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1 Introduction

Neutrino oscillations have demonstrated that neutrinos are massive particles, which cannot
be explained within the Standard Model (SM) of particle physics in its original form. Some
Beyond-the-SM (BSM) physics is required explain the origin of neutrino masses. Arguably
the simplest modification is to add a right-handed gauge-singlet neutrino field (a sterile
neutrino) to the SM. This field can couple to the left-handed neutrino (active neutrino) field
and the Higgs field through Yukawa interactions, generating a neutrino Dirac mass term
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in exact analogue to other fermions. It is possible to add a Majorana mass term for the
sterile neutrino as neither Lorentz nor gauge symmetry forbids this. Such a term violates
Lepton number (L), an accidental symmetry of the SM, by two units. The combination of
a Majorana mass term and the Yukawa interactions results in neutrinos that are Majorana
mass eigenstates, and the presence of lepton-number-violating (LNV) processes such as
neutrinoless double beta decay [1–10] or LNV kaon decays [11–20].

In recent years, an effective field theory (EFT) approach has been developed for neu-
trinoless double beta decay based on the framework of the SMEFT [1, 2] or its neutrino-
extended version νSMEFT [3]. In νSMEFT, the SM is extended with higher-dimensional
SU(2)L×U(1)Y gauge-invariant operators consisting of SM fields and gauge-singlet neutri-
nos νR. Higher-dimensional operators are more and more suppressed by powers of v/Λ
where Λ is the scale of BSM physics and they are listed in refs. [21–25]. LNV operators
begin at the renormalizable level, the νR Majorana mass term, while all the remaining
LNV operators have odd dimension ≥ 5 [26]. In this work, we extend this approach to
the mesonic analogue of neutrinoless double decay, the LNV kaon decays K∓ → π±l∓l∓

(l = e, µ). We note that this process has been studied in the SMEFT in refs. [27, 28].
The description of low-energy LNV processes depends on the mass scale of sterile

neutrinos. If neutrinos are heavier than the electroweak (EW) scale v ' 246GeV, they
can be integrated out and their low-energy signature is captured by local gauge-invariant
effective SMEFT operators with odd dimension. When neutrino masses are below the EW
scale, the operators of νSMEFT are evolved to the EW scale and heavy SM particles (top,
W, Z, Higgs) are integrated out to match to a Fermi-like EFT extended with νR fields
that obeys SU(3)c × U(1)em gauge symmetry. If the sterile neutrinos are heavier than
Λχ ' 1GeV, they can be integrated out before matching to a chiral EFT Lagrangian.
We obtain LNV dimension-9 operators, which involve two up-type quarks, two down-type
quarks and two charged leptons. These operators induce short-distance LNV contributions
and were systematic studied in refs. [3, 27]. Sterile neutrinos with masses below Λχ are
active degrees of freedom at hadronic scales. We apply SU(3) chiral EFT extended with
sterile neutrinos to describe LNV kaon decays in this mass regime. Such neutrinos can be
looked for in many different experiments, ranging from oscillation to beta-decay to collider
experiments [29–36].

The current experimental upper bounds on the LNV branching ratios of charged kaons
are very stringent (5.3 × 10−11 and 4.2 × 10−11 [37, 38] for K− → π+e−e− and K− →
π+µ−µ−, respectively). Nevertheless, unlike the case for neutrinoless double beta decay
these bounds are too weak to set meaningful constraints on the BSM scale Λ for the
exchange of virtual sterile neutrinos. However, if a sterile neutrino can be produced on
shell, the LNV decay rate is significantly enhanced due to the small width of the sterile
neutrino [18]. We apply the narrow-width approximation to modify the decay amplitude
and use the resonance to constrain the neutrino mixing angles and the BSM scale. Similar
ideas were used for other kinds of LNV decays including D,Ds, B,Bs, Bc, and τ decays,
see refs. [16, 39–44] for discussions on the minimal scenario without higher-dimensional
operators and ref. [15] on the left-right symmetric model.

The paper is organized as follows. We discuss the νSMEFT framework in section 2 and
then we give the expressions for the LNV kaon decay amplitudes in terms of the Wilson
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coefficients (WCs), neutrino masses and hadronic low-energy constants for the long- and
short-distance contributions in section 3. The phase space integral and resonance are
introduced in section 4 and then we discuss the phenomenology of two scenarios and give
the limits on the WCs of several dim-6 operators in section 5. We conclude this work in
section 6. Appendix A gives the matching conditions to connect operators before and after
the EW symmetry breaking (EWSB). The dim-9 interactionss proportional to ml or mq

are discessed in appendix B and we give the decay expressions of the sterile neutrino in
appendix C.

2 The operators in νSMEFT up to dimension seven

In this work, we denote the dimensions of νSMEFT operators by dim-n with n = 5, 6, 7
and the dimensions of the operators after EWSB by dim-n with n = 3, 6, 7, 9. At the BSM
physics scale Λ� v, the relevant Lagrangian can be written as

L = LSM −
[1

2 ν̄
c
R M̄RνR + L̄H̃YννR + h.c.

]
+L(5̄)

νL
+ L(5̄)

νR
+ L(6̄)

νL
+ L(6̄)

νR
+ L(7̄)

νL
+ L(7̄)

νR
, (2.1)

where LSM is the Lagrangian from the SM, L denotes the lepton doublet and H is the
Higgs doublet with H̃ = iτ2H

∗. In unitary gauge, we can write

H = v√
2

(
0

1 + h
v

)
, (2.2)

where v = 246GeV is the Higgs vacuum expectation value (vev), h is the Higgs field. νR
is a column vector of n sterile neutrinos, Yν is a 3 × n matrix of Yukawa couplings and
M̄R is a complex symmetric Majorana mass matrix of type n × n that violates lepton
number by two units. We choose a basis where the charged leptons eiL,R and quarks
uiL,R and diR are in mass eigenstates with i=1,2,3. While for the left handed down-type
quarks, we have diL = V ijdj,mass

L with V being the CKM matrix. The charge conjugate
field of Ψ is Ψc = CΨ̄T , where the charge conjugation matrix C is −iγ2γ0 and it satisfies
C = −C−1 = −CT = −C†. For chiral fields we have Ψc

L,R = (ΨL,R)c = CΨL,R
T = PR,LΨc,

with PR,L = (1± γ5)/2.
We present the possible Feynman diagrams relevant with K− → π+l−l− in figure 1.

The first three accomplish LNV through the exchange of a light neutrino (long-distance
contribution). They can be divided into two parts, one for the leptonic decay of K− and the
other for the leptonic decay of π−. To get the hadronic operators that induce leptonic decay
of mesons, we need quark-level operators involving an up quark, a down (strange) quark, a
charged lepton and a neutrino, which are at least dim-6 after EWSB. The fourth diagram
contains no neutrino and we call it the short-distance contribution. It may be induced
by integrating heavy neutrinos out or arise from dim-7 operators without neutrinos (see
eqs. (2.21) and (A.4)).

There are two relevant operators at dim-5

L(5̄)
νL

= εklεmn(LTk C(5)CLm)HlHn , L(5̄)
νR

= −ν̄cR M̄
(5)
R νRH

†H , (2.3)
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Figure 1. Possible Feynman diagrams for K− → π+l−l− and the black blob denotes LNV inter-
actions.

Class 1 ψ2HX Class 2 ψ2H2D Class 3 ψ4

O(6)
eW (L̄σµνe)τ IHW I

µν O(6)
HL 3 (H†i←→D I

µH)(L̄τ IγµL) O(6)
LeQu 1 (L̄je)εjk(Q̄ku)

O(6)
uW (Q̄σµνu)τ IH̃ W I

µν O(6)
HQ 3 (H†i←→D I

µH)(Q̄τ IγµQ) O(6)
Lequ 3 (L̄jσµνe)εjk(Q̄kσµνu)

O(6)
dW (Q̄σµνd)τ IHW I

µν O(6)
Hud i(H̃†DµH)(ūγµd) O(6)

LQ 3 (L̄γµτ IL)(Q̄γµτ IQ)
O(6)
LedQ (L̄je)(d̄Qj)

Table 1. LNC dim-6 operators [45] of L(6̄)
νL that affect LNV kaon decays at tree level.

which after EWSB contribute to the Majorana mass terms for active and sterile neutrinos,
respectively. There is also a dim-5 transition dipole operator which is not relevant with
this work and is ignored. We mainly focus on operators that involve only one neutrino
appearing at dim-6 and dim-7. The operators of L(6̄)

νL and L(6̄)
νR are dim-6 and involve a

left-handed neutrino and a sterile neutrino, respectively. We list them in tables 1 and 3.
Similarly we list the dim-7 operators in tables 2 and 4.

2.1 The Lagrangian after EWSB

After EWSB, heavy SM particles with masses above the EW scale are integrated out and
we are left with a SU(3)c×U(1)em-invariant EFT which we call LEFT. The Lagrangian of
LEFT can be written as

L = LSM −
[1

2 ν̄
c
LMLνL + 1

2 ν̄
c
RMRνR + ν̄LMDνR + h.c.

]
+L(6)

∆L=2 + L(6)
∆L=0 + L(7)

∆L=2 + L(7)
∆L=0 + L(9)

∆L=2 , (2.4)
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Class 1 ψ2H4 Class 5 ψ4D

O(7)
LH εijεmn(LTi CLm)HjHn(H†H) O(7)

LLd̄uD 1 εij(d̄γµu)(LTi C(DµL)j)

Class 2 ψ2H2D2 Class 6 ψ4H

O(7)
LHD 1 εijεmn(LTi C(DµL)j)Hm(DµH)n O(7)

Leud̄H
εij(LTi Cγµe)(d̄γµu)Hj

O(7)
LHD 2 εimεjn(LTi C(DµL)j)Hm(DµH)n O(7)

LLQd̄H 1 εijεmn(d̄Li)(QTj CLm)Hn

Class 3 ψ2H3D O(7)
LLQd̄H 2 εimεjn(d̄Li)(QTj CLm)Hn

O(7)
LHDe εijεmn(LTi Cγµe)HjHm(DµH)n O(7)

LLQ̄uH
εij(Q̄mu)(LTmCLi)Hj

Class 4 ψ2H2X

O(7)
LHW εij(ετ I)mng(LTi CσµνLm)HjHnW

I
µν

Table 2. LNV dim-7operators [46] of L(7̄)
νL that affect LNV kaon decays at tree level.

Class 1 ψ2H3 Class 4 ψ4

O(6)
LνH (L̄νR)H̃(H†H) O(6)

duνe (d̄γµu)(ν̄Rγµe)
Class 2 ψ2H2D O(6)

QuνL (Q̄u)(ν̄RL)
O(6)
Hνe (ν̄Rγµe)(H̃†iDµH) O(6)

LνQd (L̄νR)ε(Q̄d))
Class 3 ψ2H3D O(6)

LdQν (L̄d)ε(Q̄νR)
O(6)
νW (L̄σµννR)τ IH̃W Iµν

Table 3. LNC dim-6 operators [25] of L(6̄)
νR that affect LNV kaon decays at tree level.

Class 1 ψ2H4 Class 5 ψ4D

O(7)
νH (νTRCνR)(H†H)2 O(7)

duνeD (d̄γµu)(νTRCiDµe)
Class 2 ψ2H2D2 O(7)

QLνuD (Q̄γµL)(νTRCiDµu)
O(7)
νeD εij(νTRCDµe)(HiDµHj) O(7)

dνQLD εij(d̄γµνR)(QiCiDµL
j)

Class 3 ψ2H3D Class 6 ψ4H

O(7)
νL1 εij(νTRCγµLi)(iDµHj)(H†H) O(7)

QνQLH2 εij(Q̄νR)(QiCLj)H
Class 4 ψ2H2X O(7)

dLνuH εij(d̄Li)(νTRCu)H̃j

O(7)
νeW (ετ I)ij(νTRCσµνe)(HiHj)W I

µν O(7)
dQνeH εij(d̄Qi)(νTRCe)Hj

O(7)
QuνeH (Q̄u)(νTRCe)H
O(7)
QeνuH (Q̄e)(νTRCu)H

Table 4. LNV dim-7operators [25] of L(7̄)
νR that affect LNV kaon decays at tree level.
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where LSM denotes operators of dim-4 and lower of light SM fields and we discuss the
matching conditions in appendix A. Part of the operators in the second line are [3]

L(6)
∆L=2 = 2GF√

2

{
ūLγ

µdL
[
ēRγµC

(6)
VL ν

c
L+ēLγµC̄(6)

VL ν
c
R

]
+ūRγµdR

[
ēR γµC

(6)
VR ν

c
L+ēL γµC̄(6)

VR ν
c
R

]
+ūLdR

[
ēLC

(6)
SRν

c
L+ēR C̄(6)

SRν
c
R

]
+ūRdL

[
ēLC

(6)
SL ν

c
L+ēR C̄(6)

SL ν
c
R

]
+ūLσµνdR ēLσµνC(6)

T νcL+ūRσµνdL ēRσµνC̄(6)
T νcR

}
+h.c.

(2.5)

L(6)
∆L=0 = 2GF√

2

{
ūLγ

µdL
[
ēLγµc

(6)
VL νL+ēRγµc̄(6)

VL νR
]
+ūRγµdR

[
ēL γµc

(6)
VR νL+ēR γµc̄(6)

VR νR
]

+ūLdR
[
ēR c

(6)
SRνL+ēL c̄(6)

SRνR
]
+ūRdL

[
ēR c

(6)
SLνL+ēL c̄(6)

SLνR
]

+ūRσµνdL ēRσµνc(6)
T νL+ūLσµνdR ēLσµν c̄(6)

T νR

}
+h.c.

(2.6)

L(7)
∆L=2 = 2GF√

2v

{
ūLγ

µdL
[
ēLC

(7)
VL i
←→
D µν

c
L+ēR C̄(7)

VL i
←→
D µν

c
R

]
+ūRγµdR

[
ēLC

(7)
VR i
←→
D µν

c
L+ēR C̄(7)

VR i
←→
D µν

c
R

]
+ūLσµνdR ēLC̄(7)

TR
←−
∂ µγνν

c
R+ūRσµνdL ēLC̄(7)

TLγν∂µν
c
R

}
+h.c.

(2.7)

L(7)
∆L=0 = 2GF√

2v

{
ūLγ

µdL
[
ēR c

(7)
VL i
←→
D µνL+ēL c̄(7)

VL i
←→
D µνR

]
+ūRγµdR

[
ēR c

(7)
VR i
←→
D µνL+ēL c̄(7)

VR i
←→
D µνR

]
+ūLσµνdR ∂µ

(
ēLc

(7)
TRγννL

)
+ūRσµνdL∂µ

(
ēLc

(7)
TLγννL

)}
+h.c.

(2.8)

where ←→D µ = Dµ−
←−
Dµ and each Wilson coefficient carries indices ijkl with i = u denoting

the up quark, j = d, s for the down quark and strange quark, k = {e, µ} for electron and
muon, l = {1, 2, 3} for active neutrinos and l = {1, . . . , n} for sterile neutrinos.

Dim-9 operators are induced at the electroweak scale and, when sterile neutrinos have
a mass above the chiral-symmetry-breaking scale Λχ, at the sterile neutrino mass threshold.
We thus list all possible SU(3)c ×U(1)em invariant operators

L(9)
∆L=2 = 1

v5

∑
i

[ (
C

(9)
iR ēRCē

T
R + C

(9)
iL ēLCē

T
L

)
Oi + C

(9)
i ēγµγ5Cē

T Oµi

]
, (2.9)

where Oi and Oµi contain four quarks and they are Lorentz scalars and vectors, respectively.
In general there should also be Lorentz tensors, but in this work we only consider the case
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when both of the two outgoing leptons are electrons or muons and thus the tensor operators
vanish. The scalar operators are [27, 47, 48]

O1 = ūαLγµd
α
L ū

β
Lγ

µsβL , O′1 = ūαRγµd
α
R ūβRγ

µsβR ,

O2 = ūαRd
α
L ū

β
Rs

β
L , O′2 = ūαLd

α
R ūβLs

β
R ,

O3 = ūαRd
β
L ū

β
Rs

α
L , O′3 = ūαLd

β
R ūβLs

α
R ,

O4 = ūαRd
α
L ū

β
Ls

β
R , O′4 = ūαLd

α
R ūβRs

β
L ,

O5 = ūαRd
β
L ū

β
Ls

α
R , O′5 = ūαLd

β
R ūβRs

α
L , (2.10)

where α, β are color indices and a summation over them is implied. We get O′i by changing
the parity of Oi. For the vector operators, we have [27, 48]

Oµ6,udus = ūαLγ
µdαL ū

β
Ls

β
R , Oµ′6,udus = ūαRγ

µdαR ūβRs
β
L ,

Oµ6,usud = ūαLγ
µsαL ū

β
Ld

β
R , Oµ′6,usud = ūαRγ

µsαR ūβRd
β
L ,

Oµ7,udus = ūαLγ
µdβL ū

β
Ls

α
R , Oµ′7,udus = ūαRγ

µdβR ūβRs
α
L ,

Oµ7,usud = ūαLγ
µsβL ū

β
Ld

α
R , Oµ′7,usud = ūαRγ

µsβR ūβRd
α
L ,

Oµ8,udus = ūαLγ
µdαL ū

β
Rs

β
L , Oµ′8,udus = ūαRγ

µdαR ūβLs
β
R ,

Oµ8,usud = ūαLγ
µsαL ū

β
Rd

β
L , Oµ′8,usud = ūαRγ

µsαR ūβLd
β
R ,

Oµ9,udus = ūαLγ
µdβL ū

β
Rs

α
L , Oµ′9,udus = ūαRγ

µdβR ūβLs
α
R ,

Oµ9,usud = ūαLγ
µsβL ū

β
Rd

α
L , Oµ′9,usud = ūαRγ

µsβR ūβLd
α
R . (2.11)

The higher-dimensional operators are evolved from some BSM scale µ = Λ to the EW
scale µ = mW and then to the QCD scale Λχ. The renormalization group equations due to
one-loop QCD effects are discussed in refs. [3, 28]. Their effect on the limits of new physics
energy scale Λ discussed in section 5 is less than 30% and is neglected in this work.

2.2 Rotation to the neutrino mass basis

We write the neutrino mass terms as

Lm = −1
2N̄

cMνN + h.c. , Mν =
(
ML M∗D
M †D M †R

)
, (2.12)

where N = (νL, νcR)T and Mν is a n̄ × n̄ symmetric matrix, with n̄ = 3 + n. The mass
matrix can be diagonalized by a n̄× n̄ unitary matrix, U ,

UTMνU = mν = diag(m1, . . . ,m3+n) , N = UNm , (2.13)

where m1, . . . ,mn̄ are real and non-negative. We define ν = Nm +N c
m = νc, which are the

Majorana mass eigenstates. The kinetic and mass terms of the neutrinos become

Lν = 1
2 ν̄i

/∂ν − 1
2 ν̄mνν . (2.14)

– 7 –
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The relation between neutrinos in mass basis and flavor basis is

νL = PL(PU)ν , νcL = PR(PU∗)ν ,
νR = PR(PsU∗)ν , νcR = PL(PsU)ν , (2.15)

where P and Ps are 3× n̄ and n× n̄ projector matrices, respectively

P =
(
I3×3 03×n

)
, Ps =

(
0n×3 In×n

)
. (2.16)

In the mass basis, we can write the higher-dimensional operators in a remarkably compact
form

L(6) = 2GF√
2

{
ūLγ

µdL
[
ēRγµC

(6)
VLR ν+ēLγµC(6)

VLL ν
]
+ūRγµdR

[
ēR γµC

(6)
VRR ν+ēL γµC(6)

VRL ν
]

+ūLdR
[
ēLC

(6)
SRRν + ēR C

(6)
SRLν

]
+ ūRdL

[
ēLC

(6)
SLRν + ēR C

(6)
SLLν

]
+ūLσµνdR ēLσµνC(6)

TRR ν + ūRσ
µνdL ēRσµνC

(6)
TLL ν

}
+ h.c. (2.17)

and for the dim-7 operators we have

L(7) = 2GF√
2v

{
ūLγ

µdL
[
ēLC

(7)
VLR i

←→
D µν + ēR C

(7)
VLL i

←→
D µν

]
+ūRγµdR

[
ēLC

(7)
VRR i

←→
D µν + ēR C

(7)
VRL i

←→
D µν

]
+ūLσµνdR ēLC(7)

TR1
←−
Dµγνν + ūRσ

µνdL ēLC
(7)
TL1γν∂µν

+ūLσµνdRDµ

(
ēLC

(7)
TR2γνν

)
+ ūRσ

µνdLDµ

(
ēLC

(7)
TL2γνν

)}
+ h.c. (2.18)

The Wilson coefficients satisfy the following relation

C
(6)
VLR = C

(6)
VLPU

∗ + c̄
(6)
VLPsU

∗ , C
(6)
VRR = C

(6)
VRPU

∗ + c̄
(6)
VRPsU

∗ ,

C
(6)
VLL = C̄

(6)
VLPsU + c

(6)
VLPU , C

(6)
VRL = C̄

(6)
VRPsU + c

(6)
VRPU ,

C
(6)
SLR = C

(6)
SL PU

∗ + c̄
(6)
SLPsU

∗ , C
(6)
SRR = C

(6)
SRPU

∗ + c̄
(6)
SRPsU

∗ ,

C
(6)
SLL = C̄

(6)
SL PsU + c

(6)
SLPU , C

(6)
SRL = C̄

(6)
SRPsU + c

(6)
SRPU ,

C
(6)
TLL = C̄

(6)
T PsU + c

(6)
T PU , C

(6)
TRR = C

(6)
T PU∗ + c̄

(6)
T PsU

∗ ,

C
(7)
VLL = c

(7)
VLPU + C̄

(7)
VLPsU , C

(7)
VRL = c

(7)
VRPU + C̄

(7)
VRPsU ,

C
(7)
VLR = C

(7)
VLPU

∗ + c̄
(7)
VLPsU

∗ , C
(7)
VRR = C

(7)
VRPU

∗ + c̄
(7)
VRPsU

∗ ,

C
(7)
TL1 = C̄

(7)
TLPsU , C

(7)
TL2 = c

(7)
TLPU ,

C
(7)
TR1 = C̄

(7)
TRPsU , C

(7)
TR2 = c

(7)
TRPU . (2.19)

These coefficients carry flavor indices ijkl where i = u denotes the up quark, j = d, s

indicate the down quark and strange quark, k = e, µ labels the generation of charged lepton
and l = {1, . . . , n̄} denote neutrinos in the mass basis. The rotation has no influence on
the dim-9 operators as they contain no neutrino fields. We focus mainly on the operators
in eq. (2.17) as the operators in eq. (2.18) are relatively suppressed by mπ/v or v/Λ.
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2.3 Integrating out sterile neutrinos when Λχ < mν ≤ v

To integrate out heavy neutrinos above the chiral-symmetry-breaking scale Λχ, we write
the Lagrangian containing heavy neutrinos as

LH =
nH∑
i=1

[1
2 ν̄ii

/∂νi −
1
2 ν̄imνiνi + Jiνi

]
, (2.20)

where neutrinos are in the mass eigenstates and we sum over nH heavy neutrinos whose
masses satisfy Λχ < mνi ≤ v. Ji contains the interactions for the i-th neutrino. By using
the equation of motion we integrate out the heavy neutrinos and get the following effective
Lagrangian

Leff '
1

2m2
νi

Ji(i/∂ +mνi)CJ Ti ,

Ji = Jud,i + Jus,i + J̄ud,i + J̄us,i ,

Jud,i '
1
v2

[
ūLγ

µdL
[
ēRγµC

(6)
VLR + ēLγµC

(6)
VLL

]
+ ūRγ

µdR
[
ēR γµC

(6)
VRR + ēL γµC

(6)
VRL

]
+ūLdR

[
ēLC

(6)
SRR + ēR C

(6)
SRL

]
+ ūRdL

[
ēLC

(6)
SLR + ēR C

(6)
SLL

]
+ūLσµνdR ēLσµνC(6)

TRR + ūRσ
µνdL ēRσµνC

(6)
TLL

]
i

,

Jus,i = Jud,i|d→s , (2.21)

where J̄i is the hermitian conjugate of Ji, a sum over i is implied and by transposing the
leptonic part of Ji we get J Ti . The interactions relevant with K− → π+l−l− are

L(9)
H '

nH∑
i=1

1
m2
νi

Jus,i(i/∂ +mνi)CJTud,i , (2.22)

which contain two kinds of terms, one proportional to 1
mνi

and the other proportional to
1
m2
νi

with an additional derivative. Here we give the matching conditions for terms of the
first kind. We find for the scalar dim-9 operators

C
(9)
1R = −vC(6)

VLR,usm̄
−1
ν C

(6)T
VLR,ud , C

(9)′
1R = −vC(6)

VRR,usm̄
−1
ν C

(6)T
VRR,ud ,

C
(9)
2R = vC

(6)
SLL,usm̄

−1
ν C

(6)T
SLL,ud − 16vC(6)

TLL,usm̄
−1
ν C

(6)T
TLL,ud , C

(9)′
2R = vC

(6)
SRL,usm̄

−1
ν C

(6)T
SRL,ud ,

C
(9)
3R = −32vC(6)

TLL,usm̄
−1
ν C

(6)T
TLL,ud , C

(9)′
3R = 0 ,

C
(9)
4R = vC

(6)
SRL,usm̄

−1
ν C

(6)T
SLL,ud , C

(9)′
4R = vC

(6)
SLL,usm̄

−1
ν C

(6)T
SRL,ud ,

C
(9)
5R = 2vC(6)

VRR,usm̄
−1
ν C

(6)T
VLR,ud , C

(9)′
5R = 2vC(6)

VLR,usm̄
−1
ν C

(6)T
VRR,ud ,

(2.23)

where C(6)
XXX,us and C(6)

XXX,ud are the coefficients of dim-6 operators in eq. (2.17) involving
a strange quark and a down quark, respectively. We get the matching conditions for the
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C
(9)
i L operators via the replacement

C
(9)
i R → C

(9)′
i L , C

(9)′
i R → C

(9)
i L , (2.24)

C
(6)
ALL ↔ C

(6)
ARR , C

(6)
ARL ↔ C

(6)
ALR , A ∈ {S, V, T} . (2.25)

The matching contributions for the vector dim-9 operators are given by

C
(9)
6,usud = v

2
(
C

(6)
VLR,usm

−1
νi C

(6)T
SRR,ud − C

(6)
VLL,usm

−1
νi C

(6)T
SRL,ud

)
+ 1

2C
(9)
7,usud ,

C
(9)
6,udus = v

2
(
C

(6)
SRR,usm

−1
νi C

(6)T
VLR,ud − C

(6)
SRL,usm

−1
νi C

(6)T
VLL,ud

)
+ 1

2C
(9)
7,udus ,

C
(9)
7,usud = 4vC(6)

VLR,usm
−1
νi C

(6)T
TRR,ud ,

C
(9)
7,udus = 4vC(6)

TRR,usm
−1
νi C

(6)T
VLR,ud ,

C
(9)′
6,usud = v

2
(
C

(6)
VRR,usm

−1
νi C

(6)T
SLR,ud − C

(6)
VRL,usm

−1
νi C

(6)T
SLL,ud

)
+ 1

2C
(9)′
7,usud ,

C
(9)′
6,udus = v

2
(
C

(6)
SLR,usm

−1
νi C

(6)T
VRR,ud − C

(6)
SLL,usm

−1
νi C

(6)T
VRL,ud

)
+ 1

2C
(9)′
7,udus ,

C
(9)′
7,usud = −4vC(6)

VRL,usm
−1
νi C

(6)T
TLL,ud ,

C
(9)′
7,udus = −4vC(6)

TLL,usm
−1
νi C

(6)T
VRL,ud ,

C
(9)
8,usud = v

2
(
C

(6)
VLR,usm

−1
νi C

(6)T
SLR,ud − C

(6)
VLL,usm

−1
νi C

(6)T
SLL,ud

)
+ 1

2C
(9)
9,udus ,

C
(9)
8,udus = v

2
(
C

(6)
SLR,usm

−1
νi C

(6)T
VLR,ud − C

(6)
SLL,usm

−1
νi C

(6)T
VLL,ud

)
+ 1

2C
(9)
9,usud ,

C
(9)
9,usud = 4vC(6)

TLL,usm
−1
νi C

(6)T
VLL,ud ,

C
(9)
9,udus = 4vC(6)

VLL,usm
−1
νi C

(6)T
TLL,ud ,

C
(9)′
8,usud = v

2
(
C

(6)
VRR,usm

−1
νi C

(6)T
SRR,ud − C

(6)
VRL,usm

−1
νi C

(6)T
SRL,ud

)
+ 1

2C
(9)′
9,udus ,

C
(9)′
8,udus = v

2
(
C

(6)
SRR,usm

−1
νi C

(6)T
VRR,ud − C

(6)
SRL,usm

−1
νi C

(6)T
VRL,ud

)
+ 1

2C
(9)′
9,usud ,

C
(9)′
9,usud = −4vC(6)

TRR,usm
−1
νi C

(6)T
VRR,ud ,

C
(9)′
9,udus = −4vC(6)

VRR,usm
−1
νi C

(6)T
TRR,ud . (2.26)

The matching conditions for terms proportional to 1
m2
νi

are given in appendix B.

3 Chiral perturbation theory with sterile neutrinos

3.1 The case of light sterile neutrinos

Below the GeV scale, quarks and gluons can not be used as degrees of freedom due to the
strong dynamics. We thus use the framework of chiral perturbation theory (χPT) [49] to
connect hadronic physics with the higher-dimensional operators. When the neutrino mass
is below GeV scale it is an explicit degree of freedom in χPT. We use the external source
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method and write the QCD Lagrangian in eq. (2.17) as

Lqq = q̄i∂/ q+q̄
{
lµγµPL+rµγµPR−(M+s+ip)PL−(M+s−ip)PR+tµνL σµνPL+tµνR σµνPR

}
q ,

(3.1)
where q = (u, d, s)T is the triplet of quark fields, and M = diag(mu, md, ms) is a diagonal
3× 3 matrix for the quark masses. The external sources can be read from eq. (2.17)

s+ ip = −2GF√
2

{
λi
(
ēLC

(6)
SLRν + ēRC

(6)
SLLν

)
+ (λi)†

(
ēLC

(6)
SRRν + ēRC

(6)
SRLν

)†}
,

s− ip = (s+ ip)† ,

lµ = 2GF√
2
λi
(
ēRγ

µC
(6)
VLRν + ēLγ

µC
(6)
VLLν

)
+ h.c. ,

rµ = 2GF√
2
λi
(
ēRγ

µC
(6)
VRRν + ēLγ

µC
(6)
VRLν

)
+ h.c. ,

tµνL = 2GF√
2

{
λi ēRσ

µνC
(6)
TLL ν + (λi)†

(
ēLσ

µνC
(6)
TRR ν

)† }
,

tµνR = (tµνL )† , (3.2)

with i = d, s denoting a down quark or a strange quark in the currents. The matrices λi
are given by

λd =

0 1 0
0 0 0
0 0 0

 , λs =

0 0 1
0 0 0
0 0 0

 . (3.3)

The leading-order chiral Lagrangian consists of the Lorentz- and chiral-invariant terms
with the lowest number of derivatives

LMeson = F 2
0

4 Tr
[
(DµU)†(DµU)

]
+ F 2

0
4 Tr

[
U †χ+ Uχ†

]
, (3.4)

where DµU = ∂µU − ilµU + iUrµ , χ = 2B(M + s− ip) , F0 = 92.1MeV [50], and U is

U(x) = exp
(
i
√

2Π(x)
F0

)
, Π(x) =


π0
√

2 + η√
6 π+ K+

π− − π0
√

2 + η√
6 K0

K− K̄0 −
√

2
3η

 . (3.5)

The contribution from tensor sources first appears at O(p4) and it can not contribute to
K− → π+l−l− at tree level. Hence we ignore the tensor sources in this part. While for the
remaining sources, we expand U(x) to the leading order and the interactions relevant with
the decay νj → π+ + e−i are

Lπ = GFF0∂
µπ−

{
ēR,iγ

µνj(C(6)
VRR − C

(6)
VLR)udij + ēL,iγ

µνj(C(6)
VRL − C

(6)
VLL)udij

}
− iF0BGFπ

−
{
ēL,iνj(C(6)

SLR − C
(6)
SRR)udij + ēR,iνj(C(6)

SLL − C
(6)
SRL)udij

}
,

(3.6)

from which we replace the index d with s and π− with K− to get the operators relevant
with the decay K− → e−i + νj . By contracting the neutrino in mass basis, we connect
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the operators containing a π− with those containing a K− and get the amplitude. For
the process K−(k)→ π+(p)l−1 (p1)l−2 (p2) where l1,2 is an electron or a muon, there are two
types of Feynman diagrams. They are different in the positions of the outgoing charged
leptons. For the type where l1 and K− share the same vertex, we get the amplitude

M1 = − iF 2
0G

2
F

q2 −m2
i

{
miB

2
(
C

(6)
SLR − C

(6)
SRR

)
usl1i

(
C

(6)
SLR − C

(6)
SRR

)
udl2i

ū(p1)PRuc(p2)

+miB
(
C

(6)
VLR − C

(6)
VRR

)
usl1i

(
C

(6)
SRR − C

(6)
SLR

)
udl2i

ū(p1)/kPRuc(p2)

+miB
(
C

(6)
SLL − C

(6)
SRL

)
usl1i

(
C

(6)
VRL − C

(6)
VLL

)
udl2i

ū(p1)/pPRuc(p2)

−B2
(
C

(6)
SLL − C

(6)
SRL

)
usl1i

(
C

(6)
SLR − C

(6)
SRR

)
udl2i

ū(p1)/qPRuc(p2)

+mi

(
C

(6)
VLL − C

(6)
VRL

)
usl1i

(
C

(6)
VLL − C

(6)
VRL

)
udl2i

ū(p1)/k/pPRuc(p2)

−B
(
C

(6)
VLL − C

(6)
VRL

)
usl1i

(
C

(6)
SRR − C

(6)
SLR

)
udl2i

ū(p1)/k/qPRuc(p2)

−B
(
C

(6)
SRR − C

(6)
SLR

)
usl1i

(
C

(6)
VLL − C

(6)
VRL

)
udl2i

ū(p1)/q/pPRuc(p2)

−
(
C

(6)
VLR − C

(6)
VRR

)
usl1i

(
C

(6)
VLL − C

(6)
VRL

)
udl2i

ū(p1)/k/q/pPRuc(p2)

+ (terms by flipping the chirality of leptons)
}
,

(3.7)

where q = k−p1, u(p1,2) denotes a spinor with momentum p1,2,mi is the Majorana neutrino
mass below GeV scale and a summation over i is implied. In the second type of Feynman
diagrams l2 and K− share the same vertex. To get its amplitude M2, we only need the
replacement p1 ↔ p2 and add one minus sign inM1. The total amplitude is

ML =M1 −M1
∣∣∣
p1↔p2

. (3.8)

The amplitude for the term C
(6)
VLL,usl1i × C

(6)
VLL,udl2i is four times that of ref. [28] and the

h.c. terms of lµ and rµ were missed.
In principle this is not the whole story. The exchange of virtual sterile neutrinos with

small masses but hard momenta (larger than Λχ) leads to hadronic LNV operators without
neutrinos. This is very similar to the exchange of virtual hard photons gives rise to the mass
splitting between charged and neutral pions. This so-called hard-neutrino exchange plays
an important role in nuclear 0νββ and has been the focus of a lot of recent work [51–57].
These contributions can readily be incorporated for the LNV kaon decays as well (see e.g.
ref. [3] for operators involving pions). As we will discuss below, the contributions from the
exchange of off-shell neutrinos are not sufficiently large to give meaningful constraints. We
therefore do not construct the corresponding operators. However, their corrections should
be included when the sterile neutrino mass is outside the resonance region.

3.2 The case of heavy sterile neutrinos

The chiral Lagrangian induced by the dimension-9 operators in eq. (2.9) has been discussed
in refs. [27]. The most relevant hadronic interactions involve one pion, one kaon and two
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charged leptons. The mesonic chiral Lagrangian is

LS = F 4
0

4v5

[
5
3g

πK
1 C

(9)
1L/RL

µ
21L31µ + (gπK2 C

(9)
2L/R + gπK3 C

(9)
3L/R)U21U31

+
(
gπK4 C

(9)
4L/R + gπK5 C

(9)
5L/R

)
U21U

†
31

]
ēL/RCē

T
L/R

+ F 4
0

4v5 ēγµγ5Cē
T

[ (
gπK6 C

(9)
6,usud + gπK7 C

(9)
7,usud

)
Lµ31U

†
21 +

(
gπK′6 C

(9)
6,udus

+gπK′7 C
(9)
7,udus

)
Lµ21U

†
31 + gπK8/9

(
C

(9)
8/9,usud + C

(9)
8/9,udus

)
(Lµ31U21 + Lµ21U31)

+ gπK′8/9

(
C

(9)
8/9,usud − C

(9)
8/9,udus

)
(Lµ31U21 − Lµ21U31)

]

+
(
C

(9)
i → C

(9)′
i

)
,

(3.9)

where Lµ = iUDµU
† and the parity invariance of QCD implies that the hadronic operators

induced by Oi are the same as those induced by O′i and they share the same LECs. Then
we expand the U matrix and get operators involving two mesons and two leptons [27]

LS = 1
v5K

−π−
[
c1ēLCē

T
L + c2ēRCē

T
R

]
+ 1
v5
[
c3∂

µK−π− + c4∂
µπ−K−

]
ēγµγ5Cē

T

+ 1
v5∂

µK−∂µπ
−
[
c5ēCPLē

T + c6ēCPRē
T
]
,

(3.10)

where the parameters ci are

c1 = − 1
2F

2
0 [gπK2 (C(9)

2L + C
(9)′
2L ) + gπK3 (C(9)

3L + C
(9)′
3L )

− gπK4 (C(9)
4L + C

(9)′
4L )− gπK5 (C(9)

5L + C
(9)′
5L )] ,

c2 = c1
∣∣∣
L→R

,

c3 = − i

2F
2
0 [gπK6 (C(9)

6,usud + C
(9)′
6,usud) + gπK7 (C(9)

7,usud + C
(9)′
7,usud)

− gπK8/9(C(9)
8/9,usud + C

(9)′
8/9,usud + C

(9)
8/9,udus + C

(9)′
8/9,udus)

− gπK′8/9 (C(9)
8/9,usud + C

(9)′
8/9,usud − C

(9)
8/9,udus − C

(9)′
8/9,udus)] ,

c4 = − i

2F
2
0 [gπK′6 (C(9)

6,udus + C
(9)′
6,udus) + gπK′7 (C(9)

7,udus + C
(9)′
7,udus)

− gπK8/9(C(9)
8/9,usud + C

(9)′
8/9,usud + C

(9)
8/9,udus + C

(9)′
8/9,udus)

+ gπK′8/9 (C(9)
8/9,usud + C

(9)′
8/9,usud − C

(9)
8/9,udus − C

(9)′
8/9,udus)] ,

c5 = 5
6F

2
0 g

πK
1 (C(9)

1L + C
(9)′
1L ) ,

c6 = c5
∣∣∣
L→R

.

(3.11)

The LECs, gπKi , can be estimated by using naive dimensional analysis (NDA)

gπK1 = O(1) , gπK2,3,4,5 = O(Λ2
χ) , g

πK(′)
6,7,8,9 = O(Λχ) . (3.12)
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We can also relate gπKi with the LECs appearing in K0 → K̄0 [58], K± → π±π0 [59] and
π− → π+ [58], some of which have been computed by several lattice QCD groups [60–66].
The tree-level amplitude for K−(k)→ π+(p)l−(p1)l−(p2) can be read off directly

MS = −i 1
v5

[
2c1ū(p1)PRuc(p2) + 2c2ū(p1)PLuc(p2)− 2ic3ū(p1)/kγ5u

c(p2)

+2ic4ū(p1)/pγ5u
c(p2) + 2k · p[c5ū(p1)PRuc(p2) + c6ū(p1)PLuc(p2)]

]
. (3.13)

4 Phase space integral

The momentum products in the amplitude square |M|2 of the decay
K−(k)→ π+(p)l−1 (p1)l−2 (p2) have two independent terms, (k− p1)2 = q2 and k ·p2, and all
the other products can be expressed in terms of these two products and particle masses.
To simplify the integral further, we write [28]

(k−p1)2 = a , k ·p2 = 1
4a(m2

K +a−m2
l1)(a+m2

l2−m
2
π)+ 1√

a
mK |q||p2| cos θ , (4.1)

where |q| = λ
1
2 (mK ,

√
a,ml1 )

2mK , |p2| = λ
1
2 (mπ ,

√
a,ml2 )

2
√
a

with λ(a, b, c) = a4 + b4 + c4 − 2a2b2 −
2a2c2 − 2b2c2 and mli is the mass of lepton li. The decay rate becomes

Γ = (2− δl1l2) 1
2!

1
2m2

K

1
64π3

∫
da

∫
dcos θ |q| |p2|√

a
|M|2(a, k · p2) , (4.2)

and the integration domains are given by

a ∈ [(ml2 +mπ)2 , (mK −ml1)2] , cos θ ∈ [−1 , 1] . (4.3)

If the mass of neutrino is in the range [ml1,2 +mπ , mK−ml2,1 ], the exchanged neutrino
can go on shell. Near the pole, we modify the propagator

1
q2 −m2

i + iε
−→ 1

q2 −m2
i + imiΓi

, (4.4)

where Γi is the total decay width of νi in the mass basis. When the mass of sterile neutrino
is much larger than its decay rate, we use the narrow width approximation

1
(q2 −m2

i )2 +m2
iΓ2

i

−→ π

miΓi
δ(q2 −m2

i ) , (4.5)

to simplify the phase space. The resulting mi/Γi enhancement is typically large enough
that other contributions can be neglected.
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5 Phenomenology

The EFT approach to the long-distance contributions without a sterile neutrino and the
short-distance contributions has been discussed in refs. [27, 28], and the current experiments
can only set a loose bound on the BSM energy scale Λ with Λ > O(10)GeV. This scale is
too low for the SM-EFT approach to be valid. However, this is not the case when we work
in the framework of νSMEFT. In this section we first show the effect of the sterile neutrino
on the short-distance contribution and then discuss two scenarios for the long-distance
contribution and instruct the resonance enhancement. Finally we give constraints on the
energy scale of operators in table 3.

5.1 Short-distance contribution

Ref. [27] considered dim-7 LNV operators in SMEFT and matched them onto dim-9 oper-
ators (C(9)

5L, C
(9)′
5L and C(9)

1L), and the resulting C(9)
i are proportional to v3

Λ3 given that the
WCs of dim-n operators are proportional to 1

Λn . Using the current experimental limit, they
obtained a relatively weak bound on Λ > O(10) GeV.

In the presence of a sterile neutrino with mass mν > Λχ, where the same C(9)
i are

induced, the bound on Λ can be slightly improved. For instance, let us consider a dim-9
operator, C(9)

5R, which could receive a contribution from two dim-6 operators C(6)
VRR,us ×

C
(6)
VLR,ud, or equivalently from two dim-6 operators O(6)

duνe×O
(6)
Hνe. C

(9)
5R is thus proportional

to v5/(mνΛ4). Due to the enhancement by v/mν it is possible to get a more stringent
bound.For instance, for mν = 1GeV, we get a better lower limit on Λ with Λ > O(100)
GeV based on current experimental limits, which improves the result in ref. [27] by one
order. Nevertheless, it is clear that for sterile neutrinos with masses above a GeV or so,
the resulting limits are rather weak and it is unclear whether the use of the SMEFT or
νSMEFT frameworks are justified.

5.2 Long-distance contributions and resonances

If a sterile neutrino exists with a mass inside the resonance range [ml +mπ,mK −ml], the
decay rate is significantly enhanced [18] and we can get much stronger constraints on Λ and
neutrino mixing angles. In this subsection we ignore sterile neutrinos with mass outside
the resonance range and discuss two scenarios, the minimal scenario and the leptoquark
scenario, and show their effects on the decay rates of K−(k)→ π+(p)l−(p1)l−(p2).

5.2.1 The minimal scenario

In the minimal scenario, we add a sterile neutrino νR with mass mν in the resonance region
and it can only interact with the SM particles via the mixing with active neutrinos. We
get the Lagrangian by setting the WCs of operators from tables 1–4 to zero and writing
the active neutrino να in the weak interaction in terms of the neutrino mass eigenstates νi

να = Uαiνi , (5.1)

where α = e, µ and i = 1, 2, 3, 4. We also assume the sterile neutrino mixes only with the
electron neutrino νe in K− → π+e−e− or with the muon neutrino νµ in K− → π+µ−µ−.

– 15 –
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Figure 2. Decay rates of the sterile neutrino in the minimal scenario for cases Ue4 6= 0 (green
solid) and Uµ4 6= 0 (pink dashed ). The kinks at mν ≈ 140 and 240MeV are due to threshold of
decay channels N → π0 + νe/νµ and π± + e∓/µ∓.

Due to the small mixing angles between the sterile- and active- neutrinos, νR is approxi-
mately equivalent to ν4.

The possible decay modes of the sterile neutrino are discussed in appendix C. We show
the decay rates of the sterile neutrino in figure 2. In figure 3 we plot the branching ratios
of kaons as a function of mν for the case of final-state electrons (left panel) and muons
(right panel). When calculating the decay rates, the mixing angles |Ue4| and |Uµ4| are set
to the see-saw prediction

√
0.05 eV/mν with mν the mass of the sterile neutrino. It is clear

that mν/ΓN � 1 and it is safe to use the narrow-width approximation. The two branching
ratios are slightly above the current limit around 300MeV. Hence either there is no such a
sterile neutrino with a Majorana mass around 300MeV, or the mixing angle |Ul4| (l = e , µ)
is smaller than the see-saw relation.

In figure 4 we show the limits on |Ue4|2 and |Uµ4|2 as functions of mν . The limits are
quite close to the black curve indicating the type-I seesaw relation. The constraints on
|Ue4|2 and |Uµ4|2 could reach O(10−10). The limits on the mixing angles detoriate quickly
near the boundaries of resonance regions due to the phase space suppression.

5.2.2 The leptoquark scenario

In this section we neglect the interactions of the minimal scenario and the SM is extended
only by interactions with leptoquarks (LQs), which can convert quarks to leptons and vice
versa. Ref. [67] summarized all the possible representations of LQs and we focus on a scalar
LQ: R̃ (3, 2, 1/6). Its interactions with quarks and leptons are given by

LLQ = −yRLij d̄RiR̃aεabLbLj + yLRkl Q̄
a
LkR̃

aνRl + h.c. , (5.2)

– 16 –
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Figure 3. Branching ratios of K− → π+e−e− (left panel) and K− → π+µ−µ− (right panel ) as
functions of the sterile neutrino mass mν in the minimal scenario.

100 200 300 400 500
10-11

10-9

10-7

10-5

0.001

0.100

200 250 300 350 400 450
10-11

10-9

10-7

10-5

0.001

0.100

Figure 4. The excluded parameter space above the curves for |Ue4|2 (left panel) and |Uµ4|2 (right
panel) from the limits on branching ratios of K− → π+l−l−. The two black lines correspond to
the type-I seesaw relation {|Ue4|2, |Uµ4|2} = 0.05 eV/mν . The gray (dashed) lines are the modified
limits when including the finite detector size effect.

where i, j, k, l and a, b are flavor and SU(2) indices, respectively. After integrating the LQ
we get the following dim-6 operator

L(6̄)
νR

= C
(6)
LdQν,ijkl

(
L̄ai dj

)
εab
(
Q̄bkνRl

)
+ h.c. , (5.3)

where

C
(6̄)
LdQν,ijkl = 1

m2
LQ
yLRkl y

RL∗
ji , (5.4)

and mLQ is the mass of the LQ. Below the electroweak scale, four operators are induced

L(6)
∆L=0 = 2GF√

2

[
c̄

(6)
SR,ijkl ūL,idR,j ēL,kνR,l + c̄

(6)
T,ijkl ūL,iσ

µνdR,j ēL,kσ
µννR,l

+ c̄
(6)
NSR,ijkl d̄L,idR,j ν̄L,kνR,l + c̄

(6)
NT,ijkl d̄L,iσ

µνdR,j ν̄L,kσ
µννR,l

]
+ h.c. , (5.5)
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where the two neutral currents contribute to the decay width of the sterile neutrino and
thus affect LNV decay process in the resonance region, and the coefficients satisfy

c̄
(6)
SR,ijkl = 4c̄(6)

T,ijkl = v2

2m2
LQ
yLRil y

RL∗
jk , (5.6)

c̄
(6)
NSR,ijkl = 4c̄(6)

NT,ijkl = v2

2m2
LQ
yLRml y

RL∗
jk V ∗mi . (5.7)

The matching to the operators in eq. (2.17) is

C
(6)
SRR,ijkl = 4C(6)

TRR,ijkl =
n∑
l=1

c̄
(6)
SR,ijklU

∗
3+l,i , (5.8)

where n is the number of sterile neutrinos and here we consider only one sterile neutrino.
Since we focus on the resonance region, the contributions from other light neutrinos can
be safely ignored and the mixing angle |U44| ≈ 1.

In order to induce the decay K− → π+e−e−, we set yLRu1 y
RL∗
de = yLRu1 y

RL∗
se to one

and all other indices configurations to zero. Similarly for K− → π+µ−µ− we assume
yLRu1 y

RL∗
dµ = yLRu1 y

RL∗
sµ = 1 with all others being zero. Then the decay rates are a function of

the leptoquark mass mLQ and the neutrino mass mν . One can check the decay rate of the
sterile neutrino is much smaller than its mass and thus the narrow width approximation is
still valid. In figure 5, we show the limits on mLQ by varying mν . The regions below the
two colorful curves are excluded, and the green curve (K− → π+e−e−) reaches an energy
scale around 300TeV while the pink curve (K− → π+µ−µ−) could reach 250TeV. Due to
the same reason as that in the minimal scenario, mLQ approaches 0 near the resonance
boundaries.

5.3 Limits on dim-6 operators with a sterile neutrino

In principle by using the current limit on K− → π+l−l− in the resonance region we can
make a limit plot for every operator from tables 1–4. The strongest limits arise from (part
of) the operators in table 3, because contributions from the operators in the other tables
are suppressed by either the small mixing angles |Ue/µ4| for those containing a left-handed
neutrino or Λ for the dim-7 operators. Not all νSMEFT dimension-six operators contribute
equally. For instance, O(6)

LνH has no direct effect on the LNV kaon decay and is ignored
here. O(6)

νW can induce the decay N → νγ, which is relatively fast and decreases the LNV
kaon decay rates in the resonance region. O(6)

νW is strictly constrained because it generates
neutrino dipole moments at one-loop [68, 69] and it is also ignored. We are then left
with four operators (O(9)

LdQν has been discussed in previous subsection) in table 3. These
operators can easily be obtained in models with Z ′ bosons (O(9)

QuνL, O
(9)
LνQd), and left-right

symmetric models (O(9)
Hνe). We refrain from introducing specific models and focus on giving

the limits on the WCs of these four operators directly.
To induce the LNV kaon decay, we turn on a single operator with specific flavor

configurations at a time and ignore the minimal interactions. For O(9)
QuνL and O(9)

Hνe we only
need to turn on one flavor configuration to induce LNV kaon decay. We set C(9)

Hνe,11 = 1
Λ2

– 18 –
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Figure 5. Limits on the leptoquark mass mLQ versus the sterile neutrino mass mν in the resonance
region. The green curve is based on current limit for K− → π+e−e− and similarly the pink one for
K− → π+µ−µ−. The gray (dashed) lines include the finite detector size effect.

to induce K− → π+e−e− with all other indices configurations being zero. Then we can
get limits on Λ as a function the sterile neutrino mass mν . Because the left handed
down-type quarks are not in mass eigenstates, K− → π+e−e− can also be realized via
C

(9)
QuνL,1111 = 1

Λ2 . The remaining two operators are special in the sense that we need to
turn on two flavor configurations to induce LNV kaon decays. For convenience we assume
C

(9)
duνe,1111 = C

(9)
duνe,2111 = 1

Λ2 or C(9)
LνQd,1111 = C

(9)
LνQd,1112 = 1

Λ2 to induce K− → π+e−e−.
Similarly, we set C(9)

Hνe,12, C
(9)
QuνL,1112, C

(9)
duνe,1112 = C

(9)
duνe,2112 and C(9)

LνQd,2111 = C
(9)
LνQd,2112

to 1
Λ2 to induce K− → π+µ−µ−.
We show the limits on Λ for these four operators in figure 6. The two scalar-type

operators give stronger limits than the two vector-type operators, because the decay rates
from the latter are relatively suppressed by m2

π/B
2. The contributions to the LNV kaon

decay rate from O(9)
Hνe and O(9)

QuνL are further suppressed by |Vus|2. Note that near the
threshold mν = ml + mπ for the plot of O(9)

duνe, the decay rates of the sterile neutrino
and the |p2| in eq. (4.2) approach to zero at the same speed. Hence the two curves for
Λ approach to some fixed values instead of going down straightly around mν = ml + mπ.
While for the plots from other three operators, the decay rates of the sterile neutrino are
not zero around mν = ml + mπ as the sterile neutrino can still decay into light particles,
e.g. π0 + νe. We refer to refs. [70, 71] for a more detailed discussion and calculation on the
decay modes of the sterile neutrino for various dim-6 operators.
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Figure 6. Same as figure 5 but now we present limits on the BSM scale Λ associated to various
dim-6 operators.

5.4 Finite detector size effect

In the resonance region where a sterile neutrino could be produced on-shell, we consider
the intermediate neutrino as a real particle and it propagates for some distance before
decaying into a pion and a charged lepton. In the case when sterile neutrinos decay outside
the detector, we can not reconstruct the LNV process and thus get no valuable bound
on the mixing angles or energy scales of the higher-dimensional operators. The observed
branching ratio is suppressed due to the fact that some neutrinos decay outside the detector.
Refs. [11, 12, 43, 72–74] have discussed this effect. In this work we follow the method used in
ref. [11] to make a rough estimate. We include the finite size detector effect by a probability
factor Pν , which is the probability of νR to decay within the detector. We write Pν as

Pν = 1− e−
LD
Lν , (5.9)

where LD denotes the typical detector length and Lν = pν
mνΓν with pν the momentum of

νR. In the rest frame of K−, the momentum of the sterile neutrino is given by

p?ν = λ
1
2 (ml ,mK ,mν)

2mK
. (5.10)
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We can relate the energy Eν of νR in the lab frame with those quantities in the rest frame
of K− by the relation

Eν = E?ν

(
γ + p?ν

E?ν

√
γ2 − 1 cos θ?ν

)
, (5.11)

where γ = EK
mK

denoting the boost factor of K−, E?ν is the energy of νR in the rest frame
of K− and θ?ν is the emission angle of νR relative to the velocity direction of K− in the
rest frame of K−. The energy of νR lies in the range E−ν < Eν < E+

ν with E±ν =
γE?ν ± p?ν

√
γ2 − 1 and obeys a flat distribution.

We then can get the total number of LNV kaon decays inside the detector by integrating
neutrino energy Eν

Nevent = NK−

∫ E+
ν

E−
ν

dEν
BR(K− → l−l−π+)

E+
ν − E−ν

Pν ,

≈ NK−

∫ E+
ν

E−
ν

dEν
BR(K− → l−νR)

E+
ν − E−ν

Γ(νR → l−π+)
Γν

Pν ,

(5.12)

where NK− is the number of K−. In NA62 experiment, 400GeV protons collide the target
and produce a large number of K+ mesons, which carry a momentum of 75GeV. Assuming
three years of running, the expected number of K+ decays in the fiducial volume is NK+ =
1.35× 1013. Following refs. [11, 75], we assume zero background events and LD ≈ 65 m.

By requiring the signal events to be Nevent = 3.09 we get bound on the mixing angle or
new physics energy scale Λ as a function of sterile neutrino mass mν . We show our results
in figures 4–6, where we use the gray lines to denote the sensitivity for K− → π+e−e− and
gray dashed lines for K− → π+µ−µ−. Through the gray (dashed) lines, we find the limits
on |U2

l4| are of the order 10−6, and the limits on Λ are 5–30TeV.1

In the minimal scenario the gray (dashed) lines we get in figure 4 are above the re-
gion excluded by big bang nucleosynthesis (BBN) [76, 77]. However they are slightly
weaker than the limits from ATLAS experiment [71], and weaker than the constraints
from K+ → l+νR [78, 79] by two to three order of magnitude. This makes sense as we
require additionally νR to decay within the detector.

The constraints on the higher-dimensional operators mentioned in previous subsection
have been probed a lot in refs. [30, 32, 80–85] via elastic coherent neutrino-nucleon scatter-
ing, missing transverse energy searches, lepton flavor universality, CKM unitarity, meson
and tau decays, etc. For the sterile neutrino with mass mπ < mν < mK , the bounds
they got are from 1TeV to 10TeV, which are weaker than those from LNV kaon decays.
Ref. [71] investigated higher-dimensional operators via displaced vertices search for the
sterile neutrino at the LHC and SHiP, which could reach a limit 20–30TeV. Neutrinoless
double-beta decay [3] gives a stronger limit roughly 50TeV. Despite the different flavor
configurations and the narrow parameter space of the sterile neutrino mass, our results are
close and complementary to their results.

1In principle one should also consider the decay length of K+ and the geometry of NA62 experiment.
We leave this careful analysis in the future work.
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6 Conclusions

In this work, we used a systematic framework to study the effect of light sterile neutrinos
with mass smaller than the electroweak scale, mν < v, on the lepton-number-violating
decays K− → π+l−l−. The sterile neutrinos N are gauge singlets under the SM gauge
group and are allowed to interact with the SM fields through the Yukawa interaction and
gauge-invariant higher-dimensional interactions up to dim-7. After integrating out heavy
SM particles, we match the νSMEFT operators onto SU(3)× U(1)em-invariant operators.
If the sterile neutrino mass is above Λχ, we also integrate it out and get dim-9 operators,
which induce the short distance contributions to LNV kaon decays. For the sterile neutrino
with a mass mν < Λχ, we get LNV operators of dim-6 and dim-7 in eqs. (2.5) and (2.7),
and LNC operators in eqs. (2.6) and (2.8). By using chiral perturbation theory, we connect
dim-6, -7 and -9 operators at the quark level to mesonic physics and give the expressions
for the decay amplitude, which includes the long-distance (from dim-6 and -7 operators)
or short-distance contributions depending on whether the sterile neutrino mass is above or
below Λχ.

We find the presence of a sterile neutrino and the non-standard interactions have a
dramatic impact on the LNV kaon decay phenomenology. In the case of a sterile neutrino
with mass Λχ < mν < v, the new physics scale probed by the dim-9 operators is improved
by one order compared to the case without a sterile neutrino [27]. Nevertheless, the BSM
physics scale that can be probed is of order O(100) GeV which is still too low to make the
νSMEFT approaches valid. The limits are also much weaker than the corresponding 0νββ
decay limits for similar operators with different generation indices because of the relatively
small data samples of kaon experiments. However, very stringent bounds on the EFT
operators emerge if the sterile neutrino mass lies in the resonance region (mπ +ml,mK −
ml). The resulting lepton-number-violating decay rate are highly enhanced and we obtain
strong limits on the neutrino mixing angles |U2

e4| and |U2
µ4| at the level of 10−9-10−10, close

to seesaw predictions, and on the BSM scales Λ, up to O(300) TeV, for various higher-
dimensional operators. After considering the finite detector size effect, we find the limits
on mixing angle |U2

l4| become at the level of 10−6 and the BSM scales Λ are weakened to
O(30) TeV. These limits obtained this way are very strong though only in a narrow window
of sterile neutrino masses with 150MeV< mν <490MeV. The framework we developed in
this work can be readily extended to probe BSM physics in other types of decays, e.g. the
LNV decays of charm and bottom mesons, or τ leptons.
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A Matching at the EW scale

We give the explicit matching conditions for all the operators in eq. (2.4). For the mass
terms we have

ML = −v2C(5) − v4

2 CLH ,

MR = M̄R + v2M̄
(5)
R −

v4

2 C
(7)
νH ,

MD = v√
2

[
Yν −

v2

2 C
(6)
LνH

]
. (A.1)

The matching conditions for dim-6 operators involving active neutrinos νL are

c
(6)
VL = −21V + 2v2

[
C

(6)
LQ 3 − C

(6)
HL 3 − C

(6)
HQ 3 1

]
V − 4

√
2v
g

Me

(
C

(6)
eW

)†
V

−4
√

2v
g

C
(6)
νWM

†
DV + 4v2

(
C

(7)
LHW

)†
MLV ,

c
(6)
VR = −v2C

(6)
Hud 1,

c
(6)
SR = v2

(
C

(6)
LedQ

)†
,

c
(6)
SL = v2

(
C

(6)
LeQu 1

)†
V ,

c
(6)
T = v2

(
C

(6)
LeQu 3

)†
V ,

1
v3 C

(6)
VL,ij = − i√

2
C

(7) ∗
LHDe,jiV +4me

v
C

(7) ∗
LHW,jiV −

4
√

2
gv2

(
MLC

(6)
eW

)∗
ji
V + 8

gv

(
MDC

(7) ∗
νeW

)
ji
V,

1
v3 C

(6)
VR,ij = 1√

2
C

(7) ∗
Leud̄H,ji

,

1
v3 C

(6)
SR,ij = 1

2
√

2

(
C

(7)
LLQd̄H 2,ij − C

(7)
LLQd̄H 2,ji + C

(7)
LLQd̄H 1,ij

)∗
+Vud

2
md

v

(
C

(7)
LHD 1,ij − C

(7)
LHD 1,ji − C

(7)
LHD 2,ji

)∗
− i2

mu

v

(
C

(7)
LLd̄uD 1,ij − C

(7)
LLd̄uD 1,ji

)∗
,

1
v3 C

(6)
SL,ij = 1√

2
C

(7) ∗
LLQ̄uH,ij

V + 1
2v

[(
C

(7)
QLνuD

)†
MT
D

]
ij
V

−Vud2
mu

v

(
C

(7)
LHD 1,ij − C

(7)
LHD 1,ji − C

(7)
LHD 2,ji

)∗
V

+ i

2
md

v

(
C

(7)
LLd̄uD 1,ij − C

(7)
LLd̄uD 1,ji

)∗
V ,

1
v3 C

(6)
T,ij = 1

8
√

2

(
C

(7)
LLQd̄H 2,ij + C

(7)
LLQd̄H 2,ji + C

(7)
LLQd̄H 1,ij

)∗
, (A.2)
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where the indices ij denote the generation of leptons and the indices of quarks are implied.
While for the dim-6 operators with sterile neutrinos νR, we have

c̄
(6)
VL =

[
−v2C

(6)
Hνe + 8v2

g
M †RC

(7)
νeW −

4
√

2v
g

(
C

(6)
νW

)†
Me −

4
√

2v
g

M †DC
(6)
eW

]†
V ,

c̄
(6)
VR = v2

(
C

(6)
duνe

)†
,

c̄
(6)
SR = −v2C

(6)
LνQd + v2

2 C
(6)
LdQν ,

c̄
(6)
SL = v2

(
C

(6)
QuνL

)†
V + v2

2
(
C

(7)
QLνuD

)†
MRV ,

c̄
(6)
T = v2

8 C
(6)
LdQν ,

C̄
(6)
VL = −4

√
2v
g

C
(6)
νWM

†
RV + v3

√
2
C

(7)
νL1V + 8v

2

g

(
C

(7)
νeW

)†
MeV

+
(
v√
2

)3 (
C

(7)
QνQLH2

)†
V + 4v2

(
C

(7)
LHW

)†
M∗DV ,

C̄
(6)
VR = −v

2

2 md

(
C

(7)
QLνuD

)†
+
(
v√
2

)3 (
C

(7)
dLνuH

)†
,

C̄
(6)
SR =

[
v3
√

2
C

(7)
dQνeH + v2

2 M
†
eC

(7)
dνQLD −

v2

2 mdC
(7)
νeD −

v2

2 muC
(7)
duνeD

]†
,

C̄
(6)
SL =

[
v3
√

2
C

(7)
QuνeH −

(
v√
2

)3
C

(7)
QeνuH + v2

2 mdC
(7)
duνeD + v2

2 C
(7)
QLνuDMe + v2

2 muC
(7)
νeD

]†
V ,

C̄
(6)
T = − v3

8
√

2

(
C

(7)
QeνuH

)†
V + v2

8 M
†
e

(
C

(7)
QLνuD

)†
V . (A.3)

The matching conditions of dim-7 operators can be obtained from [3] and we ignore them
here as they are not important in this work. The matching conditions for the dim-9
operators can be taken from refs. [1, 27]

1
v3 C

(9)
1L = −4VudVus

(
C

(7)
LHD 1 + 4CLHW

)∗
,

1
v3 C

(9)
5L = 4iVudC

(7)∗
LLd̄uD 1,us ,

1
v3 C

(9)′
5L = 4iVusC(7)∗

LLd̄uD 1,ud . (A.4)

B Additional contributions to the dim-9 operators

In general, four-quark two-lepton operators with an additional derivative are also induced
when integrating out a heavy neutrino. When we match them onto the Chiral Perturbation
Theory, a lot of new LECs arise. In table 5 we give the matching conditions only for
interactions, which via the equations of motions can be written as mq ×O(9) or ml ×O(9)

with mq being the light quark mass and ml the mass of charged lepton. The remaining
terms contain a derivative and are of dim-10, which result in unknown LECs when matched
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C
(6)
VLR,ud C

(6)
VRR,ud C

(6)
SRR,ud C

(6)
SLR,ud C

(6)
TRR,ud

C
(6)
VLL,us

1
2mdOµ6,usudEµ

1
2mdOµ8,usudEµ muO′4EL muO2EL 8muO′5EL

−1
2muOµ8,usudEµ −1

2muOµ6,usudEµ −msO′2EL −msO4EL −4mdO1EL

+mlO1EL −2mlO′5EL −1
2mlOµ6,usudEµ −1

2mlOµ8,usudEµ

C
(6)
VRL,us

1
2mdOµ′8,usudEµ

1
2mdOµ′6,usudEµ muO′2EL muO4EL 8mdO5EL

−1
2muOµ′6,usudEµ −1

2muOµ′8,usudEµ −msO′4EL −msO2EL −4muO′1EL
−2mlO5EL +mlO′1EL −1

2mlOµ′8,usudEµ −1
2mlOµ′6,usudEµ

C
(6)
SRL,us −mdO′2ER −mdO4ER mlO′2ER mlO4ER −2mdOµ6,udusEµ

+muO4ER +muO′2ER −2muOµ′8,udusEµ
1
2mlOµ6,udusEµ

1
2mlOµ′8,udusEµ

C
(6)
SLL,us −mdO′4ER −mdO2ER mlO′4ER mlO2ER −2mdOµ8,udusEµ

+muO2ER +muO′4ER −2muOµ′6,udusEµ
1
2mlOµ8,udusEµ

1
2mlOµ′6,udusEµ

C
(6)
TLL,us −4muO1ER −4msO′1ER 2msO′8,usudEµ 2muO8,usudEµ −8ms(2O′9,udus +O′8,usud)Eµ

+8msO5ER +8muO′5ER +2muO6,usudEµ +2msO′6,usudEµ +8mu(2O7,usud +O6,usud)Eµ

Table 5. The dim-9 interactions induced by integrating a heavy neutrino between two dim-6
operators involving neutrinos of different chiralities (the coefficients have been divided by 1

v4
1
m2
ν

and the corresponding two dim-6 WCs).

onto Chiral Perturbation Theory. Thus we neglect them here. To make the expressions in
a compact form, we have removed an overall factor 1

v4
1
m2
ν
and the dim-6 WCs, and we also

use Eµ = ēγµγ5Cē
T and EL,R = ēL,RCē

T
L,R.

In principle dim-9 interactions are also induced by terms, e.g. C(6)
VLR,us × C

(6)
VLL,ud. We

can easily get the dim-9 interactions induced by C(6)
VLR,us×C

(6)
VLL,ud via a replacement d↔ s

on the dim-9 interactions induced by C(6)
VLL,us × C

(6)
VLR,ud .

C Sterile neutrino decay processes

In this section we discuss possible decay modes of the sterile neutrino with a mass mν in
the resonance region (mπ +ml,mK −ml) and give their expressions in analytical forms.

C.1 Decay modes in the minimal scenario

In the minimal scenario we find the decay rate for νR → l∓π± is,

Γ(νR → l∓π±) = 2×
√
λ(mν ,ml,mπ)

8πm3
ν

G2
FF

2
0 |Vud|2|Ul4|2

×
(
(m2

ν −m2
l )2 −m2

π(m2
l +m2

ν)
)
θ(mν −ml −mπ) ,

(C.1)

where l = e, µ and we add a 2 to account for the Majorana nature. The decay rate of
νR → νlπ

0 is given by [71]

Γ(νR → νlπ
0) = 2× G2

FF
2
0m

3
ν |Ul4|2

16π

(
1−

m2
π0

m2
ν

)2

θ(mν −mπ0) . (C.2)
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The sterile neutrino can also decay into three light active neutrinos and the decay rates
are [86]

Γ(νR → νανβ ν̄β) = 2× (1 + δαβ)G
2
Fm

5
ν |Uα4|2

768π3 , (C.3)

where α = e, µ and β = e, µ, τ are the flavor indices of the active neutrinos. The three-body
decay rates for sterile neutrino into two charged leptons and one active neutrino can not
be written analytically. Thus, we use the method of ref. [71] and use FeynCalc [87–89] to
do the phase space integrals numerically.

C.2 Decay modes in the leptoquark scenario

Without considering the interactions in the minimal scenario, there are only two types
of decay modes for the sterile neutrino in the leptoquark scenario. The decay rate for
νR → l∓π± is

Γ(νR → l∓π±) = 2×
√
λ(mν ,ml,mπ)

32πm3
ν

(
v2

2m2
LQ

)2

G2
FF

2
0B

2(m2
ν−m2

π+m2
l )θ(mν−ml−mπ) ,

(C.4)
and for νR → νlπ

0 we find

Γ(νR → νlπ
0) = 2× 1

64πm3
ν

(
v2

2m2
LQ

)2

G2
FF

2
0B

2(m2
ν −m2

π0)2θ(mν −mπ0) . (C.5)
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