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1 Introduction

In the search for physics beyond the Standard Model (SM), supersymmetry (SUSY) offers
a very promising avenue [1–3]. By relating bosons and fermions, it stabilises the Higgs
boson mass with respect to quantum corrections, allows for the unification of the gauge
couplings [4–6] and provides a dark matter candidate [7, 8], thus solving several long-standing
problems of the SM simultaneously. Within the Minimal Supersymmetric Standard Model
(MSSM) [9–12], each degree of freedom of the SM is associated with a superpartner, that
differs only by half a unit in spin. The scalar partners of the left- and right-handed quarks
mix, as do the higgsino, bino and wino interaction eigenstates, which after electroweak
symmetry breaking form neutral and charged so-called electroweakinos (neutralinos and
charginos). Since these particles have not yet been discovered, it must be assumed that
supersymmetry is broken [13, 14], which increases the masses of the supersymmetric particles
with respect to those of their SM partners. With the assumption of conserved R-parity [15],
a neutral lightest supersymmetric particle (LSP) then has all the right properties to
be one of the most promising dark matter candidates, i.e. a weakly interacting massive
particle (WIMP).
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Both the upcoming Run 3 of the Large Hadron Collider (LHC) and its planned extension
to high luminosity (HL-LHC) will provide access to very massive new particles [16–18]. In
supersymmetry, the generally dominant production processes are those involving the strong
interaction and thus concern the pair production of squarks and gluinos. As a consequence
of the current and expected bounds on these states, they might be too massive to be pair-
produced at the LHC. This restriction can be lifted by considering the single production of
a squark or a gluino in association with a (typically lighter) electroweakino. These processes
then also have the advantage of providing insights not only on the supersymmetric masses,
but also on the supersymmetric interactions [19–21].

Only precise theoretical predictions allow for a reliable comparison between theory and
experiment. Already by going from leading order (LO) to next-to-leading order (NLO)
in perturbative QCD, the theoretical uncertainty originating from the arbitrary choice of
factorisation and renormalisation scales is reduced. However, with the possibility of light
SUSY particles being excluded by direct searches at the LHC, the current mass limits
imply that in any SUSY production process the kinematic configuration approaches the
production threshold. This results in large threshold logarithms ruining the convergence
of the perturbative series, so that they must be resummed. This resummation procedure
has been known for quite some time at the leading logarithmic (LL) and next-to-leading-
logarithmic (NLL) accuracy and in some cases beyond and has been found to generally
further reduce the theoretical uncertainty inherent in the perturbative calculation [22–26].

In the last decade the precise investigation of slepton pair [27–33], electroweakino
pair [34–41] and electroweakino-gluino [42] production beyond LO [43, 44] and NLO [45–48]
was accomplished. Similarly, improved predictions in the strong sector exist for squark and
gluino pair production [49–59]. In this work we focus on the production of a squark and an
electroweakino at hadron colliders. Since this process involves both weak [O(αEM)] and
strong [O(αs)] interactions at leading order, the resulting cross section is of intermediate
size. The simplest process in this category involves the production of a first- or second-
generation squark together with a lightest neutralino. This process manifests itself through
a hard jet originating from the squark decay and missing transverse energy from the two
neutralinos leaving the detector invisibly, one of them being a decay product of the squark
and the other one being directly produced in the hard process. Such a monojet signal is
particularly well-studied in the context of dark matter production at colliders [60, 61]. In
recent analyses by the CMS collaboration, squark masses below 1.6 TeV were excluded in
four mass-degenerate squark flavour models, assuming production with a light neutralino
χ̃0

1. This limit is reduced to 1.1 TeV for a single kinematically reachable squark [62–64].
Similarly, the ATLAS collaboration gives limits of 1.4 TeV and 1.0 TeV [65, 66].

In this paper, we present a threshold resummation calculation for the associated
production of squarks and electroweakinos at the NLO+NLL accuracy. The structure of
this work is as follows: in section 2, we compute the production cross section at leading and
next-to-leading order and give a brief summary of the ingredients required for threshold
resummation. The numerical validation of our NLO calculation and our new results up to
NLO+NLL accuracy are given in section 3 for various benchmark scenarios. We summarise
our work and conclude in section 4.
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Figure 1. Tree-level s- (left) and u-channel (right) Feynman diagrams for the associated production
of a squark and an electroweakino at hadron colliders.

2 Soft gluon resummation

We begin this work with a derivation of LO and NLO expressions for the associated
production of a squark and an electroweakino at hadron colliders in subsection 2.1. Then,
subsection 2.2 explains refactorisation and resummation up to NLL accuracy and includes
a computation of the soft anomalous dimension associated with the process considered. In
subsection 2.3 we present the NLO hard matching coefficient, which is then used together
with the soft anomalous dimension in subsection 2.4 to consistently combine fixed-order
and resummed predictions at the NLO+NLL accuracy.

2.1 Production of squarks and electroweakinos at leading and next-to-leading
order

To calculate the total hadronic cross section σAB for the process considered, we convolve the
partonic cross section dσab with factorisation-scale dependent parton distribution functions
(PDFs) fi/h(xi, µ2

F ) for a particle i of momentum fraction xi in a hadron h,

σAB =
∫
M2 dσAB

dM2 (τ) =
∑
a,b

∫ 1

0
dxa dxb dz

[
xafa/A

(
xa, µ

2
F

)] [
xbfb/B

(
xb, µ

2
F

)]
×
[
zdσab

(
z,M2, µ2

R, µ
2
F

)]
δ (τ − xaxbz) ,

(2.1)

where τ = M2/S is the ratio of the squared invariant mass M2 over the hadronic centre-of-
mass energy S [67].

The partonic fraction z = τ/(xaxb) = M2/s is defined by the ratio of the squared
invariant mass to the partonic centre-of-mass energy s = xaxbS and equals one at leading
order. The partonic cross section

σab(s) =
∫

2
dσab =

∫ 1
2s |M|

2 dPS(2) (2.2)

is related to the squared and averaged matrix element |M|2 by the usual flux factor 1/(2s)
and the integration over the two-particle phase space dPS(2).

The associated production of a squark and an electroweakino with masses mq̃ and mχ̃

occurs at a hadron collider at LO through the annihilation of a (massless) quark and a
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gluon. Charge conservation restricts the possible partonic processes to

qu,d(pa) g(pb)→ q̃u,d(p1) χ̃0
k(p2) and qu,d(pa) g(pb)→ q̃d,u (p1)χ̃±k (p2) , (2.3)

where k identifies the neutralino (χ̃0
k, k = 1, . . . , 4) or chargino (χ̃±k , k = 1, 2) mass

eigenstate and pa,b and p1,2 refer to the four-momenta of the initial- and final-state particles,
respectively. The corresponding Born diagrams are shown in figure 1. The squared matrix
elements associated with the s-channel quark exchange diagram (left), the u-channel squark
exchange diagram (right) and their interference can be expressed as functions of the usual
Mandelstam variables s = (pa + pb)2, t = (pa − p1)2 and u = (pa − p2)2, i.e. as [44]

|Ms|2 = g2
sCACFB

s
2
(
m2
χ̃ − t

)
, (2.4)

|Mu|2 = − g
2
sCACFB(
u−m2

q̃

)2 2
(
m2
χ − u

) (
m2
q̃ + u

)
and (2.5)

2 Re
[
MsM†u

]
= 2 g

2
sCACFB

s
(
u−m2

q̃

) (2
(
m4
χ̃ −m4

q̃

)
+m2

q̃ (2u− 3s)− 2m2
χ̃

(
2m2

q̃ + u
)
− su

)
.

(2.6)

They are all proportional to the squared electroweakino-squark-quark coupling

B ≡ RIjkL′Ijk + LIjkR
′
Ijk = RIjkR

∗
Ijk + LIjkL

∗
Ijk = |RIjk|2 + |LIjk|2 , (2.7)

where the capitalised index I labels the quark generation, the lower-case index j refers to
the squark eigenstate and the index k is related as above to the electroweakino eigenstate.
The definitions of the various left- and right-handed couplings L(′) and R(′) are provided in
refs. [12, 42, 68]. Using arbitrary squark mixings and mass eigenstates opens the possibility
to study SUSY flavour violation [69–74]. The total spin- and colour-averaged squared
amplitude then reads

|M|2 = 1
96
(
|Ms|2 + |Mu|2 + 2 Re[MsM†u]

)
. (2.8)

The NLO corrections to this cross section are well-known [19–21]. They involve one-loop
self-energy, vertex and box corrections interfering with tree-level diagrams, as well as squared
real gluon and quark emission diagrams, from which intermediate on-shell squark and gluino
resonant contributions have to be subtracted to avoid spoiling the predictivity of the
NLO calculation and double-counting contributions to squark-pair production and gluino-
electroweakino associated production with the corresponding subsequent decays [75, 76].
We have calculated the full NLO cross section using dimensional regularisation of ultraviolet
(UV) and infrared (IR) divergences as well as on-shell renormalisation for all squark and
gluino masses and wave functions. The strong coupling constant is renormalised in the
five-flavour MS scheme after explicitly decoupling the heavier coloured particles from its
running [77–79], which leaves the running determined only by the lightest coloured particles
as it is usually done in global determinations of PDFs. In order to avoid the violation of
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SUSY invariance by the introduction of a mismatch between the strong coupling gs and the
quark-squark-gluino Yukawa coupling ĝs at one loop, we shift ĝs by a finite contribution,
allowing us to restore SUSY and to make use of the above-mentioned renormalisation
scheme [80].

Real and virtual contributions are combined with the help of the dipole subtraction
method to cancel infrared and collinear divergences [81–83]. This method splits the pure
NLO cross section into separately finite virtual and real contributions and a collinear
counterterm consisting of two insertion operators P and K,

σNLO =
∫

3

[
dσR − dσA

]
ε=0

+
∫

2

[
dσV +

∫
1

dσA
]
ε=0

+
∫ 1

0
dx
∫

2

[
dσB(xp)⊗ (P + K)(x)

]
ε=0

.

(2.9)

In this expression the integration domain denotes the number of final-state particles.
Moreover, the auxiliary cross section σA shifts the infrared divergences such that the
integrations over both the two- and three-particle phase spaces are numerically possible
without changing the total result.

2.2 Refactorisation

After the cancellation of soft and collinear divergences among the real and virtual corrections,
large logarithms remain near threshold [84, 85]. They arise between the constrained
integration over the real emission phase space and the integration of virtual loops and take
the form (

αs
2π

)n [ logm(1− z)
1− z

]
+
, (2.10)

relative to the Born cross section with m ≤ 2n− 1. The variable 1− z = 1−M2/s describes
the energy fraction of an additional emitted gluon or massless quark and thus quantifies
the distance to the partonic threshold. For soft emitted particles (z → 1), truncating the
perturbative calculation at a fixed order does not give a reliable prediction, so that the
logarithms must be resummed to all orders in αs.

To calculate soft gluon emission up to all orders, kinematic and dynamical factorisation
are necessary. Kinematic factorisation is possible by transforming the constituents of
equation (2.1) into Mellin space

F̃ (N) =
∫ 1

0
dy yN−1F (y) , (2.11)

with F = σAB, σab, fa/A, fb/B and y = τ, z, xa, xb, respectively. Denoting in the following
all quantities in Mellin space and therefore dropping the tilde for simplicity, we obtain

M2 dσAB
dM2 (N − 1) =

∑
a,b

fa/A
(
N,µ2

F

)
fb/B

(
N,µ2

F

)
σab

(
N,M2, µ2

F , µ
2
R

)
, (2.12)

such that the phase space factorises. In this expression, the large logarithms now depend on
the Mellin variable N . Dynamical factorisation can then be achieved by relying on eikonal
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Feynman rules. The partonic cross section can be refactorised and resummed to

σab→ij
(
N,M2, µ2

F , µ
2
R

)
=
∑
I

Hab→ij,I
(
M2, µ2

F , µ
2
R

)
∆a

(
N,M2, µ2

F , µ
2
R

)
×∆b

(
N,M2, µ2

F , µ
2
R

)
∆ab→ij,I

(
N,M2, µ2

F , µ
2
R

)
,

(2.13)

in which the hard function is given by

Hab→ij,I
(
M2, µ2

F , µ
2
R

)
=
∞∑
n=0

(
αs
2π

)n
H(n)
ab→ij,I

(
M2, µ2

F , µ
2
R

)
. (2.14)

This quantity is further discussed in subsection 2.3 [25, 26, 67]. The irreducible colour
representation index I is dropped from now on, since squark-electroweakino associated
production involves only a single colour tensor. The soft wide-angle function ∆ab→ij and
the soft collinear radiation functions ∆a,b exponentiate [22–24, 86],

∆a∆b∆ab→ij = exp
[
LG

(1)
ab (λ) +G

(2)
ab→ij

(
λ,M2, µ2

F , µ
2
R

)
+ . . .

]
, (2.15)

with λ = αsβ0L/(2π), L = log N̄ and N̄ = NeγE . The above expression contains the
leading-logarithmic G(1)

ab and next-to-leading logarithmic G(2)
ab→ij contributions. They are

given by

G
(1)
ab (λ) = g(1)

a (λ) + g
(1)
b (λ) , (2.16)

G
(2)
ab→ij

(
λ,M2, µ2

F , µ
2
R

)
= g(2)

a

(
λ,M2, µ2

F , µ
2
R

)
+ g

(2)
b

(
λ,M2, µ2

F , µ
2
R

)
+ h

(2)
ab→ij (λ) ,

(2.17)

with

g(1)
a = A

(1)
a

2β0λ
[2λ+ (1− 2λ) log(1− 2λ)] , (2.18)

g(2)
a = A

(1)
a β1
2β3

0

[
2λ+ log(1− 2λ) + 1

2 log2(1− 2λ)
]
− A

(2)
a

2β2
0

[2λ+ log(1− 2λ)]

+ A
(1)
a

2β0

[
log(1− 2λ) log

(
M2

µ2
R

)
+ 2λ log

(
µ2
F

µ2
R

)]
. (2.19)

The resummation coefficients entering those quantities are

A(1)
a = 2Ca and A(2)

a = 2Ca

[(
67
18 −

π2

6

)
CA −

5
9nf

]
, (2.20)

with Ca = CF for quarks and Ca = CA for gluons. The last term in equation (2.17) consists
of the process-dependent contributions related to large-angle soft-gluon emissions. It reads

h
(2)
ab→ij(λ) = log (1− 2λ)

2β0
D

(1)
ab→ij = log (1− 2λ)

2β0

2π
αs

Re
(
Γ̄ab→ij

)
. (2.21)
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The one-loop coefficient D(1)
ab→ij does not vanish for squark-gaugino production, since soft

gluons can be radiated off the final-state squark, and it depends on the modified soft
anomalous dimension

Γ̄qg→q̃χ̃ = αs
2π

{
CF

[
2 log

(
m2
q̃ − t√
smq̃

)
− 1 + iπ

]
+ CA log

(
m2
q̃ − u

m2
q̃ − t

)}
, (2.22)

that has been derived in appendix A.

2.3 Hard matching coefficient

The resummation of the logarithmic contributions as performed in equation (2.15) scales with
the hard function Hab→ij(M2, µ2

F , µ
2
R), as shown in equation (2.13). Including higher-order

contribution in the hard function hence further improves the accuracy of the predictions.
Therefore, in addition to the LO term

H(0)
ab→ij

(
M2, µ2

F , µ
2
R

)
= σ

(0)
ab→ij

(
M2

)
, (2.23)

we include the N -independent parts of the NLO cross section in the one-loop hard matching
coefficient,

H(1)
ab→ij

(
M2, µ2

F , µ
2
R

)
= σ

(0)
ab→ij

(
M2

)
C

(1)
ab→ij

(
M2, µ2

F , µ
2
R

)
. (2.24)

To compute this coefficient, we begin with the full NLO cross section of equation (2.9).
We first neglect the real emission contributions due to the three-particle phase space
suppression close to threshold [54, 57]. The virtual contributions dσV and the integrated
dipoles

∫
1 dσA in equation (2.9) correspond to a contribution proportional to δ(1− z), that

is thus constant in N after a Mellin transform. The collinear remainder is split into two
pieces related to the insertion operators P and K, in which only the former depends on
the factorisation scale µF [81–83]. While logarithmic, but formally suppressed O(1/N)
contributions have been shown to exponentiate and improve the numerical scale dependence
in Drell-Yan like processes [87–89], we refrain from including them for our process. After
discarding the 1/N terms that vanish in the large-N limit, only the diagonal terms survive.
We obtain for the initial quark〈

P(N)
〉
q

= αs
2π

(
log N̄ − 3

4

)(
2CF log µ2

F

m2
q̃ − t

− CA log s

m2
q̃ − t

)
,

〈
K(N)

〉
q

= αs
2π

{
CF

(
2 log2 N̄ + π2

2 −
γq
CF
− Kq

CF

)

+
(
CF −

CA
2

)[
2 log N̄

(
1 + log

m2
q̃

m2
q̃ − t

)
+Q

]}
,

(2.25)

with
Q =

m2
q̃ − t

2m2
q̃ − t

+ 3mq̃

mq̃ +
√

2m2
q̃ − t

+ log
m2
q̃

2m2
q̃ − t

(
1 + 2 log

m2
q̃

m2
q̃ − t

)

− 3
2 log

3m2
q̃ − t− 2mq̃

√
2m2

q̃ − t
m2
q̃ − t

+ 2Li2

(
2m2

q̃ − t
m2
q̃

)
− γq̃
CF

.

(2.26)
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For the initial gluon, we find

〈
P(N)

〉
g

= αs
2π

(
CA log N̄ − β0

2

)
log µ4

F

s(m2
q̃ − u)

,

〈
K(N)

〉
g

= αs
2π

CA
2

[
4 log2 N̄+2 log N̄

(
1+log

m2
q̃

m2
q̃−u

)
+π2− 2γg

CA
− 2Kg

CA
+G

]
,

(2.27)

with

G =
m2
q̃ − u

2m2
q̃ − u

+ log
m2
q̃

2m2
q̃ − u

(
1 + 2 log

m2
q̃

m2
q̃ − u

)
+ 2Li2

(
2m2

q̃ − u
m2
q̃

)
− γq̃
CF

+ β0
CA

log
3m2

q̃ − u− 2mq̃

√
2m2

q̃ − u
m2
q̃ − u

+ 2mq̃√
2m2

q̃ − u+mq̃

 .

(2.28)

In all these expressions, the two-body phase space Mandelstam variables are defined
according to the particle ordering of equation (2.3), and the various constants are [82]

γq = 3
2CF , Kq =

(
7
2 −

π2

6

)
CF ,

γg = β0 = 11
6 CA −

2
3TRNf , Kg =

(
67
18 −

π2

6

)
CA −

10
9 TRNf ,

γq̃ = 2CF , Kq̃ =
(

4− π2

6

)
CF .

(2.29)

With the N -independent parts of the insertion operators, the hard functions read

H(0)
ab→ij

(
M2, µ2

)
= σB (M2)

M2 , (2.30)

H(1)
ab→ij

(
M2, µ2

)
= 2π
αs

σB (M2)
M2

(〈
P + K

〉
q

+
〈
P + K

〉
g

)
N -ind.

+ 2π
αs

(
σV (M2)+

∫
1 dσA (M2)

M2

)
. (2.31)

As we have ignored any 1/N terms in the above computation of the hard matching coefficient,
we employ the standard collinear unimproved resummation formalism as opposed to the
collinear improved one of refs. [87, 89–91]. While only the N -independent terms are
necessary in practice, we included the logarithmic terms in the above expressions to be
able to validate analytically the re-expansion of the resummed cross section at O(α2

s) in
subsection 2.4.

2.4 Matching and expansion

So far we have computed a fixed order cross section σNLO and a resummed cross section
σRes.. As the latter is a good approximation near threshold and the former far from it, they
should be consistently combined. Therefore, we sum up both contributions and remove
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the terms that are accounted for both in the resummed and the fixed-order predictions,
thus avoiding any double counting. A consistent matching is achieved by re-expanding
σRes. at O(α2

s) and subtracting this quantity σExp. from the sum of the resummed and
fixed-order results,

σab = σNLO
ab + σRes.

ab − σ
Exp.
ab . (2.32)

The expansion is given in terms of the first- (H(0)) and second-order (H(1)) hard function
coefficients of subsection 2.3,

σExp.
ab = H(0)

ab→ij

(
M2, µ2

)
+ αs

2πH
(1)
ab→ij

(
M2, µ2

)
+ αs

2πH
(0)
ab→ij

(
M2, µ2

)
×
((
A(1)
a +A

(1)
b

)(
log N̄ + log µ2

F

M2

)
− 2D(1)

ab→ij

)
log N̄ .

(2.33)

We can verify that the leading logarithmic terms in log2 N̄ agree with those of the K-
operators for quarks (A(1)

q = 2CF ) and gluons (A(1)
g = 2CA) in equation (2.25) and

equation (2.27). Moreover, combining the next-to-leading logarithmic terms in log N̄
originating from the soft anomalous dimension in equation (2.22) and the terms in log

(
µ2
F /s

)
from equation (2.33), we recover the same terms as in the sum of the contributions of the
P and K operators for quarks and gluons,[

σExp.
ab M2

σB

]
log N̄

=
[〈

P(N)
〉
q

+
〈
K(N)

〉
q

+
〈
P(N)

〉
g

+
〈
K(N)

〉
g

]
log N̄

= 2CF

[
log µ2

F

m2
q̃ − t

+ log
m2
q̃

m2
q̃ − t

+ 1
]

log N̄ (2.34)

+ 2CA

[
log µ

2
F

s
+ log

m2
q̃ − t

m2
q̃ − u

]
log N̄ .

Having computed the resummed and the perturbatively expanded results in Mellin
space, we must multiply them with the N -moments of the PDFs according to equation (2.12)
and perform an inverse Mellin transform,

M2 dσAB
dM2 (τ) = 1

2πi

∫
CN

dNτ−NM2 dσAB(N)
dM2 , (2.35)

in order to obtain the hadronic cross section as a function of τ = M2/S. Special attention
must be paid to the singularities in the resummed exponents G(1,2)

ab , which are situated at
λ = 1/2 and are related to the Landau pole of the perturbative coupling αs. To avoid this
pole as well as those in the Mellin moments of the PDFs related to the small-x (Regge)
singularity fa/A(x, µ2

0) ∝ xα(1 − x)β with α < 0, we choose an integration contour CN
according to the principal value procedure proposed in ref. [92] and the minimal prescription
proposed in ref. [93]. We define two branches

CN : N = C + ze±iφ with z ∈ [0,∞[, (2.36)

where the constant C is chosen such that the singularities of the N -moments of the PDFs
lie to the left and the Landau pole to the right of the integration contour. Formally the
angle φ can be chosen in the range [π/2, π[, but the integral converges faster if φ > π/2.
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3 Numerical results

For our numerical predictions, we identify the Standard Model parameters with those
determined by the Particle Data Group [94]. The running of the strong coupling with
five active quark flavours is chosen in agreement with the selected PDF set as provided
by the LHAPDF6 library [95]. As our default choice of PDFs, we employ the sets of
MSHT20 [96] unless stated otherwise. To be specific, we use at LO the set MSHT20LO130
with αs(MZ) = 0.130, and at NLO and NLO+NLL the set MSHT20NLO118 with αs(MZ) =
0.118. Again unless stated otherwise, we consider the dominant squark-electroweakino
production channel at the LHC, i.e. the production of a left-handed or a right-handed
up-type squark in association with the lightest neutralino.

3.1 Validation of our NLO implementation

In order to validate the numerical implementation of our NLO calculation, we compare our
NLO predictions with those obtained with MadGraph5_aMC@NLO [97], that rely on
the MSSM model implementation described in ref. [20]. In addition, we subtract on-shell
squark and gluino contributions locally from the real emission pieces by reshuffling the
momenta of the final-state particles and using a standard Breit-Wigner function for the
decay [19]. Technically, we employ the plugin MadSTR with the option istr= 5 [20]. We
find excellent numerical agreement between the two approaches.

In addition, we validate our NLO implementation by studying the squark mass de-
pendence of the total cross section and comparing our results to those of an independent,
previously published automated calculation [19] at the MSSM benchmark point SPS1a1000.
This benchmark is based on the point SPS1a [98], for which the physical particle spectrum
is calculated with SPheno 3 [99], and the gluino mass is then shifted to 1 TeV. Our
results are presented in figure 2. The contributions from real and virtual corrections, made
individually finite with the Catani-Seymour dipole formalism [82], are also shown separately.
The contributions from the integrated dipoles and the collinear counterterms P + K have
been combined with the virtual corrections. For the associated production of a right-handed
up-type squark with the lightest neutralino (right), we observe the same sign flip in the real
corrections as the one that had been found in ref. [19]. Moreover, our K-factors for the
real and virtual corrections, defined by their ratios with respect to the Born cross section,
exhibit the same behaviour as those in the reference computation, both for ũLχ̃0

1 and ũRχ̃0
1

production. The remaining minor numerical differences between the two calculations can
be traced back to the use of a slightly different PDF set, as LHAPDF6 [95] no longer
supports CTEQ6M [100], and benchmark scenario with small differences in the superpartner
masses (below 1 %).

Next, we demonstrate in figure 3 that the factorisation and renormalisation scale
dependence of our result agrees with the findings of ref. [19]. In addition, we show as shaded
bands the uncertainties obtained by varying the central scale µ0 ≡ µR = µF = (mq̃ +mχ̃)/2
with the seven-point method, i.e. by varying both scales independently by a factor of two
up and down, but excluding relative factors of four between the two scales. As expected,
the NLO corrections increase the total cross section and reduce the scale uncertainties. For
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Figure 2. NLO cross sections σ(pp→ ũL,Rχ̃
0
1) and their virtual and real components (top panels)

as well as the associated K factors (bottom panels) as a function of the physical squark mass mũL,R

for a fixed mass difference mũL
−mũR

= 20 GeV. This fixed mass difference is only adopted in
order to reproduce ref. [19], even though it breaks in general SU(2)L invariance. The remaining
MSSM parameters are fixed to the benchmark point SPS1a1000, the LHC energy is

√
S = 7 TeV,

and CTEQ6.6M PDFs are employed.
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Figure 3. Profile of the renormalisation and factorisation scale dependence of the total cross section
for the process pp→ ũRχ̃

0
1. The plot covers µF,R ∈ (0.1− 10)µ0 (reversely in panels 2 and 3), where

the central scale is µ0 = (mq̃ +mχ̃)/2. The bands show the scale uncertainties as obtained from the
seven-point method. The predictions in this plot are for a centre-of-mass energy of

√
S = 7TeV and

CTEQ6.6M PDFs.

– 11 –



J
H
E
P
0
6
(
2
0
2
2
)
1
3
0

pMSSM-11 scenario A
M1 M2 M3
0.25 0.25 −3.86

M(U,D,Q)1,2 M(U,D,Q)3 µ

4.0 1.7 1.33
M(L,E)1,2 M(L,E)3 tan β

0.35 0.47 36
MA A0
4.0 2.8
mχ̃0

1
mũ mg̃

0.249 4.07 3.90

pMSSM-11 scenario B
M1 M2 M3
0.51 0.48 3.00

M(U,D,Q)1,2 M(U,D,Q)3 µ

0.9 2.0 −9.4
M(L,E)1,2 M(L,E)3 tan β

1.85 1.33 33
MA A0
3.0 −3.4
mχ̃0

1
mũ mg̃

0.505 0.96 2.94

Table 1. Higgs and soft SUSY breaking parameters in our pMSSM-11 benchmark models, together
with the relevant resulting physical particle masses. All values, except for tan β, are given in TeV.

illustrative purposes, we include also our new NLL+NLO predictions (green). While they
do not systematically increase the NLO cross section for the masses chosen here, the scale
uncertainty is reduced by about a factor of two relative to the NLO result.

3.2 Invariant mass distributions

In the following, we present results for two specific phenomenological MSSM scenarios with
eleven parameters (pMSSM-11). The input parameters and the relevant resulting physical
masses obtained with SPheno 3 are listed in table 1. First, we focus on a scenario featuring
large squark masses of 4 TeV, referred to as scenario A. Second, scenario B explores squark
and gaugino masses expected to be within the reach of Run 3 of the LHC. Both scenarios
are based on the global fits of ref. [101]. Scenario A is derived from a fit that includes
data from the anomalous magnetic moment of the muon [102], while scenario B does not
include it. In addition, we have lowered the parameters M1 and M2 in scenario B and have
increased the parameter M3 to bring the squark and gluino masses in agreement with the
current SUSY limits from the LHC [63, 65, 66].

In figure 4, we show invariant mass distributions as derived from equation (2.35) for
the associated production of left- and right-handed squarks with the lightest neutralino in
both scenarios A and B. An invariant mass below the combined final state particle masses
M0 = mχ̃ +mq̃ is kinematically forbidden. Very close to this lower limit there is a rapid
increase of the cross section, until it peaks at about M ≈ 1.1M0 and then falls off towards
higher values of M . As the invariant mass M increases, we get closer to the threshold
region z = M2/s→ 1, and NLL corrections contribute significantly more to the differential
cross section. This behaviour is captured by the NLL+NLO/NLO K-factors shown in the
lower panels of the figure. For scenario A, the increase of the NLO cross section goes from
25 % in the region of the peak to more than 50 % at large invariant masses. In contrast,
scenario B receives smaller corrections of 10 % to 20 % due to the smaller invariant mass M
relevant for the bulk of the cross section.
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Figure 4. Invariant-mass distributions for the processes pp → ũL,Rχ̃
0
1 (top panels). The un-

certainties correspond to variations around the central scale µ0 = M , and we additionally show
NLL+NLO/NLO K-factors (bottom panels). The results are shown for both scenarios A and B
with MSHT20 PDFs and a centre-of-mass energy of

√
S = 13 TeV.

The lower panels display the relative seven-point scale uncertainty, when the scale
is varied around a central scale choice of µ0 = M . Across the whole mass range, the
scale uncertainty is first reduced when comparing LO rates to NLO ones, and next further
reduced when considering NLO+NLL predictions. By performing a similar calculation with
µ0 = (mq̃ + mχ̃)/2 we recover the total cross section (see below) as the area under the
invariant mass distribution.

In our figures, results for the production of left-handed up-squarks in scenario A are
scaled by a factor of 10. Due to the bino-like nature of the neutralino χ̃0

1 in this scenario,
the coupling to the right-handed up-squark is dominant, and so is the cross section related
to the production of a ũRχ̃0

1 pair. In scenario B however, the composition of χ̃0
1 is roughly

50 % wino and 50 % bino, yielding cross sections of the same order for the two processes
pp→ ũRχ̃

0
1 and pp→ ũLχ̃

0
1.

3.3 Total cross sections and their scale uncertainty

In figure 5, we present predictions for the total cross section related to the process pp→ ũLχ̃
0
1

in scenarios A and B with squark masses of 4 TeV and 1TeV, respectively, together with
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Figure 5. Profiles of the renormalisation and factorisation scale dependence of the total cross section
corresponding to the process pp→ ũLχ̃

0
1 in scenarios A and B. The plots cover µF,R ∈ (0.1− 10)µ0

(reversely in panels 2 and 3) with a central scale µ0 = (mq̃ +mχ̃)/2. The bands correspond to scale
uncertainties evaluated with the seven-point method, and we use

√
S = 13 TeV and MSHT20 PDFs.

We present predictions at LO, NLO and NLO+NLL, as well as for the O(α2
s) expansion of the

NLL result.

the associated scale uncertainties. The results are shown at LO, NLO and NLO+NLL for
a centre-of-mass energy of

√
S = 13TeV. Our predictions show a significant increase of

the total cross section in scenario A when including NLO+NLL corrections as well as a
reduction of the scale uncertainties in both scenarios. The uncertainty bands are again
determined by the seven-point method, where the factorisation and renormalisation scales
are both varied independently by factors of two up and down around the central scale
µ0 = (mq̃ + mχ̃)/2, excluding the cases where µF /µR = 4 or 1/4. For both examined
scenarios, we observe that the relative scale uncertainties are reduced from about ±20 %
at LO to ±10 % at NLO, and finally fall below ±5 % at NLO+NLL. The kink in the
NLO cross section at µF = µR = 0.1µ0 between panels three and four is more prominent
in scenario A than in scenario B. It originates from the subtraction of on-shell squark
and gluino resonant contributions from the real emission component of the cross section.
We also include predictions for the expansion of the NLL predictions at O(α2

s), following
equation (2.33) (solid red curve). As expected for large scales the logarithmic terms become
dominant, and the expansion consequently approximates well the NLO result. Full control
over the scale dependence at next-to-next-to-leading order (NNLO) and beyond can of
course only be obtained with an explicit calculation.
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3.4 Parton density uncertainties of the total cross section

So far we have only studied scale uncertainties associated with the total rates for squark-
electroweakino production at the LHC. There is, however, a second important source of
theoretical uncertainties, i.e. those coming from the parton density fits. To compute them,
we use the methods available in LHAPDF, which allow to calculate the PDF uncertainties
in two different ways [103]:

- Eigenvectors: Experimental uncertainties are parametrised by making computations
for a set of orthogonal Hessian PDF eigenvectors. The uncertainty is calculated from

∆σPDF± =

√√√√ n∑
i=1

[max (±σ+i ∓ σ0, ±σ−i ∓ σ0, 0)]2 , (3.1)

where the index i runs over all PDF eigenvectors, with i = 0 representing the central,
best fit, set. This method is the one to be used with CT18 [104] and MSHT20 [96]
densities.

- Replicas: Monte Carlo PDF sets are provided with multiple replicas that need to be
combined to get a symmetric uncertainty on the predictions. This is achieved through
the formula

∆σPDF± =

√√√√ 1
n− 1

n∑
i=1

[
σi − 〈σ〉

]2
, (3.2)

where the index i runs over the entire set of PDF replicas, with the central value
being given by the mean cross section value 〈σ〉 = 1

n

∑n
i=1 σi ' σ0. This method is

used with NNPDF40 densities [105].

For our predictions at NLO and NLO+NLL, we calculated the PDF uncertainties
at 90 % confidence level following the convention of ref. [104]. The resummation of large
logarithms does not significantly alter the size of the relative PDF uncertainties, as the
same set of PDFs is used in both calculations. For scenario B we show in figure 6 the PDF
uncertainties associated with NLO+NLL total cross sections for the different choices of
parton densities mentioned above, i.e. for MSHT20, CT18 and NNPDF40. We consider the
process pp→ ũL,Rχ̃

0
1 in the top row of the figure and present predictions as a function of

the squark mass. While the uncertainty is of about 5 % for 1 TeV up-squarks, it increases
up to 10− 15 % for squark masses of 3 TeV. This increase is related to the large partonic
momentum fractions x relevant for such a large mass, where the PDFs are less constrained
in their fitting procedure. The central cross section values obtained with the MSHT20 and
CT18 sets agree consistently at the percent level in the explored mass range, the MSTH20
errors being slightly smaller as a consequence of this set being more recent than the CT18
one. On the other hand, the NNPDF40 predictions are a few percent lower, although they
are still in reasonable agreement within their uncertainty intervals with the predictions
achieved with other PDFs.

In the lower two plots of figure 6 we show results for the production of a charm squark
in association with the lightest neutralino. We observe that the results obtained with the
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Figure 6. Relative PDF uncertainties of the total cross sections for the processes pp→ q̃L,Rχ̃
0
1 at the

LHC with a centre-of-mass energy of
√
S = 13 TeV and at NLO+NLL. The uncertainties are shown as

a function of the squark mass mq̃L,R
and for four different choices of PDFs, namely MSHT20NLO118

(blue), CT18NLO (orange), NNPDF40NLO01180 (green) and NNPDF40NLOPCH01180 (red).

central NNPDF40NLO01180 set with αs(MZ) = 0.118 give cross sections that are larger by
a factor of three to four with respect to those obtained with the CT18NLO set and with
the MSHT20NLO118 set, both also with αs(MZ) = 0.118. In addition, the uncertainties
associated with the NNPF40 predictions are of about 30–50%, in contrast with predictions
obtained with CT18 and MSHT20, that have much smaller uncertainties. This discrepancy
can be traced back to the treatment of the charm quark in the NNPDF40 fit [106] and is
expected to be even more significant in processes with two charm quarks or antiquarks in the
initial state. The cross sections estimated with the alternative NNPDF40NLOPCH01180
PDF fit (red) with αs(MZ) = 0.118, in which the treatment of the charm quark is kept
purely perturbative, are, in contrast, in good agreement with CT18 and MSHT20 both for
the central values and the uncertainties.

3.5 Squark and gaugino mass dependence of the total cross section

The dependence of the total cross section for associated squark-electroweakino production
on the masses of the produced particles is important to estimate the sensitivity of Run 3
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Figure 7. Total cross sections for the processes pp→ ũL,Rχ̃
0
1 and their relative scale uncertainties

(top panels) as well as (NLO+NLL)/NLO K-factors (bottom panels) in scenario B. In the first row,
we vary the squark mass mũL,R

, keeping a fixed distance between the left- and right-handed squark
masses mũL

−mũR
= 100 GeV. In the second row, we vary the electroweakino mass mχ̃. The other

parameters defining scenario B are not modified. The LHC energy is
√
S = 13 TeV, and we use

MSHT20 PDFs.

at the LHC to this process. A precise quantitative statement would of course require a
detailed signal and background analysis, which is beyond the scope of this work. Therefore,
we show in figure 7 the total cross sections and resulting relative scale uncertainties for
scenario B as a function of the SUSY particle masses, both for ũLχ̃0

1 (left) and ũRχ̃0
1 (right)

production. As expected, the cross sections fall steeply with either mass. Our predictions
indicate that an integrated luminosity of 350 fb−1 at

√
S = 13 TeV from the LHC Run 3 [16]

will lead to the production of hundreds of squark-electroweakino events for a neutralino
mass of 0.5 TeV and squark masses ranging up to 2 TeV.

In the lower panels of the plots, we observe an improvement in the precision of the
predictions over the whole mass range. Resummation effects reduce the scale dependence
from ±10 % at NLO to below ±5 % at NLO+NLL. The black curves in the lower insets
of the figures represent the ratio of the NLO+NLL predictions to the NLO ones and
demonstrate the increasing impact of resummation with rising mass values. As in the
previous sections, this demonstrates once more that resummation effects are larger near
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the hadronic threshold. While the central cross section values are enlarged by 50 % when
adding NLO corrections to the LO rates, the additional increase from NLL resummation
reaches only about 6 % for the mass ranges observable at the LHC in the near future.

4 Conclusion

We have presented in this paper a threshold resummation calculation at the NLO+NLL
accuracy for the associated production of a squark and an electroweakino at the LHC.
This process, like the associated production of a gluino and an electroweakino, has the
potential to become important in the near future, if squarks and gluinos turn out to be
too heavy to be produced in pairs. The semi-strong production of one electroweak and
one strongly-interacting superpartner indeed offers cross sections of intermediate size and a
larger available phase space thanks to the possibility of having a lighter electroweakino in
the final state.

Our investigations required the calculation of the full NLO corrections to the LO rate,
as well as of the associated process-dependent soft anomalous dimension and hard matching
coefficients. By matching fixed-order and resummed predictions, we consistently combined
the resummation of large logarithms appearing close to threshold at NLL with NLO results.
NLL resummation has been found to increase the NLO cross sections for central scale
choices by up to 6 % for squark masses expected to be in the reach of the LHC Run 3.
In addition, the resummation procedure allowed for the stabilisation of the predictions
relative to the scale dependence, the scale uncertainties being reduced to below 5 % in the
explored mass regime. Our calculation has been included in version 3.1.0 of the public
code Resummino [107]. It would be interesting to compare in detail our resummation
results to those obtained by matching NLO calculations to parton showers [20, 21], as it
has been done in dedicated publications, e.g. for Z ′ boson [108] and electroweakino pair
production [38].
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A Soft anomalous dimension

We compute the soft anomalous dimension Γ̄ for squark-electroweakino production

Γ̄ab→ij = Γab→ij − ΓDY
ab (A.1)

with
Γab→ij = −

∑
kl

Ckl lim
ε→0

ε ωkl . (A.2)
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In this expression, the sum goes over eikonal lines, Ckl are colour factors, which depend on
each specific diagram, ωkl are integrals over the corresponding kinematic quantities and
ΓDY includes the contribution from the self-energies of the two incoming Wilson lines. The
latter is given by

ΓDY
ab = αs

2π
∑

k={a,b}
Ck

[
1− log

(
(vk · n)2

|n|2

)
− log(2)− iπ

]
δIJ , (A.3)

where the sum goes over the initial-state particles and the colour factor Ck is equal to CF
for an incoming (anti)quark and to CA for an incoming gluon. The four-momentum nµ

is an axial gauge vector fulfilling |n|2 = −n2 − iε [25]. The factor δIJ indicates that this
contribution has to be subtracted from the diagonal elements in the colour basis of the
process. In the process considered in this work, the soft anomalous dimension is a scalar
quantity, since we are dealing with a colour basis containing a single element due to the
presence of a single coloured final-state particle.

We can write a general expression for the integrals ωkl

ωkl = gs

∫ dDq
(2π)D

−i
q2 + iε

[
∆k∆lvk · vl

(δkvk · q + iε)(δkvk · q + iε)

− δl∆l∆kvk · n
δkvk · q + iε

P

(n · q) −
δk∆k∆lvl · n
δlvl · q + iε

P

(n · q) + n2δk∆kδl∆l
P

(n · q)2

]
,

(A.4)

where we used the eikonal Feynman rules found in ref. [109]. The above integral depends
on the principal value operator P , that is calculated as

P

(n · q)β = 1
2

( 1
(n · q + iε)β + (−1)β 1

(−n · q + iε)β
)
, (A.5)

on vµi = pµi
√

2/s, and on the process-dependent signs ∆ and δ.
We use the solutions of ref. [110] for the integrals associated with the diagrams in

figure 8. We obtain similar expressions as in ref. [42], apart from the combined signs
Skl = ∆k∆lδkδl that are given by Sab = −1, Sa1 = +1, Sb1 = +1 and S11 = −1. To be
specific, we obtain

ωab = Sab
αs
επ

[
− log

(
va · vb

2

)
+ 1

2 log
(

(va · n)2

|n|2
(vb · n)2

|n|2

)
+ iπ − 1

]
, (A.6)

ωa1 = Sa1
αs
επ

[
−1

2 log
(

(va · v1)2s

2m2
1

)
+ L1 + 1

2 log
(

(va · n)2

|n|2

)
− 1

]
, (A.7)

ωb1 = Sb1
αs
επ

[
−1

2 log
(

(vb · v1)2s

2m2
1

)
+ L1 + 1

2 log
(

(vb · n)2

|n|2

)
− 1

]
, (A.8)

ω11 = S11
αs
επ

[2L1 − 2] . (A.9)

For squark-electroweakino production, the final-state massive particle is a squark, so
that the kinematic quantities read

va · vb = 2pa · pb
s

= 1, va · v1 = 2pa · p1
s

=
m2
q̃ − t
s

and vb · v1 = 2pb · p1
s

=
m2
q̃ − u
s

,

(A.10)
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2

ωab

ωb1ωa1

ω11

Figure 8. Eikonal diagrams for the soft anomalous dimension in squark-electroweakino production.

where t and u are the usual Mandelstam variables. The remaining quantity L1 simplifies to
one in the limit (v1 · n)2 → 2m2

q̃n
2/s.

The relevant colour factors Ckl are

Cab = Tr[TiTi′Tj](−i)f i′ij

Tr[TiTi] = −CA2 , C11 = Tr[TiTjTjTi]
Tr[TiTi] = CF ,

Ca1 = Tr[TiTjTiTj]
Tr[TiTi] = CF −

CA
2 , Cb1 = Tr[TiTjTi′ ](−i)f i′ij

Tr[TiTi] = CA
2 ,

(A.11)

where we have used the well-known relation T aT a = CF1.
With these ingredients we can calculate Γab→ij

Γab→ij = ε

[
−CF

(
ωa1 + ω11

)
+ CA

2
(
ωab + ωa1 − ωb1

)]
(A.12)

= αs
2π

[
CF

(
− log

(
(va · n)2

|n|2

)
+ log

(
(va · v1)2 s

2m2
q̃

)
+ 2L1 − 2

)

+ CA

(
−1

2 log
(

(va · v1)2 s

2m2
q̃

)
+ 1

2 log
(

(vb · v1)2 s

2m2
q̃

)

− log
(

(vb · n)2

|n|2

)
+ log

(
va · vb

2

)
+ 1− iπ

)]
, (A.13)

while the contribution from the initial-state self energies is

ΓDY
ab = αs

2π

[
CF

(
1−log

(
(va ·n)2

|n|2

)
−log(2)−iπ

)
+CA

(
1−log

(
(vb ·n)2

|n|2

)
−log(2)−iπ

)]
.

(A.14)
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We observe the cancellation of the gauge dependent terms. This gives as the final result for
the soft anomalous dimension

Γ̄ab→ij = αs
2π

{
CF

[
log
(

(va ·v1)2 s

2m2
q̃

)
+2L1−3+log(2)+iπ

]
+

+CA

[
−1

2 log
(

(va ·v1)2 s

2m2
q̃

)
+ 1

2 log
(

(vb ·v1)2 s

2m2
q̃

)
+log

(
va ·vb

2

)
+log(2)

]}

= αs
2π

{
CF

[
2log

(
m2
q̃−t√
smq̃

)
−1+iπ

]
+CA log

(
m2
q̃−u

m2
q̃−t

)}
. (A.15)

This result is related to the one for tW production [111] and in the massless limit also
to the one for the QCD Compton process [112]. It agrees in particular with eq. (3.8) of
ref. [111] after subtraction of the Drell-Yan terms.

B Lists of total cross sections

In table 2 and table 3, we show the total cross sections for the associated production of
an up-type squark and the lightest neutralino at NLO and NLO+NLL accuracy for an
LHC centre-of-mass energy of

√
S = 13 TeV in scenario B. The results are listed both as

a function of the squark mass and of the neutralino mass and correspond to the plots in
figure 7. We give the scale and PDF uncertainty for the resummed result for the three PDFs
we already investigated in figure 6, namely MSHT20NLO118, CT18NLO and NNPDF40.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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mũL [GeV] NLO+scale+PDF
−scale−PDF [fb] NLO+NLL+scale+PDF

−scale−PDF [fb]

MSHT20NLO118 MSHT20NLO118 CT18NLO NNPDF40

1000 3.301+9.5%+2.4%
−9.5%−2.0% 3.318+4.7%+2.6%

−3.9%−1.8% 3.353+4.7%+5.2%
−3.9%−3.4% 3.234+4.7%+2.4%

−3.9%−2.4%

1100 2.148+9.6%+2.7%
−9.5%−2.1% 2.166+4.5%+3.1%

−3.8%−1.6% 2.188+4.6%+5.5%
−3.8%−3.6% 2.105+4.6%+2.4%

−3.8%−2.4%

1200 1.426+9.6%+2.8%
−9.6%−2.1% 1.442+4.4%+3.3%

−3.8%−1.6% 1.456+4.5%+6.0%
−3.7%−3.7% 1.398+4.5%+2.5%

−3.7%−2.5%

1300 0.963+9.7%+3.0%
−9.7%−2.3% 0.976+4.3%+3.5%

−3.7%−1.7% 0.986+4.3%+6.1%
−3.7%−4.0% 0.944+4.4%+2.6%

−3.7%−2.6%

1400 0.660+9.7%+3.1%
−9.9%−2.4% 0.671+4.2%+3.4%

−3.7%−2.1% 0.678+4.3%+6.5%
−3.6%−4.2% 0.647+4.4%+2.7%

−3.6%−2.7%

1500 0.458+9.8%+3.4%
−10.0%−2.5% 0.467+4.2%+3.7%

−3.6%−2.1% 0.472+4.2%+6.9%
−3.6%−4.4% 0.450+4.3%+2.7%

−3.6%−2.7%

1600 0.322+9.9%+3.6%
−10.1%−2.6% 0.329+4.1%+4.0%

−3.5%−2.2% 0.332+4.1%+7.3%
−3.5%−4.5% 0.316+4.2%+2.8%

−3.5%−2.8%

1700 0.229+10.0%+3.6%
−10.2%−2.9% 0.234+4.0%+3.9%

−3.5%−2.3% 0.237+4.1%+7.7%
−3.5%−4.7% 0.224+4.2%+2.9%

−3.4%−2.9%

1800 0.164+10.2%+4.2%
−10.4%−2.7% 0.168+4.0%+4.6%

−3.5%−2.2% 0.170+4.0%+8.0%
−3.4%−4.9% 0.161+4.1%+3.0%

−3.4%−3.0%

1900 0.118+10.2%+4.1%
−10.5%−3.2% 0.122+3.9%+4.5%

−3.5%−2.6% 0.123+3.9%+8.0%
−3.4%−5.6% 0.116+4.1%+3.1%

−3.4%−3.1%

2000 0.086+10.4%+4.4%
−10.6%−3.4% 0.089+3.9%+4.8%

−3.4%−2.8% 0.090+3.9%+8.6%
−3.3%−5.5% 0.084+4.0%+3.2%

−3.3%−3.2%

2100 0.063+10.5%+4.7%
−10.7%−3.3% 0.065+3.8%+4.9%

−3.4%−2.9% 0.066+3.8%+8.5%
−3.4%−6.3% 0.062+4.0%+3.4%

−3.3%−3.4%

2200 0.046+10.7%+5.2%
−10.9%−3.4% 0.048+3.8%+5.3%

−3.3%−3.1% 0.049+3.8%+9.4%
−3.3%−6.1% 0.046+4.0%+3.5%

−3.2%−3.5%

2300 0.034+10.9%+5.3%
−11.1%−3.7% 0.036+3.7%+5.3%

−3.3%−3.4% 0.036+3.8%+9.7%
−3.3%−6.4% 0.034+3.9%+3.6%

−3.2%−3.6%

2400 0.026+10.9%+5.8%
−11.2%−3.7% 0.027+3.7%+5.9%

−3.2%−3.3% 0.027+3.7%+10.2%
−3.3%−6.6% 0.025+3.8%+3.7%

−3.2%−3.7%

2500 0.019+11.2%+6.3%
−11.3%−3.6% 0.020+3.7%+6.4%

−3.2%−3.3% 0.020+3.6%+10.5%
−3.3%−7.0% 0.019+3.7%+3.8%

−3.3%−3.8%

2600 0.014+11.3%+6.3%
−11.4%−4.1% 0.015+3.5%+6.2%

−3.3%−3.9% 0.015+3.6%+10.9%
−3.3%−7.2% 0.014+3.8%+4.0%

−3.1%−4.0%

2700 0.011+11.5%+7.1%
−11.6%−3.9% 0.011+3.5%+7.0%

−3.2%−3.7% 0.011+3.5%+11.3%
−3.2%−7.6% 0.011+3.7%+4.1%

−3.1%−4.1%

2800 0.008+11.7%+7.6%
−11.7%−4.1% 0.009+3.5%+7.5%

−3.2%−3.9% 0.009+3.4%+11.9%
−3.2%−7.8% 0.008+3.6%+4.2%

−3.2%−4.2%

2900 0.006+11.9%+8.2%
−11.8%−4.1% 0.006+3.4%+8.0%

−3.1%−4.0% 0.007+3.3%+12.4%
−3.2%−7.9% 0.006+3.5%+4.4%

−3.2%−4.4%

3000 0.005+11.8%+8.5%
−11.9%−4.2% 0.005+3.4%+8.3%

−3.0%−4.0% 0.005+3.3%+13.0%
−3.2%−8.0% 0.005+3.5%+4.5%

−3.1%−4.5%

Table 2. Total cross sections for pp → ũLχ̃
0
1 at

√
S = 13 TeV at NLO and NLO+NLL for

various squark masses, with a fixed mass difference between left- and right-handed squarks of
mũL

−mũR
= 100 GeV, and PDFs. The remaining parameters are fixed to scenario B.
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mχ̃0
1
[GeV] NLO+scale+PDF

−scale−PDF [fb] NLO+NLL+scale+PDF
−scale−PDF [fb]

MSHT20NLO118 MSHT20NLO118 CT18NLO NNPDF40

500 3.950+9.5%+2.3%
−9.4%−2.3% 3.966+4.7%+2.4%

−3.9%−2.1% 4.007+4.8%+4.8%
−3.9%−3.6% 3.867+4.8%+2.3%

−3.9%−2.3%

550 3.502+9.6%+2.4%
−9.5%−2.2% 3.521+4.7%+2.6%

−3.8%−2.0% 3.556+4.8%+5.0%
−3.8%−3.6% 3.429+4.8%+2.4%

−3.8%−2.4%

600 3.102+9.6%+2.4%
−9.6%−2.2% 3.123+4.7%+2.5%

−3.8%−2.0% 3.154+4.8%+5.1%
−3.8%−3.6% 3.039+4.8%+2.4%

−3.8%−2.4%

650 2.748+9.7%+2.6%
−9.6%−2.1% 2.769+4.7%+2.7%

−3.8%−2.0% 2.797+4.7%+5.4%
−3.8%−3.7% 2.692+4.8%+2.5%

−3.8%−2.5%

700 2.434+9.8%+2.7%
−9.7%−2.1% 2.456+4.7%+2.9%

−3.8%−1.9% 2.481+4.7%+5.5%
−3.8%−3.8% 2.385+4.8%+2.5%

−3.8%−2.5%

750 2.158+9.9%+2.7%
−9.8%−2.2% 2.180+4.6%+2.8%

−3.9%−2.0% 2.202+4.7%+5.6%
−3.8%−3.8% 2.115+4.7%+2.5%

−3.9%−2.5%

800 1.913+10.1%+2.6%
−9.9%−2.4% 1.936+4.6%+2.8%

−3.9%−2.2% 1.955+4.6%+5.9%
−3.9%−3.8% 1.876+4.6%+2.5%

−3.9%−2.5%

850 1.697+10.2%+3.0%
−10.0%−2.1% 1.718+4.5%+3.1%

−3.9%−1.9% 1.736+4.6%+6.2%
−3.9%−3.6% 1.664+4.6%+2.6%

−3.9%−2.6%

900 1.502+10.3%+3.0%
−10.1%−2.2% 1.523+4.5%+3.0%

−3.9%−2.0% 1.538+4.5%+6.4%
−3.9%−3.8% 1.473+4.6%+2.6%

−3.9%−2.6%

950 1.319+10.3%+3.3%
−10.1%−2.1% 1.340+4.6%+3.4%

−3.8%−1.9% 1.353+4.6%+6.6%
−3.8%−3.8% 1.295+4.6%+2.7%

−3.8%−2.7%

1000 1.146+10.0%+3.2%
−10.0%−2.4% 1.166+4.7%+3.3%

−3.7%−2.2% 1.178+4.8%+6.8%
−3.7%−4.0% 1.125+4.8%+2.7%

−3.7%−2.7%

1050 1.007+10.0%+3.4%
−10.0%−2.4% 1.025+4.9%+3.7%

−3.6%−2.0% 1.036+4.9%+7.2%
−3.6%−3.9% 0.988+5.0%+2.8%

−3.6%−2.8%

1100 0.887+10.0%+3.6%
−10.1%−2.4% 0.904+4.9%+4.0%

−3.5%−1.9% 0.914+5.0%+7.7%
−3.5%−4.0% 0.870+5.1%+2.8%

−3.5%−2.8%

1150 0.782+10.0%+3.8%
−10.1%−2.4% 0.799+5.0%+4.1%

−3.5%−2.0% 0.808+5.1%+7.9%
−3.5%−4.0% 0.768+5.2%+2.9%

−3.5%−2.9%

1200 0.691+10.0%+4.0%
−10.2%−2.5% 0.706+5.1%+4.3%

−3.5%−2.0% 0.715+5.2%+8.2%
−3.5%−4.2% 0.679+5.2%+2.9%

−3.5%−2.9%

1250 0.610+10.1%+4.1%
−10.2%−2.5% 0.625+5.2%+4.6%

−3.5%−1.8% 0.633+5.2%+8.3%
−3.5%−4.3% 0.600+5.3%+2.9%

−3.5%−2.9%

1300 0.540+10.1%+4.3%
−10.3%−2.5% 0.554+5.3%+5.2%

−3.5%−1.4% 0.560+5.3%+8.4%
−3.5%−4.6% 0.531+5.4%+3.0%

−3.5%−3.0%

1350 0.478+10.2%+4.0%
−10.3%−3.1% 0.491+5.4%+4.9%

−3.5%−2.1% 0.497+5.4%+8.4%
−3.6%−4.9% 0.470+5.5%+3.0%

−3.6%−3.0%

1400 0.423+10.3%+4.1%
−10.4%−3.2% 0.435+5.4%+5.2%

−3.6%−2.0% 0.440+5.5%+8.4%
−3.6%−5.3% 0.416+5.6%+3.1%

−3.7%−3.1%

1450 0.374+10.3%+4.2%
−10.5%−3.3% 0.386+5.5%+5.3%

−3.6%−2.1% 0.391+5.5%+8.3%
−3.7%−5.6% 0.369+5.6%+3.1%

−3.7%−3.1%

1500 0.332+10.4%+4.3%
−10.6%−3.5% 0.342+5.6%+5.5%

−3.7%−2.2% 0.347+5.6%+8.7%
−3.7%−5.6% 0.327+5.7%+3.2%

−3.8%−3.2%

Table 3. Total cross sections for pp→ ũLχ̃
0
1 at

√
S = 13 TeV at NLO and NLO+NLL for various

neutralino masses and PDFs. The remaining parameters are fixed to scenario B.
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