Practically, the introduction of the observer is achieved by entangling our holographic
system with an external reference, representing the observer’s internal degrees of freedom;
the system’s modular flow ρis is then obtained by tracing out that reference. The reader is
encouraged to consult [1] for an in-depth exposition to the method and the arguments for
it. The modular time/proper time correspondence, in the form stated here, has a limited
regime of validity but it becomes the seed for a general holographic construction of an
observer’s local proper time Hamiltonian, which is explained in an upcoming paper [4]. The
most exciting possibility created by this proposal is obtaining holographic access to the
local operators in the interior of black holes, by propagating bulk fields in the exterior2

with the modular flow of an infalling probe for the appropriate (finite) amount of modular
time (figure 1c).

In this paper, we explicitly apply this method, within its expected regime of validity, in
order to test this interior reconstruction. The setup of our computation is the AdS2/SYK
correspondence [5], where an eternal AdS2 wormhole solution of Jackiw-Teitelboim gravity
is described microscopically by a pair of dynamically decoupled SYK systems (which we
call SYKl and SYKr) in the thermofield double state. Each SYK model [6–8] is a quantum
mechanical system that consists of N Majorana fermions ψjl,r and has a q-local Hamiltonian
with random couplings drawn from a Gaussian ensemble [9]. The infalling probe we wish to
co-move with is a configuration of Majorana fermions introduced near the right asymptotic
boundary, entangled with an external reference system of Dirac fermions. The probe is
introduced by inserting in the Euclidean path integral that prepares the thermofield double
state dual to the empty wormhole (figure 1a), an operator Usys+ref that entangles our
system with the reference.

Following the proposal of [1], we proceed by analyzing, directly in the pair of SYK
models, the evolution of a fermion ψr of SYKr with the unitary ρis, where ρ is the reduced
density matrix of SYKl×SYKr after tracing out the reference. To test the success of our
reconstruction beyond the horizon, we study the causal influence of an excitation ψl(t)

1See [2, 3] for a conceptual similar approach to interior reconstruction.
2Where reconstruction is well understood.
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inserted in the left asymptotic boundary at time t, on the modular flow of the right exterior
operator ρ−isψrρis, as a function of modular time s, by evaluating the anticommutator:

W (s, t) = Tr
(
ρ
{
ρ−isψrρ

is, ψl(t)
})

(1.2)

The bulk expectation for W is the following: when the backreaction of the probe is small,
the semiclassical geometry of the wormhole implies that the causal propagator W vanishes
for the range of proper times the flowed operator remains spacelike separated from the
left insertion, and transitions to an O(1) value at timelike separations, with a sharp spike
occurring at the proper time when the former crosses the bulk lightcone of the latter.

Our SYK computation exactly reproduces this expected bulk propagator together with
the precise proper time of lightcone crossing, in the large q,N and low temperature limit,
after the determination of the conversion factor βprobe in (1.1). Our results, therefore,
establish that the method proposed in [1] constitutes a practically useful tool for the
holographic reconstruction of black hole interior operators.

Summary of our results. We setup the SYK computation in section 2. We first prepare
the SYK state dual to an AdS wormhole that contains a probe entangled with a reference,
in section 2.1 and 2.2. We devote section 2.3 to the detailed discussion of the bulk trajectory
followed by this infalling probe and the behavior of the bulk-to-boundary causal propagator
as a function of the probe’s proper time —the object we aim to compute holographically.
In order to perform the dual SYK computation of W and test its agreement with this bulk
expectation, we introduce a replica trick, explained in section 2.4, which translates the
computation of W to the evaluation of the SYK propagator on the Euclidean “necklace”
diagram shown in figure 2a. In the rest of the paper, we present this computation from two
different perspectives, using the microscopic SYK dynamics (section 3) and the bulk JT
path integral (section 4), in an attempt to clarify the physics that underlies its success.

In order to pave the way for the subsequent technical analysis, section 2.4 offers some
intuition for the behavior of the replica correlator in the limits of very large and very small
probe entropy Sprobe, showing that both lead to a trivial anticommutator W (s, t)→ 0, for
all s, albeit for different reasons, and highlighting the importance of the intermediate Sprobe
regime for getting interesting physics. In particular, Sprobe serves as an order parameter for
the different phases of the dual Euclidean gravity path integral with the “necklace” diagram
boundary conditions (figure 2a). At Sprobe ∼ O(N) the dominant replica saddle consists
of two disconnected disks associated with the left and right SYK boundary conditions,
respectively —a factorization that yields a modular flow that does not mix SYKl and SYKr

hence W (s, t)→ 0, for all s. The bulk interpretation of this behavior comes from the large
backreaction of our probe which elongates the ambient wormhole and destroys the shared
interior region, rendering the infalling observer incapable of receiving causal signals from
the other side. As we decrease Sprobe, a new dominant JT saddle appears describing a
Euclidean wormhole with cylindrical topology (figure 2c) which, however, degenerates again
as we take the limit Sprobe → 0 (figure 2d). It is precisely this Euclidean wormhole phase
in the intermediate Sprobe regime that generates an interesting anticommutator W which
reflects the reception of signals sent from the left exterior by the observer falling in from the
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(a) (b) (c)

Figure 1. (a) Euclidean path integral preparation of the thermofield double state. The blue half
disk is Euclidean path integral and the green strip is the Lorentzian continuation. (b) Euclidean
path integral preparation of the thermofield double state with a probe following geodesic (2.23),
which is plotted as the red curve. The purple curve is the Euclidean geodesic of the probe. (c)
HKLL reconstruction of a bulk spinor field χ (black dot) with ` distance from the probe (red curve).
Its boundary representation involves an integral of the HKLL kernel over the boundary region
D(t∗) = [−t∗, t∗] which is spacelike separated from χ. Translating the bulk field χ, originally located
outside the horizon, along the proper time of the red geodesic, while keeping its geodesic distance
from this geodesic fixed (purple curve), allows us to probe the AdS2 wormhole interior. In the dual
SYK model, this proper time translation is generated by the modular flow ρis of the red probe, after
tracing out the reference system it is entangled with.

right. The critical point of this phase transition is studied in appendix E. The remainder of
our discussion is, thus, focused on studying this phase.

In section 3, we perform the detailed computation working directly with the SYK
dynamics, in a 1/q perturbative expansion. The computation amounts to obtaining the
SYK propagator on the “necklace” diagram in figure 2a, with the different circles of the
“necklace” glued together via conditions determined by the unitary Usys+ref used to insert
the probe as explained in section 3.1. While an exact solution to the equations of motion
cannot be obtained due to the strong symmetry constraints discussed in section 3.2 and
further in appendix A, we find a consistent approximation in section 3.3 (with more technical
details in appendix B) that allows us to solve them in a wide parametric regime of interest
that is specified in appendix C.

The central ingredients of the computation are: (a) the quenched ensemble average
over the random SYK couplings which connects dynamically the different replicas (circles
of the “necklace”), (b) the entanglement with the reference generated by Usys+ref which,
after tracing out the latter, results in an explicit coupling between left and right SYKs in
the replica diagram, and (c) the emergent SL(2, R) symmetry controlling the maximally
chaotic dynamics of the IR sector which captures the universal effect of this coupling on the
SYK solution. The replica propagator can be approximately computed when the entropy
of the probe is not too large, and after an appropriate analytic continuation discussed in
section 3.4 it yields the expected bulk answer for W . This result can be combined with the
standard HKLL reconstruction of bulk operators in the exterior of the black hole, in order
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to study the modular flow of a bulk field located at a finite distance from the infalling probe
(figure 1c). From this pure SYK computation, we can read off the precise proper time at
which the signal sent from the left boundary is registered by our observer’s apparatus in
the wormhole interior!

In section 4, we present the same replica computation from the perspective of the
Euclidean path integral of JT gravity. In section 4.1, we argue that the probe in the
Euclidean path integral can be effectively understood as a localized injection of a fixed
SL(2, R) charge. The precise value of this charge constitutes UV data which we obtain
from a microscopic SYK computation in appendix D. We explicitly construct the Euclidean
wormhole solution dominating in the intermediate Sprobe regime in section 4.2 using the
method developed in [10]. The wormhole is supported by the localized couplings between
the left and right boundaries generated by the entangling unitary Usys+ref after we trace
out the reference. We show that the replica correlator computed in the bulk geodesic
approximation exactly matches the microscopic SYK result in section 4.3. As anticipated,
the length of this wormhole is controlled by the entropy of the probe and it pinches off in
the limits Sprobe ∼ N and Sprobe → 0 in two different ways, as shown in figure 2b, 2d. It is
precisely in the regime where the wormhole saddle dominates that the modular flow reliably
takes us behind the horizon.

The Euclidean cylinder saddle found in section 4 is reminiscent of the one discussed
in [10] and it hints, once again, at the important role played by the quenched ensemble
average of the SYK couplings. Leveraging this intuition, we speculate in section 5 on how
the analogous computation may work in more general setups and higher dimensions and
conclude with some thoughts on interesting future applications of this method.

2 A bulk infalling observer in SYK

2.1 Preparing the initial state

In this paper, we wish to explicitly use the tool of [1] to access the behind the horizon
region of two AdS2 black holes connected by an Einstein-Rosen bridge, directly from the
boundary quantum description. The first step in this process is to prepare the appropriate
initial state, describing a wormhole geometry connecting two black hole exteriors, together
with an “observer” inserted in the right asymptotic region whose microstates are entangled
with an external reference.

An AdS wormhole configuration is dual to a pair of identical holographic systems l and
r, dynamically decoupled (H = Hl +Hr) and in a special entangled state, the thermofield
double state [11]:

|β〉lr ≡ Z−
1
2
∑
a

e−
βEa

2 |Ea〉r|Ea〉l = Z−
1
2 e−

β
4H |0〉lr (2.1)

where |Ea〉l,r are energy eigenstates of each system and |0〉lr is the maximally entangled
state of the two systems obeying (Hl −Hr) |0〉lr = 0. For simpler notation, we will omit
the subscript lr in |0〉lr from now on. For AdS2, the dual boundary systems are two SYK
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(a) (b)

(c) (d)

Figure 2. (a) The “necklace” SYK diagram, summarizing the replica manifold for k = 4 replicas.
The green dotted lines connecting SYKl and SYKr correspond to local insertions of ρ0 = e−µS

where S is the “size” operator (2.14) and µ a parameter related to the entropy of the probe Sprobe
and defined in section 2.1. This coupling between the two boundary quantum systems appears after
we trace out the reference and is a consequence of the entanglement between the probe and the
reference. The modular flowed anticommutator (1.2) is obtained by an analytic continuation of
the SYK propagator on this “necklace” diagram. (b) The SYK “necklace” diagram serves as the
boundary condition for the Euclidean path integral of the dual JT gravity. In the limit of probe
entropy the dominant saddle is a pair of disconnected geometries with disk topology, leading to
trivial modular flow. (c) At intermediate values of the probe entropy for µ greater than a critical
value µcr, the Euclidean wormhole saddle with cylindrical topology dominates, supported by the ρ0
path integral insertions. The modular flowed commutator W becomes non-trivial in this regime,
allowing us to propagate into the black hole interior and detect signals sent from the other side. (d)
At very small probe entropies, the backreaction of the ρ0 becomes large, squeezing the wormhole at
the insertion points, and causing it to “pinch off” into a product of k = 4 disconnected disks with
perimeter βl + βr. Modular flow becomes trivial in this limit.
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models [12]. Each SYK model is a quantum mechanical system of N Majorana fermions
ψjl,r obeying Clifford algebra {

ψja, ψ
k
b

}
= δabδ

jk, a, b = l, r. (2.2)

The SYK Hamiltonian couples 1� q � N of them with coupling constants J l,rj1···jq which
are random variables drawn from a Gaussian ensemble:

Hl,r = iq/2
∑

1≤j1<···<jq≤N
J l,rj1···jqψ

j1
l,r · · ·ψ

jq
l,r (2.3)

EJ
[
J l,rj1···jq

]
= 0 (2.4)

EJ
[(
J l,rj1···jq

)2
]

= 2q−1J 2(q − 1)!
qN q−1 = J2(q − 1)!

N q−1 (2.5)

The maximal entangled state is defined as

(ψjl + iψjr) |0〉 = 0, ∀j = 1, · · · , N (2.6)

which leads to J lj1···jq = iqJrj1···jq . The state |β〉lr can be prepared via the standard SYK
Euclidean path integral of figure 1a. Its holographic representation is given by the path
integral of JT gravity+matter over half of the hyperbolic disk H2.

Inserting the probe. Suppose now we want to introduce a particle at the t = 0 slice in
the bulk, at some (regulated) geodesic distance ρ from the right asymptotic boundary and
initially at rest. We can do this simply by inserting a local operator in the path integral at
a Euclidean time τ from the right endpoint (figure 1b)

|β, τ〉lr = Z−
1
2 e−

(β−τ)Hl
2 e−

τHr
2 O |0〉 (2.7)

Assuming that O is dual to a bulk field with large enough mass (1 � mO � N), the
operator in (2.7) inserts a classical particle in the bulk path integral that will propagate
along the corresponding H2 geodesic (a semi-circle), until it hits the t = 0 slice at distance
ρ from the right asymptotic boundary and at a normal angle. This is precisely the initial
state of interest and Lorentzian evolution will propagate the particle along an infalling
geodesic, like in figure 1b.

The formalism of [1], however, requires our probe to have a large number of microstates
which are entangled with an external reference system. Since the details of the reference
do not matter, we can take it, for convenience, to be a system with N free Dirac fermions
cj and c†j , which we initiate in the vacuum state |v〉ref . We are then interested in a state
of the type:

|β, τ〉l,r,ref = Z−
1
2
∑
a

da e
− (β−τ)Hl

2 e−
τHr

2 Oa |0〉Oref
a |v〉ref (2.8)

where da are complex coefficients. An explicit and computationally tractable example of
such a state that we will use for our analysis, is one where the desired entanglement between

– 7 –
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the system and the reference is created by a unitary U , generated by a bi-local fermion
operator:

|βl, βr; δ〉 = Z−
1
2 e−

βlHl
2 e−

βrHr
2 U (δ) |0〉|v〉ref (2.9)

U (δ) = exp

√2δ
N∑
j=1

ψjr

(
c†j + cj

) (2.10)

and we set βl = β − τ , βr = τ . This state can be expressed in the form (2.8) by Taylor
expanding the unitary, to get:

|βl, βr; δ〉 = Z−
1
2 e−

βlHl
2 e−

βrHr
2

N∑
k=0

e−
1
2µ(δ)k∑

Ik

ΓrIk |0〉 c
†
Ik
|v〉ref (2.11)

µ(δ) = log cot2 δ, Ik ≡ {(i1, · · · , ik)|1 ≤ i1 < · · · < ik ≤ N} (2.12)

where c†Ik ≡ c†i1 · · · c
†
ik

generates fermion number basis of reference, and the Hermitian
operators ΓIk ≡ Γai1i2...ik = 2k/2ik(k−1)ψi1a . . . ψ

ik
a for a = l, r are the “size” eigenoperators

of [13, 14]. We will regard the state as perturbation on the thermofield double and thus
restrict to nonnegative µ(δ), which is equivalent to the coupling range δ ∈ [0, π/4].

Tracing out the reference yields a reduced density matrix for the SYKl×SYKr system
which reads:

ρβl,βr,µ = Z−1 e−
βlHl

2 −
βrHr

2

N∑
k=0

e−µ(δ)k∑
Ik

ΓrIk |0〉〈0|Γ
r
Ik
e−

βlHl
2 −

βrHr
2

= Z−1 e−
βlHl

2 −
βrHr

2 e−µ(δ)S e−
βlHl

2 −
βrHr

2 (2.13)

where

S = 1
2

N∑
j=1

(
1 + 2iψjl ψ

j
r

)
(2.14)

is the “size” operator, defined and explored in a series of recent works [14–21]. It is clear
from (2.13) that the entropy of probe Sprobe (which is the same as the entropy of ρβl,βr,µ)
is O(N) for µ(δ) ∼ O(1). We are interested in probes that can be regarded as relatively
small excitations of the thermofield double state, to avoid significant backreaction on the
AdS2 wormhole geometry we are trying to explore. We will, therefore, consider sufficiently
small values δ, however, not small enough for the excitation to be approximated by a single
fermion insertion. In this case, Sprobe is intermediate as illustrated in figure 2c. More
precisely, we will work in the limit e−µ(δ) � 1 and q,N, βJ → ∞ with q/N → 0.3 The
parametric regime in which our calculation is valid is discussed in detail in appendix C.

3Technically, because of the large µ(δ) regime that we are interested in, it is illegal to approximate (2.13)
as Z−1 exp (−βlHl − βrHr − µ(δ)S) by combining three exponents, which differs our modular flow from the
evolution in eternal traversable wormholes [22].

– 8 –
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2.2 Setting up the SYK computation

According to the prescription of [1], modular flow of a right exterior bulk operator Or(s) =
ρ−isφrρ

is, where ρ is the left-right density operator (2.13), translates φr along the geodesic
of our infalling probe while keeping its geodesic distance from it fixed, with the modular
time s being proportional to the proper time along the worldline (figure 1c). We must
emphasize that this prescription has certain important caveats discussed and resolved in [1]
which, however, will not be relevant in this work. A central objective of this paper is to
explicitly apply this proposal to holographically reconstruct operators in the black hole
interior, in SYK.

An infalling observer’s geodesic crosses the horizon of the 2-sided wormhole after a
finite amount of proper time. Beyond this point, it is in causal contact with part of the left
asymptotic boundary, which allows signals from the left boundary to reach our observer
and influence their measurements. Such causally propagating signals are reflected in the
appearance of a non-vanishing (anti-)commutator between left boundary operators Ol(t)
and right operators Or(s) that have been translated along the infalling geodesic.

We can, therefore, test the validity of this reconstruction in the black hole interior by com-
puting quantum mechanically the correlator (1.2) with average over all
Majorana fermions

W (s, t) = 1
N

N∑
j=1

Tr
(
ρ
{
ρ−is ψjr ρ

is, ψjl (t)
})

(2.15)

which should be exponentially small for some finite range of s and sharply reach a peak at
some finite s. This peak signals that the flowed operator ρ−is ψr ρis has entered the bulk
lightcone of the left boundary operator ψl(t) (see figure 3a and 3b). More general modular
flowed correlators of bulk exterior operators can be obtained from (2.15) by smearing the
fermions in boundary time with the known HKLL kernel (see figure 1c and section 3.5). As
we will show, the SYK solution to (2.15) exactly matches semi-classical bulk computation
reviewed in section 2.3, in a parametric regime of βl, βr, µ we specify.

2.3 Bulk semiclassical expectation

We start with a discussion of what the correlation function (2.15) is expected to be, if the
bulk interpretation of modular flow as proper time translations along the probe’s worldline
in the bulk dual is correct. The two sided black holes spacetime is just a portion of global
AdS2. We can describe AdS2 as the hypersurface [23]

−Y 2
−1 − Y 2

0 + Y 2
1 = −1 (2.16)

in a 3-dimensional embedding space with metric

ds2 = −dY 2
−1 − dY 2

0 +dY 2
1 (2.17)

Parametrizing this surface as

Y−1 = sin T cscσ, Y0 = cosT cscσ, Y1 = − cotσ (2.18)

– 9 –
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(c)

Figure 3. (a)(b) The worldline of probe (red curve) and spatial geodesics with equal sp separation
and orthogonal to it (blue curves) in the two sided big black holes spacetime. The two shaded
regions are left and right wedge respectively. The yellow dashed line is null and shot from the left
boundary from T = −1. We see clearly that the probe takes more proper time in (b) than (a)
to reach the lightcone of the yellow line. (c) The location of past lightcone location TLC on left
boundary of an atmosphere operator on right boundary after proper time sp evolution. Blue, yellow
and green curves are for ξ = 2, 0,−2.

yields the global AdS2 metric

ds2 = −dT
2 + dσ2

sin2 σ
, σ ∈ [0, π], T ∈ R (2.19)

The causal wedges of the left and right boundary in the thermofield double state (shaded
regions in figure 3a and figure 3b) only extend for T ∈ [−π/2, π/2] and the local boundary
time tl,r is defined as [23]

tan T2 = tanh π
β
tl,r (2.20)

where β is the temperature of the thermofield double state.
AdS2 has an SO(2, 1) symmetry whose embedding space representation reads:

M1(x) =

1 0 0
0 coshx sinhx
0 sinhx coshx

 , M2(y) =

coshy 0 sinhy
0 1 0

sinhy 0 coshy

 , M3(θ) =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1


(2.21)

The simplest timelike geodesic in AdS2 is the worldline σ = π
2 . In embedding coordinates

this reads UµYµ = 0 for Uµ = (0, 0, 1). Any other timelike geodesic can be obtained from
this one by an SO(2, 1) transformation

Uµ[M1]κµ(ξ)[M3]νκ(c)Yν = 0, (2.22)

The general timelike geodesic can be expressed as

cosσ = r cos(T − c), r ∈ (−1, 1), c ∈ [−π, π] (2.23)

– 10 –
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where we set tanh ξ = r. The parameter c sets the timeslice at which the geodesic is
instantenously at rest, in the global AdS frame. For a state prepared by a Euclidean path
integral over the half disk, we should take c = 0. The limits r → ±1 correspond to null
geodesics. On the T = c = 0 slice, positive/negative r corresponds to probe starting from
the left/right wedge, respectively (figure 3a and figure 3b).

Proper time flow. The next step is to define a local bulk atmosphere operator by
shooting a spacelike geodesic orthogonally from our probe’s worldline at the initial time,
and following it for proper length `. We then want to propagate this operator along the
timelike geodesic’s proper time while keeping its relative location and angle to the probe’s
geodesic fixed. This is a natural choice of foliation related to the probe and is identical to
the one used in [24] for the discussion of phase space variables of JT gravity with dynamical
EOW branes.

The spacelike geodesics orthogonal to σ = π
2 are T = T0 for any T0. In embedding

space this reads V µYµ = 0 with V µ = (cosT0,− sin T0, 0). An initial bulk operator located
at (T, σ) = (0, σ0) is at a geodesic distance from the probe equal to

` =
∫ σ0

π/2

dσ

sin σ = 1
2 log 1− cosσ0

1 + cosσ0
=⇒ cosσ0 = − tanh ` (2.24)

Propagation along the σ = π
2 geodesic for proper time sp = T0 then simply shifts the bulk

operator to the global AdS point (T0, σ0).
Propagation along a general probe’s geodesic (2.23) can be obtained by a simple SO(2, 1)

transformation of the above, since AdS isometries preserve both geodesic lengths and relative
angles. Restricting our attention to probes that are at rest at global time T = 0, the AdS
location of a bulk operator at distance ` from the probe, translated along the geodesic (2.23)
for proper time sp = T0 is given by (Tb, σb) determined by the equation

Yµ = [M1]νµ(ξ)Y (b)
ν

⇒(sin Tb cscσb, cosTb cscσb cosh ξ − cotσb sinh ξ, cosTb cscσb sinh ξ − cotσb cosh ξ)
= (sin T0 cscσ0, cosT0 cscσ0,− cotσ0). (2.25)

Using (2.24), we can solve that

cotσb = cos sp sinh ξ cosh `− sinh ` cosh ξ (2.26)

tan Tb = sin sp
cos sp cosh ξ − tanh ` sinh ξ (2.27)

The past lightcone of this atmosphere operator meets the left boundary at TLC = Tb − σb
which reads

TLC = arctan sin sp
cos sp cosh ξ − tanh ` sinh ξ − arctan 1

cos sp sinh ξ cosh `− sinh ` cosh ξ

= 2 arctan
(

tan sp
2 − e

`

eξ(1 + e` tan sp
2 )

)
(2.28)
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where the second arctan in the first line takes values in [0, π]. We plot TLC as a function of
proper time sp in figure 3c for an atmosphere operator near the right boundary, ` → ∞.
From the plot, we see that only a finite range of sp leads to TLC ∈ [−π/2, π/2] as expected.
Using (2.20), this lightcone crossing time corresponds to the left boundary time

tLC = β

π
arctanh

tan sp
2 − e

`

eξ(1 + e` tan sp
2 )

(2.29)

Matching to the path integral parameters. It is useful to express the lightcone
crossing time (2.29) in terms of the parameters appearing in the path integral preparation
of the state (figure 1b). For this, we need to work out the relation between ξ and βl,r by
considering the purple curve in figure 1b as a Euclidean geodesic. To compute this, it is
convenient to switch to a different global coordinate system of EAdS2

ds2 = dρ2 + sinh2 ρdτ2 (2.30)

where
cosh ρ = cosh T cscσ, tan τ = − sinh T secσ (2.31)

The parameter τ in (2.30) is an angular coordinate on H2 and it is related to the Euclidean
time of the boundary path integral τ∂ via:

τ = 2πτ∂
β

(2.32)

The geodesic that is orthogonal to the T = 0 slice at T = 0, σ = arccos r is (assuming
r ∈ [0, 1])

1 + sinh2 ρ sin2 τ

(cosh ρ+ sinh ρ cos τ)2 = 1 + r

1− r (2.33)

and it meets the EAdS boundary (ρ→ +∞) at Euclidean time

τ = ±πδr = ± arccos(−r) (2.34)

where we defined δl,r ≡ βl,r/β. This leads to

tan πδl/2 = cot arccos(−r)
2 =

√
1− r
1 + r

= e−ξ (2.35)

where in the last step we used the identity tanh ξ = r.

2.4 A replica-trick for modular flowed correlators

The rest of this paper is devoted to performing the computation of (2.15) in two different
ways and demonstrating its exact match to the bulk expectation (2.29) with the parameter
relation (2.35). Both of them rely on employing a replica trick: we first consider the correlator

W k,s
ab (τ1, τ2) = 1

N

N∑
j=1

Tr
[
ρk−sψja(τ1)ρsψjb(τ2)

]
/Trρk (2.36)
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where ψja(τ) ≡ eHaτ ψja e
−Haτ and a, b ∈ {l, r}; we then obtain (2.15) from (2.36) via an

appropriate analytic continuation in k, s and τ1,2 with (a, b) = (r, l). Here we average over
all Majorana fermions in the SYK model. The replica correlator (2.36) corresponds the SYK
propagator on the “necklace” diagram (figure 4). It is also important to remember that
since SYK is a theory with random couplings, the correlator W k,s

ab refers to the statistical
average over Ji1,i2,...,iq of the r.h.s., which we left implicit in (2.36). This fact will play a key
role in our analysis and we will explicitly restore this ensemble average in formulas where it
is important.

Before diving into the technical analysis of (2.36), it is illuminating to first consider
two extreme limits of the computation: µ→ 0 and µ→∞.

(a) µ → 0 limit. Recalling the expression (2.13) for the system’s density matrix, we see
that µ→ 0 results in e−µS → Ilr and the state factorizes to a product of two thermal states
for the left and right systems separately, with inverse temperatures βl and βr respectively

ρβl,βr,µ→0 → Z−1e−βlHle−βrHr (2.37)

This limit corresponds to δ → π
4 in (2.9) which yields a maximally entangled state between

the probe and the reference, with Sprobe → O(N). The factorization of ρ in this limit
implies that introducing a probe with a very large entropy destroys the correlations between
SYKl and SYKr and by extension the common geometric interior of the AdS2 wormhole we
wish to probe.

The replica correlation function of interest, i.e. (2.36) for a = l and b = r, then becomes:

W k,s
rl (τ1, τ2) µ→0→ 1

NZ

N∑
j=1

EJ
[
Trr

[
e−βrkHrψjr (τ1)

]
Trl

[
e−βlkHlψjl (τ2)

]]
(2.38)

where we explicitly restored the (quenched) average over the random couplings Jj1,j2,...,jq
implicit in all SYK computations. In the bulk, the computation of (2.38) is dominated by
the Euclidean gravitational path integral on two disconnected disks with circumferences
βlk and βrk respectively (figure 2b), with the appropriate boundary fermion insertions on
each side. This factorized contribution leads to an identically vanishing commutator (2.15)
for all s, t, consistently with the expectation that inserting a large entropy probe results
in a long and potentially non-geometric wormhole and, as a consequence, the probe never
enters a region that can be causally influenced by the left boundary.

(b) µ → ∞ limit. The opposite limit, δ → 0 ⇒ µ(δ) → ∞, in turn, yields e−µ(δ)S →
|0〉 〈0| up to normalization and ρβl,βr,∞ approaches the projector onto the thermofield double
state |β〉 with inverse temperature β = βl + βr:

ρβl,βr,µ→∞ → |β〉〈β| (2.39)

The replica correlation function (2.36) then reduces to:

W k,s
rl (τ1, τ2) µ→∞→


1
N

∑N
j=1 EJ

[
〈β|ψjr(τ1)ψjl (τ2)|β〉 〈β|β〉k−1

]
, if: s = 0

1
N

∑N
j=1 EJ

[
〈β|ψjr(τ1)|β〉〈β|ψjl (τ2)|β〉 〈β|β〉k−2

]
, if: s 6= 0

(2.40)

– 13 –



J
H
E
P
0
6
(
2
0
2
2
)
1
4
3

The bulk replica computation in this regime is dominated by a product of k disconnected
hyperbolic disks, each having a circumference β (figure 2d). Once again, this results in a
vanishing commutator (2.15) since this is physically the case of a probe with infinitesimally
small entropy Sprobe → 0 and, thus, trivial modular flow.

(c) intermediate µ. The two limits above make it clear that modular flow can only be
interesting in the intermediate µ regime, when the probe has an entropy that is finite but
small compared to that of the ambient black hole. We can gain some intuition for the
behavior of the replica correlator for finite µ, by approaching it from the µ→ 0 side. First
notice that W k,s

rl can be expressed as

W k,s
rl (τ1, τ2)

= 1
NZ

N∑
j=1

EJ [Tr
[
ρk−sψjr (τr) ρsψjl (τ2)

]

= 1
NZ

N∑
j=1

EJ

[
Tr
[
T
{
e−kβlHl−kβrHr

(
k−1∏
ν=0

e−µS(ν+1/2)
)
ψjr(τ1 + sβr)ψjl (τ2)

}]]
(2.41)

where we defined S(x) = e(βlHl+βrHr)x S e−(βlHl+βrHr)x and ψjl,r(x) = eHl,rx ψjl,r e
−Hl,rx, the

operator S is the size operator defined in (2.14), T denotes Euclidean time ordering and
the variables τl,r are restricted to the interval τl,r ∈ [0, βl,r]. As we take µ→ 0 in (2.41) we
explicitly recover (2.38).

The bulk AdS computation of (2.41) gets contributions from all geometries consistent
with the boundary conditions set by “necklace” diagram (figure 2a). The two JT saddles of
interest are: (a) the product of two disconnected hyperbolic geometries with disk topology
and total perimeter lengths kβl and kβr respectively (figure 2b) and (b) the Euclidean
wormhole geometry with cylindrical topology connecting the left and right boundaries
(figure 2c). The latter is supported by the backreaction of the localized ρ0 = e−µS insertions,
since minimizing the corresponding potential energy V (µ) = µ

∑k−1
ν=0〈S(ν + 1/2)〉 favors

large correlations between SYKl and SYKr. The disconnected contribution cannot give
rise to a non-trivial left-right commutator after analytic continuation. It is, therefore, the
Euclidean wormhole saddle that describes the physics of our probe crossing the lightcone of
the left boundary fermion —when it dominates.

At small µ, the insertion of ρ0 in (2.41) can be expanded perturbatively about µ = 0,
and described as the insertion of l-r bi-local operators, of low dimension. The backreaction
of these bi-locals is small and thus a Euclidean wormhole supported by them would be very
long, with a large JT gravity action, hence the disconnected geometry dominates (2.41).
The computation in large q SYK model in appendix E shows that, as µ increases, the
backreaction of ρ0 on the Euclidean geometry leads, on the one hand, to a slow and
bounded decrease of the action of the disconnected contribution, and, on the other hand,
to a linear decrease of the action of the wormhole contribution (figure 12), whose length
decreases as well. At a critical value µc the two saddles exchange dominance and the
dominant contribution to (2.41) is given by the boundary-to-boundary propagator about
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the Euclidean wormhole geometry of figure 2c. The critical value µcr ∼ 2βJ /q2 is derived
in appendix E for the large q SYK model at low temperature. In the rest of this paper, we
will only focus on µ > µcr and this connected wormhole phase.

In section 4, we explicitly construct this bulk solution and the relevant propagator and
show that its analytic continuation leads, indeed, to a modular flow consistent with the
proper time translation interpretation discussed in section 2.3. The computation breaks
down for very large values of µ, when the wormhole pinches off to k disconnected disks
(figure 2d).

3 Replica computation in SYK

In this section, we perform the computation of (2.36) and its analytic continuation by
working directly on the boundary quantum theory and finding an approximate solution
to the large q SYK dynamics on the “necklace” diagram (figure 4). We make all our
approximations explicit and bound the errors in our analysis and its parametric regime of
validity in appendix C.

3.1 Large q SYK on “necklace” diagram

As discussed in section 2.1, the density matrix of interest is, up to normalization:

ρ = e−(βlHl+βrHr)/2ρ0e
−(βlHl+βrHr)/2 (3.1)

where

ρ0 ≡ exp

−iµ N∑
j=1

ψjl ψ
j
r

 (3.2)

We need to compute the correlation functions W k,s
ab (τ1, τ2) of ψja (2.36) with k copies of ρ for

positive integrer k and nonnegative integer s with 0 ≤ s ≤ k. This amounts to computing
correlation functions on the “necklace” diagram of figure 4.

Let us first compute the correlation functions in the infinite q limit. Under this limit, as
we will see in the following, the G-Σ equations of motion (3.13) reduces to the free fermion
case where the self-energy Σ vanishes. Therefore, the correlation function is piecewise
constant on our “necklace” diagram and depends only on which circles the two fermions are
located. The difference of the correlations between two neighboring circles amounts to a
twist boundary condition that is imposed by the insertion of ρ0. The first step, is to note
the following identity

ρ−1
0

(
ψjl
iψjr

)
ρ0 =

(
coshµ − sinhµ
− sinhµ coshµ

)(
ψjl
iψjr

)
≡M

(
ψjl
iψjr

)
(3.3)

which means that whenever fermion crosses ρ0, the correlation function is rotated by the
matrix M . Let us define the 2 by 2 correlation matrix as

g(s) = 1
N

N∑
j=1

Tr

ρk−s0

(
ψjl
iψjr

)
ρs0

(
ψjl
iψjr

)T
/Trρk0 (3.4)
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Figure 4. Necklace diagram. Splitting every circle into l and r on which the system evolves with
SYK Hamiltonian Hl,r respectively. Each green dot means insertion of ρ0.

in which we multiplied ψr by i for later convenience. For s = 0, it is clear that

g(0) =
(

1
2 −x
x −1

2

)
=⇒ g(s) = M sg(0) (3.5)

for some x to be determined. The periodicity of the trace implies that

g(k) = Mk

(
1
2 −x
x −1

2

)
= g(0)T =

(
1
2 x

−x −1
2

)
(3.6)

This can be easily solved by
x = 1

2 tanh kµ2 (3.7)

Plugging this solution back in (3.5), we have

g(s) = 1
2 cosh kµ

2

(
cosh (k−2s)µ

2 − sinh (k−2s)µ
2

sinh (k−2s)µ
2 − cosh (k−2s)µ

2

)
(3.8)

Now let us move on to the SYK Hamiltonian. The necklace diagram describes the
Euclidean path integral of two SYK models on two different circles: the l circle has
circumstance of kβl and the r circle has circumstance of kβr. However, these two circles
are not decoupled from each other. The coupling comes from two sources: one is the
identical random coupling J l,r, and the other is the localized insertion of ρ0 after Euclidean
evolution for βl,r. We will adopt a hybrid treatment for these two types of couplings. For
the former, we integrate over the random coupling J l,r and manifest the interaction between
two circles; for the latter, we use (3.3) to transform the coupling into a specific gluing
boundary condition for correlations. It is crucial that the random couplings J l,r are identical
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for all replicas and this leads to the quenched ensemble average when we integrate over J l,r,
otherwise the correlation between different replicas will be trivial. This quenched ensemble
average is also important in the bulk and has been shown to be related to wormholes in
recent studies [25, 26]. We will discuss more on this in section 5.1.

After integrating over random couplings, we have the following bilocal effective action

S=−N2 logdet(∂τδab−Σab)+N

2

∫ kβa

0
dτ

∫ kβb

0
dτ ′
[
Σab

(
τ,τ ′

)
Gab

(
τ,τ ′

)
−J

2

q
sabGab

(
τ,τ ′

)q]
(3.9)

where
sab =

(
1 iq

iq 1

)
(3.10)

and Gab is the time ordered correlation function

Gab(τ1, τ2) = 1
N

N∑
j=1

〈
T ψja(τ1)ψjb(τ2)

〉
necklace

(3.11)

which has the symmetry
Gab(τ1, τ2) = −Gba(τ2, τ1) (3.12)

It is important here to define a time ordering T on the “necklace” diagram, as follows. The
ordering of fermions with the same subscript (a = b) is as usual; for those with different
subscripts a 6= b, we first order them according to which necklace circle they are on, and in
case they are on the same circle we take the ordering as it is.

Taking variations of Σ and G in (3.9), we have the equations of motion

G = (∂τδab − Σab)−1 , Σab

(
τ, τ ′

)
= J2sabGab

(
τ, τ ′

)q−1 (3.13)

From the definition, we see that Gab is related to gab by appropriate factor of i. To have a
simpler notation later, we will define a parallel version of Gab with ψr → iψr and denoted
by ĝab. In the large q limit, we make the standard assumption that the solution has the
form

ĝab(τ1, τ2) = gab(s)eσab(τ1,τ2)/(q−1), s ≡ bτ1/βac − bτ2/βbc ≥ 0 (3.14)

whose definition for s < 0 is given by symmetry (3.12). At leading order in 1/q, the
equations of motion read

∂1∂2σab(τ1, τ2)± 2J 2(2gab(s))q−2eσab(τ1,τ2) = 0 (3.15)

with + sign for ab = ll, rr and − sign for ab = lr, rl. This is a piecewise Liouville equation
whose general solution is

eσab(τ1,τ2) = f ′(τ1)g′(τ2)
J 2(2gab(s))q−2(1± f(τ1)g(τ2))2 (3.16)

where f and g could be chosen differently on different circles. Any solution of the above
type has an SL(2) symmetry

f → sl(f) ≡ a+ bf

c+ df
, g → slad(g) ≡ d∓ cg

±(−b± ag) , bc− ad = 1 (3.17)
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We will use ' to denote two pairs of function (f, g) related by this SL(2) symmetry.
Since we are looking for a piecewise solution for σab and translation of both fermions

for integer number of circles along the “necklace” diagram does not change the solution, we
will use a simpler notation by denoting σsab(τ1, τ2) for σab(τ1 + sβa, τ2) where τ1,2 ∈ [0, βa,b]
from now on.

At every junction, the gluing boundary condition requires that

ĝab(sβa+, τ2) = Macĝcb(sβa−, τ2), s = 1, · · · , k (3.18)
ĝab(τ1, sβb+) = Mbcĝac(τ1, sβb−), s = 1, · · · , k (3.19)

In terms of σsab, these conditions become

eσ
s+1
aa (0,τ)/q− − eσsaa(βa,τ)/q− =

sinhµ sinh (k−2s)µ
2

cosh (k−2(s+1))µ
2

(
eσ

s
aa(βa,τ)/q− − eσsāa(βā,τ)/q−

)
(3.20)

eσ
s+1
aā (0,τ)/q− − eσsaā(βa,τ)/q− =

sinhµ cosh (k−2s)µ
2

sinh (k−2(s+1))µ
2

(
eσ

s
aā(βa,τ)/q− − eσsāā(βā,τ)/q−

)
(3.21)

eσ
s−1
aa (τ,0)/q− − eσsaa(τ,βa)/q− =

sinhµ sinh (k−2s)µ
2

cosh (k−2(s−1))µ
2

(
eσ

s
aā(τ,βā)/q− − eσsaa(τ,βa)/q−

)
(3.22)

eσ
s−1
aā (τ,0)/q− − eσsaā(τ,βā)/q− =

sinhµ cosh (k−2s)µ
2

sinh (k−2(s−1))µ
2

(
eσ

s
aa(τ,βa)/q− − eσsaā(τ,βā)/q−

)
(3.23)

where ā means “ 6= a” and q− ≡ q − 1. A special solution to the twist boundary condition is
to assume that both the left and the right hand sides of these conditions are separately zero.
This would mean that at each junction, all σab coincide. As we explain in appendix A, this
is impossible to achieve using the configurations (3.16). Nevertheless, a somewhat relaxed
gluing condition of this form will be used as an approximation in section 3.3, leading to a
replica propagator that solves the SYK equations, up to a small error in the large β, µ, q
limit.

3.2 Symmetries of σsab
In order to construct our SYK solution, it is helpful to understand the symmetries the
propagator on the “necklace” diagram needs to satisfy.

First, note that ĝab is real, which can be easily shown using the definition of SYK
Hamiltonian and ρ0 and using the Grassmann algebra. The complex conjugate of the replica
correlator then satisfies

Tr
(
ρk−sψa (τ1) ρsψb (τ2)

)∗
= Tr

(
ρk−sψb (−τ2) ρsψa (−τ1)

)
(3.24)

which implies that
σsab(τ1, τ2) = σsba(βb − τ2, βa − τ1) (3.25)

Physically, we can understand this condition as a KMS condition along the each circle in
the “necklace” diagram. We will refer to this as the “small KMS symmetry”.
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There is another symmetry for s 6= 0, k which becomes evident by noting that

Tr
(
ρk−sψa (τ1) ρsψb (τ2)

)
= Tr

(
ρsψb (τ2) ρk−sψa (τ1)

)
(3.26)

which implies
σsab(τ1, τ2) = σk−sba (τ2, τ1) (3.27)

Together with (3.25) we have

σsab(τ1, τ2) = σk−sab (βa − τ1, βb − τ2) (3.28)

Physically, we can understand this condition as a KMS condition for the whole “necklace”
loop, which we dub the “big KMS symmetry”. For s = 0 and a 6= b, we have

Tr
(
ρkψa (τ1)ψb (τ2)

)
= −Tr

(
ρkψb (τ2)ψa (τ1)

)
=⇒ σ0

lr (τ1, τ2) = σ0
rl (τ2, τ1) = σ0

lr (βl − τ1, βr − τ2) (3.29)

which extends (3.28) to the s = 0 case. For the case a = b becomes

σ0
aa(τ1, τ2) = σ0

aa(τ2, τ1) (3.30)
σ0
aa(τ, τ) = 0 (3.31)

σaa, however, is not smooth along τ1 = τ2 = τ due to the coincident fermions. Instead, we
may use (3.30) and (3.31) of τ1 ≥ τ2 to define the case of τ1 ≤ τ2.

3.3 Approximate solution

The analysis of appendix A highlights the difficulty of finding an exact large q solution
that satisfies all twist boundary conditions (3.20)–(3.23) and also respects all symmetries
discussed in section 3.2. We will, therefore, make a strategic retreat and look for an
approximate solution, whose error will later bound.

We are interested in the regime of large µ where the correlation functions in the
same circle of the “necklace”, say s = 0, should be quite close to those in the thermofield
double state. We will thus build our approximate solution for finite µ by starting with the
thermofield double solution (µ→∞). A special case of our twisted boundary condition is
to assume that σsab is continuous at all junctions. This means that all l.h.s. of (3.20)–(3.23)
are zero. Of course, this condition alone does not guarantee the r.h.s. of (3.20)–(3.23) are
also zero, but we can work with this assumption regardless and confirm at the end of the
computation that the violation of the twisted boundary conditions is much smaller than
1/q in the low temperature limit. Moreover, as analyzed in appendix A the “big KMS
symmetry” seems to be the main obstacle for obtaining an exact solution. As a fix, we
construct an approximate solution by first finding a solution that violates the “big KMS
symmetry” and then adding its KMS image

ĝab(sβa + τ1, τ2) ≈ gab(s)eσ
s
ab(τ1,τ2)/q + gba(k − s)eσ

k−s
ba

(τ2,τ1)/q (3.32)

for 0 ≤ s ≤ k and then copy this solution antiperiodically for other s. Of course, this
approximation does not solve the Liouville equation but we expect it to be very close to
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the real solution in the low temperature limit. A similar argument was used in [27]. Taking
this approximation automatically satisfies the “big KMS symmetry” (3.27). We also show
that our solution of σsab guarantees the “small KMS symmetry” (3.25).

Let us first write down the solution for infinite µ. In this case, ρ0 reduces back to
the projector onto the EPR state and any s 6= 0 correlation function is zero. For s = 0,
the correlation function is same as that in a thermofield double state with temperature
β = βl + βr. The solution is well known

eσll(τ1,τ2) = eσrr(τ1,τ2) = ω2

J 2 cos2 ω(τ12 − β/2) (3.33)

eσrl(τ1,τ2) = eσlr(τ1,τ2) = ω2

J 2 cos2 ω(τ1 + τ2 − β/2) (3.34)

with
ω = J cosωβ/2 (3.35)

One can easily check that this solution satisfies the symmetries (3.25) and (3.29).
For the case of large but finite µ we may still use the aforementioned solution for σ0

ab.
To obtain the solution for σsab in the other circles of the “necklace” we will assume continuity
across the junctions

σsab(βa, τ) = σs+1
ab (0, τ), σsab(τ, 0) = σs+1

ab (τ, βb) (3.36)

This condition is sufficient for obtaining all correlation functions, as we will show shortly. As
usual, each solution σsab of the Liouville equation is characterized by a pair of functions. By
the argument of appendix A, the continuity condition leads to the following function choices

σsll := (fs, f) , σsrr :=
(
h̄s, h

)
, σsrl := (hs, f) (3.37)

where all functions fs, hs, h̄s, f, h are related by SL(2) transformations. In particular, the
solution (3.33) and (3.34) correspond to

f = h = tanωτ, f0 = h0 = h̄0 = tanω(τ − β/2) (3.38)

The goal now is to use the continuity requirement to obtain this family of SL(2, R) trans-
formed functions in terms of the known f, h, f0, h0, h̄0.

σsll and σsrr. Let us first focus on σsll. We define

fs = us + vs tan(ωτ + γs), Js ≡ J (2gll(s))q−2 = J
[

cosh (k−2s)µ
2

cosh kµ
2

]q−2

(3.39)

where {uk, vk, γk} are three parameters characterizing the SL(2) transformation.
With this definition, we have

eσ
s
ll(τ1,τ2) = ω2vs

JJs(cos(ωτ1 + γs)(cosωτ2 + us sinωτ2) + vs sinωτ2 sin(ωτ1 + γs))2 (3.40)
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The boundary condition (3.36) can be solved by

us+1 = tan(ωβl + γs)−
1
2αsvs sin 2γs+1 sec2(ωβl + γs) (3.41)

vs+1 = αsvs cos2 γs+1 sec2(ωβl + γs) (3.42)

tan γs+1 = tan γs + αsvs sinωβl sec γs sec(ωβl + γs) (3.43)

us = (1− vs) tan(ωβl + γs) (3.44)

where

αs ≡ Js+1/Js =
[

cosh (k−2(s+1))µ
2

cosh (k−2s)µ
2

]q−2

(3.45)

which has symmetry αsαk−s−1 = 1. Note that in this solution, (3.41)–(3.43) are the
recurrence relation and (3.44) is a self-consistency condition for each s. In particular,
one can check that (3.44) holds at every level of the recurrence if it is satisfied initially.
Using (3.44) we can write σsll as

eσ
s
ll(τ1,τ2) = ω2vs cos2(ωβl + γs)

JJs [cos(ωτ1 + γs) cos(ω(τ2 − βl)− γs) + vs sinωτ2 sinω(τ1 − βl)]2
(3.46)

In particular, s = 0 corresponds to v0 = 1 and γ0 = −ωβ/2. One can easily check that this
solution obeys symmetry (3.25).

As l and r are identical systems, we can repeat the above analysis to σsrr. The solution
will be the same as σsll but with replacement βl → βr and parameters {us, vs, γs} →
{ūs, v̄s, γ̄s} related to h̄s.

σsrl and σslr. Solving σsrl is quite similar. We define

hs = ũs + ṽs tan(ωτ + γ̃s), J̃s ≡ J (2grl(s))q−2 = J
[

sinh (k−2s)µ
2

cosh kµ
2

]q−2

(3.47)

Taking ansatz (3.47) into (3.16), we have

eσ
s
rl(τ1,τ2) = ω2ṽs

J J̃s(cos(ωτ1 + γ̃s)(cosωτ2 − ũs sinωτ2)− ṽs sinωτ2 sin(ωτ1 + γ̃k))2 (3.48)

The boundary condition (3.36) can be solved by

ũs+1 = cotωβl − cos γs cscωβl sec(ωβr + γ̃s)−
1
2 α̃sṽs sec2(ωβr + γ̃s) sin 2γ̃s (3.49)

ṽs+1 = α̃sṽs cos2 γ̃s+1 sec2(ωβr + γ̃s) (3.50)

tan γ̃s+1 = tan γ̃s − α̃sṽs sinωβl sec γ̃s sec(ωβr + γ̃s) (3.51)

ũs = cotωβl − cos γ̃s cscωβl sec(ωβr + γ̃s)− ṽs tan(ωβr + γ̃s) (3.52)

where

α̃s ≡ J̃s+1/J̃s =
[

sinh (k−2(s+1))µ
2

sinh (k−2s)µ
2

]q−2

(3.53)
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which has symmetry α̃sα̃k−s−1 = 1. Again, in this solution, (3.49)–(3.51) are the recurrence
relation and (3.52) is a self-consistency condition for each s. Using (3.52) we can write σsrl as

eσ
s
rl(τ1,τ2) = ω2ṽs cos2(ωβr + γ̃s) sin2 ωβl

J J̃s
[cos(ωτ1 + γ̃s)(cos γ̃s sinωτ2

− cos(ωβr + γ̃s) sinω(τ2 − βl))− ṽs sinωβl sinωτ2 sinω(τ1 − βr)]−2 (3.54)

In particular, s = 0 corresponds to ṽ0 = 1 and γ̃0 = −ωβ/2.
To get σslr, we can simply use symmetry (3.25). However, we also need to check

this procedure is consistent with our boundary condition (3.36) that defines the above
recurrence sequence. This turns out to be the case simply because (3.36) also respects the
symmetry (3.25). In other words, taking ab = rl in (3.36) together with the symmetry (3.25)
exactly leads to ab = lr in (3.36).

Approximate solution of the recurrence. Solving these recurrence relations exactly
and in closed form is a difficult task. Instead, we will leverage the observation that these
recurrence sequences converge very fast and can be well approximated by their continuous
version which are second order differential equations. Solving the differential equations
leads to an approximate solution of the recurrence sequence and also offers a closed form
which is required for the subsequent analytic continuation we want to perform. We perform
this computation in appendix B and present the result here.

Let us define the recurrence variables

ys = cos(ωβl + γs)
cos γs

, xs = vs sec2 γs, λ = sin2 ωβl (3.55)

ỹs = cos(ωβr + γ̃s)
cos γ̃s

, x̃s = ṽs sec2 γ̃s, λ̃ = sinωβl sinωβr (3.56)

Their continuous versions obeying the aforementioned differential equations are denoted
by exchanging the subscript s for a variable s, e.g. ys → y(s) etc. In the large µ limit, the
solution is

y(s) =

α1/2 exp [c1 coth (c1s+ b1)] s ≤ bk/2c
α−1/2 exp [c2 coth (c2s+ b2)] s > bk/2c

(3.57)

x (s) =


x0 sinh2 b1

sinh2(c1s+b1) s ≤ bk/2c
x0 sinh2 b1 sinh2(c2bk/2c+b2)

sinh2(c1bk/2c+b1) sinh2(c2s+b2) s > bk/2c
(3.58)

ỹ (s) =

α
1/2 exp

[
c̃1 tanh

(
c̃1s+ b̃1

)]
s ≤ bk/2c

α−1/2 exp
[
c̃2 tanh

(
c̃2s+ b̃2

)]
s > bk/2c

(3.59)

x̃ (s) =


x̃0 cosh2 b̃1

cosh2(c̃1s+b̃1) s ≤ bk/2c
x̃0 cosh2 b̃1 cosh2(c̃2bk/2c+b̃2)

cosh2(c̃1bk/2c+b̃1) cosh2(c̃2s+b̃2) s > bk/2c
(3.60)
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in which α ≡ e−µ(q−2) ≈ e−µq and other parameters are defined as

c1 = log
(
y∞/α

1/2
)
, b1 = arccoth

(
log

(
y0/α

1/2
)
/ log

(
y∞/α

1/2
))

(3.61)

c2 = log
(
y∞α

1/2
)
, b2 = arccoth

( logα+ c1 coth (c1 bk/2c+ b1)
c2

)
− c2 bk/2c (3.62)

c̃1 = log
(
ỹ∞/α

1/2
)
, b̃1 = arctanh

(
log

(
ỹ0/α

1/2
)
/ log

(
ỹ∞/α

1/2
))

(3.63)

c̃2 = log
(
ỹ∞α

1/2
)
, b̃2 = arctanh

 logα+ c̃1 tanh
(
c̃1 bk/2c+ b̃1

)
c̃2

− c̃2 bk/2c (3.64)

where y∞ and ỹ∞ are limit values of the recurrence sequences for which a closed form is
presented in (D.13) and (D.11). However, their exact formula is not needed since they can
reliably be approximated as y1 and ỹ1 in large β and small α limit.

In terms of x(s), y(s), x̃(s) and ỹ(s), the large q solution becomes

gll(s)eσ
s
ll(τ1,τ2)/q = 1

2
(
ωλJ −1x(s)1/2y(s)[(sinω(βl − τ1) + y(s) sinωτ1)

×(sinωτ2 + y(s) sinω(βl − τ2))− λx(s) sinωτ2 sinω(βl − τ1)]−1
)2/q

(3.65)

grl(s)eσ
s
rl(τ1,τ2)/q = sgn(grl(s))

2
(
ωλ̃J −1x̃(s)1/2ỹ(s)[(sinω(βr − τ1) + ỹ(s) sinωτ1)

×(sinωτ2 + ỹ(s) sinω(βl − τ2)) + λ̃x̃(s) sinωτ2 sinω(βr − τ1)]−1
)2/q

(3.66)

For σsrr and σslr, we can simply switch βl ↔ βr. Note that to get σslr, we can also use
symmetry (3.25), which turns out to be the same as the swap βl ↔ βr.

It is worth recalling at this point, that the solution we obtained above is an approximate
one, in a number of different ways. First and foremost, this solution does not exactly satisfy
the twisted gluing conditions at the junctions of the “necklace” diagram. In appendix B, we
confirm that the errors of this approximation, namely the deviation of the r.h.s. of (3.20)–
(3.23) from zero, are much smaller than 1/q in the large µ, β limit (see figure 11). In
appendix C, we present a further systematic analysis of the errors introduced by all the
approximations we make, in order to justify the validity of our solution in large µ, β limit.

3.4 Analytic continuation

Let us now return to the physical question of interest. The quantity we want to compute is
the causal correlator (2.15), which we restate for convenience

W (s, t) = 1
N

N∑
j=1

Tr
(
ρ
{
ρ−isψjrρ

is, ψjl (t)
})

(3.67)

The right SYK operator is evolved with the modular Hamiltonian ρis — which is expected
to be the SYK dual of the proper time evolution along the infalling probe’s worldline.
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-6
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Figure 5. The plot of σsrl(τ, βl/2)/q, where different s are joined together in order. Blue, yellow
and green curves are for J = 20, 200, 2000 respectively. Note that the correlation ĝrl is exponential
in σsrl/q. From this figure, we see the correlation decays exponentially as s increases and the decay
is stronger when we increase J . Here other parameters are βl = 1, βr = 4, α = 1/500, q = 20
and k = 9.

The anti-commutator with the left boundary insertion is intended to detect the moment
ρ−isψrρ

is crosses the bulk lightcone of ψl(t) in the wormhole interior.
The causal propagator can be obtained from the imaginary part of Euclidean “necklace”

diagram correlation function ĝrl we computed in the previous section

W (s, t) = 2=ĝrl(isβr + βr/2, it+ βl/2) (3.68)

To obtain this imaginary part, we need to analytically continue two parameters, k and
s. We do this using the following prescription. We first analytically continue s to pure
imaginary is while keeping k a positive odd integer greater than 1. Then we continue k to
1. Taking s→ is first means that we should take the s < bk/2c case of our x, y, x̃, ỹ for σsab
and the other case for σk−sab in (3.32). Then taking k → 1 sets bk/2c = 0 which leads to

b2 = arccoth
(
log

(
y0α

1/2
)
/ log

(
y∞α

1/2
))

(3.69)

b̃2 = arctanh
(
log

(
ỹ0α

1/2
)
/ log

(
ỹ∞α

1/2
))

(3.70)

The causal correlator W (s, t) then reads:

W (s, t)

= 2=grl(is)
(
eσ

is
rl(βr/2,βl/2+it)/q + eσ

1−is
rl

(βr/2,βl/2−it)/q
)

= =
(

ωλ̃x̃(is)1/2ỹ(is)/(J sinωβr/2)
(1 + ỹ(is))(sinω(βl/2 + it) + ỹ(is) sinω(βl/2− it)) + λ̃x̃(is) sinω(βl/2 + it)

)2/q

+ (t↔ −t, x̃ (is)↔ x̃ (1− is) , ỹ (is)↔ ỹ (1− is)) (3.71)

where for x̃(is) and ỹ(is) we use c̃1, b̃1 and for x̃(1− is) and ỹ(1− is) we use c̃2, b̃2. Only the
first term in (3.71) is important because the second term becomes small in low temperature
limit where βl,r are both large (or equivalently J is large). This can be seen already in the
plot of the Euclidean correlator before analytic continuation in figure 5. In this plot, the
amplitude of correlation function decreases when we increase (the real part of) s.
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Figure 6. The plot of =W1,2(s, t) with different t. Blue, yellow and green curves are with t = −3, 0, 3
respectively. The parameters for (a) and (b) are βl = 1, βr = 4 (injection is in left side) and for (c)
and (d) are βl = 4, βr = 1 (injection is in right side). Other parameters are α = 10−5, J = 106

and q = 12.

We can separate the two lines in (3.71) before taking imaginary part and denote them
as W1 and W2 respectively. We plot their imaginary part in figure 6. =W2 is generally
smaller than =W1 as expected, and in particular it is of the order of the small parameters
of our approximation. We can, therefore, ignore it in the large J , µ limit. The analysis of
appendix C offers the following more accurate statement: |W2/W1| � 1 if βJα

1/2

π sin πδl = η

for η � 1, η � 1 or |η − 1| � 1, if we assume δl ∼ O(1). In other words, if βJ and
α−1/2 = eµq/2 are either separately taken to be large or, alternatively, are both taken large
and fine tuned, W2 becomes negligible.

There is another reason we should ignore W2 that at s = 0 the imaginary part of W
should be zero for any t. Clearly, W1 obeys this rule as is clear by plugging in the value of
x̃(0) and ỹ(0) from (B.19) and (B.20) but W2 does not (unless t = 0). This is an artifact of
the method of images used to restore the “big KMS symmetry” of the correlator. But in
the large J , µ limit, this violation is small in the parameters of our approximation so we
expect our approximation to be close to true solution in this regime. This is similar to [27]
where the contribution from the KMS image is ignored in the computation of the ramp of
the form factor in the SYK model at late times.

The key observation is the existence of very sharp peaks of =W1 at specific finite
modular times s. In the bulk dual these should be interpreted as the infalling proper times
at which ψr enters the light-cone of the left boundary insertion ψl(t). Notice that =W1 ≈ 0
before the first peak in figure 6. This is the main triumph of our SYK computation: the
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left boundary excitation does not influence the modular flowed right boundary operator
outside the light-cone! As we increase t, the location of peak moves towards large s, which
is an important feature consistent with this interpretation. Furthermore, the blue curve in
figure 6a has two peaks. If we plot =W1 for a larger range of s, we will see periodic peaks
for all different t. We should interpret these periodic peaks as ψr entering the light-cone of
ψl(t) many times because the AdS boundary condition reflects null rays from ψl(t) between
two boundaries, causing the modular flowed operator to cross its lightcone an infinite
number of times.

The location of the peak and the bulk lightcone. We can compute the location of
peaks in the expectation value of the modular flowed commutator as follows. In the low
temperature/strong coupling limit, we see that the sequence ỹs converges to its limit value
extremely fast, figure 10. We can, therefore, replace ỹ∞ with ỹ1 without affecting the result.
Focusing on large SYK coupling J , we can obtain the solution

ω = π

β

(
1− 2

βJ
+O

(
1/β2J 2

))
(3.72)

ỹ0 ≈
βJ
π

sin πδl, ỹ1 ≈ ỹ0 (1 + α) , ỹs ≈ ỹs−1

(
1 +O

(
α
(
αỹ−2

0

)s−1
))

(3.73)

x̃0 ≈ β2J 2/π2, x̃s ≈ O
(
α
(
αỹ−2

0

)s−1
)

(3.74)

Note that the last equation estimates how close ỹ1 to ỹ∞ in the small 1/J and α limit.
Using this formula, we have

c̃1 ≈ log
(
βJ
πα1/2 sin πδl

)
, b̃1 ≈

1
2 log (c̃1/α) (3.75)

which are both large numbers. This means that the analytically continued function ỹ(is)
is oscillating very quickly and with a small amplitude around a large mean value ỹ(0).
Therefore, we can simply replace all ỹ(is) as ỹ0 in W1 and get

W1(s, t) ≈
( (2π sin πδl/2)/(βJ )
X(s) sinω(βl/2− it) +X(s)−1 sinω(βl/2 + it)

)2/q
(3.76)

where
X(s) = cos c̃1s+ i tanh b̃1 sin c̃1s→ eic̃1s (3.77)

where, in last step, we also took the large b̃1 limit as suggested by (3.75). With this
approximation, we see clearly that W1 is real for small s until the denominator vanishes at
modular time

s = 1
2c̃1

(
π + 2 arctan tanh πt/β

tan πδl/2
+ 2πN

)
(3.78)

which determines the location of the peaks in figure 6a and figure 6c. Here 2πN counts for
all periodic peaks.

In the following, we only focus on the first peak that corresponds to choosing 0 ∈ N.
Clearly, (3.78) is a monotonically increasing function of t as expected. For t = 0, the peak
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location is fixed at s = π/(2c̃1) and is independent on the value of δl. This feature is also
illustrated by the yellow curves in figure 6a and figure 6c, where the slight distinction is
due to subleading corrections. On the other hand, taking a reflection t→ −t flips the value
of s symmetrically around π/(2c̃1).

This result matches exactly with the bulk expectation figure 3c in section 2.3. Indeed,
the `→∞ limit of (2.29) reduces to (3.78), if we identify

s = 1
2c̃1

sp (3.79)

According to [1], the modular time parameter s should be interpreted as the bulk proper
time in units of the inverse temperature of probe black hole βprobe/(2π). The matching
condition above defines the effective temperature of our probe, produced by the entangling
unitary (2.10) in section 2.1, which reads:

βprobe = 4πc̃1 = 4π log
(
βJ
πα1/2 sin πδl

)
(3.80)

This offers an explicit confirmation of the validity of the proposal of [1] in the setup explored
in this work.

A feature of our SYK result that is at odds with the proposal of [1], when taken at
face value, is the fact that the modular flow associated with the probe we initiated in the
right exterior gives consistent results even when it is used to evolve SYKl operators (see
figure 6a) This is far outside the expected regime of validity of the modular time/proper
time connection: the arguments presented in [1] only guarantee a coincidence of the two
operators when acting on operators in the vicinity of the probe. The reason for the extended
regime of validity of the prescription in our setup is the emergent SL(2, R) symmetry of
SYK which underlies the solution for the modular flowed correlator we studied.

3.5 Bulk fields behind horizon

In the previous subsection we studied the modular flow of a right boundary Majorana
fermion; this is an operator at an infinite geodesic distance `→∞ from the infalling probe’s
worldline. We can generalize the discussion to the modular flow of a bulk field at a finite
distance ` from the probe.

We can achieve this by expressing a bulk fermion, localized in the right exterior
region on the initial T = 0 slice, in terms of boundary fermions using the usual HKLL
reconstruction [28–30]. The metric in the right Rindler wedge of eternal AdS2 black
hole reads

ds2 = dρ2 −
(2π
β

)2
sinh2 ρdt2 (3.81)

and the bulk spinor field is expressed as an integral over the Majorana operators of SYKr as

χ (ρ, t) =
∫
D(t∗)

dt′K
(
ρ, t; t′

)
ψr
(
t′
)

(3.82)
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where the integral range D(t∗) = [−t∗, t∗] only includes the boundary time-strip that is
spacelike separated from (ρ, t).4 In for t′ ∈ D(t∗), K(ρ, t; t′) is a real function. See figure 1c
as an illustration. The relevant AdS2 kernel, at leading order in 1/N , was derived in [18].

The modular flow of the bulk spinor χ is

χs(ρ, t) ≡ ρ−isχ(ρ, t)ρis =
∫
D(t∗)

dt′K(ρ, t; t′)ρ−isψr(t′)ρis (3.83)

Let us take t = 0 and some arbitrary finite ρ. After an amount s of evolution with the
infalling modular Hamiltonian, the causal correlation between χs(ρ, 0) and ψl(t) reads

〈{χs(ρ, 0), ψl(t)}〉 =
∫
D(t∗)

dt′K(ρ, 0; t′) · 2=
(
grl(is)eσ

is
rl(βr/2+it′,βl/2+it)/q

)
(3.84)

where we have, once again, omitted the sum over “big KMS” images in the SYK result for
the commutator. Even without using the specific form of K, we can already read off the
modular time at which the commutator (3.84) becomes nonzero: it is the value of s for
which the largest t′ hits the lightcone of left insertion ψl(t). Using the same approximation
as (3.76), we have

Ŵ (s, t; t′) ≡ 2=
(
grl(is)eσ

is
rl(βr/2+it′,βl/2+it)/q

)
= =

(
(π sin πδl)/(βJ )

eisp/2 cosω(βl/2− it′) sinω(βl/2− it) + c.c

)2/q

(3.85)

A bulk spinor located at distance ` away from the probe on the T = 0 slice, is located at
the AdS2 point (2.26) and (2.27) with sp = 0. This operator is supported on the asymptotic
boundary over the time strip D(t∗) with

t∗ = β

π
arctanh

(
eξ−`

)
(3.86)

On the other hand, the pole of W̃ (s, t; t∗) is at

<
(
eisp/2 sinω(βr/2 + it∗) sinω(βl/2− it)

)
= 0 (3.87)

which can be solved to find:

t = β

π
arctanh

tan πδl
2 tanh πt∗

β tan sp
2 − 1

cot πδl2 tan sp
2 + tanh πt∗

β

= β

π
arctanh

tan sp
2 − e

`

eξ(1 + e` tan sp
2 )

(3.88)

where we used (2.35) and (3.86) in the second step. This result exactly matches with bulk
expectation (2.29).

4In 2D, a bulk spinor has two components but a boundary spinor only has one. Therefore, the bulk
spinor reconstructed via (3.82) has a specific polarization [18].
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Locality of bulk modular flow. Using (3.85), we can show that modular flow preserves
the locality of the field χ(ρ, t) in the bulk. The key fact is that, in the regime where (3.85)
is valid, our modular flow reduces to an SL(2) isometry U(s) of AdS2. Specifically, it is the
symmetry that fixes a particular timelike bulk geodesic (what we referred to previously as
our probe’s trajectory) and moves χ from (ρ, t) to U(s)(ρ, t) with reference to that geodesic,
just as described in section 2.3

χs (ρ, t) = χ (U (s) (ρ, t)) (3.89)

In embedding coordinates, this U(s) transformation can be expressed in a simple way

U(s) · Y = M1(ξ)−1 ·M3(−sp) ·M1(ξ) · Y (3.90)

where Mi are given by (2.21).
To understand why this is so, note that bulk correlation functions between two points,

Ya and Yb, in AdS2 are functions of geodesic length ` between them which is, in turn, given
by cosh ` = −Ya ·Yb. One can easily show that (3.85) is proportional to (−Ya ·U(s) ·Yb)−2/q,
with Ya at the left AdS boundary and Yb at the right, using the Rindler coordinate
representation for Yµ

Y−1 = sinh ρ sinh 2π
β
t, Y0 = cosh ρ, Y1 = ± sinh ρ cosh 2π

β
t (3.91)

where plus (minus) sign is for left (right) Rindler wedge. Now recall that the HKLL
reconstruction of a bulk field is uniquely determined by the mode expansion of the dual
boundary operator and the bulk equation of motion. Since the latter is invariant under
SL(2) isometry, the modular evolution of a boundary operator ψ is uniquely extended to
that of a bulk field and, therefore, acts on it exactly as (3.89).

4 Replica computation in EAdS2

In this section, we compute the modular flowed commutator (2.15) using the replica
trick (2.36) for the bulk JT gravity path integral. As discussed in section 2.4, there are two
classical geometries that contribute to the replica correlator W k,s

ab (τ1, τ2), shown in figure 2b
and 2c. However, only the Euclidean wormhole contribution can lead to a non-trivial
anticommutator between ψl(t) and ρ−isψrρ

is. We, therefore, start by constructing the
relevant bulk wormhole saddle. We then compute the boundary-to-boundary propagator in
this geometry and analytically continue it to obtain the desired anticommutator W (s, t),
finding exact agreement with (3.78). In appendix E we specify the parameter regime in
which the wormhole saddle is indeed the dominant contribution, deriving the regime of
validity of our path integral analysis.
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4.1 The replica path integral in JT gravity

Our starting point will be expression (2.41) for the finite µ replica correlator of interest
which we repeat here for convenience

W k,s
rl (τ1, τ2)

= 1
NZ

N∑
j=1

EJ
[
Tr[ρk−sψjr(τr)ρsψ

j
l (τ2)

]

= 1
NZ

N∑
j=1

EJ

[
Tr
[
T
{
e−kβlHl−kβrHr

(
k−1∏
ν=0

e−µS(ν+1/2)
)
ψjr(τ1 + sβr)ψjl (τ2)

}]]
(4.1)

The head-on holographic computation of (4.1) in the large µ regime we are interested
in is tricky. The difficulty lies in pinning down the precise deformation to the JT gravity
action introduced by the potential term µ

∑k−1
ν=0 S(ν + 1/2) when µ � 1.5 We will make

progress by exploiting the fact that the insertions of ρ0 = e−µS are localized on the boundary.
This means that the bulk gravity action is the standard JT action, describing the familiar
Schwarzian dynamics of a pair of boundary particles,6 almost everywhere in the bulk,
except in the region near the ρ0 insertions which have the physical effect of pulling the two
boundary particles closer together, as discussed in section 2.4. Such localized kicks of the
boundary particle’s trajectory can be effectively parametrized by the change they induce in
its SL(2, R) charge. Focusing on the effect of ρ0 on this charge amounts to looking only at
its gravitational backreaction. The precise value of the SL(2, R) charge M associated to
each insertion ρ0, however, is UV information that needs to be computed microscopically
using an SYK analysis.

Our strategy for this computation will, therefore, be the following: we look for a
solution of pure JT gravity with a cylindrical topology, connecting two boundaries of total
renormalized proper lengths kβl and kβr, respectively, with k localized insertions of ρ0
at the appropriate points which we effectively treat as kicks with SL(2, R) Casimir M .
This yields a geometry that depends on the parameters βl, βr, k and M . We compute the
boundary-to-boundary propagator for fermions at arbitrarty replica separations s in this
geometry using the geodesic approximation and analytically continue it to k → 1 and s→ is

to obtain the modular flowed correlator of interest. Finally, we use the microscopic solution
of the previous section to evaluate our effective charge M in terms of the SYK parameters
µ,J , q and import it in the solution. The final result for the modular flowed correlator
precisely matches the SYK computation of the previous section.

4.2 The Euclidean wormhole solution

Since any solution to the JT gravity equations is locally hyperbolic, the wormhole solution
we are looking for can be understood as a patch of H2, endowed with the topology of a
cylinder by a subsequent identification with respect to an isometry of H2. Our goal is,

5For small µ, each e−µS insertion can be effectively replaced by e−µ〈S〉 with the expectation value
computed about the given bulk geometry. This approximation is not valid at large µ.

6One for SYKl and one for SYKr.
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Figure 7. The Euclidean wormhole geometry dominating the bulk JT path integral with “necklace”
diagram boundary conditions at intermediate values of Sprobe, constructed from the patch of the
hyperbolic plane H2 between the two solid red curves. Each red colored segment is an arc of a
circle Xn, n = 0, 1, . . . k (4.13), which are related to each other via iterative applications of the
SL(2, R) transformation B(x, y) (4.10). Blue, yellow, green and red dashed curves are hyperbolic
geodesics that define the diameters of each circles Xn, whose intersection with Xn is chosen as
angular starting point Yn of each circle respectively. The boost parameters x, y and the radius ρ of
the circles are fixed by demanding that the arc lengths between circle intersections are βl and βr for
the left and right boundaries respectively, and that the local kicks at the intersections, caused by
the attractive force exerted by the ρ0 insertions, correspond to changes of the boundary’s SL(2, R)
charge by an amount Qρ0 , with (Qρ0)2 = −M2 being UV data obtained from a microscopic SYK
calculation (appendix D) and given by (4.25). The cylindrical topology is obtained by taking the
quotient of H2 with respect to the action of Bk(x, y), essentially identifying the geodesic diameters
defining Y0 and Yk.

therefore, to identify the right patch of EAdS2 and the relevant isometry used to compactify
it. The appropriate patch and its identification is shown in figure 7. The rules of the
construction are simple and were already discussed in [10]. The JT dynamics in our case
describes a pair of boundary particles that propagate according to the Schwarzian dynamics
for proper lengths βl and βr, respectively, before getting interrupted by a local insertion of
ρ0. Forgetting about the effect of the latter for the moment, the solution of the Euclidean
Schwarzian equations of motion is well known and it describes a circular boundary particle
trajectory in EAdS2. Using the embedding space coordinate of EAdS2

Xµ
0 (θ) = {sinh ρ sin θ, sinh ρ cos θ, cosh ρ} (4.2)

with the same (−,−,+) signature metric (2.17), this trajectory can be written as

Xµ
0 (θ)Q(0)

µ = 1
2ε , ε→ 0 (4.3)

with SL(2, R) charge
Q(0)
µ =

{
0, 0, 1

2ε cosh ρ

}
(4.4)
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where the radius of the circle ρ is meant to be taken to infinity simultaneously with ε→ 0
so that:

2πε sinh ρ→ βE (4.5)

The remaining parameter βE characterizes the solution and is related to the energy of the
state via the thermodynamic relation βE = π2

E2 .
In the case at hand, this circular trajectory is interrupted by the ρ0 insertions. To

understand their effect, let us first select a diameter of X0, intersecting with X0 at two
points with one point labelled as Y0, with respect to which we will measure angular locations.
It turns out that for coordinate given in (4.3), we can choose θ = 0 for Y0. Starting from
Y0, the left and right boundary particles are initiated at θ = π and θ = 0, respectively, and
then propagate along the two converging circular arcs of X0 for proper lengths βl/2 and
βr/2. At that point, their evolution is modified by the presence of ρ0 which, as explained
in [10], acts as a “kick” on both left and right boundary trajectories with SL(2, R) Casimir
M . The kick makes them start moving along arcs of a new EAdS circle X1, which intersects
X0 at the location of the insertion but whose SL(2, R) charge is shifted by the charge of
the operator, Q(1)

µ = Q
(0)
µ +Qρ0

µ , where (Qρ0)2 = −M2. See figure 7 as an illustration.
Since all circles on hyperbolic space are related by SL(2, R) transformations, this new

circular trajectory can be described as:

Xµ
1 (θ) = [B(x, y)]µνXν

0 (θ) (4.6)

where B(x, y) is some 2-parameter element of SL(2, R). As all circles are defined as the
first equation of (4.3), it is equivalent to say that the new circular trajectory is defined with
the new charge Q(1) = Q(0) ·B(x, y). The reason for the 2-parameters x, y is that together
with βE they account for the 3 physical parameters of our problem, βl, βr,M . The goal is
then to determine the precise transformation B(x, y) and the value of βE given βl, βr,M .

Gluing conditions. The conditions on B(x, y) and βE are simple to describe: (a) The
intersection points of X1 with X0 must be at angular locations θl,r0 (with respect to starting
point Y0) such that the corresponding (renormalized) arc lengths of X0 match the left and
right inverse temperature parameters βl,r (figure 7):

βE
2π θ

r
0 = βr

2 (4.7)

βE
2π
(
π − θl0

)
= βl

2 (4.8)

and (b) the SL(2, R) charge must be conserved at the intersection point, which can be
ensured by: (

Q(0) ·B(x, y)−Q(0)
)2

= −M2 (4.9)

The boundary particles will then begin to follow X1 starting from its intersection points
with X0, located at angular locations θr1 = −θr0 and θl1 = −θl0 (with respect to the starting
point Y1 = B(x, y) · Y0 of X1) for proper lengths βr and βl before encountering another
operator insertion with a similar effect. The same story will then be repeated k times.
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The two conditions above can be satisfied by the SL(2, R) transformation:

B(x, y) = M1(−x) ·M2(y) ·M1(x) (4.10)

where the generators Mi, i = 1, 2, 3 of SL(2, R) in embedding space were defined in (2.21).
Taking (4.10) into (4.9), we have

cosh x sinh y2 = βEM

2π (4.11)

The intersections of the circles X0(θ0) and X1(θ1) are at the angular locations θr,l0 that
solve the equation:

coth(y/2) = cosh x coth ρ csc θr,l0 + sinh x cot θr,l0 (4.12)

Setting θr,l0 equal to (4.8) amounts to 2 constraints on the 3 undetermined parameters of
our solution x, y and ρ (equivalently βE) in terms of βl, βr. The last constraint that allows
us to solve the system comes from further imposing (4.11).

Iterating the procedure k times is straightforward, by virtue of the homogeneity of
EAdS2: the sequence of SL(2, R) transformed circles

Xn = Bn(x, y) ·X0 = M1(−x) ·M2(ny) ·M1(x) ·X0 , n = 0, . . . k − 1 (4.13)

are guaranteed to intersect each other at angular locations θr,ln = ±θr,l0 (with respect to the
n-th starting point Yn = Bn · Y0) ensuring that the proper length of the arcs Irn = [−θrn, θrn]
and I ln = [θln, 2π − θln], n = 1, . . . , k − 1 between subsequent intersections is always βr and
βl respectively. figure 7 shows the resulting patch of EAdS relevant for a wormhole with
k = 3.

Compactification. The final step, is to compactify this patch of hyperbolic space to
obtain a solution with cylindrical topology. This is, also, straightforward since the entire
configuration was constructed by subsequent applications of an SL(2, R) transformation:
we simply identify the diameter defining Y0 of the initial circle X0 with the diameter
defining Yk = Bk(x, y)Y0 of the final one Xk —namely, we quotient H2 by the action of
Bk(x, y) = M1(−x) ·M2(ky) ·M1(x). This completes the construction of the Euclidean
wormhole saddle of the replica JT path integral.

4.3 Modular flowed correlator

Having constructed the Euclidean wormhole solution, we can return to the computation of

W k,s
rl (τ) = Tr

[
ρk−sψrρ

sψl(τ)
]

(4.14)

and we will take s < k/2 without loss of generality. The boundary correlator of conformal
dimension ∆ is given by ∝ cosh−∆ ` where ` is the geodesic distance of two boundary
points [12]. We can account for the cylindrical topology of the bulk configuration by
employing the method of images:

W k,s
rl (τ) ∼

∞∑
m=0

1
cosh∆ψ `

(
P

(0)
l (τ) , P (s+mk)

r

) +
∞∑
m=0

1
cosh∆ψ `

(
P

(0)
l (τ), P (k−s+mk)

r

)
(4.15)

– 33 –



J
H
E
P
0
6
(
2
0
2
2
)
1
4
3

where `(·, ·) is the length of the shortest geodesic connecting the 2 points in the Euclidean
wormhole, ∆ψ = 1/q is the dimension of a Majorana fermion and P (m)

l,r are the embedding
space coordinates of the left or right fermion insertions on the “necklace” diagram:

P
(0)
l (τ) = X0(π − τ) , τ ∈ [−θr0, θr0] (4.16)

P (m)
r = Xm(0) = Bm(x, y)X0(0) (4.17)

The second term in (4.15) that involves k − s separation of “necklace circles” comes
from the geodesics connecting two boundary point from the other circular direction on
cylindrical topology. This is the same idea we used to sum over images in (3.32) in order
to ensure the “big KMS symmetry”. As in the SYK computation of section 4, let us focus
on the dominant contribution to (4.15) which, after the final analytic continuation to
k → 1 s → is, comes from the shortest wormhole geodesic, `(P (0)

l (τ), P (s)
r ). As long as

M � N , we can approximate the length of the latter by the embedding space formula
cosh `(P (0)

l , P
(s)
r ) = P

(0)
l · P (s)

r and the replica 2-point function becomes

W k,s
rl (τ) ≈ 1

(X0(π − τ) ·Bs(x, y) ·X0(0))∆ψ
, τ ∈ [−θr0, θr0] (4.18)

Since the dependence of the function (4.18) on the replica separation s is through M2(sy),
which is analytic in s, we can directly continue k → 1, s → is and τ → 2πit/βE . After
a straightforward computation, the modular flowed correlation function under the limit
of (4.5) is

W (s, t) = 2−∆ψ

(
βEJ
2π

)−2∆ψ
(
e−x cos ys2 cosh πt

βE
+ sin ys2 sinh πt

βE

)−2∆ψ

(4.19)

wehre we removed the overall factor proportional to ε2∆ψ as a normalization choice. Here
the replica-symmetric wormhole geometry parameters x, y, βE are fixed by the parameters
βl, βr, µ of the SYK state via the conditions discussed in the previous section. In the large
βE limit, the latter admit the simple solution:

θl0 = θr0 ⇐⇒ βE = βl + βr (4.20)

tanh x ≈ cos
(
πβl
βE

)
⇒ e−x = tan πδl2 (4.21)

sinh y2 ≈
βEM

2π
1

cosh x ⇒ y ∼ 2 log βEM sin πδl
π

(4.22)

where we defined δl = βl/βE similarly as before. Note that (4.21) exactly matches (2.35) of
the semiclassical particle analysis so the wormhole parameter x corresponds to the boost
parameter x = ξ.

The modular flowed 2-sided correlation function (4.19) will develop a branch cut and
thus give rise to a non-trivial anticommutator (2.15) at the modular time:

s = 2
y
arccot

(
−ex tanh πt

βE

)
= 2
y

[
π + arctanh

(
tanh πt

βE

tan πδl
2

)]
(4.23)
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which exactly matches with (3.78), with the identification of y with c̃1/2 and βE with β.
This determines the probe’s effective temperature to be

βprobe = 2πy ≈ 4π log βEM sin πδl
π

(4.24)

This value of βprobe is consistent with the SYK expression for the normalization of the
probe’s clock (3.80), after matching the SL(2, R) charge M to the SYK parameter

M = J eµq/2 (4.25)

This precise value of the SL(2, R) charge (4.25) introduced by ρ0, which was deduced here
from consistency, can indeed be obtained directly from a microscopic SYK computation, as
we show in appendix D. The SL(2, R) charge of ρ0 increases as we dial up µ, consistent with
the expectation that as µ→∞, ρ0 approaches a projector onto the maximally entangled
state between l and r causing the wormhole to pinch off and split into k disconnected disks
(figure 2d).

5 Discussion

5.1 Lessons for a general prescription for interior reconstruction

In this paper, we utilized the framework of [1] in order to holographically reconstruct the
degrees of freedom hidden behind the horizon of an AdS2 black hole in Jackiw-Teitelboim
gravity. Our motivation for this investigation was twofold: (a) provide an explicit application
of the proposed interior reconstruction method in a setup that is under technical control
and (b) identify the key ingredients of the computation that can clarify the relation of
our approach to other interior reconstruction techniques, and may additionally offer clues
for how to successfully apply the prescription in more interesting setups involving higher
dimensional and possibly single-sided black holes.

Entanglement with reference couples the two exteriors via modular flow. The
first noteworthy aspect of our construction that distinguishes it from previous works is
the fact that we do not deform the boundary dynamics of the system in order to access
the interior. It is well understood that turning on an explicit coupling between the two
boundaries can lead to traversable wormholes [31] that allow some left excitations to causally
reach the right boundary after a finite time [12, 32]. Explicit couplings between the two
sides can also be utilized in the AdS2/SYK correspondence to construct approximate SYK
duals of the bulk SL(2, R) symmetry generators which can transport operators behind the
horizon [33]. Our conceptual contribution lies in demonstrating that the interior can be
explored without such boundary Hamiltonian deformations, or even reference to a second
asymptotic region.

Our construction, instead, relies on introducing a bulk probe whose microstates we
entangle with an external reference. The preparation of this initial state is all the information
we need to define the operator ρis which transports local operators in relation to the bulk
worldline our probe follows. We are essentially using the relative phases between our
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holographic system and the reference as an internal “clock” which allows us to specify the
location of operator insertions in the bulk. This clock is relational in nature and is distinct
from the boundary clock generated by the SYK Hamiltonians.

It is, of course, true that the modular flow couples SYKl and SYKr which is why we can
get a non-trivial anti-commutator {ψl, ρ−isψrρis} after sufficient s. However, this coupling
is not an input but instead a consequence of the entanglement between our holographic
system and the reference. The initial state determines the coupling between the 2 sides
—we are not allowed to pick it by hand. This two-sided coupling appearing in modular flow
after tracing out a subsystem is reminiscent of the discussion of [34].

The conceptual advantage of this perspective is highlighted by imagining an application
of our reconstruction to single-sided black hole interiors. In this case, there exist no
second microscopic system describing a second exterior wormhole region; we have a single
holographic CFT in a high energy state. The Hamiltonian deformation that could move
us into the interior —the analog of the SL(2, R) generators of [33]— becomes unclear in
this case (though see [35–37] and the recent interesting work [38] for suggestions) but our
approach carries over unchanged. The situation is similar for 2-sided holographic systems
in states dual to very long wormholes, where the 2-sided coupling required for propagating
to the interior is exponentially complex [39], or for the case of AdS black holes evaporating
into an external reservoir, where the interior becomes part of the “entanglement island” of
the radiation system at sufficiently long times. Hence, the application of our method to the
aforementioned setups appears to us to be a very promising avenue for future work.

At this point, it is important to point out that the interior reconstruction method we
explored is highly non-linear: every initial state we prepare our system in, provides us with
a generally different operator ρis, after tracing out the reference. This extreme non-linearity
leads to a number of problems when one attempts to apply our prescription starting from
general initial states. These problems were discussed in [1] and can be successfully addressed,
as will be explained in an upcoming work [4].

Chaos and universality of the effective coupling. Both microscopic and Euclidean
JT path integral analysis highlight the role of the emergent SL(2, R) symmetry of the
IR sector of SYK: the generator of the probe’s modular flow effectively reduced, in the
appropriate parameter regime, to an element of this SL(2, R) algebra. This symmetry is
only approximate and provides an effective description of the maximally chaotic dynamics
of the quantum theory. In particular, the SL(2, R) algebra can be organized into a boost
element B and its two eigen-operators, P± with eigenvalues ±i

[B,P±] = ±iP± , [P+, P−] = iB (5.1)

which grow exponentially under the boost flow eiBt. Holographically, B is linked to the IR
action of SYK Hamiltonian, while P± characterize the exponentially growing disruption
of correlations caused by small perturbations as a function of boundary time, due to the
so-called scrambling phenomenon in chaotic systems [33]. In fact, this very symmetry
was the key principle that guided the construction of the effective theory of maximal
chaos of [40, 41].
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The prominent role of the SL(2, R) symmetry in determining our modular flow, therefore,
hints at a possible universality of the SYK modular evolution that takes us into the black
hole interior —a universality established by maximal chaos. As explained above, entangling
a probe introduced in the right asymptotic region to a reference system results in a modular
flow that couples the two asymptotic regions of the wormhole, after tracing out the reference.
Maximal chaos then appears to imply a particular universal form for this effective coupling
which is largely independent of the precise details of the probe we introduced: its scrambling
“potential”, characterized by the amount of SL(2, R) charge the coupling injects, determines
all the useful information about the modular flow, at least in the setup analyzed in this
work, where all details of the exact microscopic coupling just amounts to tuning the value of
the SL(2, R) charge. It would be interesting to understand if maximal scrambling leads to
a similarly universal modular flow in higher dimensions and whether it provides an avenue
for connecting our approach to that of [38] and [36].

Ensemble average and operator randomness. The third important element of our
construction was the quenched ensemble average over SYK couplings. In the microscopic
treatment this was important for obtaining the Liouville equations dictating the fermion
propagation on the “necklace” diagram, while it entered our bulk discussion via the
appearance of the Euclidean wormhole saddle between the two boundaries.7

In an attempt to understand the physical role of this averaging in more general situations,
let us return to our original setup from section 2.1: a thermofield double state of a pair of
0-dimensional holographic quantum systems dual to an AdS2 wormhole, which we entangle
with an external reference in the completely general state

|β, τ〉l,r,ref = Z−
1
2
∑
i

di e
−βlHl2 e−

βrHr
2 Oi |0〉Oref

i |v〉ref (5.2)

where again |0〉 is the maximally entangled state of the two systems and written in energy
basis is

|0〉 ∝
∑
α

|Eα〉l |Eα〉r (5.3)

This time, however, we will not make any specific choice of operator basis, Oi, as we did
in the main text. Instead, we will treat the operators Oi as random matrices within an
energy window E ∈ [0, Ecut] with Ecut . O(N). This is motivated by the Eigenstate
Thermalization Hypothesis (ETH) [42], according to which the energy basis matrix elements
[Oi]αᾱ of simple operators Oi in a chaotic theory have the form:

[Oi]αᾱ = e−
S(Eα+Eᾱ)

2 fi(Eα, Eᾱ)Riαᾱ (5.4)

where Rαᾱ is to a good approximation a Gaussian random matrix with statistics

E
[
Riαβ

]
≈ 0, E

[
RiαβR

i∗
αβ

]
≈ 1 (5.5)

7Of course, in our setup the two asymptotic boundaries in the “necklace” diagram are also coupled, as
discussed above. This coupling is responsible for supporting this wormhole, in the sense that it allows it to
become a saddle, and also ensures that it dominates in the appropriate regime. Nevertheless, the effect of
the coupling can be understood as amplifying the wormhole contribution which exists irrespective of the
coupling but is a non-perturbatively small, off-shell contribution to the path integral in its absence.
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Here we make an extra simplifying assumption and treat the envelope function fi as an
energy filter, restricting the matrix elements to a sufficiently low energy sector:

fi(Eα, Eβ) ≈

1 Eα, Eβ . O(N)
0 otherwise

(5.6)

Choosing Oref
i |v〉ref to be an orthogonal basis in the reference and tracing out the latter

yields the density matrix

ρ =
∑
i

|di|2
(
e−

βl
2 Hl e−

βr
2 Hr Oi|0〉〈0|O†i e

−βl2 Hl e−
βr
2 Hr

)
(5.7)

whose matrix elements in the energy basis of the boundary systems read:

ραᾱ,ββ̄ =l 〈Eα| r〈Eᾱ| ρ |Eβ〉l|Eβ̄〉r

=
∑
iαβᾱβ̄

|di|2 q
Eα+Eβ

2
l q

Eᾱ+E
β̄

2
r [Oi]αᾱ[Oi]∗ββ̄ (5.8)

where we introduced for convenience the notation ql,r = e−βl,r .
We can consider now the same replica correlation function Wrl(k, s) we studied in

this paper:
Wrl(k, s) = Tr

[
ρk−sφr ρ

s φl
]

(5.9)

whose analytic continuation in k and s produces the modular flowed correlation function
that holographically describes the proper time evolved bulk propagator. Plugging in (5.9)
the general expression for ρ, we obtain:

Wrl(k,s) =∑
i1,i2,...ik

|di1 |
2 |di2 |

2 . . . |dik |
2 ∑
{αj ,ᾱj}kj=1

q
1
2 (Eγ−Eαs+1 )+

∑k

j=1Eαj
l q

1
2 (Eγ̄−Eᾱ1 )+

∑k

j=1Eᾱj
r

×[φr]γ̄ᾱ1 [Oi1 ]α1,ᾱ1 [Oi1 ]∗α2,ᾱ2 [Oi2 ]α2,ᾱ2 [Oi2 ]∗α3,ᾱ3 . . . [Ois ]
∗
γᾱs+1 [φl]γαs+1 . . . [Oik ]αk,ᾱk [Oik ]∗α1γ̄

(5.10)

The only aspect of (5.10) that interest us is the pattern of index contractions which, when
combined with the randomness of the matrix elements (5.5), can help us understand the
two distinct limiting phases of our computation, corresponding to the saddle of figure 2d or
that of figure 2b, when the entropy of the probe becomes infinitesimally small (Sprobe → 0)
or maximal (Sprobe → O(N)) respectively.

The first phase is recovered by choosing the weight |di|2 to have support only on a
single operator, say the identity for simplicity, reducing (5.10) to:

Wrl(k, s) ≈


〈0|e−

βl+βr
2 Hlφrφle

−βr+βl
2 Hl |0〉 s = 0

Trl
[
e−(βl+βr)Hlφl

]
Trr

[
e−(βl+βr)Hrφr

]
s 6= 0

(5.11)

which obviously leads to trivial modular flow after analytic continuation.
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The second phase is reached by taking |di|2 to be an almost homogenous weight over a
large subset of operators. It is reasonable to assume that homogeneously summing over
all random operators (5.4) in the theory effectively acts as an ensemble average in the
following sense: ∑

i

|di|2Riαβ ≈ 0,
∑
i

|di|2RiαᾱRi∗ββ̄ ≈ δαβδᾱβ̄ (5.12)

Note that this assumption is different from ETH because we are summing over a subset
of matrices labelled by i. It is, however, motivated by it, and supported by the statistics
of OPE coefficients in holographic CFT2 discussed in the interesting recent works [43–45].
Using the assumption (5.12) in (5.10) and being mindful of the various index contractions,
we find

Wrl(k, s) ≈ Trl
[
e−kβlHlφl

]
Trr

[
e−kβrHrφr

]
(5.13)

which precisely matches the SYK result in the Sprobe → O(N) limit (2.38) corresponding
to the disconnected bulk phase of figure 2b. Due to factorization of Wrl the modular flow
in this case is again trivial but for a different reason: the probe is too large, backreacting
on the bulk wormhole and disconnecting the left and right exteriors.

As in our main text analysis, it is the intermediate regime that is of interest for probing
the black hole interior using modular flow. The important feature of this intermediate
regime in our SYK example was the existence of a coupling between the left and right
systems in the Euclidean path integral which could support the bulk Euclidean wormhole
saddle. Such a coupling in the general formalism sketched in this section can appear by
including deviations from the Gaussian statistics for the operator matrix elements (5.12). In
fact, it is well known that the Gaussian approximation is inconsistent with maximal chaos,
as manifested in the exponential decay of out-of-time-order 4-point functions [46]. Given the
importance of the maximally chaotic dynamics of SYK in our work, it would be interesting
to investigate whether the corrected operator statistics required for maximal scrambling
suffice to support the Euclidean wormhole of figure 2c that enables us to modular flow into
the interior. We leave a careful investigation of this question for future work.

5.2 Collisions behind the horizon

Our setup of modular flowed operator allows us to reconstruct bulk operators behind horizon
in the reference frame of the infalling semiclassical probe. As the backreaction of the probe
to geometry is negligible and its trajectory is well described by a geodesic, we can regard
it as a free-falling classical apparatus that measures the scattering amplitude of collisons
behind the horizon.

To be more precise, let us imagine we start with incoming particles generated by a series
of boundary operators φ1

l (tl,1) · · ·φnll (tl,nl)φ1
r(tr,1) · · ·φnrr (tr,nr) acting on the thermofield

double state. Here we assume the nl,r � N such that perturbation theory of scattering
holds. This incoming state consists of nl particles shooting from the left boundary and nr
particles shooting from the right boundary. At some latter time, these particles will collide
behind horizon to some outgoing particles. However, because of the horizon, these outgoing
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(a) (b)

Figure 8. Measure the scattering amplitude of boundary particles behind horizon. (a) is sending
one probe to measure the amplitude to outgoing particles {χ̃1, · · · , χ̃n} on the whole Cauchy slice
in the thermofield double state, where χ̃j(s) ≡ ρ−isχjρis are the modular flowed bulk operators. (b)
is sending two probes in a more general spacetime (say long wormholes) to measure the amplitude
because the “atmosphere” of one probe can only extend to finite range. In both plots, red curves are
worldlines of probe, orange dashed lines are the spatial slices (“atmosphere”) related to the probe.

particles are not visible to boundary observer, which is the main obstacle to understand
physics behind horizon.

There is one way to study the outgoing particles by turning on some explicit coupling
between two boundaries to form a traversable wormhole after all incoming particles are
injected. The traversable wormhole opens a throat for outgoing particles and they could
be seen by boundary observer. This proposal was studied in [47] by computing six-point
function in AdS2. However, how many outgoing particles will be seen by boundary observer
depends on the width of the throat opened by the traversable wormhole. Moreover, the
negative energy from the explicit coupling to support the traversable wormhole will collide
with the outgoing particles and thus modulates the outgoing signal with details depending
on the collision process.

Alternatively, we can use our modular Hamiltonian to send the apparatus for outgoing
particles into the horizon and measure the scattering amplitude without changing the
geometry. We can study the following inner product

A
({
φil, φ

j
r

}
→
{
χk
})

= Tr
(
ρ1−isχ1 · · ·χnρisφ1

l (tl1) · · ·φil(tli)φ1
r(tr1) · · ·φjr(trj)

)
(5.14)

where {χk} is a set of bulk operators initiated on global t = 0 slice acting on the thermofield
double state with the probe ρ. Note that the full set of χk could be reconstructed by
HKLL method explained in Secrtion 3.5 by both left and right boundary data. Scanning
all possible χk gives full information of the scattering amplitude of the collision among
incoming particles behind horizon on a spatial slice related to the infalling probe after proper
time sβprobe/(2π). See figure 8a for an illustration. Because we measure the scattering
behind horizon directly, this approach also has advantage of not modulating the outgoing
signal comparing to the method in [47].
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One might suspect that modulation still occurs because incoming and outgoing particles
will collide with the probe when they intersect with the worldline of the latter. However,
this is a subleading effect for the collision among particles because this scattering amplitude
is proportional to the energy of the probe, which is low due to its worldline being far from
boundary. One can already see this from the computation in section 3.5 that the pole
location of causal correlator for ` > 0 does not contain Shapiro delay that one might have
expected due to the collision between ψl(t) with the probe before hitting χs.

In more general spacetime, say long wormhole (e.g. [48, 49] and also [50]), where we
could only apply the modular flow to atmosphere operators that are close to the probe [1], we
can simply generalize above approach by including multiple probes with different worldlines
to detect outgoing particles at different locations using the same inner product (5.14)
replacing ρ by the reduced density matrix for multiple probes (figure 8b).
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A Analysis of twisted boundary conditions

Given the solution of Liouville equation, we will not be able to construct a solution in which
all σab meet at all Zβa points and also respect all symmetries. First, requiring

σsrl(βr, τ) = σs+1
rl (0, τ), σsrl(τ, 0) = σs+1

rl (τ, βl) (A.1)

for all s is inconsistent with periodic condition σkrl = σ0
rl. Above condition requires the

function pair choice for σsrl be (hs, f) where the second function could be the same f .8 Also,
a careful check of this ansatz leads to

hs(βr) = hs+1(0) (A.2)

We must have hs and f both to be monotonous function to guarantee correlation function
to be real (because of 1/q power of eσ). However, this obviously contradicts with (A.2) and
hk = h0 because periodic function cannot be monotonous. Indeed, this argument can be
generalized to the case where difference of both sides of (A.1) is a constant, in which (A.2)
still holds.

There are many other inconsistencies related to σsll and σsrr. For σsll, the above periodic
issue is avoid by the reflection (3.30). By similar argument, boundary condition

σsll(βl, τ) = σs+1
ll (0, τ), σsll(τ, 0) = σs+1

ll (τ, βl),

σsll(βl, τ) = σsrl(βr, τ), σsll(0, τ) = σsrl(0, τ) (A.3)
8It must be an SL(2) of f , and by symmetry (3.17) we can choose it to be f .

– 41 –



J
H
E
P
0
6
(
2
0
2
2
)
1
4
3

requires the function choice for σsll to be (fs, f) where all fs are related by SL(2) transfor-
mations. The periodic condition for s = k leads to

(fk(0), f(τ)) = (f0(τ), f(0)) =⇒ f0 ' f (A.4)

Hence, each fs is some SL(2) transformation of f . Taking f0 = a+bf
c+df into UV condition (3.30)

leads to f being in the form of u+ v tan(ωτ +γ). Indeed, any SL(2) of f is also in this form.
Similarly, for σsrr, we have

σsrr(βr, τ) = σs+1
rr (0, τ), σsrr(τ, 0) = σs+1

rr (τ, βr), σsrr(τ, βr) = σsrl(τ, βl), σsrr(τ, 0) = σsrl(τ, 0)
(A.5)

which leads to the function choice of σsrr to be (h̄s, h) where all h̄s and hs are related by
SL(2). Moreover, the periodic condition for s = k and UV condition leads to hs ' h with h
in the same form as f but with possibly different parameters. Taking such tangent related
functions, one can easily show that the last two equations of (A.3) (or (A.5)) that connect
σsrl with σsll (or σsrr) on two ends cannot be satisfied.

B Solving the recurrence

There are two sequences to solve. To solve the recurrence, we first define the following new
variables

ys = cos (ωβl + γs)
cos γs

, xs = vs sec2 γs, λ = sin2 ωβl (B.1)

ỹs = cos (ωβr + γ̃s)
cos γ̃s

, x̃s = ṽs sec2 γ̃s, λ̃ = sinωβl sinωβr (B.2)

The recurrence (3.42) and (3.43) can be rewritten as

xs+1 = αsxsy
−2
s , ys+1 − ys = −αsλxsy−1

s (B.3)

and (3.50) and (3.51) can be rewritten as

x̃s+1 = α̃sx̃sỹ
−2
s , ỹs+1 − ỹs = α̃sλ̃x̃sỹ

−1
s (B.4)

It follows that
ys+1/ys − 1 = −λxs+1, ỹs+1/ỹs − 1 = λ̃x̃s+1 (B.5)

Taking them back to the second equations of (B.3) and (B.4) leads to a recurrence for ys
and ỹs on themselves

ys+1/ys − 1
ys/ys−1 − 1 = αsy

−2
s ,

ỹs+1/ỹs − 1
ỹs/ỹs−1 − 1 = α̃sỹ

−2
s (B.6)

However, these recurrence sequences cannot be solved explicitly. We assume k to be an
odd number. Let us take large µ case in which αs and α̃s become identical and piecewise
constant

αs = α̃s →


α = e−µ(q−2) s = 0, · · · , bk/2c − 1
1 s = bk/2c
1/α s = bk/2c+ 1, · · · , k − 1

(B.7)
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Figure 9. (a) Exact solution of ys versus approximation y(s). (b) Exact solution of xs versus
approximation x(s). (c) Exact solution of log(ys − ys−1) versus approximation log(y(s)− y(s− 1)).
In all plots, the black dots are exact data, blue curve is the approximation for s < bk/2c and yellow
dashed curve is for s > bk/2c. We see that both xs and ys converge very fast and the approximations
match very well. The difference between the approximations of s < bk/2c and s > bk/2c are very
small and only visible when we check ys − ys−1 in log plot. Other parameters are βl = 1, βr = 4,
J = 20, α = 1/10 and k = 17.

Furthermore, we will solve (B.6) approximately by replacing it with its differential version(
log (log y)′

)′
= logαs − 2 log y (B.8)

where y = y(s). This differential equation can be solved for each piece where αs is a
constant as

y(s) =


α1/2 exp [c1 coth (c1s+ b1)] s < bk/2c

α−1/2 exp [c2 coth (c2s+ b2)] s > bk/2c
(B.9)

Here we ignored the s = bk/2c case because it is just one point and not related to our later
analytic continuation. Here need to choose ci and bi to be real parameters because (B.3)
shows that ys is monotonically decreasing sequence. To determine these four parameters,
we will impose the following condtions. For small α, we find that y decays to its limit value
very fast (see figure 9), we can use the limit value y∞ and initial value y0 to fix c1 and b1.
Here is a caveat that the limit value y∞ should be defined as the one using αs = α all along
the sequence. But it turns out to be the same as the limit value if we use (B.7) and take k
to infinity limit, which we denote as y∞. To fix c2 and b2, besides the limit value y∞, we
also use the continuity condition of y(s) at s = bk/2c. One can easily solve them as

c1 = log(y∞/α1/2), b1 = arccoth(log(y0/α
1/2)/ log(y∞/α1/2)) (B.10)

c2 = log(y∞α1/2), b2 = arccoth
( logα+ c1 coth(c1 bk/2c+ b1)

c2

)
− c2 bk/2c (B.11)

The numerics in figure 9 show that this approximation matches with exact result pretty
well. With solution (B.9), we can take it into the first equation of (B.3) and find

xs =

x0e
−2c1

∑s−1
i=0 coth(c1i+b1) s ≤ bk/2c

x0y(bk/2c)e−2c1
∑bk/2c−1

i=0 coth(c1i+b1)−2c2
∑s−1

i=bk/2c+1 coth(c2i+b2)
s > bk/2c

(B.12)
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Figure 10. (a) Exact solution of ỹs versus approximation ỹ(s). (b) Exact solution of x̃s versus
approximation x̃(s). (c) Exact solution of log(ỹs − ỹs−1) versus approximation log(ỹ(s)− ỹ(s− 1)).
All settings are the same as figure 9.

Similarly, if we approximate the sum as integral (just like taking the recurrence sequence as
differential equation), we get

x(s) =


x0 sinh2 b1

sinh2(c1s+b1) s < bk/2c
x0 sinh2 b1 sinh2(c2bk/2c+b2)

sinh2(c1bk/2c+b1) sinh2(c2s+b2) s > bk/2c
(B.13)

For our approximation (3.32), we will use the two solutions in (B.9) and (B.13) respectively
in σsll and σ

k−s
ll . In terms of x(s) and y(s), we have the large q solution to be

gll(s)eσ
s
ll(τ1,τ2)/q = 1

2
(
ωλJ −1x(s)1/2y(s)[(sinω(βl − τ1) + y(s) sinωτ1)

×(sinωτ2 + y(s) sinω(βl − τ2))− λx(s) sinωτ2 sinω(βl − τ1)]−1
)2/q

(B.14)

It is very similar to solve the other recurrence sequence using the differential equation
approximation. However, from the second equation in (B.4), ỹs is a monotonically increasing
function. Hence, the solution to the same differential equation (B.8) should be chosen as

ỹ(s) =


α1/2 exp c̃1 tanh(c̃1s+ b̃1) s < bk/2c

α−1/2 exp c̃2 tanh(c̃2s+ b̃2) s > bk/2c
(B.15)

where the parameters should be determined in the same way as

c̃1 = log
(
ỹ∞/α

1/2
)
, b̃1 = arctanh

(
log

(
ỹ0/α

1/2
)
/ log

(
ỹ∞/α

1/2
))

(B.16)

c̃2 = log
(
ỹ∞α

1/2
)
, b̃2 = arctanh

 logα+ c̃1 tanh
(
c̃1 bk/2c+ b̃1

)
c̃2

− c̃2 bk/2c (B.17)

It follows that

x̃ (s) =


x̃0 cosh2 b̃1

cosh2(c̃1s+b̃1) s < bk/2c
x̃0 cosh2 b̃1 cosh2(c̃2bk/2c+b̃2)

cosh2(c̃1bk/2c+b̃1) cosh2(c̃2s+b̃2) s > bk/2c
(B.18)
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Figure 11. The errors of twist boundary condition. The horizontal axis is τ plotted over [0, βl]
for ∆1,3 and over [0, βr] for ∆2,4 for all s in order, that is, putting all different s in one plot where
[0, βa] is for s = 0, [βa, 2βa] is for s = 1 and so on. Here the parameters are βl = 1, βr = 4, J = 20,
α = 1/500, q = 20 and k = 9. If we increase β, namely decrease α, the error will overall be smaller.
We see that the error is much smaller than 1/q = 0.05 for this choice of small α.

From figure 10, we see clearly that our approximation works very well. By our solution of
s = 0, we have

x0 = x̃0 = sec2 ω (βl + βr) /2 (B.19)

y0 = ỹ0 = cosω (βl − βr) /2 secω (βl + βr) /2 (B.20)

In terms of x̃(s) and ỹ(s), we have

grl(s)eσ
s
rl(τ1,τ2)/q = sgn(grl(s))

2
(
ωλ̃J −1x̃(s)1/2ỹ(s)[(sinω(βr − τ1) + ỹ(s) sinωτ1)

×(sinωτ2 + ỹ(s) sinω(βl − τ2)) + λ̃x̃(s) sinωτ2 sinω(βr − τ1)]−1
)2/q

(B.21)

For σsrr and σslr, we can simply switch βl ↔ βr. Note that to get σslr, we can also use
symmetry (3.25), which turns out to be the same as swap βl ↔ βr. This is a consistent
check that based on the fact that x̃s and ỹs are both invariant under swap βl ↔ βr, which
is because initial values x̃0 and ỹ0 and recurrence equations all preserve this symmetry.

Given this solution, we need to check how much the twist boundary condition in (3.20)–
(3.23) are violated. Note that in large β limit, the factors involving hyperbolic functions
become

∣∣∣∣∣sinhµ sinh (k−2(s−1))µ
2

cosh (k−2s)µ
2

∣∣∣∣∣ ≈
∣∣∣∣∣sinhµ cosh (k−2(s−1))µ

2

sinh (k−2s)µ
2

∣∣∣∣∣→


1
2e

2µ s ≤ bk/2c
1
2e
µ s = bk/2c+ 1

1
2 s > bk/2c+ 1

(B.22)

∣∣∣∣∣sinhµ sinh (k−2s)µ
2

cosh (k−2(s−1))µ
2

∣∣∣∣∣ ≈
∣∣∣∣∣sinhµ cosh (k−2s)µ

2

sinh (k−2(s−1))µ
2

∣∣∣∣∣→


1
2 s ≤ bk/2c
1
2e
µ s = bk/2c+ 1

1
2e

2µ s > bk/2c+ 1
(B.23)
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All l.h.s. of (3.20)–(3.23) are zero by our ansatz. r.h.s. are generally nonzero and can be
categorized into four types

∆1 = e2µ (exp (σsll (βl, τ) /q)− exp (σsrl (βr, τ) /q)) (B.24)
∆2 = e2µ (exp (σslr (βl, τ) /q)− exp (σsrr (βr, τ) /q)) (B.25)
∆3 = e2µ (exp (σslr (τ, 0) /q)− exp (σsll (τ, 0) /q)) (B.26)
∆4 = e2µ (exp (σsrr (τ, 0) /q)− exp (σsrl (τ, 0) /q)) (B.27)

which are upper bound of errors in r.h.s. In figure 11, we plot ∆i for all choices of τ and s.
In this figure, we find that when we increase β, equivalently decrease α, the errors decrease.
With the parameters figure 11, we see that the errors are typically much smaller than 1/q.
Therefore, we should trust our solution in large β limit.

C Validity of large q solution

Although we find perfect match between our large q solution with bulk semiclassical
computation, we should not expect the solution well describing black hole physics for
arbitrary large s. On one hand, SYK model has distinct long time behavior than semiclassical
gravity, e.g. ramp and plateau in the form factor [27] are described non-pertrubative effects
in JT gravity. On the other hand, for a black hole, the probe will not extend its worldline
inside horizon for infinite proper time because it will eventually hit singularity. However, it
seems neither of these two bounds can be applied our current analysis. The first type of
long time behavior is for boundary time. It is unclear how that will be related to the proper
time of an infalling probe behind horizon. In particular, from figure 3a and figure 3b, it is
clear that after just order one proper time evolution, the spatial slice of probe already goes
beyond two Rindler wedges. The second type of limitation from singularity unfortunately
does not exist in JT gravity because it has constant curvature everywhere. One could
define the singularity of JT gravity as the curve with large and negative dilaton value −φ0
understood as dimensional reduction from higher dimensional near extremal black hole [51].
However, for large φ0, the singularity is time-like and most probes are free from hitting it.
It was argued in [1] that the modular flow formula should hold up to scrambling time order
of proper time. This seems to be the only bound for s. This bound is quite high and grants
our solution to see the regions way behond horizon.

Besides s, we still need to check in more details on how other parameters are bounded
for the validity of the large q solution. These bounds mainly come from the limitation
of various approximations we take in the solution. The first approximation is taking the
correlation function in the thermofield double state for σ0

ab in (3.33) and (3.34) when µ is
large. To estimate the error, we need to use the following identity

e−βV ∝
N∏
j=1

(
1− 2iψjl ψ

j
r tanh µ2

)
∝

N∏
j=1

[
|0j〉 〈0j |+ 2e−µψjl |0j〉 〈0j |ψ

j
l

]

≈ |0〉 〈0|+ e−µ
N∑
j=1

2ψjl |0〉 〈0|ψ
j
l (C.1)
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where we used |0j〉 〈0j | = (1− 2iψjl ψjr) up to normalization and assumed e−µ � 1. Taking
this into s = 0 correlation function (here we suppress the average over indices for simplicity)

ĝ(τ1, τ2) = Trρkψa(τ1)ψb(τ2)
Trρk ≈ ĝtfd(τ1, τ2)

(
1+ e−µkξkF(τ1, τ2)

1+Ne−µkξk

)
+subleading (C.2)

where

ξ≡ 2
N

∑
j

〈
0|ψjl e−βlHl−βrHrψ

j
l |0
〉

Zβ
∼O(1), Zβ ≡

〈
0|e−βlHl−βrHr |0

〉
=TrHle

−βHl

(C.3)

F(τ1, τ2)≡N


〈

0|ψjl e−βlHl/2−βrHr/2ψa(τ1)ψb(τ2)e−βlHl/2−βrHr/2ψjl |0
〉

ξ
〈
0|e−βHl/2ψa(τ1)ψb(τ2)e−βHl/2|0

〉 −1

∼O(1) (C.4)

To derive this, we used large N factorization and SO(N) symmetry of correlators. To
gurantee our thermofield double approximation works for all k ≥ 1, we need to impose

e−µ/N � 1 (C.5)

which is obviously satisfied given e−µ � 1.
The second approximation is assuming σsab continuous and checking if errors ∆i � 1/q.

All four ∆i are in the same order, and let us check ∆1 as an example. In large J limit, we
can use (3.73) to show that ỹs � 1 (unless δl is too close to 0 or π). Similarly, we can use
the recurrence to show that y0 = ỹ0 � 1, y1 ≈ y0(1 − α), yk ≈ yk−1(1 − O(α(αy−2

0 )s−1))
and ỹs−ys ∼ y0α for s ≥ 1. Besides, xs has same scaling as x̃s in (3.74) and their difference
is xs − x̃s ∼ O(α2(αỹ−2

0 )s−1) for s ≥ 2 (and is zero for s = 0, 1). Then, we have

∆1 ≈ e2µ

( ω sin πδlx(s)1/2/J
sinωτ + y(s) sinω(βl − τ)

)2/q

−
(

ω sin πδlx̃(s)1/2/J
sinωτ + ỹ(s) sinω(βl − τ)

)2/q


. e2µ
(
α1/2(αy−2

0 )
s−1

2

(βJ )2

)2/q
α

q

.
1
q
e−µq(βJ )−4/q (C.6)

where we assume sinωτ ∼ sinω(βl − τ) ∼ O(1) and in the last line we take s = 1 to get the
upper bound. To guarantee it being smaller than 1/q, we need to impose

e−µq(βJ )−4/q � 1 (C.7)

The third approximation is replacing the recurrence sequence with differential equation.
This approximation causes errors for xs and ys (and their tilde version). This error should
be smaller than xs − x̃s and ys − ỹs. As (C.6) could also be understood as counting for the
error of latter type, we shoul validate this approximation under condition (C.7).
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The last approximation is using the sum over image as the solution to Schwinger-Dyson
equation. This error is exponentially small for s not close to bk/2c as indicated in figure 5.
For s close to bk/2c, the image and correlator itself are both exponentially small, there
could exist O(1) relative error though the absolute error is still exponentially small. It
is not easy to analyze the error precisely there because we do not have a full solution
to Schwinger-Dyson equation. However, we could understand this error as putting some
restriction on our analytic continuation of s. In other words, we should require =W2 � =W1
in (3.71) for some range of s. In large J limit, we have

c̃2 ≈ log βJα
1/2

π
sin πδl, b̃2 ≈

1
2 log (c̃2/α) (C.8)

Here we see a competition between βJ and α in c̃2 and b̃2 will have ±iπ/2 imaginary part
if c̃2 < 0. Nevertheless, we could require |<(c̃2 + b̃2)| � 0 for simplicity. This leads to

| logβJ + 1
2< log c̃2|� 0 =⇒


α1/2βJ � exp

(
β−2J −2) or α1/2βJ � exp

(
−β−2J −2) (a)∣∣∣βJα1/2

π sinπδl−1
∣∣∣�β−2J −2 (b)

(C.9)
where case (a) means overwhelming large βJ or 1/α leads to large |c̃2|, and case (b) means
c̃2 is very close to zero. For case (a), ỹ(1− is) is again small oscillating function around its
average value ỹ(1). Using a similar approximation towards (3.76), we have

W2(s, t) ≈
( (2π sin πδl/2)/(βJ )
Y (s) sinω(βl/2 + it) + Y (s)−1 sinω(βl/2− it)

)2/q
(C.10)

where

Y (s) =
(1 + α)

(
cosh

(
c̃2 + b̃2

)
cos c̃1s+ i sinh

(
c̃2 + b̃2

)
sin c̃1s

)
cosh b̃2

(C.11)

As |c̃2| is very large, this leads to

|Y (s)| ∼ e|c̃2| =⇒ |W2/W1| ∼ e−2|c̃2|/q (C.12)

For small image contribution, we need(
βJα1/2

)∓2/q
� 1 (C.13)

where minus sign is for βJα1/2 � 1 and plus sign is for βJα1/2 � 1. For case (b), we have
ỹ(1− is) ≈ 1 and x̃(1− is) ≈ x̃0 for all s� 1/|c̃2| → ∞, this leads to

W2(s, t) ∼ 1/x2/q
0 ∼

(
β2J 2

)−2/q
=⇒ |W2/W1| ∼ (βJ )−2/q (C.14)

For small image contribution, we need

(βJ )−2/q � 1 (C.15)

Summarizing the above analysis, we should expect our solution valid generally for
e−µ � 1 and (βJ )−1/q � 1. If the e−µq/2 and 1/βJ are two distinct scales, we require the
distinct large enough as (C.13). Otherwise, we require them to be in very close scales as
βJ e−µq/2 → π/ sin πδl. For the case we are mostly interested in, we can first take large µ
limit and then take large βJ , which is in validity of our solution.
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D Euclidean wormhole SL(2, R) charge from large q SYK solution

The essence of M in gravitational computation is the magnitude of SL(2, R) charge carried
by insertion of ρ0. Therefore, we should first find a way to define SL(2, R) charge for a
given solution (3.16) on the “necklace” diagram. In the following, we will only focus on σsrl,
whose solution is copied here

eσ
s
rl(τ1,τ2) = h′s(τ1)f ′(τ2)

J J̃s(1− hs(τ1)f(τ2))2 (D.1)

Let us first forget about all conditions that we impose to fix these functions as in section 3.3.
After fixing f , we could restrict ourselves to the subspace of solutions to Liouville equation
in which all hs are related to each other by an SL(2, R) transformation. This subspace is
isomorphic to the group manifold of SL(2, R). In this sense, our solution for each s given
in section 3.3 is a point in this subpace. Finding a quantity to characterize the effect of
insertion ρ0 is equivalent to measuring the “distance” between s-th and (s+ 1)-th points.

Such “distance” has a natural constraint that if the translation τ1 → τ1 +c for a constant
c is an SL(2, R) transformation of hs, we should count it as no “distance” away from original
solution. This corresponds to the SL(2, R) charge defined in (4.4) for circular boundary
particle trjectory in EAdS2 being invariant under translation in θ. In other words, we are
counting the effect of ρ0 relative to the time translation generated by SYK Hamiltonian.

The PSL(2, R) group has a 3-dimensional faithful representation by acting SL(2, R) on
its sl(2, R) algebra by conjugation, where for a given SL(2, R) transformation

hs →
ahs + b

chs + d
, ad− bc = 1 (D.2)

we represent it as

Q ≡
(
V0 V+
V− −V0

)
→
(
a b

c d

)(
V0 V+
V− −V0

)(
a b

c d

)−1

, V±,0 ∈ R (D.3)

where V0,± parameterize the representation space. Indeed, our transformations of solution
from s to s+ 1 are all in the subgroup PSL(2, R) because we will keep the direction of time
unflipped. As Q are elements of the representation space, it is natural to define it as the
charge for each solution and use it to measure “distance”. For any two charges Q1 and Q2,
the inner product is defined as

(Q1, Q2) ≡ TrQ1Q2 (D.4)

and the norm of Q1 −Q2 is their “distance”. This “distance” coincides with the charge of
ρ0 (namely M) if Q1,2 are charges of s-th and (s + 1)-th solution respectively assuming
charge conservation.

For s = 0, we have h0(τ) = tanω(τ + γ̃0), whose time translation acts as

h0(τ + τ0) = cosωτ0h0(τ) + sinωτ0
− sinωτ0h0(τ) + cosωτ0

(D.5)
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Invariance of Q = Q0 under this SL(2, R) transformation solves V0,± in (D.3) as

Q0 : V0 = 0, V+ = −V− = κ/β (D.6)

Here 1/β is due to dimensional analysis that Q0 should match with mass M . κ is an order
one number that does not depend on µ. This is important because s = 0 solution should not
know anything about ρ0. Starting with Q0, we can represent the space of PSL(2, R)/U(1)
by conjugation (D.3) of Q0, where U(1) counts for the constraint from the time translation
as we proposed above.

Moving to a finite s solution leads to SL(2, R) matrix

Rs =
(
ṽs − ũs tan γ̃s0 ũs + ṽs tan γ̃s0
− tan γ̃s0 1

)
cos γ̃s0√

ṽs
(D.7)

where γ̃s0 ≡ γ̃s − γ̃0 and which conjugating Q0 leads to

Qs = κ/β

(
−ũs/ṽs ũ2

s/ṽs + ṽs
−1/ṽs ũs/ṽs

)
(D.8)

Using (3.52) and (B.2), we can write Qs in terms of x̃s and ỹs. Further using the re-
currence (B.4), we can represent Qs in terms of x̃s−1 and ỹs−1. The norm square of
Qs+1 −Qs is

M2
s =Tr(Qs+1 −Qs)(Qs+1 −Qs)

= 2κ2

αβ2ỹ2
s

[
2αx̃s

(
α+ ỹ2

s

)
sinωβl cscωβr +

(
α2 + ỹ4

s + (α(α+ 4) + 1)ỹ2
s

)
csc2 ωβr

+α
(
αx̃2

s sin2 ωβl − 4ỹ2
s

)
− 2(α+ 1)ỹs cotωβr

(
αx̃s sinωβl +

(
α+ ỹ2

s

)
cscωβr

)]
(D.9)

where we take large µ to set all αs equal to α. One can easily show that this is indeed an exact
identity of the recurrence (B.4) if we set αs = α, which meansM2

s is a constant for all s. This
exactly corresponds to the gravitational computation in section 4.2 where the magnitude
of SL(2, R) charges of all ρ0 insertion are the same and the SL(2, R) transformation of
boundary circular trajectory is just power of B(x, y). In particular, taking s = 0 leads to

M2
s = M2

0 = 2κ2

β2

(
(1 + α)2

α cos2 ωβ
2
− 4

)
→ 2κ2J 2

π2α
(D.10)

where in the last step we take large βJ and small α. This corresponds to the norm of
charge carried by ρ0. To match with (4.25), we simply choose κ = π/

√
2.

Another immediate application of the recurrence identity is to compute ỹ∞. Given
x̃∞ = 0, using (D.10) for s→∞ leads to

ỹ∞ = 1
4 secωβ/2

[
2(α+ 1) cosω(βl − βr)/2

+
√

2 ((α− 1)2 + (α+ 1)2 cosω(βl − βr)− 4α cosωβ)
]

(D.11)

– 50 –



J
H
E
P
0
6
(
2
0
2
2
)
1
4
3

Expanding in small α and large βJ limit, we see at leading order

ỹ∞ ≈ ỹ0(1 + α) ≈ ỹ1 (D.12)

which verifies our approximation (3.73). Using similar method, we can find another
recurrence identity for xs and ys, from which we can derive

y∞ =1
2 secωβ/2

[
cos

(
ω(βl − βr)

2

)
+ α cos

(
ω(3βl + βr)

2

)

+

√
(1− α)2 −

(
sin
(
ω(βl − βr)

2

)
+ α sin

(
ω(3βl + βr)

2

))2
 (D.13)

E Bulk phase transition in large q SYK

There is a very simple estimation for the bulk phase transition by changing parameter µ in
large q SYK model. For disconnected phase, the correlation function between SYKl and
SYKr scales as N−(q−1) because it can only be built by classical correlation of random
coupling J between left and right [35]. It follows that the contribution from insertion of
probe scales as µN 〈ψlψr〉 ∼ µN−(q−2) which vanishes in large N limit (for q > 2). At
nonlinear orders, the insertion of probe contribute by the correlations within each SYK
system. Nevertheless, we can treat the partition function of k replica as product of the
partition function of two SYK models with inverse temperature kβl and kβr respectively
plus µ2 and higher order perturbation.

For each SYK model with temperature β, the large q effective action is derived in [52]

Seff = N

4q2

∫
dτ1dτ2

[1
4∂1σ(τ1, τ2)∂2σ(τ1, τ2)− J 2eσ(τ1,τ2)

]
(E.1)

where the correlation function is in the form of G(τ1, τ2) = 1
2sgn(τ12)eσ(τ1,τ2)/q. The equation

of motion of (E.1) is Liouville equation and its equilibrium solution is

eσ(τ1,τ2) = ω2

J 2 cos2 ω(|τ12| − kβ/2) (E.2)

where ω is defined by ω = J cos kβ/2. Taking this solution back to (E.1), we get the
on-shell action of disconnected phase to be [53]

Seff (kβ) = N

2q2

∫
τ1>τ2

dτ1dτ2ω
2
(
1− 2 sec2 (ωτ12 − ωkβ/2)

)
= N

4q2kβω

(
kβω − 4 tan ωkβ2

)
→ −N kβJ

q2 (E.3)

where in the last step we take large β limit for simplicity. To count for the correct partition
function, we also need to include a constant extremal entropy S0 = −N

2 log 2. This can be
seen from high temperature limit β → 0 where partition function should count the total
dimension of Hilbert space. For two SYK models, the total partition function is

Zdisconn. (kβl, kβr) ≈ e−2S0−Seff(kβ), β ≡ βl + βr (E.4)
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Figure 12. The comparison of on-shell action between disconnected phase (blue) and connected
phase (yellow) as we increase µ. At some finite µ = µcr, the dominant phase changes from the
disconnected to the connected. The numbers in this plot are just for illustrative purpose.

The µ dependence at quadratic order is derived from expanding ρ0 as

ρ0 = coshN µ

2

N∏
j=1

(
1− 2iψjl ψ

j
r tanh µ2

)
(E.5)

and contracting k insertions of 1 − 2iψjl ψjr tanh µ
2 within each SYK model respectively

for each j. Given insertions are located at equal spacing of βl,r on the thermal circle
of circumstance kβl,r, we just need to consider the nearest contractions in large β limit.
Due to SO(N) symmetry and assuming large N factorization, we can derive the following
contribution to on-shell action from the nearest contractions

e−δSeff/N =
(

1−
√

1 + 4x
2

)k
+
(

1 +
√

1 + 4x
2

)k
, x ≡ 4 tanh2 µ

2Gl(βl)Gr(βr) (E.6)

where Ga(βa) = 〈ψa(βa)ψa〉kβa ∈ [0, 1/2] are correlation functions of Majorana fermions
with βa spacing on the thermal circle with circumstance of kβa. Note that x ∈ [0, 1] for
µ ∈ R and exponentially suppressed in large βl,r limit. It turns out that δSeff decreases
monotonically until a finite value for increasing µ.9

On the other hand, for connected phase where µ is large, we can roughly ignore all
SYK contributions but only keep the one coming from insertion of probe. This is equivalent
to evaluating

Zconn.(k) ≈ Tr
N∏
j=1

exp
(
−iµkψjl ψ

j
r

)
=
(

2 cosh µk2

)N
≈ e−N(−µk/2) (E.7)

where in the last step we take large µ limit. We can regard −µk/2 as the on-shell action
for connected phase. It is important that this action does not include a constant extremal

9In this computation, we ignore the backreaction of ρ0 to the background SYK solution on the thermal
circle with circumstance of kβl,r even in some large µ case. But we should expect this backreaction does not
affect our result qualitatively.
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entropy term. Indeed, from JT gravity point of view, this reflects the fact that disconnected
and connected phase have different contributions of topological term proportional to S0. It
is clear that when −µkN/2 > 2S0 +Seff(kβ)+δSeff, the dominant phase will be disconnected
and vice versa. If we ignore δS, the critical value of µ for phase transition is µcr ∼ 2βJ /q2

in large βJ limit. See figure 12 for an illustration. In this paper, we basically consider the
regime µ > µcr such that connected phase dominates.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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