
J
H
E
P
0
6
(
2
0
2
2
)
1
4
2

Published for SISSA by Springer

Received: April 4, 2022
Revised: May 18, 2022

Accepted: May 23, 2022
Published: June 24, 2022

At the end of the world: Local Dynamical Cobordism

Roberta Angius, José Calderón-Infante, Matilda Delgado, Jesús Huertas
and Angel M. Uranga
Instituto de Física Teórica IFT-UAM/CSIC,
C/ Nicolás Cabrera 13-15, Campus de Cantoblanco, 28049 Madrid, Spain
E-mail: roberta.angius@csic.es, j.calderon.infante@csic.es,
matilda.delgado@uam.es, j.huertas@csic.es, angel.uranga@csic.es

Abstract: The Cobordism Conjecture states that any Quantum Gravity configuration
admits, at topological level, a boundary ending spacetime. We study the dynamical
realization of cobordism, as spacetime dependent solutions of Einstein gravity coupled to
scalars containing such end-of-the-world ‘branes’. The latter appear in effective theory
as a singularity at finite spacetime distance at which scalars go off to infinite field space
distance. We provide a local description near the end-of-the-world branes, in which the
solutions simplify dramatically and are characterized in terms of a critical exponent, which
controls the asymptotic profiles of fields and the universal scaling relations among the
spacetime distance to the singularity, the field space distance, and the spacetime curvature.
The analysis does not rely on supersymmetry. We study many explicit examples of such
Local Dynamical Cobordisms in string theory, including 10d massive IIA, the 10d non-
supersymmetric USp(32) theory, Bubbles of Nothing, 4d N = 1 cosmic string solutions, the
Klebanov-Strassler throat, Dp-brane solutions, brane configurations related to the D1/D5
systems, and small black holes. Our framework encompasses diverse recent setups in which
scalars diverge at the core of defects, by regarding them as suitable end-of-the-world branes.
We explore the interplay of Local Dynamical Cobordisms with the Distance Conjecture and
other swampland constraints.

Keywords: D-Branes, Flux Compactifications, Superstring Vacua

ArXiv ePrint: 2203.11240

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP06(2022)142

mailto:roberta.angius@csic.es
mailto:j.calderon.infante@csic.es
mailto:matilda.delgado@uam.es
mailto:j.huertas@csic.es
mailto:angel.uranga@csic.es
https://arxiv.org/abs/2203.11240
https://doi.org/10.1007/JHEP06(2022)142


J
H
E
P
0
6
(
2
0
2
2
)
1
4
2

Contents

1 Introduction 1

2 Local dynamical cobordisms 3
2.1 General ansatz 3
2.2 Local description of end of the world branes 5

3 Some 10d examples 8
3.1 The 10d massive type IIA theory 8
3.2 The 10d non-supersymmetric USp(32) string 9

3.2.1 r → 0 10
3.2.2 r →∞ 10

4 Branes as cobordism defects 11
4.1 Compactification to a running solution 13
4.2 D-branes as Dynamical Cobordisms 14
4.3 Revisiting the EFT strings 17
4.4 The Klebanov-Strassler throat 19

5 Small black holes as Dynamical Cobordisms 21
5.1 The D2/D6 system on T4 21
5.2 Small black holes from the D2/D6 system on T4 ×T2 24
5.3 General small black holes 25

6 Swampland constraints and surprises from the UV 27
6.1 Swampland distance conjecture and other constraints 27
6.2 Large N surprises from the UV 29

7 Conclusions 30

A Local Dynamical Cobordisms with curved (d− 1)-dimensional slices 32
A.1 General analysis for curved slices 32
A.2 Witten’s bubble of nothing 35

B Subleading corrections to the local description 36

– i –



J
H
E
P
0
6
(
2
0
2
2
)
1
4
2

1 Introduction

The Cobordism Conjecture [1] states that in any consistent theory of quantum gravity all
cobordism classes are trivial. In simple terms, it must admit at the topological level a
configuration ending spacetime.1 Such end-of-the-world configuration may correspond to a
boundary (such as the 10d Horava-Witten boundary of 11d M-theory [2, 3]), a bubble of
nothing in which some compactification space shrinks to zero size [4] (see [5–8] for some
recent works), or more exotic possibilities, and may possibly be dressed with charged objects,
such as branes, orientifold planes or generalizations (dubbed I-folds in [9]). The cobordism
conjecture, already at this topological level, has produced interesting results, see [6, 9–13]
for some references.2

An exploration of the Cobordism Conjecture beyond the topological level was undertaken
in [21, 22] via the study of spacetime varying solutions to the equations of motion in theories
with dynamical tadpoles, namely, potentials which do not have a minimum and thus do not
admit maximally symmetric solutions (see [23–26] for early work and [27–30] for related
recent developments, and [31, 32] for a complementary approach to cobordism solutions).
In the solutions in [21, 22], which we refer to as Dynamical Cobordisms, the fields run along
a spatial coordinate until the solution hits a singularity at finite distance in spacetime,
which (once resolved in the full UV theory) ends spacetime.

These solutions exhibit sharp features in the region near the singularity. For instance,
the scalars go off to infinite distance in moduli (or field) space at the spacetime singularity.
Moreover, in the effective field theory description, the field space distance D, the spacetime
curvature R and the spacetime distance ∆ to the singularity are related by interesting
scaling laws, namely (in Planck units)

∆ ∼ e−
1
2 δD, |R| ∼ eδD (1.1)

for suitable positive coefficient δ.
The singularities in these solutions are resolved in the full UV description, in terms of the

corresponding cobordism configuration. In string theory examples, the latter often admits a
tractable microscopic description involving geometries closing-off spacetime, possibly dressed
with defects, as explained above. In this spirit, they were dubbed ‘cobordism defects’ or
‘walls of nothing’ in [21, 22]. In this work we will mainly focus on the effective field theory
description, where they remain as singular sources, which we refer to as End-of-The-World
(ETW) branes.3

The universal form of the scaling relations (1.1) was found by inspecting several explicit
examples, but it suggests that a simple universal local description near the ETW branes
should be possible in the effective theory. In this paper we provide this local description by
studying Dynamical Cobordisms near walls at which the scalars run off to infinite field space

1Equivalently, any two quantum gravity theories admit, at the topological level, a domain wall connecting
them. For this paper we will emphasize the formulation as in the main text.

2Spacetimes with boundaries have also been considered in the holographic setup, see [14–20] for some
recent approaches.

3This follows the nomenclature in some of the references in footnote 2.
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distance. In this local description, the solutions simplify dramatically and are characterized
in terms of a critical exponent δ, which controls the asymptotic profiles of fields and the
scaling relations (1.1) in a very direct way. The analysis does not rely on supersymmetry
and can be applied to non-supersymmetric setups.

This provides a powerful universal framework to describe ETW branes within effective
field theory, as we illustrate in many different examples. We exploit it to describe Dynamical
Cobordisms in several 10d string theories, including non-supersymmetric cases. We also
use it to characterize warped throats [33, 34] as Dynamical Cobordisms. We moreover
show that the familiar 10d Dp-brane supergravity solutions can be regarded as Dynamical
Cobordisms of sphere compactifications with flux, and are described by our local analysis
with the D-branes playing the role of ETW branes. Finally, we argue that 4d small black
hole solutions (see [35, 36] for some reviews), including those of the recent work [37], can
be similarly regarded as Dynamical Cobordisms of S2 compactifications with flux, with the
small black hole core playing the role of ETW brane.

Our models provide setups in which scalars explore large field space distances in
a dynamical setup (as pioneered in [38], see also [39]), in contrast with the alternative
adiabatic approach. Hence our description of Local Dynamical Cobordisms is the natural
arena for the dynamical realization of swampland proposals4 dealing with infinity in scalar
moduli/field space.

The paper is organized as follows. In section 2 we present the general formalism for
the local description of Dynamical Cobordisms. In section 2.1 we present the general
equations of motion, and in section 2.2 we apply them to describe the local dynamics near
ETW branes, and derive the universal scaling relations. In section 3 we apply the local
description to several 10d examples, including massive IIA theory in section 3.1 and the
non-supersymmetric USp(32) theory of [40] in section 3.2. In section 4 we interpret D-brane
supergravity solutions as Dynamical Cobordisms (section 4.1) and express them as ETW
branes in the local description (section 4.2). Similar ideas are applied in section 4.3 to
the EFT string in 4d N = 1 theories in [41], and in section 4.4 to the Klebanov-Strassler
warped throat [33, 34]. In section 5 we discuss small black holes as Dynamical Cobordisms.
In section 5.1 we warm up by expressing the supergravity solution of D2/D6-branes on
T4 as a Dynamical Cobordism, and in section 5.2 we relate it to small black holes via a
further T2 compactification. In section 5.3 we consider more general small black holes,
such as those in [37], and derive scaling relations despite the absence of a proper Einstein
frame in 2d. In section 6 we discuss the interplay of Swampland constraints with the
results of our local description for the behaviour of several quantities near infinity in field
space. In section 6.1 we consider the Distance Conjecture, the de Sitter conjecture and
the Transplanckian Censorship Conjecture. In section 6.2 we discuss potentially large
backreaction effects when the UV description of the ETW branes involve a large number
of degrees of freedom, suggesting mechanisms to generate non-trivial minima near infinity
in field space. In section 7 we offer some final thoughts. In appendix A we generalize
the ansatz in the main text to allow for non-zero constant curvature in the ETW brane

4See [38] for a related viewpoint.
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worldvolume directions (section A.1), and apply it to describe Witten’s bubble of nothing as
a 4d Dynamical Cobordism and provide its local description (section A.2). In appendix B
we discuss subleading corrections to the local description, specially relevant in cases where
the leading contributions vanish.

2 Local dynamical cobordisms

In this section we formulate our local effective description near End of The World (ETW)
branes, in terms of gravity coupled to a scalar field. We would like to emphasize that
we consider a general scalar potential, but remarkably derive non-trivial results for its
asymptotic behaviour near infinity in field space. The key input is just that the dynamics
should allow for the scalar to go off to infinity in field space in a finite spacetime distance.

Interestingly, the scalar potential generically behaves as an exponential near infinity in
moduli/field space, suggesting a first-principles derivation of the ‘empirical’ evidence for
such exponential potentials, coming from string theory and other swampland considerations
(see [42–44] for reviews). In particular, exponential potentials and constraints on them have
been discussed in [31, 32], for the restricted case of bubbles of nothing (i.e. UV completed
to a purely geometrical higher dimensional configuration, à la [4]). In contrast, our analysis
holds for fully general ETW branes (and hence, allows for more general potentials, including
cases without this asymptotic growth).

We focus on the case of a single scalar; however, our discussion also applies to setups
with several scalars, by simply combining them into one effective scalar encapsulating the
dynamics of the solutions (as illustrated in several of our examples in later sections).

2.1 General ansatz

Consider d-dimensional Einstein gravity coupled to a real scalar5 field with a potential,

S =
∫
ddx
√
−g

(1
2R−

1
2 (∂φ)2 − V (φ)

)
, (2.1)

where we are taking MPl = 1 units. We focus on d > 2, and deal with the d = 2 case in
some explicit examples in section 5.

ETW branes define boundaries of the d-dimensional theory, hence they are described
as real codimension 1 solutions. We take the ansatz

ds2 = e−2σ(y)ds2
d−1 + dy2 ,

φ = φ(y) ,
(2.2)

where y parametrizes the coordinate transverse to the ETW brane.
We consider flat metric in the (d−1)-dimensional slices. The corresponding analysis for

general non-zero constant curvature, carried out in the same spirit and leading to essentially
similar results, is presented in appendix A.

5Even though our analysis holds for general potential, we often refer to the scalar as modulus, and its
field space as moduli space.
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The equations of motion are

φ′′ − (d− 1)σ′φ′ − ∂φV = 0 , (2.3)

1
2(d− 1)(d− 2)σ′ 2 + V − 1

2φ
′ 2 = 0 , (2.4)

(d− 2)σ′′ − φ′ 2 = 0 , (2.5)

where prime denotes derivative with respect to y. The first one is the equation of motion for
the scalar; for the Einstein equations, they split into transverse and longitudinal components
to the ETW brane, giving two independent equations, subsequently combined into the last
two equations.

The analysis of these equations is more amenable in terms of a new quantity, the
tunneling potential introduced in [45, 46] (see also [47–52])

Vt(φ) ≡ V (φ)− 1
2φ
′ 2 . (2.6)

Using it to eliminate the scalar from the eoms we get

(d− 1)
√

2 (V − Vt)σ′ − ∂φVt = 0 , (2.7)

1
2(d− 1)(d− 2)σ′ 2 + Vt = 0 , (2.8)

(d− 2)σ′′ − 2 (V − Vt) = 0 . (2.9)

Finally, combining the first two equations to eliminate σ we get
1
4(d− 2) (∂φVt)2 + (d− 1) (V − Vt)Vt = 0 . (2.10)

This is a d-dimensional generalization of a condition found in [50] in the context of do-
main walls.

Now, given a potential V (φ), one can use this equation to solve for the tunneling
potential Vt(φ), and then use (2.6) and (2.8) to solve for φ(y) and σ(y) respectively. In
addition, one should check that (2.9) is also satisfied.

Before moving on, let us comment on the implications that these equations have
for the signs of the relevant quantities. From equation (2.8) we learn that Vt ≤ 0. In
addition, from (2.6) we get that V − Vt ≥ 0. Notice that these two facts are consistent
with equation (2.10). Finally, combining the last inequality with (2.9) we learn that σ′′ ≥ 0.
When solving our system of equations we will systematically pick signs so that these
inequalities are satisfied.

A nice way of parametrizing the freedom of choosing the potential is by writing

V (φ) = a(φ)Vt(φ) , (2.11)

where we have to impose that a(φ) ≤ 1 for the reason explained above. Plugging this
into (2.10) one can easily get to the solution

log
(
Vt
V 0
t

)
= ±2

√
d− 1
d− 2

∫ φ

φ0

√
1− a

(
φ̃
)
dφ̃ , (2.12)

where we are taking V 0
t ≡ Vt(φ0) as boundary condition.
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2.2 Local description of end of the world branes

As explained in the introduction, we are interested in solutions for which the scalar attains
infinity in field space i.e. φ→ ±∞ at a point at finite distance in spacetime, defining an
ETW brane. Without loss of generality we take this boundary to be y = 0, and the infinity
in field space as φ→∞.

From (2.12), it is clear that the asymptotic behavior as y → 0, φ→∞ is controlled by
the asymptotic profile of a(φ). We know from the previous section that a(φ) ≤ 1 and we
restrict our analysis to the cases where a(φ) has a well-defined and constant limit a < 1
as φ→∞ (we briefly remark on the behavior a→ 1 below (2.15)). Indeed, although one
can cook up potentials realizing other possibilities, we have not encountered them in any of
the string theory examples in later sections. We therefore ignore other possibilities in what
follows, leaving for future work the question about the consistency of such behaviors from
the viewpoint of UV completions. Note that the constraint a < 1 includes a = 0, which
corresponds to solutions with potential negligible with respect to the kinetic energy for the
scalar (at least asymptotically).

Taking constant a, (2.12) gives

Vt(φ) ' −c eδ φ , (2.13)

where c > 0 is related to the boundary condition used before. As explained in appendix B,
we also allow c to hide some φ-dependence, corresponding to subleading corrections. The
leading behaviour is an exponential controlled by the critical exponent δ, given by

δ = 2
√
d− 1
d− 2 (1− a) . (2.14)

Here we choose the plus sign for δ. As we will see later this will imply that ETW brane
explores φ→∞ as explained above.

The critical exponent δ controls the structure of the local solution, in particular the
asymptotic profile of fields as y → 0, and the scaling relations among different physical
local quantities.

Recall that the freedom of choosing a potential is parametrized by a. It is then
interesting to ask how the potential itself looks like when approaching the end of the world.
Plugging (2.13) into (2.11) we find

V (φ) ' −a c eδ φ . (2.15)

Note that we get an exponential dependence, for any value of a < 1. As a side-note, for
a = 1, the potential V may take different forms e.g. power-like, growing strictly slower than
exponentials.

Also notice that, since c > 0, the sign of the potential is completely determined by that
of a. Moreover, using the relation between a and the critical exponent δ in (2.14), we can
put bounds on the latter depending on the sign of the potential. Namely, for V > 0 we must
have a < 0, which implies δ > 2

√
d−1
d−2 , while if V < 0 then 0 < a < 1, yielding δ < 2

√
d−1
d−2 .

We thus neither have negative potentials whose exponential behaviour is arbitrarily strong,
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nor positive potentials whose exponential behaviour is arbitrarily mild. The explanation
is that such exponentials would lead to φ′2 � V as we approach the ETW brane, and
therefore they correspond to the a = 0 case of our analysis.

It is interesting that we have derived fairly generically an exponential shape of the
potential near infinity in moduli space, from the requirement that the theory contains
ETW branes, namely configurations reaching infinity in moduli space at finite spacetime
distance. In section 6.1 we will study its interplay with a variety of swampland constraints
on scalar potentials. We note however that theories with milder growth of the potential
(most prominently, theories with vanishing potential and exact moduli spaces) are still
included in the analysis, and correspond to a(φ)→ 0. The corresponding statement that
V → 0 in this case actually means that the theory can have any potential as long as it
grows slower than φ′ 2.

From (2.6) we can obtain the asymptotic profile of φ as y → 0

φ(y) ' −2
δ

log

δ2

4

√
2c d− 2
d− 1 y

 . (2.16)

Here we are ignoring an additive integration constant, irrelevant in the φ→∞ limit. We
have also fixed another integration constant by demanding that the function blows up for
y → 0. The leading term as y → 0 is

φ(y) ' −2
δ

log y . (2.17)

Hence the scalar goes off to infinity as we approach the end of the world. This motivates
the appearance of a lowered cutoff as we approach the wall, above which a more complete
microscopic description simply resolves the singularity; this resonates with the swampland
distance conjecture, as we discuss in section 6.1.

Plugging (2.16) into (2.8) we can also solve for σ(y). The final result is

σ(y) ' ± 4
(d− 2)δ2 log y . (2.18)

Here we ignore an integration constant which can be reabsorbed by a change of coordinates.
Note that, to comply with (2.9), we only need to pick the minus sign.

Furthermore, the d-dimensional scalar curvature is given by

R = (d− 1)
(
2σ′′ − dσ′ 2

)
∼ 1
y2 . (2.19)

We thus recover that the curvature blows up as we approach the end of the world, leading
to a naked singularity in the effective field theory description.

Notice that we have ignored a prefactor that, interestingly, vanishes for the special case
δ2 = 2d

d−2 . For that value one should consider the next-to-leading order term in the y → 0
expansion. In what follows we ignore this case and keep the generic one.

Since the scalar φ is normalized canonically, the field space distance D as y → 0
is (2.17). Also, the distance in spacetime to the singularity is given by y. Hence from (2.17)

– 6 –
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and (2.19) we obtain the universal relations

∆ ∼ e−
δ
2 D , |R| ∼ eδ D . (2.20)

The solutions provides a simple universal description of dynamical cobordism in terms
of the effective field theory. The microscopic description of the cobordism defect is available
only in the UV complete theory, and is thus model-dependent (but known in many cases, see
our explicit examples in later sections). From our present perspective, the only microscopic
information we need is the very existence of such defects, guaranteed by the swampland
cobordism conjecture [1].6 It is thus remarkable that, the simple requirement that scalars
go to infinity at finite spacetime distance leads to a complete local description of the EFT
behaviour near a dynamical cobordism. Moreover, it constrains the structure of the theory,
in particular it naturally yields an exponential behavior of the scalar potential near infinity
in field space.

The above local description can be used to prove a general relation, introduced in [21],
between the dynamical tadpole (defined as the derivative of the potential T = ∂φV (φ)) at
a given point and the spacetime distance ∆ to the ETW brane, which in our examples is
given by

∆ ∼ (T )−
1
2 . (2.21)

Indeed, using (2.15) and (2.17), we obtain T evaluated at a point y∗:

T |y=y∗ = ∂φV |y=y∗ = −a c δ eδφ|y=y∗ = −a c δ (y∗)−2 , (2.22)

∆ is constructed as the distance from a point y∗ to the singularity at y = 0, we therefore
have ∆ = y∗. We hence have a general relation7

∆ =
( −T
a c δ

)− 1
2
∼ (T )−

1
2 . (2.23)

This relation places a bound on the spacetime extent of a solution whose running is induced
by a dynamical tadpole, as emphasized in [21, 22], due the dynamical appearance of an
end of spacetime. We would nevertheless mention that there exist solutions with spacetime
boundaries even in situations with no dynamical tadpole. The simplest example is Horava-
Witten theory, which corresponds to M-theory on an interval with two boundaries. Even
in our present context of scalars running off to infinity at finite spacetime distance, it is
possible to find ETW branes in cases with vanishing potential V = 0 (or asymptotically
negligible potentials, a = 0).

6To be more precise, there are theories in which the cobordism higher-form symmetry is gauged, rather
than broken by the existence of the defects. In such cases, the gauging imposes the constraint that the
total charge cancels in the configuration; our analysis applies to those cases as well, with the ETW brane
corresponding to a mere ending of spacetime with no explicit charged defects, similar to a bubble of nothing,
see appendix A.2.

7For the particular case of the warped throat in 4.4 this corrects the statement in [21].
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3 Some 10d examples

In this section we consider examples of 10d theories with Dynamical Cobordism solutions
in [21, 22], and use the above local description to easily derive their structure. The results
nicely match the asymptotic behavior of the complete solutions in the literature.

3.1 The 10d massive type IIA theory

We consider the 10d massive type IIA theory. The effective action in the Einstein frame for
the relevant fields is

S10,E = 1
2κ2

∫
d10x
√
−g

{
R− (∂φ)2 − 1

2e
5
2
√

2φF 2
0 −

1
2e
√

2
2 φ|F4|2

}
, (3.1)

where F0 denotes the Romans mass parameter. The
√

2 factors in the exponents ensure
that the normalization of the scalar agrees with our conventions.

This theory has a potential
V = 1

2e
5√
2
φ
F 2

0 , (3.2)

hence it does not admit 10d maximally symmetric solutions. On the other hand there are
9d Poincaré invariant (and in fact 1/2 supersymmetric) running solutions of the equations
of motion in which the dilaton (and other fields) depend on a space coordinate, e.g. x9.
The metric and dilaton profile read

ds2
10 = Z

(
x9
)1/12

ηµνdx
µdxν ,

e
√

2φ = Z
(
x9
)−5/6

,

(3.3)

where the coordinate function is Z
(
x9) = −F0x

9. This solution hits a singularity at
x9 = 0, which was proposed to correspond to an end of the world brane in [21, 22]. In the
microscopic theory, it corresponds to an O8-plane (possibly with D8-branes), as in one of
the boundaries of the interval of type I’ theory [53].

In the following we show how the local structure of the Dynamical Cobordism can be
obtained from the analysis in the previous section.

The only input of the local analysis is the potential (3.2). Matching it with the local
analysis expression (2.15), we obtain the following values for δ and, using (2.14) for a:

δ = 5√
2
, a = −16

9 . (3.4)

Plugging this into (2.17) we obtain the dilaton profile

φ ' −2
√

2
5 log y. (3.5)

We can now obtain the profile for σ (2.18)

σ ' − 1
25 log y , (3.6)

– 8 –
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which determines the metric via (2.2). As usual, the local description predicts the scalings

∆ ∼ e−
5

2
√

2
D
, |R| ∼ e

5√
2
D
. (3.7)

These results from the local analysis are in agreement with the scaling relations obtained in
the paper [21] from the complete solution. In fact, this can be done very easily from (3.3),
by a change of coordinates

y =
∫ x9

0

(
−F0x̃

9
)1/24

dx̃9, (3.8)

in terms of which the solution acquires the form of (2.2)

ds2
10 =

[25
24 (−F0) y

]2/25
ds2

9 + dy2 ,

e
√

2φ =
[25

24 (−F0) y
]−4/5

.

This indeed corresponds to profiles for σ (via (2.2)) and φ in agreement with (3.6) and (3.5)
respectively.

3.2 The 10d non-supersymmetric USp(32) string

Let us consider a second example in the same spirit, but in the absence of supersymmetry.
We consider the 10d non-supersymmetric USp(32) theory, built in [40] as a type IIB
orientifold with a positively charged O9-plane and 32 anti-D9-branes. The 10d Einstein
frame action for the relevant fields is

SE = 1
2κ2

∫
d10x
√
−G

{
R− (∂φ)2

}
− TE9

∫
d10x
√
−G 64 e

3√
2
φ
. (3.9)

We have introduced factors of
√

2 relative to the conventions in [40], to normalize the scalar
as in previous sections.

This theory has a dilaton tadpole, due to the uncanceled NSNS tadpoles, and hence
does not admit maximally symmetric 10d solution. On the other hand, there are 9d Poincaré
invariant running solutions of its equations of motion [23], given by

ds 2
E = |√αEr|

1
9 e−

αEr
2

8 ηµνdx
µdxν + |√αEr|−1e

− 3φ0√
2 e−

9αEr
2

8 dr2 ,

φ = 3
4
√

2
αEr

2 +
√

2
3 log |√αEr|+ φ0 , (3.10)

where αE = 64κ2TE9 , and φ0 is a reference value for the dilaton. The coordinate r was
denoted by y in [23] but here, we preserve y for the coordinate of the local analysis near
end of the world branes.

The solution hits two singularities, at r → 0 and at r → +∞, which are at finite
spacetime distance, yet the scalar attains infinity in fields space (φ→ −∞ at r → 0, and
φ → ∞ at r → ∞, respectively). As discussed in [21, 22], it thus describes a Dynamical
Cobordism with two end of the world branes. The existence of two boundaries, and hence a

– 9 –
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finite size spacetime coordinate, arises in this example, but is not a general feature of running
solutions, as we have seen in previous sections. It would be interesting to understand a
general criterion discriminating between the two possibilities, but we leave this question for
future work. In any event, even in setups with two boundaries, our local analysis applies to
each of them individually, as we discuss next. Indeed, let us now exploit the local analysis
to display the scalings near these walls, with the scalar potential in (3.9) as sole input.

3.2.1 r → 0

From equation (3.10), we see that r → 0 corresponds to the limit φ→ −∞. The potential
in (3.9) vanishes in that limit. As a consequence, we have an ETW brane in which the
potential becomes negligible, i.e., the critical exponents for the local model are

δ = 3√
2
, a = 0. (3.11)

The local analysis then leads to the dilaton and radion profiles

φ ' 2
√

2
3 log y , σ ' −1

9 log y . (3.12)

Note that we have chosen the sign of φ→ −∞ as y → 0.
These results allow to obtain the universal scalings for the curvature and spacetime

distance with the field space distance (2.20), namely

∆ ∼ e−
3

2
√

2
D
, |R| ∼ e

3√
2
D
. (3.13)

It is easy to check that the above profiles and scaling reproduce the behaviour of the
complete solution (3.10). This can be shown by the following coordinate change to bring it
into the ansatz (2.2):

y =
∫ √
|
√
αEr|−1e

− 3φ0√
2 e−

9αEr2
8 dr ∼

[
Γ
(1

4 ,
9αE
16 r2

)
− Γ

(1
4 , 0

)]
∼
√
r . (3.14)

In the last step we have taken the leading behaviour as r → 0. By also taking the leading
behaviour in (3.10), plugging in y, and reading off σ as it appears in (2.2) we finally recover
the profiles predicted by the local analysis in (3.12).

3.2.2 r →∞

This should be described by a local model where φ→ +∞ at y → 0, i.e. the origin of a new
local coordinate (which corresponds to r →∞). In this case the potential in (3.9) is blowing
up, hence via (2.15) and (2.14), we get δ = 3/

√
2, a = 0, just as in (3.11). The result

a = 0 may seem puzzling, since from (2.15) this would seem to imply V → 0. However, one
should recall that in the local description a = 0 simply means that V � φ′2. Indeed, it may
happen that c blows up as φ→∞ in such a way that it compensates having a→ 0 in this
same limit. We will explicitly check this later on.

The dilaton and radion profiles read

φ ' −2
√

2
3 log y , σ ' −1

9 log y . (3.15)
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The dilaton sign differs from (3.12) in order to have φ→ +∞ as y → 0. We also recover
the scalings for ∆ and R with D, which are again given by (3.13).

Let us now show that the above local model indeed reproduces the r → ∞ regime
of (3.10). The required change of variables is now

y =
∫ ∞
r
|
√
αE r̃|−1/2e−

3
4φ0e−

9αEr
2

16 dr̃ ∼ Γ
(1

4 ,
9αE
16 r2

)
∼ r−

3
2 e−

9αE
16 r2

. (3.16)

The integration limits are chosen so that the finite distance singularity at r →∞ is located
at the origin for the new coordinate. In the last step we have taken the leading behaviour
of the Gamma function as r →∞.

Taking the logarithm of this expression and keeping the leading behaviour we get

log y ' −9αE
16 r2 . (3.17)

Finally, by also taking the leading behaviour in (3.10), reading off σ as it appears in (2.2)
and plugging in our previous expression for y, we recover the profiles anticipated by the
local analysis in (3.15).

Let us now come back to the issue of having a = 0 while not having vanishing potential.
First, let us check that indeed φ′2/V →∞ as we approach the ETW brane. We can compute
it, with no approximations, as

φ′2

V
∼
(

3αE
2
√

2
r +
√

2
3

1
r

)2

, (3.18)

where we are ignoring irrelevant numerical prefactors. Importantly, for this computation
one has to remember that φ′ is the derivative with respect to y, not with respect to r. As
advanced, we find that this blows up to infinity in both r → 0 and r →∞ limits.

Moreover, using this result one can compute the tunneling potential as φ→∞ as

Vt '
φ′2

2 ∼ r
2V ∼ φ e

3√
2
φ ∼ e

3√
2
φ+log φ

, (3.19)

where we have plugged in the value of V from (3.9) and r2 ∼ φ from the r →∞ limit of
φ(r) in (3.10). As advertised, we find a case in which the coefficient c in (2.13) blows up
as we approach the wall of nothing. This is consistent with our local analysis because, as
we see in the last equality, c does not blow up faster than the exponential, i.e., it gives
subleading corrections to log Vt (see appendix B for more details).

4 Branes as cobordism defects

The local analysis of section 2 provides a general framework to describe effective ETW branes,
encapsulating Dynamical Cobordisms of the underlying theory. An interesting observation
is that, in compactified theories with fluxes, the cobordism requires the introduction of
charged objects. Namely, those required to break the corresponding cobordism charge to
avoid a global symmetry, which should be absent in Quantum Gravity. A typical example
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Figure 1. Dp-branes as cobordism defect in theories with (8−p) compact dimensions from the higher
and lower dimensional perspective. Our local (p+ 2)-dimensional description of the S8−p-truncation
corresponds to the local structure of a Dynamical Cobordism of a more general compactification
on X8−p.

is the introduction of NS5- and D-branes in bubbles of nothing in compactifications with
NSNS and RR fluxes (see [6] for a recent discussion on bubbles of nothing).

Therefore it is interesting to explore the description of such objects in the local picture
of section 2. As a simple illustrative setup, in this section we describe the geometry around
a stack of Dp-branes in the language of the local analysis of section 2. In local terms, it
corresponds to regarding the Dp-brane supergravity solution as a compactification of the
10d theory on S8−p with flux, yielding a d = (p+ 2)-dimensional running solution along
one of the coordinates (morally the radial coordinate), which has finite extent and end on
an effective ETW brane. The microscopic description of the latter is actually given by the
Dp-brane in the UV.

The above idea generalizes the description in [22] of the EFT strings solutions in [41]
as cobordism defects of S1 compactifications of the underlying 4d N = 1 theory with axion
flux along the S1.

We note that the compactification of the 10d theory on the S8−p around a Dp-brane
actually corresponds to a truncation onto the SO(9−p)-invariant sector. Sphere truncations
have long been studied in the literature, in particular in the holographic context, see [54]
for a discussion for Dp-brane solutions. However, in our context we should regard the
sphere truncation as a fair local description of Dynamical Cobordisms in actual compact-
ifications, including those with scale separation, allowing for a more physical notion of
lower-dimensional effective theory. Our local analysis should be regarded as part of the
latter. This is depicted in figure 1, and is illustrated quantitatively in a similar example for
Witten’s bubble of nothing in appendix A.2.
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Finally, although we phrase our discussion in terms of Dp-branes, notice that other
string theory branes admit similar analysis; in fact, the NS5-brane is essentially the same as
the D5-brane, since we are working in the Einstein frame, in which S-duality acts manifestly.

4.1 Compactification to a running solution

Let us begin with a precise description of the general procedure of compactifying a codimen-
sion (n+ 1) brane-like solution in d+n dimensions down to a running solution (codimension
1) in d dimensions. In next sections, we will apply this reasoning to the Dp-branes as
cobordism defects of S8−p compactifications.

Take the general metric of a codimension n object in d+ n-dimensions:

ds2 = e−2µ(r)ds2
d−1 + e2ν(r)

(
dr2 + r2dΩ2

n

)
. (4.1)

The directions in ds2
d−1 span the worldvolume of the object, while we have split the transverse

directions into radial and angular ones.
We want to perform an Sn truncation to look at this solution from the d-dimensional

perspective. We thus take the compactification ansatz

ds2 = e−2αω(r)ds2
d + e2βω(r)r2

0ds
2
n , (4.2)

where r0 is a reference scale. By requiring that the d-dimensional action is in the Einstein
frame and has canonically normalized kinetic term for the radion ω we get the following
constraints for α and β:

γ ≡ α

β
= n

d− 2 β2 = d− 2
n(d+ n− 2) . (4.3)

The first one implements the Einstein frame requirement, while in the second one we already
apply both conditions. Note that for d = 2 we recover the familiar statement that there is
no Einstein gravity in 2 dimensions. We will deal with reductions to 2d in section 5, and
consider d > 2 in what follows.

By matching the compactification ansatz (4.2) with the metric in (4.1) we obtain the
profile for the radion

e2βω(r) = e2ν(r)
(
r

r0

)2
, (4.4)

as well as the lower-dimensional metric

ds2
d = e2αω(r)

(
e−2µ(r)ds2

d−1 + e2ν(r)dr2
)
. (4.5)

In order to put solutions in the general form (2.2) used for the local description in
section 2, we introduce a new coordinate

y =
∫
eαω(r)eν(r)dr , (4.6)

in terms of which we can borrow the results (2.15)–(2.20) from the local description.
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From the viewpoint of the d-dimensional theory, there is a non-trivial potential arising
from the curvature of the Sn, and possibly other sources (such as fluxes, etc). Generically
the total potential does not have a minimum, hence the running solutions can be regarded
as induced by a dynamical tadpole. Applying the results in [21, 22], the d-dimensional
solution must describe a Dynamical Cobordism ending on an ETW brane, to which we can
apply the local analysis in section 2.

Note that however there are cases with a non-trivial minimum. A prominent example is
the S5 compactification with a large number N of RR 5-form field string flux units (see [55]
for a discussion in similar terms). The minimum corresponds to a setup with no tadpole,
and admits a maximally symmetric solution, namely the celebrated AdS5 × S5. Because of
this, we will not consider the D3-branes in our discussion, and focus on genuinely running
solutions.

4.2 D-branes as Dynamical Cobordisms

In this section we regard the 10d Dp-brane solutions as S8−p compactifications and re-
express them in terms of the local description of ETW branes of the (p+ 2)-dimensional
theory of section 2. Note that, in contrast with section 3, we do not intend to derive the
local solutions from a (p+ 2)-dimensional scalar potential; rather we take the familiar 10d
solutions and express their near brane asymptotics as local (p+ 2)-dimensional ETW brane
solutions.

Consider the Dp-brane solution in the 10d Einstein frame, with 0 ≤ p ≤ 8. The 10d
metric and dilaton profile take the form

ds2
10 = Z (r)

p−7
8 ηµνdx

µdxν + Z (r)
p+1

8
(
dr2 + r2dΩ2

8−p

)
, (4.7)

Φ = (3− p)
4
√

2
log (Z(r)) , (4.8)

where the warp factor is given by the harmonic functions

Z(r) = 1 +
(
ρ

r

)7−p
for 0 ≤ p ≤ 6 , (4.9)

Z(r) = 1− N

2π log
(
r

ρ

)
for p = 7 , (4.10)

Z(r) = 1− |r|
ρ

for p = 8 . (4.11)

Here ρ > 0 is a length scale. For the cases p 6= 7 it depends on the number of Dp-branes,
N , while for p = 7 this dependence does not enter in ρ but has been made explicit in
the solution.

As we have explained, these formulas should be regarded as the local description near
the D-branes in possibly more general compactifications, namely the above Z(r) should
be though of as local expansions around the D-brane location of the warp factor in more
general compactification spaces, cf. figure 1.

We immediately see that for p 6= 3, the dilaton reaches infinite values near the point
r = 0, the core of the Dp-brane. As explained above, we do not consider the case p = 3,
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since it relates to AdS minimum of the theory. The solution does not run towards an ETW
brane but towards a minimum in the potential. Similarly, for p = 8, the dilaton reaches
finite values at r = 0. This fits with the identification of D8-branes as interpolating walls
instead of walls of nothing in [22]. In the following we restrict to p 6= 3 and 1 ≤ p ≤ 7, the
lower bound to avoid reduction to 2d (postponed until section 5), and the upper bound to
have non-trivial sphere compactification.

The Dp-brane is a solution of the following generic type II theory with a dilaton
and RR field:

S10 ∼
1
2

∫
d10x
√
−g10

{
R10 − (∂Φ)2 − 1

2n!e
aΦ|Fn|2

}
. (4.12)

where n = 8 − p. This 10d theory does not have a scalar potential. However, once
compactified on S8−p with N units of F8−p flux, the curvature of the sphere as well
as the flux itself will generate dynamical tadpoles for the ensuing radion and (p + 2)-
dimensional dilaton. Indeed, let us perform this compactification explicitly and show
that we find ourselves in an end-of-the-world scenario, reproducing the associated scaling
relations of [22].

Taking a compactification ansatz of the form (4.2) we obtain the d = (p+2)-dimensional
Einstein frame metric:

ds2
d =

(
r2

r2
0
Z(r)

p+1
8

) 8−p
p {

Z(r)
p−7

8 ηµνdx
µdxν + Z(r)

p+1
8 dr2

}
, (4.13)

where the Greek indices correspond to directions along the world volume of the p-brane.
The (p+ 2)-dimensional dilaton inherits the same profile as the original one and one obtains
the radion’s profile through matching:

e2βω(r) = r2

r2
0
Z(r)

p+1
8 . (4.14)

The radion is canonically normalized if β2 = p
8(8−p) .

The solution has a spacetime singularity at r = 0, at which both the dilaton and radion
blow up. We can now compute the relevant scaling quantities, namely the spacetime distance
∆d to the singularity, the curvature scalar |Rd| near the singularity, and the distance D
traversed in field space. For the former two we obtain:

∆d ∼

r
(p−3)2

2p for p ∈ [1, 6] and p 6= 3 ,

r8/7 for p = 7 .
(4.15)

|Rd| ∼

r
− (p−3)2

p for p ∈ [1, 6] and p 6= 3 ,

r−16/7 for p = 7 .
(4.16)

For the field space distance near the singularity, we obtain the following by plugging in the
profiles of the radion (4.14) and dilaton (4.7):

D(r) =
∫

(dω2 + dΦ2)1/2dr '


− |3−p|2

√
9−p
p log r for p ∈ [1, 6] and p 6= 3 ,

− 4√
14 log r for p = 7 .

(4.17)
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The solution thus describes Dynamical Cobordisms with the following scaling relations:

∆d ∼ e
|p−3|
p

√
p

9−p D , |Rd| ∼ e
2|p−3|
p

√
p

9−p D for p ∈ [1, 6] and p 6= 3 , (4.18)

and
∆9 ∼ e−

2
√

14
7 D , |R9| ∼ e

4
√

14
7 D for p = 7 . (4.19)

This shows that Dp-brane are cobordism defects, which reduced on the surrounding
S8−p can be described as ETW branes. In the following we describe their structure in terms
of the local description of section 2.2. This will allow us a much simpler computation of the
above scaling relations.

The objective is to put the d-dimensional metric in domain-wall form (2.2). In the
notation of section 4.1, one obtains:

σ(r) = −αω(r) + µ(r) = −8− p
p

log
(
Z(r)

p+1
16

(
r

r0

))
− p− 7

16 log (Z(r)) . (4.20)

The new coordinate y is obtained as

y =
∫ r

eαω(r)eν(r)dr =
∫ r

Z(r)
p+1
2p

(
r

r0

) 8−p
p

dr . (4.21)

For a general Dp-brane with p 6= 3, 7, in the limit r → 0 we have

y =
∫ r (ρ

r

)(7−p) p+1
2p
(
r

r0

) 8−p
p

dr ∼ r
(p−3)2

2p . (4.22)

Using equation (4.20), this yields

σ(r) ' σ
(
y

2p
(p−3)2

)
' − (9− p)

(p− 3)2 log y . (4.23)

We may compare this to the profile for σ put forward by the local description described in
section 2.2:

σ(y) ' − 4
p δ2 log y . (4.24)

We can thus extract the value of δ and, for completeness, that of a:

δ2 = 4(p− 3)2

p(9− p) , 1− a = − (p− 3)2

(p− 9)(p+ 1) . (4.25)

Thus, we have, from equation (2.17):

D(y) ' −2
δ

log y ' −|p− 3|
√

9− p
2√p log r . (4.26)

We have thus recovered exactly the profile (4.17), without having to use the explicit scalar
profile. From (2.20), we also recover the scaling relations (4.18), namely:

∆d = y ∼ e−
|p−3|
p

√
p

9−p D , |Rd| ∼ e
2 |p−3|

p

√
p

9−p D . (4.27)
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Hence, in this case we have used the local description to recover the field-space distance and
scaling relations near the singularity without knowing the full details of the d-dimensional
theory. In fact, we can use the local description to derive the asymptotic behaviour of
interesting d-dimensional quantities. For instance, the scalar potential scales near the
singularity as (2.15):

V (D) = −c
(

1− (p− 3)2

(9− p)(p+ 1)

)
e

2(p−3)√
p(9−p)

D
. (4.28)

This is a very interesting bottom-up approach. In the actual d-dimensional action, the
potential would depend on the radion and dilaton with contributions from the curvature of
the sphere and the flux traversing it. However, the local description encapsulates only the
dependence on the effective scalar dominating the field distance D near the ETW brane,
erasing any other irrelevant UV information. From the previous equation we find that the
potential is negative as we approach the ETW brane (recall c > 0). With the extra input
that the curvature and the flux contributions to the potential are negative and positive
respectively, the local description is then telling us that it is the curvature term the one
that dominates in this limit.

For the D7-brane, the coordinate y is given by

y =
∫ r

eαω(r)eν(r)dr =
∫ r (

−N2π log
(
r

ρ

)) 4
7
(
r

r0

) 1
7
dr ∼ r

8
7 , (4.29)

where we have neglected the logarithmic contribution compared to the polynomial one.
Similarly, we have:

σ(r) ' σ
(
y

7
8
)
' −αω

(
y

7
8
)
' −1

8 log y . (4.30)

Hence, comparing this to equation (2.18), we find:

δ2 = 32
7 , a = 0 . (4.31)

This means that the asymptotic potential vanishes, in the sense of φ′2 � V . Plugging this
value of δ2 into equation (2.17) and (2.20), we recover the same field space distance and
scaling relations as in the computations of the previous section:

D(y) ' −
√

7
8 log y ' − 4√

14
log r , (4.32)

∆9 = y ∼ e−
√

8
7 D , |R9| ∼ e2

√
8
7 D . (4.33)

4.3 Revisiting the EFT strings

In [41, 56] it was proposed that in 4d N = 1 theories the limits in which saxionic scalars
go to infinity in moduli space can be studied as radial flows in 4d supersymmetric EFT
string solutions magnetically charged under the corresponding axionic partners. In [22] the
result was recovered by considering running solution of the compactification of the theory
to 3d with axion fluxes along the S1: the solutions implement a Dynamical Cobordism
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ending spacetime along the running direction, and the EFT string arises as the cobordism
defect required to get rid of the axion flux. In this section we revisit the analysis in [22]
from the local description, with the EFT string becoming an ETW brane. As expected,
the analysis is fairly similar to the 10d D7-brane example in the previous section; indeed,
upon compactification of the 10d theory on a CY3, the wrapped D7-branes turns into the
simplest avatar of the EFT strings in [41, 56].

In the 4d EFT string solution [41, 56], the profile for the scalars is given by

s(r) = s0 −
q

2π log r

r0
, (4.34)

a(θ) = a0 + θ

2πq . (4.35)

In our 3d interpretation, equation (4.35) describes the axionic flux over the S1, and
equation (4.34) solves the dynamical tadpole for the saxion.

The 4d metric takes the form

ds2
4 = −dt2 + dx2 + e2Ddzdz̄ , (4.36)

with z = reiθ. The warp factor is given by

2D = −K +K0 = 2
n2 log s

s0
, (4.37)

where the Kähler potential is K = − 2
n2 log s. This D should not be confused with the field

space distance, and we trust the reader to distinguish them by the context.
Matching the 4d metric (4.36) to the setup in section 4.1 with n = 1, we obtain the 3d

coordinate y:

y =
∫ r

eαω(r)eν(r)dr =
∫ r (

1− q

2πs0
log r

r0

) 2
n2 r

r0
dr ∼ r2 , (4.38)

where we have once more neglected the logarithm compared to the polynomial contribution.
Then, we can put the 3d metric in the domain-wall form (2.2), in the r → 0 limit, with:

σ
(
y

1
2
)

= −γβω
(
y

1
2
)
' − log

((
1− q

2πs0
log y

1
2

r0

) 1
n2
y

1
2

r0

)
' −1

2 log y . (4.39)

Comparing this to (2.18), we obtain

δ2 = 8 , a = 0 . (4.40)

We can use these parameters to recover the profiles and scaling of the local solution. For
instance, we obtain that φ′2 � V , as in the D7-brane case. We also obtain the field-space
profile and scaling relations8 from (2.17) and (2.20):

D(y) ' −
√

1
2 log y , (4.41)

∆ = y ∼ e−
√

2D , |R| = e2
√

2D . (4.42)

We thus find that the full solution can be described in terms of the local description,
with the EFT string described in terms of an ETW brane.

8This result corrects a factor of
√

2 arising from |D| ' |σp| ' −
√

2 log(r), which was missing in [22].
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4.4 The Klebanov-Strassler throat

In the previous examples we have shown that D-branes can play the role of ETW branes
in running solutions of compactifications with fluxes. We would like to mention, however,
an alternative mechanisms in which Dynamical Cobordisms can get rid of fluxes in the
compactification, namely when the running involves axion monodromy.9 This is most
clearly illustrated in the celebrated Klebanov-Strassler (KS) solution [34], related to the
compactification of type IIB theory on the 5d Sasaki-Einstein space T 1,1 with N units of
RR 5-form flux and M units of RR 3-form flux on an S3 ⊂ T 1,1.

As shown in [21], the KS solution can be regarded as a Dynamical Cobordism, in which
the tip of the throat ends spacetime at finite spacetime distance in the radial direction,
smoothing out (or UV completing) the singularity of the related Klebanov-Tseytlin (KT)
solution [33]. In this section we show that the structure of the KT solution is indeed that
of an ETW brane from the viewpoint of the 5d effective theory.

Consider the KT solution [33], whose 10d Einstein frame metric reads:

ds2
10 = h−1/2(r)ηµνdxµdxν + h1/2(r)

(
dr2 + r2ds2

T 1,1

)
, (4.43)

with
h(r) = b0 + M2 log (r/r∗)

4r4 . (4.44)

The singularity is at rs such that h(rs) = 0, signalling the location of the ETW brane.
One can show that ∂rh 6= 0 at r = rs, hence we may expand this harmonic function near
this point as

h(r) ∼ r − rs ≡ r̃ . (4.45)

We now take the compactification ansatz

ds2
10 = L2

(
e−5qds2

5 + e3qds2
T 1,1

)
(4.46)

with L an overall scale. Matching with (4.43) we get the profile for the breathing mode

q(r) = 1
6 log

((
r

L

)4
h(r)

)
' 1

6 log r̃ , (4.47)

where in the last equality we have taken the near ETW limit. We also get the 5d Einstein
frame metric:

L2ds2
5 =

((
r

L

)2
h

1
2

) 5
3 (
h−

1
2 ηµνdx

µdxν + h
1
2dr2

)
. (4.48)

From it we can derive the relation between r̃ and the radial coordinate y in the local analysis,
which is

r̃ ∼ y
3
5 . (4.49)

Reading off the warp factor

e−2σ =
((

r

L

)2
h

1
2

) 5
3

h−
1
2 ∼ r̃

1
3 ∼ y

1
5 , (4.50)

9For axion monodromy in inflation, see [57–64].
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we finally find
σ(y) ' − 1

10 log y . (4.51)

Hence, the 5d KT solution near the singularity fits with the form of an ETW brane in our
local description with

δ = 2
√

30
3 , a = −3

2 . (4.52)

We can also check that the solution for the scalars also fits in the local model description.
The NSNS axion is given by

T (r) = T̃ +M log r ' Ts + M

rs
r̃ , (4.53)

again in the near ETW brane limit. Here Ts = T (rs), which we can keep arbitrary. The
field space metric from the 5d action in [33] is given by

dD2 = 30(∂q)2 + 1
2g
−1
s e−6q(∂T )2 . (4.54)

Using the profiles for q and T in the r̃ → 0 limit, we have

(∂q)2 ' 1
36r̃2 , e−6q(∂T )2 '

(
M

rs

)2 1
r̃
. (4.55)

For r̃ → 0, the breathing modes dominates the field space distance in field-space. Fol-
lowing [65], it is then an asymptotically geodesic trajectory. This is in contrast with the
r → ∞ limit, for which the field-space trajectory was shown to be highly non-geodesic
in [38]. Hence we have

dD2 ' 30(∂q)2 ' 5
6 r̃
−2 . (4.56)

Upon integration and using (4.49) we obtain

D(y) ' −
√

30
10 log y . (4.57)

This again takes the form found in our local analysis, for the above coefficients (4.52).
Finally, we also check that the 5d scalar potential from [33] scales as predicted by the

local model. The complete potential is

V (φ) = −5e−8q + 1
8gsM

2e−14q + 1
8(N +MT )2e−20q . (4.58)

Plugging in T = Ts and D ' −
√

30 q as dictated by (4.56), we get

V (D) = −5e
4
√

30
15 D + 1

8gsM
2e

7
√

30
15 D + 1

8(N +MTs)2e
2
√

30
3 D . (4.59)

For N + MTs 6= 0, we find that the last term dominates as D → ∞. As predicted by
our local analysis, it has an exponential behaviour with D with the coefficient δ given
in (4.52). Moreover, as predicted by finding a < 0, the coefficient in front of this exponential
is positive.

We hope these examples suffice to convince the reader that the local description provides
a simple and efficient framework to discuss the structure of Dynamical Cobordisms near
the ETW brane.
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5 Small black holes as Dynamical Cobordisms

The analysis of the previous section for single-charge D-brane solutions can be similarly
carried out for systems of multiple charges, namely combining D-branes of different di-
mensionalities. Such systems have been extensively employed in the construction and
microscopic understanding of black holes, both with finite horizon, starting with [66], or
with vanishing classical horizon area (small black holes) (see [35, 36] for some reviews).
In this section we describe brane configurations, closely related to the celebrated D1/D5
system, leading to small black holes, and describe them as cobordism defects of suitable
sphere compactifications of the underlying theory. The resulting dimensionally truncated
theory corresponds to a 2d theory of gravity and an effective scalar (2d dilaton gravity), for
which we find scaling relations analogous to the higher dimensional cases. This description
relates the Dynamical Cobordisms to the realization of the Swampland Distance Conjecture
in small black holes10 in [37].

5.1 The D2/D6 system on T4

We consider a configuration of D6- and D2-branes in the following (1/4 susy preserving)
configuration

D6 : 0 1 2××× 6 7 8 9 (5.1)
D2 : 0 1 2×××××× (5.2)

where the numbers correspond to directions spanned by the brane worldvolumes and ×’s
mark transverse directions. We consider all branes to coincide in the mutually transverse
directions 345. We moreover smear the D2-branes in the direction 6789. Eventually
these directions will be taken to be compact, so the smeared description is valid for small
compactification size.

In the 10d Einstein frame the metric and dilaton profile are given by harmonic super-
position (see [70] for background)

ds2 =Z6(r)−
1
8Z2(r)−

5
8 ηµνdx

µdxν+Z6(r)
7
8Z2(r)

3
8 (dr2+r2dΩ2

2 )+Z6(r)−
1
8Z2(r)

3
8dxmdxm,

Φ(r) = 1
2
√

2
log
(
Z6(r)−

3
2Z2(r)

1
2
)
, (5.3)

where r is the radial coordinate in 345, dΩ2
2 is the volume of a unit S2 in this R3, and

m = 6, 7, 8, 9. The harmonic functions are

Z6(r) = 1 + ρ6
r
, Z2(r) = 1 + ρ2

r
. (5.4)

As announced, we now consider compactifying the directions 6789 on a T4 (similar
results hold for K3 compactification, as usual), with the compactification ansatz

ds2 = e
− t√

2ds2
6 + e

t√
2ds2

T 4 . (5.5)
10For other approaches to Swampland constraints using (large and small) black holes, see e.g. [67–69].
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Matching this ansatz to (5.3), we obtain the canonically normalized radion

t(r) =
√

2 log
(
Z6(r)−

1
8Z2(r)

3
8
)
. (5.6)

The 6d Einstein frame metric reduces to:

ds2
6 = e

t√
2
(
Z6 (r)−

1
8 Z2 (r)−

5
8 ηµνdx

µdxν + Z6 (r)
7
8 Z2 (r)

3
8
(
dr2 + r2dΩ2

2

))
= Z (r)−

1
4 ηµνdx

µdxν + Z (r)
3
4
(
dr2 + r2dΩ2

2

) (5.7)

where Z(r) = Z6(r)Z2(r).
One can see that the dilaton and radion are both blowing up upon reaching the point

r = 0, which is at finite spacetime distance, hence the configuration can be dubbed a 6d
small black 2-brane.

As in section 4, we can describe the configuration as a Dynamical Cobordism of the 6d
theory compactified on an S2 with suitable 2-form fluxes (for the RR 2-form field strength
and the T4 reduction of the RR 6-form field strength). To implement this, we take the
general ansatz:

ds2
6 = e−2ασds2

4 + r2
0e

2βσdΩ2
2 . (5.8)

In the resulting 4d theory, there are non-trivial potential terms for the new radion σ

arising from the curvature of S2 and the 2-form fluxes. Imposing the Einstein frame in
4d comes down to setting γ = α

β = 1. One can then choose β such that the radion σ(r)
has a canonically normalized kinetic term and one obtains β = 1

2 . From matching this
compactification ansatz to equation (5.7), we obtain the canonically normalized radion σ,

σ(r) = log
(
r2

r2
0
Z(r)

3
4

)
, (5.9)

and the following 4d Einstein frame metric

ds2
4 = eσ

(
Z(r)−

1
4 ηµνdx

µdxν + Z(r)
3
4dr2

)
=
(
r

r0

)2 (
Z(r)

1
2 ηµνdx

µdxν + Z(r)
3
2dr2

)
.

This solution is a 4d Dynamical Cobordism, with the D2/D6-brane system playing the role
of cobordism defect. The solution has the structure of an ETW brane; there are 3 running
scalars going off to infinite distance at the singularity at r = 0, which is straightforward to
show lies at finite spacetime distance. Indeed, near r = 0, we have

∆ =
∫ r

0

(
r

r0

)
(Z6(r)Z2(r))

3
4dr ∼

√
r . (5.10)

Furthermore, near the singularity, the distance in field space goes like:

dD2 = dΦ2 + dσ2 + dt2 ' 1
2
dr2

r2 → D ' − 1√
2

log(r) (5.11)

Near the singularity, the Ricci scalar in 4d behaves as:

|R| ∼ r−1 (5.12)
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These lead to the familiar scaling relations near r = 0:

|R|−
1
2 ∼ ∆ ∼ e−

1√
2
|D|
. (5.13)

Since the above full solution has the structure of a Dynamical Cobordism, it should
be possible to express it in the framework of our local description, with the D2/D6-brane
system playing the role of the ETW brane. Let us define the new coordinate:

y =
∫ r ( r

r0

)
(Z6(r)Z2(r))

3
4 dr ∼

√
r , (5.14)

where we have considered the leading behaviour near r = 0.
Using equation (4.4), we have:

σ
(
y2
)

= −1
2 log

(
y4

r2
0
Z
(
y2
) 1

2

)
' − log y . (5.15)

Matching this to the profile in (2.17), we see that δ2 = 2 and a = 2
3 . Then we automatically

fall back on the previous field-space distance and scaling relations using equations (2.17)
and (2.20):

D(y) ' −
√

2 log y , (5.16)

∆ = y ∼ e−
1√
2
D ∼ |R|−

1
2 . (5.17)

This gives yet another nice check of the usefulness of the local analysis.

Beyond the Einstein frame. One last remark that will be relevant in the next sections
is that scaling relations similar to those of (5.13) can be found, independent of the frame
chosen during the compactification. Indeed, if one insists on keeping γ (and thus, also β)
general and tracking it throughout the computations, one obtains the new coordinate near
r = 0:

∆ = y ∼ r
1
4 (γ+1) and |R| ∼ r−

1
2 (γ+1) . (5.18)

Note that, if γ < −1, then these scalings behave opposite to those we have seen for
ETW branes. This illustrates that the scalings mentioned rely on using the Einstein frame
metric to describe the ETW brane.

In setups where one needs (or finds convenient) to use general frames, the condition
for an ETW brane is that the picture of a scalar going off to infinity at finite spacetime
distance can be attained by a suitable change of frame. In this respect, we note that there
is an extra subtlety in dealing with the field space distance in general frames. Indeed, not
being in the Einstein frame implies that the radion is multiplying the Einstein-Hilbert term
in the action:

S4 ⊃
1
2

∫
d4x
√
−g4e

2βσ(1−2γ)
{
e2βγσ

(
R4 − (∂t)2 − (∂Φ)2 − β2

(
6γ2 − 8γ + 6

)
(∂σ)2

)}
.

(5.19)
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It thus makes sense to define the field space distance measured in units set by this coefficient
of the Ricci scalar in the action. This field space distance near the singularity in this general
frame reads:

dD2 = dΦ2 + β2
(
6γ2 − 8γ + 6

)
dσ2 + dt2

D ' −
√

6γ2 − 8γ + 10
4 log r .

(5.20)

Hence, we can derive the following universal scaling relations in a general frame:

∆ ∼ e
− γ+1√

6γ2−8γ+10
|D|
∼ |R|−

1
2 . (5.21)

Note that these reduce to those of (5.13) when setting γ = 1, as required by the Einstein
frame. As a side note, one cannot recover this result in the local description detailed in
section 2.2 as it was constructed in the Einstein frame. We leave such a more general
formulation of the local construction for future work.

5.2 Small black holes from the D2/D6 system on T4 × T2

Let us now consider turning our D6/D2-brane systems into a (small) black hole, by a further
compactification on T2.

We take the ansatz
ds2

6 = e−qds2
4 + eqds2

T 2 . (5.22)

By matching this ansatz to the 6d metric obtained previously (5.7), we get the 4d Einstein
frame metric:

eq(r) = Z (r)−
2
8 ,

ds2
4 = (g4)ij dxidxj = eq(r)

(
−Z (r)−

2
8 dt2 + Z (r)

6
8
(
dr2 + r2dΩ2

2

))
= −Z (r)−

1
2 dt2 + Z (r)

1
2
(
dr2 + r2dΩ2

2

)
. (5.23)

This solution describes a small black hole (in fact, equivalent to the celebrated D1/D5-brane
one, by T-duality in one of the T2 directions), of the kind considered in [37].

To motivate the relation with the more general discussion in the next section, let us
make the following heuristic argument. Although our solution has three scalar fields, the
radial evolution can be reduced to one effective scalar as follows. Near r = 0, all three
scalars have the same profile, so we may combine them in one effective scalar D whose
effective action near r = 0 is of the form

S4 ∼
1
2

∫
d4x
√
g4

{
R4 − (∂D)2 − 1

4e
1√
2
D|F2|2

}
(5.24)

where we have restricted to the U(1) linear combination under which the D2/D6 system
is charged.

With this proviso, we can frame this particular example with the more general class of
small Black Holes considered in [37], to be discussed next.
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5.3 General small black holes

In the context of the swampland program, [37] proposed the use of 4d small black hole
solutions to provide further evidence for a number of a number of Swampland conjectures.
A particularly important property is that the 4d solutions contain scalars going off to
infinite field space distance at the black hole core. In the spirit of previous sections, in
this section we show that these 4d solutions can be turned into 2d Dynamical Cobordisms
upon reducing on the S2, with the small black hole playing the role of the ETW brane. In
fact we will check that the 2d running solution satisfies the familiar scaling relations (for a
general frame, since there is no Einstein frame in 2d).

Let us briefly review the key features of such solutions. We consider 4d Einstein-Maxwell
coupled to a scalar controlling the gauge coupling. We take the action

S4d ∼
1
2

∫
d4x
√
−g4

(
R4 − (∂φ)2 − e2aφ|F2|2

)
. (5.25)

We focus on exponential dependence, since it provided the most explicit class considered
in [37]. It also fits with the special role of exponential functions in local descriptions of
ETW branes.

Without loss of generality, we take a > 0 so that φ→∞ corresponds to weak coupling
for the U(1) gauge field. Note that this a should not be confused with the parameter
in (2.11), and we trust the reader to distinguish them by the context.

In this theory, electrically charged extremal black holes take the form

ds2
4 = −f(r)dt2 + f(r)−1dr2 + r2R(r)2dΩ2

2 , (5.26)

where

R(r) =
(

1− rh
r

) a2
1+a2

, f(r) =
(

1− rh
r

) 2
1+a2

. (5.27)

In addition, the profile for the scalar is given by

φ(r) = φ0 −
√

2 a
1 + a2 log

(
1− rh

r

)
. (5.28)

The scalar goes off to infinity at the horizon r = rh, which is however not smooth, since
the S2 shrinks to zero size, leading to a small black hole.

In the string theory context, small black holes can be easily built by using D-branes.
In fact, we now recast the above solution in a form closer to the solution (5.23), which
described our system of D2- and D6-branes on T4×T2. This was already anticipated when
we obtained (5.24), which has the structure of (5.25) (for a = 1

2
√

2).
Carrying out the coordinate change r → r + rh, the metric (5.26) becomes

ds2
4 = −

(
1 + rh

r

)− 2
1+a2

dt2 +
(

1 + rh
r

) 2
1+a2 (

dr2 + r2dΩ2
2

)
. (5.29)

Similarly, the scalar reads

φ(r) = φ0 +
√

2 a
1 + a2 log

(
1 + rh

r

)
. (5.30)
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This has the structure of (5.23) with Z(r) = (1 + rh/r)
4

1+a2 . Note that the core of the small
black hole now lies at r = 0.

We now perform the reduction on S2 to express these solutions as 2d running solutions
describing a local Dynamical Cobordism, with the small black hole playing the role of the
ETW brane. We will also recover the corresponding (general frame) scaling relations.

Since there is no Einstein frame in 2d, we perform the S2 reduction with the following
general ansatz:

ds2
4 = e−2αωds2

2 + e2βωr2
0dΩ2 . (5.31)

The 2d action obtained from the compactification contains the terms

S2d ⊃
1
2

∫
d2x
√
−g2 e

2βω
(
R2 − (∂φ)2 − 6β2 (∂ω)2

)
. (5.32)

These expressions already show the impossibility to define an Einstein frame: it would
require β = 0, and this would kill the radion’s kinetic term. We therefore keep β general,
so we deal with a dilaton-gravity theory. By matching the ansatz (5.31) with the 4d
metric (5.29) we get the profile for the radion

ω(r) = 1
β

log
(
r

r0

(
1 + rh

r

) 1
1+a2

)
, (5.33)

and the 2d metric

ds2
2 =

(
r

r0

)2γ
−(1 + rh

r

)− 2(1−γ)
1+a2

dt2 +
(

1 + rh
r

) 2(1+γ)
1+a2

dr2

 , (5.34)

where γ = α
β .

Computing the 2d Ricci scalar and taking the leading order in r → 0 we get

|R| ∼ r−2 (γ+1)a2

1+a2 , (5.35)

where we are ignoring a constant prefactor.11

Similarly, the spacetime distance from a given r to the singularity, at leading order in
r → 0, scales as

∆ ∼ r
(γ+1)a2

(1+a2) . (5.36)

We note that, as expected, the scaling is the familiar ETW one if γ > −1. As explained
above, the fact that 2d gravity is topological means that the criterion for an ETW brane in
a solution should be that the usual relations hold in some suitable frame.

Let us now recover the usual scalings with the field distance. Recalling the latter is
measured in units set by the coefficient of the Ricci scalar in the action, we can it read off
from (5.32) as:

dD2 = dφ2 + 6β2dω2 . (5.37)
11This prefactor vanishes for either a2 = 1 or a2 = −2γ. We will skip these cases without further discussion.
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Plugging the profiles (5.28) and (5.33) at leading order as r → 0 and integrating the line
element we recover

D(r) ' −a
√

2 + 6a2

1 + a2 log r . (5.38)

Finally, together with the previous results for the distance to the end of the world and the
curvature, we obtain the scalings

∆ ∼ e−
δ
2 D , |R| ∼ eδ D , (5.39)

with
δ = 2(γ + 1)a√

2 + 6a2
. (5.40)

Hence, we recover the general frame scaling relations introduced in section 5.1. This shows
that small black hole solutions can be regarded as just another instance of Dynamical
Cobordism, and that they admit local scaling relations identifying the small black hole core
with ETW branes in 2d.

6 Swampland constraints and surprises from the UV

In this section we discuss interesting interplays of the scalar running off to infinity in field
space in Local Dynamical Cobordisms and the Swampland constraints.

6.1 Swampland distance conjecture and other constraints

Many studies of Swampland constraints are related to infinity in scalar moduli/field space
(see [42–44] for reviews). Since Dynamical Cobordisms explore infinite field space distances,
in this section we discuss the interplay with different Swampland constraints, especially the
Distance Conjecture [71] (see [38, 39, 65, 72–83] and the reviews above for other approaches).

Let us focus on the simplest expression of the Distance Conjecture, which states that,
when the scalars are taken to infinite field space distance D (in an adiabatic approach,
namely, by changing the spacetime independent vevs), there is a tower of states becoming
exponentially light, and thus the cutoff of the effective theory is lowered as

Λ ∼ e−αD , (6.1)

with some positive order 1 coefficient α.
This scaling can be combined in an interesting way with our scalings near ETW branes.

For instance, using (2.20), we have
Λ ∼ ∆

2α
δ . (6.2)

This matches with our intuition that the full description of the ETW brane requires UV
completing the effective theory. It is important to note that the appearance of an infinite
tower in the adiabatic version of the Distance Conjecture does not necessarily imply the
appearance of a tower in the present Dynamical Cobordism context. On the other hand, the
lowered cutoff certainly signals that there could be situations where the naive ETW brane
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picture as described in effective theory may be corrected. We will see explicit examples in
section 6.2.

Using also (2.20), we get that the cutoff scale relates to the spacetime curvature as

|R| ∼ Λ−
δ
α , (6.3)

(where we have taken the generic case δ 6= (2d/(d− 2))1/2 for concreteness). This relation,
already noted in [22] is reminiscent of (although admittedly different in spirit from) that
in [39] for AdS vacua.

From this perspective, the correlation between the appearance of the naked singularity
and the running of the scalar going off to infinity suggests that the lowered cutoff of the
swampland distance conjecture is responsible for regulating the singularity, which would
be resolved in a more complete microscopic UV description. This remark is in the spirit
of [41] (see also [56]) and [37], where the singular behaviour of certain defects (EFT strings
or small black holes, respectively) is related to scalars going off to infinite distance.

From our perspective, the relation follows from the Dynamical Cobordism Distance
Conjecture in [22]. In our present terms: every infinite field distance limit of an effective
theory consistent with quantum gravity can be realized as a solution running into a cobordism
ETW brane (possibly in a suitable compactification of the theory).

In particular, in sections 4 and 5 we provided a description of general defects as
ETW branes of Dynamical Cobordisms. This general framework encompasses the defects
in [37, 41] as particular examples.

An interesting spin-off of our local analysis is that it constrains the asymptotic form of
the potential. Namely, whenever it is not vanishing (actually, negligible as compared with
the scalar kinetic energy) it has an exponential form with a critical exponent δ, cf. (2.15).
It is thus interesting to compare this asymptotic form of the potential with Swampland
constraints expected to hold near infinity in scalar field space.

Let us consider the de Sitter conjecture in the version of [84] (see [76, 85] for the refined
one), namely |∇V |/V > O(1). From (2.15) we have

V ′

V
= δ . (6.4)

Since in general the critical exponent δ ∼ O(1), the potential satisfies the de Sitter
conjecture. This fits nicely with the idea that the latter is expected to hold near infinity in
moduli/field space.

Moreover, let us compare with the Transplanckian Censorship Conjecture [86]

|∇V | ≥ 2√
(d− 1)(d− 2)

V . (6.5)

When V < 0, the constraint is trivial; on the other hand, when V > 0, in our setup we must
have a < 0, and the expression (2.14) for δ guarantees that the above inequality is satisfied.
A caveat for the above statements is that both the de Sitter and the Transplanckian
Censorship conjectures involve the gradient ∇V , whereas our local description provides
the potential only along one direction, the effective scalar dominating the running near
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the ETW brane. Hence, the comments above would hold under the assumption that the
effective scalar in the local description follows a gradient flow. It would be interesting to
assess this point in explicit models, and we leave this as an open question for future work.

6.2 Large N surprises from the UV

In the previous section we have discussed that the Distance Conjecture implies a lowered
cutoff as one approaches the ETW brane. Indeed, as mentioned at several points, the
microscopic description of the ETW branes lies in the underlying UV completion. In most
of our examples, the corresponding cobordism defect is known, so that the end of the world
picture can be confirmed in the full theory. However, it is conceivable that in some specific
cases there exist UV effects hidden at the core of the ETW brane potentially modifying
this picture. In this section we present two examples, where such corrections exist and
lead to large backreactions, ultimately turning the candidate ETW brane into a domain
wall interpolating to a new region beyond the apparent singularity. A further interesting
observation is that both examples are related to large N physics and holography.

Large number of M2-branes. Consider as our first example a stack of N D2-branes
in flat 10d spacetime (or at a smooth point in any other compactification). Locally around
the D2-brane location the S6 truncation yields a 4d theory with an ETW brane, at which a
scalar (a combination of the radion and the dilaton) goes to infinity in field space. One
may follow the theory in this limit and, as noted in [54], realize that the strong coupling is
solved by lifting to M-theory, and turning the D2-branes into M2-branes. For small N , the
UV completion of the effective ETW brane is thus merely a stack of M2-branes removing
the flux and allowing spacetime to end, as befits a Dynamical Cobordism.

On the other hand, for N large we have a different behavior: the large number of
M2-branes backreact on the geometry and generate an infinite AdS4 × S7 throat. The
effective theory ETW brane has a UV description with so many degrees of freedom that it
actually generates a gravity dual beyond the wall.

From the perspective of the running scalars, the AdS4×S7 represents a minimum of the
(S7 radion) potential. Hence the full D2/M2 solution describes the running of the theory
from the slope of the potential down to a stable minimum, at which the theory relaxes to a
maximally symmetric solution, instead of hitting an end of the world. The location of the
minimum in field space is hidden near infinity in the original D2-brane effective description.
Hence, the large N allows for the appearance of a minimum at strong coupling, which is
nevertheless tractable.12

Moreover, the full D2/M2 solution describes a dynamical cobordism from the M-theory
perspective. Far away from the stack of branes we can use the description in terms of
D2-branes. As described above the 4d theory would be obtained by compactifying Type
IIA on an S6. This would be further lifted to M-theory on S6 × S1. On the other hand, we
have just argued that close to the stack of branes the 4d theory is given by M-theory on
S7. We then see that this solution describes a dynamical cobordism between to different

12This is reminiscent of the argument [87] that the scale separation (and hence the tractability) of the
AdS minima in [88, 89] is controlled by a large number of flux units.
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compactifications. Notice that this is not a cobordism to nothing, described by ETW
brane solutions.

Warped KS throat with large number of D3-branes. Our second example is based
on the warped throat considered in section 4.4. Recall we have type IIB theory compactified
on T 1,1 with N units of RR 5-form flux and M units of RR 3-form flux on the S3, and we
focus on the choice of parameters N = KM + P . At the level of the 4d effective theory, we
recover a KT solution with a singularity at a finite spacetime distance, at which a scalar (a
combination of the T 1,1 radion and the dilaton, but dominated by the former) goes off to
infinite field space distance.

The UV smoothing of this singularity is slightly trickier than the N = KM case of
section 4.4. It involves the smoothing of the singular conifold geometry into a deformed
conifold, with a finite size S3, but there remain P D3-branes at the tip of the throat. This
can be shown using the holographic dual field theory, as follows. There is a Seiberg duality
cascade from the initial SU(N)× SU(N +M) theory in which N effectively decreases in
multiples of M ; hence, in the last step of the cascade we have an SU(P ) × SU(M + P )
gauge theory, whose strong coupling dynamics leads to an remnant N = 4 SU(P ) theory,
as befits the above mentioned P probe D3-branes.

Hence, for small P the ETW brane of the 5d theory is microscopically described by the
smooth Klebanov-Strassler throat dressed with P explicit D3-branes, required to absorb
the remnant 5-form flux and allow spacetime to end.

On the other hand, for P large we have a different behavior: the large number of
D3-branes backreact on the geometry and generate an infinite AdS5 × S5 throat. The
effective theory ETW brane has a UV description with so many degrees of freedom that
it actually generates a gravity dual beyond the wall. The interpretation of this strong
correction in terms of the running scalars is similar to the one mentioned above, as the
apperance of an AdS minimum hidden near the infinite field space distance limit of the
effective description.

We have seen two examples in which a naive ETW brane in the effective description
has a UV description encoding large backreactions on the geometry recreating a geometry
beyond the wall. Alternatively, the corrections generate minima in the scalar potential in the
region near field space infinity of the effective description. It would be interesting to explore
in more detail these and other possible classes of examples exhibiting this phenomenon. We
hope to report on this in the future.

7 Conclusions

In this paper we have studied Dynamical Cobordism solutions in which theories of gravity
coupled to scalars develop an end of spacetime. The latter is encoded in the effective theory
as the appearance of a singularity at finite spacetime distance, at which some scalars run off
to infinite field space distance. We have provided a local description of the configurations
in the near ETW brane regime, and shown that the solutions are largely simplified, and fall
in universality classes characterized by a critical exponent δ, which controls the profiles of
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Example d δ a

Massive IIA 10 5√
2 − 16

5

Non-susy USp(32) string 10 3√
2 0

D7 branes 9 4
√

14
7 0

D6 branes 8
√

2 4
7

D5 branes 7 2√
5

5
6

D4 branes 6 1√
5

24
25

Klebanov-Strassler 5 2
√

30
3 − 3

2

Bubble of Nothing 4
√

6 0

D2 branes 4
√

14
7

20
21

D2/D6 on T 4 × S2 4
√

2 2
3

D1 branes 3
√

2 3
4

EFT string 3 2
√

2 0

Table 1. Table of examples in this paper, with the corresponding parameters for the local description
near the ETW brane.

the different fields and the scaling relations among the field space distance D, spacetime
distance ∆ and scalar curvature R.

We have studied several explicit models of ETW branes and characterized them in
the local description, computing their critical exponent. The different examples and their
key parameters are displayed in table 1. This list is intended to illustrate typical values of
these parameters. It would be interesting to explore more examples and to explore possible
connections among ETW branes described by the same parameters.

We have moreover shown that small black holes can also be regarded as Dynamical
Cobordisms, and satisfy similar scaling laws. It would be interesting to explore from the
cobordism perspective the recent applications of small black holes to the derivation of
swampland constraints.

There are several interesting open directions for the future:

• We have focused on solutions with spatial dependence. It would certainly be interesting
to explore time-dependent backgrounds, and their possible application to cosmology.

• In our local analysis we have focused on certain particular choices. For instance, we
have not considered solutions where |V | � |Vt|, and we have moreover taken solutions
controlled by a constant parameter a < 1. More general possibilities are in principle
allowed from a mere effective field theory perspective, but they are not realized in
any of the string theory examples we have explored. It is thus an interesting question
if there are UV complete models realizing them, or on the contrary, they are excluded
by some further arguments of consistency with Quantum Gravity.

• Finally, it would be interesting to get a better understanding of the possible appearance
of non-trivial corrections in the large field region near the ETW branes, in particular
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those leading to large backreactions signalling the existence of new minima of the
scalar potential. This could lead to further insights into the stabilization of moduli in
asymptotic regions of moduli/field space. The two examples mentioned in our work
signal an interesting interplay with large N limits and holography, which may provide
an extra leverage on these configurations.

We hope our work motivates interesting results in this and other directions.
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A Local Dynamical Cobordisms with curved (d− 1)-dimensional slices

A.1 General analysis for curved slices

We can generalize the discussion in section 2 to the case in which the ETW brane has
constant internal curvature Rd. Namely we take the foliation ansatz (2.2) with ds2

d−1
describing a constant curvature (d− 1)-dimensional metric. The equations of motion read

(d− 1)
√

2 (V − Vt)σ′ − ∂φVt = 0 , (A.1)

1
2(d− 1)(d− 2)σ′ 2 + Vt −

1
2e

2σRd = 0 , (A.2)

(d− 2)σ′′ − 2 (V − Vt)−
1

d− 1e
2σRd = 0 , (A.3)

where we have again introduced the tunneling potential defined in (2.6).
For Rd 6= 0, it is still possible to eliminate σ by combining the first two equations (and

their derivatives):

(d ∂φVt − (d− 1)∂φV ) ∂φVt = 2(d− 1)(Vt − V )
[
∂2
φVt + 2

d− 2((d− 1)V − (d− 2)Vt)
]
.

(A.4)
Importantly, in this derivation we need to assume Rd 6= 0, so that we do not expect to
necessarily recover the results in section 2.
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Restricting to the case V = aVt, with a a constant, we find that the solution to this
equation is

Vt(φ) = −c
(

cosh
(

(a(d− 1) + 2− d)φ√
(1− a)(d− 2)(d− 1)

))2− 2
a(d−1)+2−d

, (A.5)

where we have ignored an integration constant that is irrelevant for the φ→∞ limit.
Notice that, for a > 1, the coefficient in front of φ becomes imaginary and then what we

have is a cosine, rather than a hyperbolic cosine. As we are not interested in this behaviour
we from now on require a < 1. From computing φ′2 from this solution and requiring that it
must be positive, we then learn that we must have c > 0.

In addition, as we are interested in ETW branes, we want to require that φ′2 blows
up as φ → ∞. This is equivalent to having |Vt| → ∞ in this same limit, which in turn
implies that the power in (A.5) must be positive. This gives us that the only ETW brane
solutions are for a < d−2

d−1 . For this range of a, we can approximate the hyperbolic cosine by
an exponential (as we are interested in the limit φ→∞) and we have

Vt(φ) ' −c
(

exp
(

(a(d− 1) + 2− d)φ√
(1− a)(d− 2)(d− 1)

))2− 2
a(d−1)+2−d

= −c eδ φ . (A.6)

The coefficient δ is

δ = 2
√
d− 1
d− 2(1− a) . (A.7)

So for a < d−2
d−1 the case of a ETW brane with internal curvature coincides with the case

studied in the paper. Interestingly, this case turns out to be more restrictive than the
Rd = 0 one, for which any a < 1 described an ETW brane.

This solution was also assuming that a 6= d−2
d−1 . Plugging that particular value in (A.4),

we find that the equation of motion simplifies to

(∂φVt)2 = Vt · ∂2
φVt . (A.8)

This equation has the solution
Vt = −c eδ φ , (A.9)

with c and δ arbitrary constants. In order to describe an ETW brane we require δ > 0.
Interestingly, for this special value of a with Rd 6= 0, we find that we recover the exponential
behaviour, but with the freedom of choosing the critical exponent δ.

In both cases we find the same exponential behaviour for Vt. Therefore, just as in
section 2.2, we find that the potential takes the form

V (φ) ' −a c eδ φ . (A.10)

However, here we uncover that, for a given potential of this form, the setup with Rd 6= 0
allows for two possible values of a, namely the a < d−2

d−1 given in (A.7)), or the value a = d−2
d−1 ,

with δ and a independent. For this reason, from now on we keep a and δ as different
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variables when solving the rest of the equations, and at the end we comment on the two
possibilities.

Using (2.6) we can obtain the profile for φ

φ(y) ' −2
δ

log
(
δ

2

√
2(1− a)c y

)
. (A.11)

Notice that this is the equivalent to (2.16), but with a and δ kept independent. The leading
behaviour is then given by

φ(y) ' −2
δ

log y , (A.12)

and thus the field only depends on the critical exponent.
We can now use (A.1) to get the profile for the warp factor σ:

σ ' − 1
(d− 1)(1− a) log y , (A.13)

where we have set an integration constant to zero without loss of generality. We recover the
equivalent to (2.18), albeit with a and δ kept independent. We see that the warp factor
doesn’t depend on δ, but specifically on the prefactor a of the potential.

Finally, we have to check that the solution is compatible with (A.3). From it we obtain
the condition

4
δ2 −

d− 2
(d− 1)(1− a) + Rd

d− 1 y
2− 2

(d−1)(1−a) = 0 . (A.14)

Let us now apply it for the two possible values for a:

• For a < d−2
d−1 , the power of y in the last term is positive, so that it is subleading in the

y → 0 limit. Moreover, recall that in this case δ relates to a via (A.7), which is the
precise the value for which the first two terms cancel each other. In conclusion, for
a < d−2

d−1 having Rd 6= 0 becomes irrelevant as we approach the ETW and we basically
recover the same results as in the Rd = 0 case.

• For a = d−2
d−1 , the exponent of y vanishes, and hence the Rd term is relevant. In this

case, consistency of the equations requires

δ = 2
(
d− 2− Rd

d− 1

)− 1
2
. (A.15)

Therefore, for this case δ is also fixed, but in terms of Rd. Notice that this quantity
must satisfy Rd < (d − 2)(d − 1). Provided this condition, we find that δ can take
any positive value.

This case corresponds to a metric ds2 = dy2 + y2ds2
d−1, hence it describes a conical

singularity. The singularity is absent in the case Rd = (d− 1)(d− 2), namely the curvature
of ds2

d−1 is that of Sd−1, and the geometry is locally smooth, and we have δ = 0 and no
exponential growth of the potential. Also, in order to have an ETW brane, the (d − 1)-
dimensional curvature must be lower than that of Sd−1.
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In conclusion, given a potential with an exponential behaviour as φ→∞, in the Rd 6= 0
case there exist two different kind of solutions. In the first one the value of Rd is irrelevant
and we recover the same behaviour as in the Rd = 0 case (but with a more constrained
critical exponent, δ > 2√

d−2). In the second, the curvature Rd is relevant and it must be
fixed by the critical exponent by (A.15).

A.2 Witten’s bubble of nothing

To illustrate the above general formulation for curved (d− 1)-dimensional slices, we consider
the example of the celebrated Witten’s bubble of nothing [4] (see [5–8] for other recent
realization of bubbles of nothing). We show it admits a description in an effective 4d theory
of gravity coupled to a scalar with zero potential, as a 4d Dynamical Cobordism, and
characterize its local description and critical exponent δ.

Related discussion of a 4d effective description of the configuration have appeared
in [90] (recently revisited in the context of bubbles in de Sitter space in [31, 32]).

Since we have restricted our discussion to dependence on spatial coordinates, we actually
consider the euclidean 5d Schwarzschild black hole solution, before the Wick rotation to
the expanding bubble solution. The 5d metric reads

ds2 =
(

1− R2

r2

)−1

dr2 + r2dΩ2
3 +

(
1− R2

r2

)
dφ2 . (A.16)

Here φ parametrizes an S1 fibered over the radial coordinate r, times and S3; the radial
coordinate is constrained to the range r ≥ R, and the S1 shrinks to zero size at the euclidean
horizon r = R (in a smooth way for the periodicity φ ∼ φ+ 2πR).

We would like to perform a reduction to 4d along the S1. This is a sphere reduction
analogous to those in section 4.1. Hence, we match this metric with (4.2), for n = 1, d = 4,
and, using (4.3), α = −

√
1/6 and β = −

√
2/3. We obtain that the radion ω in (4.2) is:

ω = −
√

3
8 log

(
1− R2

r2

)
. (A.17)

The 4d metric is given in (4.5) and reads

ds2
4 =

(
1− R2

r2

)− 1
2

dr2 +
(

1− R2

r2

) 1
2

r2dΩ2
3 . (A.18)

We would now like to zoom into the location of the ETW brane, the euclidean horizon
r = R. So we introduce the coordinate r̃ = 1− R2

r2 . Near r → R the metric scales as

ds2
4 ∼ r̃−

1
2dr̃2 + r̃

1
2dΩ2

3 . (A.19)

Now, we make the change (4.6):

y =
∫

dr̃

r̃1/4 ' r̃
3/4 . (A.20)
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Replacing r̃ ' y 4
3 in (A.19) we get the 4d metric as a foliation of S3 slices:

ds2
4 ∼ dy2 + y

2
3dΩ2

3 . (A.21)

This corresponds to a metric of the kind (2.2) for curved 3d slices, namely of the kind
studied in appendix A.1. Using (A.13) we can see that a = 0, and from (A.7) δ =

√
6.

Interestingly, this corresponds to the case in which the curvature of the slices is irrelevant,
and the solution is similar to the Rd = 0 case.

We could have also obtained the same result from the profile for the radion,

ω = −
√

3
8 log r̃ ' −

√
2
3 log y . (A.22)

By using (A.12), ω ' −2
δ log y, we read that δ =

√
6, hence a = 0.

Hence Witten’s bubble of nothing is described by a 4d Dynamical Cobordism running
solution with the scalar reaching off to infinite distance in fields space at a rate controlled
by the critical exponent δ =

√
6. This provides a simple local description in terms of an

ETW brane. From this perspective, the 5d solution provides the UV completion of the
ETW brane, which in this case is purely a geometrical closing-off of the geometry.

We would like to emphasize that this example provides an explicit realization of the
picture discussed in section 4, in particular figure 1 (albeit, with no brane dressing at the
tip). Namely, the complete solution involves a genuine compactification on a finite size
S1, yet it is described by a local EWT brane model identical to that obtained as an S1

reduction on a flat R2 (which, given the vanishing potential, straightforwardly leads to
a = 0, hence δ =

√
6). This supports the picture in section 4 that the sphere reductions in

the flat space transverse to the D-branes suffices to provide the local description even in
the (physically more interesting case) in which the transverse space is globally given by a
more involved geometry, implementing the actual compactification to the lower-dimensional
theory.

B Subleading corrections to the local description

In section 2.2 we took constant a as a proxy for the leading behaviour of a(φ) as φ→∞.
Here we consider the role of possible subleading corrections. We notice that these corrections
do not necessarily go to zero as φ→∞ in (2.12). For example, let us take

√
1− a(φ) =

√
1− a+ b

φ
. (B.1)

It is clear that a(φ) asymptotes to a as φ→∞, but after doing the integral in (2.12) the
correction to the leading behaviour given by the second term behaves as log φ. Indeed,
ignoring constant prefactors we get

Vt ∼ φ
2
√

d−1
d−2 beδ φ , (B.2)
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with δ defined in (2.14). Comparing with (2.13) we see that we can describe this example

with our leading order analysis if we allow for c ∼ φ
2
√

d−1
d−2 b. Notice that the example in

section 3.2 precisely realise this behaviour (see equation (3.19)).
As a general lesson, we can include these kind of corrections that do not vanish in the

φ → ∞ limit by promoting c from just a constant to a φ-dependent quantity that may
hide subleading corrections. In this way, it may happen that c → ∞ as φ → ∞ as long
as it blows-up slower than an exponential (otherwise it would not represent a subleading
behaviour).

This remark is specially interesting in the a(φ) → 0 case. From (2.15) we would
conclude that V → 0 if c is a finite constant. However, if allowing c → ∞ because of
possible subleading terms, it can happen that a times c remains finite in the φ→∞ limit.
In this way, we describe a solution in which φ′2 � V (i.e., a(φ)→ 0) without requiring that
V vanishes asymptotically.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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