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1 Introduction

In the SM, lepton numbers Le,µ,τ arise from accidental symmetries that guarantee the absence
of neutrino masses and lepton flavor violating (LFV) processes. These symmetries are,
however, not respected by higher-dimensional operators beyond the SM suppressed by some
new physics scale Λ. In fact, already at the first order in the 1/Λ expansion (dimension-five
operators), we find that lepton number can be broken in two units, ∆Li = 2, generating then
neutrino masses. The smallness of the neutrino masses however forces the scale suppressing
these operators Λ to be extremely large (or the corresponding Wilson coefficients extremely
small), making the physical effects of these operators only visible in neutrino physics.
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We are here interested in LFV processes where the relative lepton numbers are violated,
but the total lepton number is preserved. These processes are among the best indirect
probes for new physics at the TeV [1]. This is due to the fact that Le,µ,τ are not easy to arise
accidentally in scenarios beyond the SM (BSM), where the matter content and interactions
are much more extended than the simple leptonic sector of the SM. As a consequence,
sizable BSM effects are expected to arise in LFV processes. They can be characterized by
dimension-six operators (∼ 1/Λ2) that, as they preserve the total lepton number, do not
need to be as highly suppressed as dimension-five operators. For this reason they can have
an important impact in future LFV experiments involving the charged lepton sector.

We will consider in particular LFV processes with ∆Le = ∆Lµ = 1. At present, the
most competitive experimental measurements come from the processes µ→ eγ, µ→ eee

and µN → eN (see table 1), and these will improve in the near future. Especially, the
sensitivities of µ→ eee and µN → eN are expected to improve by four orders of magnitude
by the mid-2020s [2]. These LFV processes are very clean observables from the theoretical
point of view, since the contributions of the SM (even when implemented with neutrino
masses) are much smaller than the present and future experimental sensitivities. We will
also consider h→ µe, although, as we will show, it does not place any important constraint.
There are other LFV processes such as Z → µe and J/ψ → µe, but they are not competitive
with those in table 1. We also have processes involving flavor violations in the quark sector,
e.g. K → µe, but these quark flavor transitions are quite constrained from other non LFV
processes, so we will not consider them here.

We will use the Effective Field Theory (EFT) approach to characterize the BSM
contributions to LFV processes as they are captured in the Wilson coefficients of the
dimension-six operators. Our purpose is to understand at what order in the loop expansion
the Wilson coefficients can enter into the different observables of table 1. Depending on the
experimental sensitivity, we will see that certain Wilson coefficients can be better bounded
by µ→ eγ even when they enter at the two-loop level.

This program will therefore require the calculation of anomalous dimensions at the
two-loop level. We will use on-shell methods to perform these calculations. It has already
been shown the efficiency of these methods to calculate anomalous dimensions at the loop
level [3–9], where these can be reduced to products of tree-level amplitudes integrated over
a phase space. On-shell amplitude methods are also able to show in a transparent way
many selection rules hidden in the ordinary Feynman approach [10–17], mainly due to
helicity [11] or angular momentum conservation [14, 15]. This simplifies substantially the
loop calculations.1

Our calculation of the anomalous dimensions at the two-loop level will in particular show
how µ→ eγ can constrain the LFV couplings Wµνe and hµe and some four-fermion inter-
actions at an unprecedented level. Previous (partial) analysis can be found in refs. [22–28].2

In section 2 we review the LFV dimension-six operators of the SM EFT and the tree-
level bounds derived from the processes in table 1. In section 3 we analyze which operators

1On-shell techniques for the SM EFT have also been applied in related contexts [18–21].
2For similar studies on LFV processes involving τ leptons, see for example refs. [29–32].
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BR(µ→ eγ) BR(µ→ eee) R(µN → eN) BR(h→ µe)

Current 4.2 · 10−13 [33] 1 · 10−12 [34] 7 · 10−13 [35] 6.1 · 10−5 [36]

Future 6.0 · 10−14 [37] 1 · 10−16 [38] 8 · 10−17 [39]

Table 1. Current and near future upper bounds on ∆Le = ∆Lµ = 1 processes.

mix into the dipole operators responsible for µ → eγ. We find that there are various
important two-loop anomalous dimension matrix elements that are unknown. Section 4
is then dedicated to compute these missing pieces of the two-loop renormalization group
(RG) equation, via on-shell methods. In sections 5 and 6 we analyze the RG mixing of
dimension-six operators into the µ→ eee and µN → eN processes, respectively. A global
perspective of the new loop effects we have found from mixings into the LFV observables is
summarized in section 7. For illustration, in section 8 we show the impact of our analysis
on two simple UV completions of the SM EFT. Finally, we conclude in section 9.

2 LFV dimension-six operator basis

The relevant dimension-six operators for our analysis of processes with ∆Le = ∆Lµ = 1 are
given by

L6 =CµeDW
yµg

Λ2 L̄
(2)
L τaσµνe

(1)
R HW a

µν+CµeDB
yµg

′

Λ2 L̄
(2)
L σµνe

(1)
R HBµν+(µ↔ e) (2.1)

+
Cµe
L

Λ2 (H†i
↔
DµH)(L̄(2)

L γµL
(1)
L )+

Cµe
L3

Λ2 (H†i
↔
Da
µH)(L̄(2)

L τaγµL
(1)
L )+

Cµe
R

Λ2 (H†i
↔
DµH)(ē(2)

R γµe
(1)
R ) (2.2)

+Cµey
yµ

Λ2

(
H†H

)(
L̄

(2)
L e

(1)
R H

)
+(µ↔ e) (2.3)

+
Cµeff
LL

Λ2 (L̄(2)
L γµL

(1)
L )(F̄LγµFL)+

Cµeff
LL3
Λ2 (L̄(2)

L τaγµL
(1)
L )(F̄LτaγµFL)+

Cµeff
RR

Λ2 (ē(2)
R γµe

(1)
R )(f̄RγµfR)

+
Cµeff
LR

Λ2 (L̄(2)
L γµL

(1)
L )(f̄RγµfR)+

Cµeff
RL

Λ2 (ē(2)
R γµe

(1)
R )(F̄LγµFL)

+CµlleLR

yµ

Λ2 (L̄(2)
L γµLL)(ēRγµe(1)

R )+CµqqeLR

yµ

Λ2 (L̄(2)
L γµQL)(d̄Rγµe(1)

R )+(µ↔ e) (2.4)

+CµeqqLuQe

yµ

Λ2 (L̄(2)
L uR)(Q̄Le(1)

R )+CµeqqLeQu

yµ

Λ2 (L̄(2)
L e

(1)
R )(Q̄LuR)+(µ↔ e)+h.c. , (2.5)

where yµ =
√

2mµ/v (v = 246GeV) is the SM muon Yukawa coupling and g, g′ are the
SU(2)L and U(1)Y couplings as defined in appendix B. We also have FL = QL, LL and
fR = uR, dR, eR the SM left-handed SU(2)L doublets and right-handed SU(2)L singlets
respectively. We only specify the flavor indices for the µe transitions where the superindices
1, 2 corresponds to e, µ. We also have factored out a yµ in operators involving L̄(2)

L e
(1)
R or

L
(1)
L e

(2)
R where the µe transitions have a change of chirality. Therefore, in the interchange

µ↔ e in L6 we keep fixed yµ.
The four-fermion operators have been separated into two groups: eq. (2.4) are operators

of type ψ2ψ̄2 in Weyl notation, while eq. (2.5) are operators of type ψ4 (and ψ̄4). They
have respectively total helicity h = 0 and h = ±2. This is important as we will see later for
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understanding the renormalization mixing. As compared to the Warsaw basis [40], we have
made the replacement3

O(3)
lequ = (L̄LσµνeR)(Q̄LσµνuR)→ OLuQe = (L̄LuR)(Q̄LeR) , (2.6)

and we have written differently the operator (via Fierzing)

Oledq = (L̄LeR)(d̄RQL) = −1
2(L̄LγµQL)(d̄RγµeR) , (2.7)

to make it clear that this is an operator of the type ψ2ψ̄2 with total helicity h = 0.
It will be important for later to understand the impact of the operators (2.2) to write

them in the unitary gauge:

−(v + h)2
[
CµeL + CµeL3

Λ2

(
g

2cθW
Zµµ̄LγµeL −

g

2
√

2
[W+µν̄µLγµeL + h.c.]

)

+ CµeL − C
µe
L3

Λ2

(
g

2cθW
Zµν̄µLγµνeL + g

2
√

2
[W+µν̄µLγµeL + h.c.]

)

+ CµeR
Λ2

g

2cθW
Zµµ̄RγµeR

]
+ (µ↔ e) , (2.8)

which shows that these operators induce a LFV coupling for the Z, W and hW, hZ.
Custodial symmetry together with a L ↔ R parity can protect some of these couplings.
For example, as explained in ref. [41], these symmetries can impose CL + CL3 = 0 such
that the LVF Zµe and hZµe couplings are zero. Therefore, for BSM sectors respecting
these symmetries, the only LFV couplings will involve neutrinos which are difficult to
detect, implying that no strong bounds can be derived from direct measurements such as
W → µν̄e, eν̄µ or Z → νµν̄e. As we will see, loop effects will be important to get better
bounds from other LFV observables.

2.1 LFV experimental constraints at the tree level

The Wilson coefficients of the operators (2.2)–(2.5) are constrained from the LFV observables
of table 1. In this section we want to review the bounds obtained from a tree-level analysis.
The result is presented in table 2 in black color (see refs. [22–25] for previous analysis).
The aim of this analysis is to understand which loop effects mixing the different Wilson
coefficients of (2.2)–(2.5) are important to consider in order to obtain better bounds. These
loop calculations and the discussion of how much the bounds are improved will be presented
in the next sections.

The current constraint on the dipoles Ceµ,µeDW,DB of eq. (2.1) is dominated by the experi-
mental bound on BR(µ→ eγ) at which they enter at tree level (see eq. (3.3)). This leads to

1
Λ2

√
|CµeDW − C

µe
DB|2 + |CeµDW − C

eµ
DB|2 . 1 · 10−6 1

TeV2 , (2.9)

3Using Fierz identities, we have the relation O(3)
lequ = −8OLuQe − 4OLeQu.
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µ→ eγ µ→ eee µN → eN h→ µe

CµeDB − C
µe
DW

951TeV
(1547TeV)

218TeV
(2183TeV)

208TeV
(1812TeV)

CµeDB + CµeDW
127TeV
(214TeV)

26TeV
(309TeV)

24TeV
(253TeV)

CµeR
35TeV
(59TeV)

160TeV
(1602TeV)

225TeV
(1535TeV)

CµeL + CµeL3
4TeV
(7TeV)

164TeV
(1642TeV)

225TeV
(1535TeV)

CµeL − C
µe
L3

24TeV
(41TeV)

35TeV
(421TeV)

50TeV
(395TeV)

CµettLuQe

304TeV
(510TeV)

63TeV
(735TeV)

59TeV
(604TeV)

CµettLeQu

80TeV
(141TeV)

14TeV
(209TeV)

5TeV
(57TeV)

CµeeeLL(RR),LR(RL)
207,174TeV
(2070,1740TeV)

CµeuuLL,RR,LR

352TeV
(2693TeV)

CµeddLL,RR,LR

376TeV
(2725TeV)

CµddeLR

18TeV
(164TeV)

CµeττLL,RR,LR,RL

14,16,14,16TeV
(174,194,174,194TeV)

22TeV
(200TeV)

CµeττLL3
20TeV
(247TeV)

55TeV
(476TeV)

CµettLL,RR,LR,RL

122TeV
(214TeV)

21TeV
(317TeV)

22,32,32,22TeV
(200,290,290,200TeV)

CµettLL3
230TeV
(401TeV)

41TeV
(592TeV)

100TeV
(851TeV)

CµebbLL,RR,LR,RL

14,16,14,16TeV
(174,194,174,194TeV)

22TeV
(200TeV)

Cµey
4TeV
(6TeV)

1TeV
(9TeV)

1TeV
(7TeV)

0.3TeV

Table 2. Present (future) lower bounds on Λ of the dimension-six operators (2.2)–(2.5) from the
different LFV violating processes. We have fixed the Wilson coefficient Ci = 1, turning each one by
one. We show the bound in black, blue, purple and red depending on whether the Wilson coefficients
contribute to the observables at the tree-level, one-loop single-log, two-loop double-log or two-loop
single-log order, respectively. Blank spaces correspond to contributions that we estimate to be too
small to be competitive with existing bounds.
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and will improve by almost an order of magnitude in the future. Eq. (2.9) provides
a very strong constraint that shows that renormalization effects to (CDW − CDB) aris-
ing from other Wilson coefficients Ci could also place strong constraints on these lat-
ter. These effects can be important even when they arise at the two-loop level, e.g.
∆(CDW − CDB) ∼ Ci/(16π2)2 ∼ 10−4, where we estimate to obtain Ci/Λ2 . 1/(6 TeV)2.
Therefore an analysis of anomalous dimension mixings into CDW,DB is needed up to the two-
loop level. The Wilson coefficient (CDW − CDB) also enters at tree level in the observables
µ→ 3e and µN → eN (see eq. (5.1) and eq. (6.2) respectively), but the present constraints
are not so competitive, as shown in table 2. Nevertheless, the spectacular prospects of
improvement by four orders of magnitude in each of them will lead to an improved bound
on (CDW − CDB) that could overcome that from µ→ eγ.

Let us consider now the four-fermion interactions (2.4) and (2.5). In particular, the
operators of type µēēe enter at tree level to µ→ 3e and provide the limits

CµeeeLL,RR

Λ2 . 2.3 · 10−5 1
TeV2 ,

CµeeeLR,RL

Λ2 . 3.3 · 10−5 1
TeV2 . (2.10)

They are clearly not as strong as that in (2.9), but in the near future this bound is expected
to improve by two orders of magnitude, being then comparable to eq. (2.9). Therefore loop
effects mixing other Wilson coefficients into CµeeeLL,RR,LR,RL should also be considered. As
we will see, however, all the relevant LFV Wilson coefficients enter into the anomalous
dimensions of CµeeeLL,RR,LR,RL at the one-loop level, making two-loop effects not necessary.
Similar conclusions can be reached for four-fermion interactions of type µēūu and µēd̄d that
are constrained by µN → eN at a similar level as in eq. (2.10).

The Wilson coefficients of eq. (2.2) give rise to the LFV Zµe coupling (see eq. (2.8)),
and therefore can enter at tree level into the observables µ → 3e and µN → eN (see
eq. (5.1) and eq. (6.2) respectively), providing a bound similar to (2.10). There are also
direct bounds from Z → µe but these are not so competitive (one gets constraints of order
Λ & 5TeV). It is important to remark again that the induced Zµe coupling is proportional
to the combination (CµeL + CµeL3), and therefore tree-level constraints from µ → 3e and
µN → eN are only on this specific combination. As we already discussed, the orthogonal
combination (CµeL −C

µe
L3) only enters at tree level into LFV gauge boson couplings involving

neutrinos, implying that no relevant bounds on this combination can be placed at this
order. Loop effects however can be important as we will discuss in the next section. The
parametrization of the bounds using these two particular combinations has also a theoretical
motivation, since, as we already mentioned, BSM models can give sizable contributions to
(CµeL −C

µe
L3) but not to (CµeL +CµeL3) as this latter is protected by a custodial symmetry [41].

We provide an example in section 8.1.
The last operator to consider is (2.3) that can only enter at tree level in Higgs physics,

specifically in h→ µe.4 The bound (see table 2) is very weak, therefore it is expected that
bounds from other observables, where Cµe,eµy can enter via mixing at the loop level, can be
potentially stronger. We will indeed see that this operator enters at the two-loop level into
µ→ eγ and gets a much more severe constraint.

4These Wilson coefficients enter as BR(h→ µe) = mHm
2
µv

2[|Cµey |2 + |Ceµy |2]/(8πΓHΛ4).
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We conclude that there are some Wilson coefficients whose loop effects can be potentially
relevant for the observables µ→ eγ, µ→ 3e and µN → eN . Below we will calculate the
anomalous dimensions at the two-loop level for these Ci that will allow us to obtain new
competitive bounds.

3 µ → eγ in the SM EFT

The µ→ eγ process arises from the Lagrangian term

− 4GF√
2
mµ [dµe µ̄LσµνeRFµν + deµ ēLσ

µνµRFµν + h.c. ] , (3.1)

where dµe,eµ must be evaluated at the muon mass scale. The branching ratio is given by [42]

BR (µ→ eγ) = 384π2
(
|dµe|2 + |deµ|2

)
, (3.2)

where the large factor is because the LFV decay is a two-body process, while the dominating
muon decay channel is a three-body one. This decay process is tightly constrained and
further sensitivity is expected in the near future, see table 1.

At tree level the only Wilson coefficients of the SM EFT that enter into dµe are the
dipoles CµeDW,DB :

dµe = e v2

2Λ2 (CµeDW − C
µe
DB) , (3.3)

where e = g sin θW , and similarly for deµ by exchanging µ↔ e.
We are interested in operator mixing into the dipoles (3.1). There are various effects

to be considered: (i) finite matching contributions from a new physics scale Λ, (ii) RG
mixing from Λ to the electroweak scale mW , (iii) finite threshold corrections arising from
integrating out the W , Z, Higgs and the heavy SM fermions, and (iv) RG mixing from
the electroweak scale mW to mµ. At the leading order (one-loop level) the UV matching
threshold (i) and SM IR matching (iii) lead to finite contributions to the dipoles. These
type of corrections are model dependent, and can (partially) cancel against each other as
they involve rational coefficients, apart from some overall couplings. We will show examples
in which this occurs in section 8.1. Here we are instead interested in contributions from RG
running, which correct the tree-level dipoles by logarithms ln(Λ/mW ), raised to a suitable
power, which are hardly possible to cancel against matching contributions of either type
(i) and (iii). In particular we are interested in the leading RG mixings from any operator,
other than the dipoles, into the dipoles. Our aim is to understand to which physics a precise
measurement of (3.2) is sensitive. Therefore, we will only keep track of the leading RG
mixing contribution from any dimension-six operator into (3.1).

At the one-loop level, selection rules, mainly based on spurious SUSY [10] or helicity
arguments [11], dictate the anomalous dimension mixing terms Oi → Oj . Of particular
importance is the selection rule ∆n > |∆h| [11], where ∆n = nf − ni and ∆h = hf − hi,
being n (h) the number of fields (helicity) of the operator. There is only one exception to
this rule, ψ̄2ψ2 ↔ ψ4 only when the loop involves the Yukawa product yuyd or yuye. In the
particular case of dipole operators that have n = 4, |h| = 2, the only operators that can

– 7 –
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mix into them are those with helicity |h| = 2. This reduces to the four-fermion operators
in (2.5), apart from the orthogonal combination (CµeDW + CµeDB). The one-loop RG mixing
from OµeqqLeQu however is trivially absent because L̄(2)e(1) is external to the loop calculation
and does not have the dipole structure (and similarly for OeµqqLeQu). This argument leaves out
only the following possibility for one-loop leading-log contributions:

CLuQe −→ CDW,DB , (3.4)

where we suppressed flavor indices. The calculation of the one-loop RG mixing in (3.4) was
done in [43] and recently revisited in [5] with on-shell methods. The result is presented in
section 4.1.

At the two-loop level, there are other various dimension-six operators that can mix
with the dipoles. We can classify them according to a logarithmic expansion. At leading
order we have two-loop double-log contributions proportional to

CiCj
(16π2)2 ln2(Λ/mW ) , i 6= j . (3.5)

These contributions arise from mixings of the type Oi
1-loop−→ Oj

1-loop−→ ODW,DB. Again,
selection rules [10, 11] only allow operator mixing between those with equal h, in particular,
OLeQu → OLuQe → ODW,DB, with the exception of ψ̄2ψ2 → ψ4 → ψ2φF where the first
step can occur if it involves the product of Yukawa couplings yuyd or yuye. There are double
logs of the type C2

i ln2(Λ/mW )/(16π2)2 as well. However these are sub-leading corrections
to already existing one-loop effects. The second type of corrections are two-loop single-log
contributions

Ci
(16π2)2 ln(Λ/mW ) . (3.6)

There are only three of such two-loop mixings: ψ2φ3, ψ2ψ̄2 → ψφF , which were computed
in [4, 44], and ψ̄γψH†DH −→ Fµνψ̄Hψ, which will be calculated here for the first time.

We summarize the structure of the one- and two-loop mixing pattern into dipoles in
figure 1. In the next section we present the calculation of the relevant anomalous dimensions
of dipole Wilson coefficients up to the two-loop level. Our task is greatly simplified by using
on-shell methods as we explain next.

4 The on-shell way

Let us start presenting the basic concepts necessary for the computation of anomalous
dimensions from on-shell amplitudes. Our calculations are based on the formula [3]

〈~n|Oj |0〉(0)γ
(1)
ji = − 1

π
〈~n|M⊗Oi|0〉(0) , (4.1)

which allows to compute the leading correction to the anomalous dimension matrix γ(1)
ji

with i 6= j. On the left-hand side (l.h.s.) of (4.1) we have a form factor computed in the

– 8 –
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n=4 , h=2 n=5 , h=1

n=4 , h=0

2-loop

1-loop

ψ2φ3φ2F 2 ψ4

ψ2φF

ψ̄ψ∂φ2 ψ̄2ψ2

∂2φ4

Figure 1. Structure of the RG mixings from dimension-six operators into LFV dipoles. One-loop
RG mixing can only proceed from left to right, generating mixing between operators belonging to
different helicity boxes (shown in grey), and within operators belonging to the same helicity box.
One-loop mixing from the category (n, h) = (4, 0) into (4, 2) is forbidden by spurious SUSY [10] or
helicity [11] selection rules, except for the non-holomorphic contribution proportional to yuyd or
yuye, which mixes the ψ4 and ψ̄2ψ2 four-fermion operators at one loop. In blue and red we indicate
the relevant RG mixings for the LFV dipoles at one- and two-loop precision, respectively.

free theory, i.e. at zero order in the coupling, denoted as minimal form factor. For instance,
the minimal form factors of the dipoles are given by

〈1−Ll2
−
B3−e 4Hk |ODB|0〉

(0) = 2
√

2g′yµ〈12〉〈23〉εlk , (4.2)

〈1−Ll2
−
Wα3−e 4Hk |ODW |0〉

(0) = 2
√

2gyµ〈12〉〈23〉εlk′(τα)k′k , (4.3)

where ε and τ are tensors of SU(2)L.5 The form factors 〈~n|Oj |0〉(0) are polynomials of the
kinematical variables {|i〉, |i]}, i.e. the spinor-helicity variables.6 On the right-hand side
(r.h.s.), the symbol ‘⊗’ denotes a dLIPS phase-space integration over the intermediate states∑

~m |~m〉〈~m| connecting the on-shell scattering amplitudeM(~n← ~m) and the on-shell form
factor 〈~m|Oi|0〉. The integral over the phase space is often referred to as unitarity cut,
or cut for short. When evaluating the r.h.s. with Feynman diagrams, a cut corresponds
to putting on shell the internal propagators crossing the cut, which has the net effect
of cutting the Feynman diagram into lower-point diagrams sewed together through the
phase-space integral. The upper script (0) means that the r.h.s. of (4.1) is computed to
leading non-trivial order so that the unitarity cut 〈~n|M⊗Oi|0〉(0) leads to a polynomial in
the kinematical variables, matching the left-hand side of (4.1). Further details and examples
can be found in [3, 4, 7].

4.1 One-loop mixing into LFV dipoles

When only two particles cross the cut in the r.h.s. of (4.1), and when only four particles
are involved in either the form factor or the amplitude, we are left with the following

5Further details on notation are given in appendix B.
6Form factors are defined by FO(1 · · ·n; q) =

∫
ddx〈1 · · ·n|O(x)|0〉eiqx, where O(x) is a local operator

and 〈1 · · ·n| is an “out” (outgoing) state. In the examples considered in this paper we can smoothly send
q → 0. In this limit the form factor is equivalent to a scattering amplitude with an insertion of the EFT
operator

∫
ddxO(x) and with all particles outgoing.
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phase-space integral [3]

OiM = − 1
8π2

∫
dΩ2M(12;xy)FOi(xy34) , (4.4)

where the amplitude M describes the x+ y → 1 + 2 scattering process, and as usual we
have extracted a total delta function 〈12|M|xy〉 = (2π)4δ(4)(p1 + p2 − px − py)M(12;xy).
The particles of the form factor FOi(12 · · ·n) ≡ 〈12 · · ·n|Oi|0〉 are all outgoing. The integral
can be easily performed if we write the spinors in the integrand in a basis spanned by two
of the external spinors (

|x〉
|y〉

)
=
(

cos θ −eiφ sin θ
e−iφ sin θ cos θ

)(
|1〉
|2〉

)
, (4.5)

with the measure given by dΩ2 ≡ dφ
2π2 cos θ sin θdθ. The rotation of |x], |y] into |1], |2] is

obtained by complex-conjugation of (4.5). When identical particles cross the cut in (4.4),
one should include an extra combinatorial symmetry factor of 1/2! in the phase space.

As we already explained in the previous section, at the one-loop level we only have
eq. (3.4). This computation was done in [5] using unitarity cuts, agreeing with [43, 44]. As
a warm-up, we review next such computation. For the case at hand, eq. (4.4) is given by

yt

g′

2

4

1−
L

3−

y

xa

LeL

H

e
µ
R

B

(4.6)

where on the l.h.s. the gauge boson must be attached in all possible ways to the Higgs
(dashed line) or the fermion lines (solid). This results in a two-to-two amplitude given by

M(24k;xay) = −
√

2yt

(
YtR

[xy]2

[x2][y2] + YH
[xy][4x]
[42][x2]

)
T ak , (4.7)

where T ak = g′δak is the SU(2)L tensor arising from the contraction of left-handed doublets.
On the right-hand side we have the form factor given by

FOeµttLuQe
(xay1l3) = −yµ〈1y〉〈x3〉εla . (4.8)

It is now a straightforward matter to plug (4.7) and (4.8) into (4.4), perform the spinor
rotations (4.5) and a few elementary integrals, leading to

2
√

2g′yµ〈12〉〈23〉εlk︸ ︷︷ ︸
dipole

(−yt)
Nc/2

(16π2) (YH − 2YtR) , (4.9)

where Nc = 3 is the number of colors and yt the top Yukawa coupling. We recognize
the minimal form factor of the dipole (4.2) and therefore the anomalous dimension is
γDB = yt

2
Nc

16π2 (YQL + YtR).
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In the case of mixing into ODW , we set hypercharges YtR = 0 and YH = 1 and change
the SU(2)L tensor to be T ak = g(τα/2)ak on the amplitude side. Then we get the following
result:

2
√

2gyµ〈12〉〈23〉εlk′(τα)k′k︸ ︷︷ ︸
dipole

(−yt)
Nc/4

(16π2) . (4.10)

From the last expression we recognize the dipole (4.3) and the corresponding anomalous
dimension.

4.2 Two-loop mixing into dipoles

We want to calculate here the two-loop mixing ψ̄γψH†DH −→ Fµνψ̄Hψ, which is the only
one relevant for µ→ eγ not yet calculated. The two-loop leading-log contributions to the
r.h.s. can in principle involve three-particle cuts or two-particle cuts:

OiM +
1-loop

OiM +
1-loop

OiM . (4.11)

The first diagram involves a tree-level amplitude and a tree-level form factor, so that the
three-particle cut accounts for the two-loop factor. The second/third diagram involves a
tree-level/one-loop amplitude and a one-loop/tree-level form factor which, together with the
two-particle cut, make it to two-loop order. Bellow we will show that the second and third
diagrams do not contribute to the ψ̄γψH†DH −→ Fµνψ̄Hψ mixings because of simple
helicity selection rules. Thus, all our non-trivial calculations will only involve three-particle
cuts. For the transition ψ̄γψH†DH → Fµνψ̄Hψ, in (4.11) we only need to consider two
external particles to the scattering amplitude and form factor.

The phase-space integral involving the three-particle cuts can be nicely simplified into
the following angular integration [3]

OiM = 〈12〉[12]
(16π2)2

∫
dΩ3M(12;xyz)FOi(xyz34) , (4.12)

where the amplitude describes the x+ y + z → 1 + 2 scattering process at tree level. The
spinors in the integrand can be rotated in terms of a basis spanned by the two external
spinors:

|x〉|y〉
|z〉

 =


cos θ1 −eiφ cos θ3 sin θ1

cos θ2 sin θ1 e
iφ
(
cos θ1 cos θ2 cos θ3 − eiδ sin θ2 sin θ3

)
sin θ1 sin θ2 e

iφ
(
cos θ1 cos θ3 sin θ2 + eiδ cos θ2 sin θ3

)

(
|1〉
|2〉

)
, (4.13)

and the measure is dΩ3 = 4 cos θ1 sin3 θ1dθ12 cos θ2 sin θ2dθ22 cos θ3 sin θ3dθ3
dδ
2π

dφ
2π . In the

case that n identical particles cross the cut, one should account for an extra symmetry
factor of 1/n! in the phase-space integral, as we will see in some examples in the next
sections. Note also that (4.12) includes the −1/π factor in the r.h.s. of (4.1).
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4.2.1 Top Yukawa y2
t contributions

We expect this type of contributions to be the dominant ones because they are proportional
to Ncy

2
t . We first explain in detail the mixing of OeµL into OeµDB through a top loop. The

three-particle cut is given by

ytyt

yµ

g′2

3

4

1x

y

z

LeL

H

L
µ
L

e
µ
R

B

(4.14)

The disconnected gauge boson notation means that the gauge boson must be attached
anywhere in the left-hand side of the cut, i.e.

= + + +
tL

tR

+
tR

tL

.

(4.15)
Summing over all such possible attachments of the gauge boson leads to the following
tree-level scattering amplitude

M1(32;xaybz) =
√

2ytyµ
(
YµR

〈yz〉
[x2][32] − YtR

〈x3〉
[y2][z2] − YH

〈z3〉
[y2][x2]

)
Aba , (4.16)

where Aba = g′εba is a SU(2)L tensor arising from the contraction of the left-handed doublets.
We have computed this amplitude using BCFW recursion relation [45, 46] with a Risager
shift [47].7 In (4.16) we have eliminated the hypercharge of the left handed fermions in
favour of the Higgs hypercharge and right handed fermions hypercharge. The hypercharges
are given by (YµR , YtR , YH) = (−1, 2/3, 1/2).8 The tree-level form factor on the r.h.s. of the
cut is given by

FOeµL
(xaybz1l4k) = −2yt

〈14〉[4x]
〈yz〉

Bbakl , (4.17)

where the SU(2) tensor is Bbakl = −δbkδal . Next we plug (4.16) and (4.17) into (4.12), perform
the rotations (4.13),9 and after some simple algebra and elementary integrations we are led to

2
√

2yµg′〈12〉〈23〉εlk︸ ︷︷ ︸
dipole

−Ncy
2
t

(16π2)2 (YµR + 2YH) . (4.18)

We recognize the minimal form factor of the dipole (4.2).
7We emphasise that in (4.16) the particles are not outgoing, instead (4.16) describes the actual physical

process xaybz → 32. For crossing fermions we used the same rules as in [3], which can be derived by gluing
factorized amplitudes that exchange a fermion, see also appendix of [5].

8The hypercharge of the left-handed fermions has been expressed in terms of those of the right-handed
fermions and the Higgs YψR + Y

ψL
+ YH = 0.

9Note that for the choice of momenta assignments in (4.14) the 〈12〉[12] factor in (4.12) should now
be 〈32〉[32].
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Regarding the two-particle cuts, we will next argue that the second and third diagrams
of (4.11) vanish. For the sake of this argument, we will now consider all the particles of the
amplitude in the r.h.s. of the cut as outgoing. Eq. (4.4) involves a physical {in} → {out}
amplitude, but as customary in the scattering amplitudes literature, we will cross all particles
of the amplitude to be outgoing. Consider first the second diagram of (4.11): the only
potential contribution to such cut involves a tree-level amplitude with all negative helicity
(outgoing) particles, which vanishes in the SM because such maximal helicity violating
amplitude does not exist. Next we consider the third diagram in (4.11), which for our case is

3 x

y

2

(4.19)

To obtain the l.h.s. scattering amplitude, one must sum over all the diagrams with the
gauge boson attached anywhere on the particles to the left of the cut. If the gauge boson
is attached to the lepton fermion line, the internal Higgs line goes on shell and the diagram
factorizes into a one-loop dressing of the Higgs line and an all negative helicity tree-level
diagram that vanishes. If the gauge boson is attached elsewhere (i.e. Higgs lines or top
loop), the sum of the diagrams is equal to 〈3x〉f(2, y), with f a function that depends
only on the 2 and y spinors. This amplitude vanishes because it is not possible to build
an invariant with 〈2y〉 and [2y] which has zero helicity for the scalar (of momenta py) and
helicity h = −1 for the gauge boson (of momenta p2).

Therefore the contribution of OeµL to OeµDB proportional to Ncy
2
t comes only from the

three-particle cut (4.14) and is given by −Ncy
2
t (YµR + 2YH) /(16π2)2. This particular

contribution is actually zero for the SM hypercharges YµR + 2YH = 0. This is a surprising
accidental zero in the anomalous dimension matrix of the SM EFT operators. However,
below we will show that other mixings of the type ψ̄γψHDH 2-loop

−→ dipoles are not zero.
The computation of the mixings from OeµR to the dipoles is quite analogous: only

three-particle cuts matter (for exactly the same reasons as before). The only cut is given by

ytyt

ye

g′2

1

4

3x

y

z

e
µ
R

H

eeRLeL

B

(4.20)

Again, one must sum over all the diagrams where the gauge boson is attached anywhere on
the l.h.s., so that we are led to the following five-point amplitude

M2(1l2;xybz) =
√

2ytye
(
−YeR

〈yz〉
[12][x2] + YtR

〈1x〉
[y2][z2] − YH

〈zx〉
[12][y2]

)
Abl , (4.21)

while the form factor is

FOeµR
(xybz34k) = −2yt

〈34〉[4x]
〈yz〉

Bbk . (4.22)
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It is again straightforward to perform the rotation (4.13) and integrations in (4.12).10 The
SU(2) tensorsA and B for the CeµR contributions are given in the table of (4.24) below. We get

2
√

2yµg′〈12〉〈23〉εlk︸ ︷︷ ︸
dipole

(YeR − YH)y2
t ye/yµ . (4.23)

It is now straightforward to generalize our computation for the remaining mixings from
the operators OL, OL3 and OR to the dipoles. There are a few minimal changes that we
now specify. First, we need to determine the tensors A and B. We find:

A×B OL OL3 OR

ODB g′εba × (−δbkδal ) g′εba × (τβ)bk(τβ)al g′εbl × δbk
ODW gεba′(τα/2)a′a × (−δbkδal ) gεba′(τα/2)a′a × (τβ)bk(τβ)al gεbl′(τα/2)l′l × δbk

(4.24)
We remark that the A and B tensors for OL and OL3 should be used in (4.16) and (4.17),
while those of OR are used in (4.21) and (4.22). Next, we note that for the ODW computation,
apart from using the correct A tensors given in (4.24), we also set the hypercharges
YeR = YµR = YtR = 0, YH = 1 in the amplitudes (4.16), (4.21), and the SU(2) generators
are already included in A.

Finally, putting all the contributions together we get the following anomalous dimension
matrix (γCeµDB , γCeµDW )T = γD1 · (CeµL , CeµL3, C

eµ
R )T with

γD1 = Ncy
2
t

(16π2)2

 0 0 −3ye/(2yµ)

1 −1 ye/(2yµ)

 ≈ Ncy
2
t

(16π2)2

 0 0 0

1 −1 0

 , (4.25)

where in the last step we have neglected the terms of order O(ye/yµ) ≈ 0. The contributions
from CµeL , CµeL3 and CµeR into the dipoles can be easily obtained by exchanging µ↔ e in the
amplitudes and form factors. We find (γCµeDB , γCµeDW )T = γD2·(CµeL , CµeL3, C

µe
R )T , where γD2 is

γD2 = Ncy
2
t

(16π2)2

 0 0 −3/2

ye/yµ −ye/yµ 1/2

 ≈ Ncy
2
t

(16π2)2

 0 0 −3/2

0 0 1/2

 . (4.26)

We note that the contribution of OL and OL3 to ODB is proportional to 2YeR + YH = 0,
which seems to be an accident.

4.2.2 Higgs quartic λ contributions

Starting with the mixing from OL to the dipoles, we find two three-particle cuts:

λ

yµ

2

4 1

3x

y

z

e
µ
R

H

LeL

B

+ λ

yµ

2

4 1

3 x

y

z

e
µ
R

H

LeL

B

(4.27)

10In this case, given the momenta assignments in (4.20), we have to consider a factor 〈12〉[12].
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The amplitude on the first cut (left diagram) is given by

M3(24k;xaybzc) =
√

2λYH
( [x4]

[x2][42]C
ab
kc + [yz]

[y2][z2]C
ba
ck + [y4]

[y2][42]C
ba
kc + [xz]

[x2][z2]C
ab
ck

)
,

(4.28)
where the tensors are given by Cabkc = g′ · 2δakδbc. The form factor is

FOeµL
(xaybzc1l3) = yµ

(
〈13〉+ 2[xz]〈z1〉

[3x]

)
Dcbla + yµ

(
〈13〉+ 2[yz]〈z1〉

[3y]

)
Dcalb , (4.29)

where Dcbla = (−δcbδl
′
l )εl′a. We are introducing these tensors in anticipation of the generaliza-

tion to non-abelian SU(2) dipoles. It is now straightforward to compute the three-particle
cut. We have to compute 〈42〉[42]/((16π2)22!)

∫
dΩ3M3(24k;xaybzc)FOeµL (xaybzc1l3) where

note that the symmetry factor 1/2! arises because two identical Higgses cross the cut. After
performing the rotations in (4.13) and a few elementary integrals we are led to

cut 1 = 12
√

2λyµg′YH
(16π2)2

〈12〉
[32] s24

[
1 + 2s34

s32
+ 2s34

s32

(
s34 + s32
s32

)
ln
(

s34
s34 + s32

)]
εlk , (4.30)

where sij = (pi + pj)2. Regarding the second cut (right diagram of (4.27)), we need the
following amplitude

M4(34k;xaybzc) = λyµ
1

[x3]F
b
akc , (4.31)

where F bakc = 2(δbkεac + δbcεak), and the tree-level form factor

FOeµL
(xaybzc21l) = 2

√
2YµR

[xy][xz]〈yz〉
[12][x2] Gaclb + 2

√
2YH

[xy][xz]〈1x〉
[y2][z2] Gcabl , (4.32)

where Gaclb = g′(−δal δcb). Once more, plugging this amplitude and form factor into (4.12)
(there is no 1/2! symmetry factor to be included for this cut), performing the rotations and
a few simple integrals, we get

cut 2 = 12
√

2λyµg′YH
(16π2)2

〈12〉
[32] s34

[
1− 2s13

s32
+ 2s

2
13
s2

32
ln
(
s13 + s32
s13

)]
εlk . (4.33)

Each individual cut is non-local, i.e. non-polynomial in the momenta. However, the two-loop
contribution to the r.h.s. of (4.1) must be a local contact interaction, because the one-loop
mixing OL → ODB is zero. Indeed, after adding the two cuts

cut 1 + cut 2 = 2
√

2yµg′〈12〉〈23〉εlk︸ ︷︷ ︸
dipole

6λYH
(16π2)2 , (4.34)

we find that the logs nicely cancel. Therefore the contribution of OeµL to OeµDB proportional
to λ is given by 6λYH/(16π2)2.

Next we provide the details of the OeµR → O
eµ
DB mixing. We need to consider two

three-particle cuts:

λ

ye

2

4 3

1x

y

z

LeL

H

e
µ
R

B

+ λ

ye

2

4 3

1 x

y

z

LeL

H

e
µ
R

B

(4.35)
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The amplitude of the first cut is given by (4.28). The form factor is

FOeµR
(xaybzc1l3) = −ye

(
〈31〉+ 2[xz]〈z3〉

[1x]

)
Dcbla − ye

(
〈31〉+ 2[yz]〈z3〉

[1y]

)
Dcalb , (4.36)

where Dcbla = δcbδ
l′
l εl′a. For the second cut, the amplitude is

M5(1l4k;xybzc) = −λye
1

[1x]F
b
lkc , (4.37)

where F blkc = 2(δbkεlc + δbcεlk). Note that there is a sign in (4.37) w.r.t. (4.31) due to crossing;
this sign is crucial to get a local result, i.e. that the logs like (4.30) and (4.33) cancel. The
form factor is given by

FOeµR
(xybzc32) = 2

√
2YµR

[xz][xy]〈yz〉
[32][x2] Gcb + 2

√
2YH

[xz][xy]〈3x〉
[y2][z2] Gcb , (4.38)

where Gcb = g′δcb . Finally we generalize our computations for the rest of ψ̄γψHDH → dipole
mixings. It is now a simple matter to do so because the various computations differ only on
the C × D and F × G tensors, which are given in appendix C. All in all we find that the
quartic contribution to (γCeµDB , γCeµDW )T = γD3 · (CeµL , CeµL3, C

eµ
R )T is given by

γD3 = λ

(16π2)2

 3 3 3ye/yµ

1 3 ye/yµ

 ≈ λ

(16π2)2

 3 3 0

1 3 0

 , (4.39)

while the quartic contribution to (γCµeDB , γCµeDW )T = γD4 · (CµeL , CµeL3, C
µe
R )T is given by

γD4 = λ

(16π2)2

 3ye/yµ 3ye/yµ 3

ye/yµ 3ye/yµ 1

 ≈ λ

(16π2)2

 0 0 3

0 0 1

 . (4.40)

4.3 Finite one-loop contributions at the electroweak scale

Following the EFT approach we have to integrate out theW , Z, h and top at the electroweak
scale ∼ mW , and match with the Wilson coefficients of the EFT of photons and light fermions.
In this process extra finite contributions to dµe,eµ may be generated, as can be found in [22].
We are interested in one-loop corrections arising from CL,L3,R that can compete with our
two-loop calculation to the anomalous dimension of CDW,DB . These are one-loop diagrams
involving a W or a Z (the Higgs contributions are suppressed by extra Yukawa couplings)
in which CL,L3,R enters via the vertex corrections (2.8). From the W we get (neglecting
terms proportional to me)

∆deµ(mW ) = e

32π2
5
3C

eµ
L3
v2

Λ2 , (4.41)

while from the Z we get

∆deµ(mW ) = − e

16π2
1
3(CeµL + CeµL3)

[5
4 −

(1
4 − s

2
θW

)]
v2

Λ2 ,

∆dµe(mW ) = + e

16π2
1
3C

µe
R

[5
4 +

(1
4 − s

2
θW

)]
v2

Λ2 . (4.42)

Notice that since s2
θW
≈ 1/4, these contributions roughly cancel for BSM theories that

generate CeµL = CeµL3 6= 0, as occurs in certain models that we will discuss later.
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5 µ → eee in the SM EFT

The process µ→ eee arises from the Lagrangian terms

−4GF√
2

[
g1(µ̄ReL)(ēReL) + g2(µ̄LeR)(ēLeR) + g3(µ̄RγµeR)(ēRγµeR) + g4(µ̄LγµeL)(ēLγµeL)

+ g5(µ̄RγµeR)(ēLγµeL) + g6(µ̄LγµeL)(ēRγµeR)
]

+ h.c.,

apart from the dipoles dµe and deµ, that generate the branching ratio [42]

BR (µ→ eee) = 2
(
|g3|2 + |g4|2

)
+ |g5|2 + |g6|2 + 32e2

(
ln
(
m2
µ

m2
e

)
− 11

4

)
(|dµe|2 + |deµ|2)

+ 8eRe
(
d∗eµg

∗
6 + dµeg

∗
5

)
+ 16eRe

(
d∗eµg

∗
4 + dµeg

∗
3

)
+ 1

8
(
|g1|2 + |g2|2

)
.

(5.1)

The Wilson coefficients entering into the gi at the tree level are

g3 =− v2

2Λ2

(
CµeeeRR +2s2

θW
CµeR

)
, g4 =− v2

2Λ2

(
CµeeeLL −(1−2s2

θW
)(CµeL +CµeL3)

)
,

g5 =− v2

2Λ2

(
CµeeeRL −(1−2s2

θW
)CµeR

)
, g6 =− v2

2Λ2

(
CµeeeLR +2s2

θW
(CµeL +CµeL3)

)
,

(5.2)

where g1,2 are only induced by dimension-eight operators. Notice that in eq. (5.2) all the
Wilson coefficients are associated to operators with n = 4 and h = 0. Furthermore, we see
that CµeL,L3 only enter in the combination (CµeL + CµeL3), as they induce µ→ 3e through the
Zµe coupling of eq. (2.8).

At the loop level, other Wilson coefficients can mix into the ones in eq. (5.2). In
particular, four-fermion h = 0 interactions involving other families or the combination
(CµeL − C

µe
L3) can enter into the RGE of the Wilson coefficients of eq. (5.2) at the one-loop

level via gauge interactions, as they are also n = 4, h = 0 terms and the mixing is allowed
by the ∆n > |∆h| selection rule. The corresponding RGEs are given in the appendix A
and the bounds obtained will be discussed later in section 7.

On the other hand, CLuQe, CLeQu, associated to four-fermion |h| = 2 interactions, and
Cµey , related to an operator with n = 5 and |h| = 1, cannot mix at the one-loop level with
the Wilson coefficients of eq. (5.2), and can only enter into the µ→ 3e observable by mixing
into dµe,eµ as we explained for the µ→ eγ case.

6 µN → eN in the SM EFT

The conversion µ→ e in nuclei can arise from the four-fermion terms

−4GF√
2

[
guL,V (µ̄LγµeL)(ūγµu)+guR,V (µ̄RγµeR)(ūγµu)

+guL,S(µ̄LeR)(ūu)+guR,S(µ̄ReL)(ūu)+(u→ d)
]
+h.c. , (6.1)
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defined at the nuclei scale. Also the dipoles dµe and deµ can enter into this observable via
the photon splitting into quarks. The branching ratio is given by [48]

BR(µ→ e)N = 2G2
F

ωcapture

[∣∣∣Ddµe+g(p)
L,V V

(p)+g(n)
L,V V

(n)+g(p)
L,SS

(p)+g(n)
L,SS

(n)
∣∣∣2

+
∣∣∣Dd∗eµ+g(p)

R,V V
(p)+g(n)

R,V V
(n)+g(p)

R,SS
(p)+g(n)

R,SS
(n)
∣∣∣2] , (6.2)

where ωcapture is the nuclear capture rate of the muon and D, V (p,n), S(p,n) are overlap
integrals defined in [48]. We also define

g
(p)
L/R,V = 2guL/R,V + gdL/R,V , g

(n)
L/R,V = guL/R,V + 2gdL/R,V ,

g
(p)
L/R,S =

∑
q=u,d

G
(q,p)
S gqL/R,S , g

(n)
L/R,S =

∑
q=u,d

G
(q,n)
S gqL/R,S ,

(6.3)

with G(u,p)
S ' G(d,n)

S ' 5.1, G(d,p)
S ' G(u,n)

S ' 4.3. We have neglected the contribution from
the s quark. At tree level the Wilson coefficients entering into the effective couplings (6.1) are

guL,S = v2

2Λ2 yµC
µeuu
LeQu , guR,S = v2

2Λ2 yµC
eµuu
LeQu , gdL,S = v2

Λ2 yµC
µdde
LR , gdR,S = v2

Λ2 yµC
eddµ
LR ,

guL,V =− v2

4Λ2

[
(CµeuuLL +CµeuuLR )+2guZ (CµeL +CµeL3)

]
,

guR,V =− v2

4Λ2

[
(CµeuuRL +CµeuuRR )+2guZC

µe
R

]
, (6.4)

and similarly for the down-sector with u→ d, where guZ = (1
2−

4
3s

2
θW

) and gdZ = (−1
2 + 2

3s
2
θW

).
The loop mixing into the Wilson coefficients of eq. (6.4) follows the same pattern as

for the µ→ 3e case, as the main difference is the replacement ee→ uu, dd. The only new
ingredient is the presence of the |h| = 2 operators with Wilson coefficients CµeuuLeQu that
can receive one-loop corrections from CµeuuLuQe (and similarly for u→ d). These coefficients
however can also receive large corrections at the QCD scale [49] and will not be discussed
any further here.

7 Constraints from anomalous dimension mixings

In table 2 we present the bounds obtained when anomalous dimension mixing is considered.
In blue we show the bounds coming from one-loop mixings into the Wilson coefficients of
the observables, while in red are those in which the mixing is at the two-loop level. In
purple we show the bounds for those Wilson coefficients entering into the observables by a
two-step one-loop mixing, an effect of order (3.5). We remark that we are not including
here any finite loop contributions, that could be larger but are also very model dependent
as there can be cancellations depending on the details of the model (see next section for
particular cases).

Let us start considering the bounds obtained from the two-loop mixings into the dipole
transitions deµ,µe that is the novel part of this article. The most interesting bound is on
the combination (CµeL − C

µe
L3) which, as we explained above, has no serious constraint at
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the tree level. Our two-loop calculation of the mixing effect in eq. (4.25) and eq. (4.26)
shows that one can get a bound from µ→ eγ of order Λ/

√
CµeL − C

µe
L3 & 24TeV (assuming

a running from that scale). This is quite competitive as compared with bounds coming from
a one-loop mixing into (CµeL + CµeL3) where this latter is strongly constrained from µ→ 3e
and µN → eN . The two-loop mixing effect leads to a bound only a factor ∼ 2 smaller than
that coming from the one-loop mixings. This provides an interesting correlation between
these 3 observables, in the sense that if one of them is measured in the near future, the
other 2 should also be experimentally accessible. On the other hand, the bound derived
on (CµeL + CµeL3) from the two-loop mixing into µ→ eγ is much weaker (in part, because it
is only generated from two loops involving the Higgs, eq. (4.39) and eq. (4.40)) than that
from µ → 3e or µN → eN (see table 2). This makes it unfeasible to see this particular
BSM effect in µ→ eγ.

The other interesting bound from a two-loop mixing into µ → eγ is for Cµey . One
gets Λ/

√
Cµey & 4TeV that clearly overcomes the tree-level bound from h → µe. In

fact, this result is already telling us that µ → eγ constrains this branching ratio to be
BR(h→ µe) . 2 · 10−8, making it inaccessible at the LHC or even at future colliders.11

Let us now move to one-loop mixing effects. Although this analysis has been previously
done in the literature [1, 22–25], we will provide here an understanding of the quality of
the bounds from selection rules of operator mixings [10, 11]. In particular, the only mixing
at the one-loop level into the dipoles (n = 4, |h| = 2 operators) is CµettLuQe whose associated
operator has n = 4, |h| = 2. This operator can be induced from leptoquarks. One gets a
quite strong bound, Λ/

√
CµettLuQe & 304TeV. Due to the presence of the Yukawa coupling yt

in the RGE (see eq. (A.4)) these effects are much smaller for other families. By mixing into
this Wilson coefficient CµettLuQe, other four-fermion operators can enter into µ→ eγ by a two
step one-loop mixing, and get a bound only slightly weaker (see purple bounds in table 2).
In this mixing the n = 4, h = 0 operators need to involve a yt Yukawa coupling (as dictated
by the only exception to the selection rule ∆n > |∆h| [10, 11]), and as a consequence the
mixing is only relevant for Wilson coefficients involving the top.

Finally, other bounds on µeff operators, where f can be any SM fermion of the 2nd
and 3rd family, can arise by mixing to µeee, µeuu, µedd at the one-loop level. This can
occur via gauge interactions as all these operators are n = 4, h = 0. As seen in table 2 (for
the 3rd family, but the same applies for the 2nd), the bounds range between 10–100TeV,
depending on the hypercharges of the states.

8 Impact on UV models

As an application of our EFT analysis we would like to consider the impact of the discussed
one- and two-loop anomalous dimensions for concrete BSM scenarios. In particular we will
consider models with extra heavy fermions and BSM that violate lepton universality.

11Bounds on Cµlle,µqqeLR can also be obtained by a two-loop mixing into µ→ eγ, but the contributions are
proportional to yl,d, which leads to weak constraints.
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8.1 Heavy vector-like fermions

Let us consider a heavy vector-like fermion with mass M that can either be a singlet (S), a
hypercharged YE = −1 state (E), or a SU(2)L doublet (D). We assume that they couple to
the SM by mixing with the SM fermions:

∆LS = (y(1)
S L̄

(1)
L + y

(2)
S L̄

(2)
L )SRiτ2H

∗ + h.c. ,

∆LE = (y(1)
E L̄

(1)
L + y

(2)
E L̄

(2)
L )ERH + h.c. ,

∆LD = (y∗(1)
D ē

(1)
R + y

∗(2)
D ē

(2)
R )DLH

† + h.c. . (8.1)

We would like to calculate their contributions to µ → eγ. Following the EFT approach,
we must first integrate out these vector-like states at the scale Λ = M and match these
contributions with the Wilson coefficients of (2.2)–(2.5). At tree level, we find

CeµL (M) = −CeµL3(M) = +1
4y

(1)
S y

∗(2)
S , for S ,

CeµL (M) = CeµL3(M) = −1
4y

(1)
E y

∗(2)
E , for E ,

CµeR (M) = −1
2y

(1)
D y

∗(2)
D , for D , (8.2)

and CµeL,R,L3 = (CeµL,R,L3)∗, as well as

Ceµy (M) = 0 , Cµey (M) = 0 , for S ,

Ceµy (M) = −y(1)
E y

∗(2)
E , Cµey (M) = −(ye/yµ)y(2)

E y
∗(1)
E ≈ 0 , for E ,

Cµey (M) = −y(1)
D y

∗(2)
D , Ceµy (M) = −(ye/yµ)y(2)

D y
∗(1)
D ≈ 0 , for D , (8.3)

and the Hermitian conjugates (Cy)∗, which are obtained by complex conjugation of (8.3).
At the one-loop order, these heavy states also contribute to the dipole Wilson coefficients

of eq. (3.3). These can be extracted from the contributions to (g − 2) [50]. We find

CeµDW (M)− CeµDB(M) = 1
6
y

(1)
S y

∗(2)
S

16π2 , for S ,

CeµDW (M)− CeµDB(M) = 1
24
y

(1)
E y

∗(2)
E

16π2 , for E ,

CµeDW (M)− CµeDB(M) = − 1
24
y

(1)
D y

∗(2)
D

16π2 , for D . (8.4)

The coefficients CµeDW,DB for S,E, and CeµDW,DB for D are both O(ye/yµ) ≈ 0.
Next, we have to evolve these Wilson coefficients from M to the electroweak scale.

In this RG evolution the Wilson coefficients (8.2) and (8.3) mix at the two-loop level
with Ceµ,µeDW,DB, in the manner explained in the previous sections. At the electroweak scale,
we must now match the theory to the EFT with only photons and light fermions. At
the one-loop level, the dipoles can pick up finite terms ∆deµ(mW ), which are given by
using (4.41)–(4.42) and the tree-level matching coefficients in (8.2). For instance, we
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obtain ∆deµ(mW ) = −y
(1)
S y

∗(2)
S

16π2
5
12 for S. All in all we find that the dipole coefficients are

approximately given by

deµ(mW )' e

2
v2

M2

[
∆deµ(mW )+(CeµDW (M)−CeµDB(M))

(
1−Ncy

2
t

ln(M/mW )
16π2

)

+
(

(−Ncy
2
t +2λ)CeµL (M)+Ncy

2
tC

eµ
L3(M)− 5

8g
′2Ceµy (M)

) ln(M/mW )
(16π2)2

]
,

dµe(mW )' e

2
v2

M2

[
∆dµe(mW )+(CµeDW (M)−CµeDB(M))

(
1−Ncy

2
t

ln(M/mW )
16π2

)

+
(

(−2Ncy
2
t +2λ)CµeR (M)− 5

8g
′2Cµey (M)

) ln(M/mW )
(16π2)2

]
. (8.5)

We should still run these coefficients from mW to mµ, but we will not include these effects
here as they can be found elsewhere.

Eq. (8.5) shows that the two-loop RG running can be sizable. For instance, for the
singlet model S, setting the Yukawa couplings of the heavy fermions to one y(i)

S = 1, the
current bound on µ→ eγ implies M & 43 TeV. In this case the RG contribution accounts
for approximately the 20% of the total magnitude of deµ. For the doublet D model the RG
contribution has a slightly larger impact. Setting again the heavy Yukawas y(i)

D = 1, we find
that M & 54 TeV, with the RG contribution being a 25% of the total magnitude of dµe. In
general, for exponentially larger values of M the RG contribution would dominate, but for
relatively low values of M the importance of the RG contribution is model dependent.

8.2 BSM with lepton universality violations

BSM sectors that couple only to the muons of the SM have been recently proposed to
explain some experimental discrepancies in the muon sector. A particular possibility is the
operator

1
M2 L̄

(2)
L τaγµL

(2)
L Q̄

(i)
L τ

aγµQ
(i)
L , (8.6)

which could arise from integrating a heavy vector boson that only couples to muons and to
the i family quarks. In the presence of this lepton universality breaking from some BSM,
lepton number is not anymore automatically preserved since the diagonalization of the
SM Yukawa matrix ye leads, in the presence of eq. (8.6), to muon number violations. In
particular, the operator OµettLL3 is induced with

CµettLL3
Λ2 =

U21
LL
U † i3QL

U i3QL
M2 , (8.7)

where ULL,QL is the left-handed rotation that diagonalizes ye and yu. If ye,u are roughly
symmetric, we can estimate U21

LL
∼
√
me/mµ and UQL ∼ VCKM. Considering the constraint

on the Wilson coefficient CµettLL3 from µ→ eγ, we obtain the bound

M & 0.8 TeV , for i = 2 , M & 60 TeV , for i = 3 . (8.8)

– 21 –



J
H
E
P
0
6
(
2
0
2
2
)
1
2
6

On the other hand, the operator (8.6) also induces a contribution to b → sµµ of order
CµµbsLL3 /Λ2 = U † i2QL

U i3QL/M
2 that is bounded from (8.8) to be

CµµbsLL3
Λ2 .

1
(4 TeV)2 , for i = 2 , CµµbsLL3

Λ2 .
1

(290 TeV)2 , for i = 3 . (8.9)

According to ref. [51], we need CµµbsLL3 /Λ2 ∼ 1/(56 TeV)2 in order to explain the experimental
discrepancy in B → Kµµ. From eq. (8.9) we see that µ → eγ allows for the possibility
i = 2 but not i = 3 (unless of course some of the above assumptions are relaxed).

9 Conclusions

In this work we have analyzed the impact of Lepton Flavor Violation processes with
∆Lµ = ∆Le = 1 on the SM EFT. The most stringent constraints arise from µ → eγ,
µ→ eee and the transition rate µN → eN , where a rich program of measurements is planned
in the upcoming decade as summarized in table 1. Given these spectacular prospects, our
main goal here has been to understand at which loop order the different dimension-six
operators of the SM EFT mix into these LFV observables. In particular, we have argued
that the current and future precision reach of µ→ eγ required the knowledge of operator
mixings at the two-loop level.

We have shown that due to selection rules only one type of operators enter at the
one-loop level into µ→ eγ, and only two other types are doing it at the two-loop order.12

This is sketched in figure 1. The two operators mixing into µ→ eγ at the two-loop order
are |H|2Hψψ and H†DµHψ̄γ

µψ which at tree level induce LFV h, Z and W couplings.
While the mixing from |H|2Hψψ was already calculated in [4, 44], we have presented here
the calculation of the H†DµHψ̄γ

µψ mixing. In particular, we have calculated the two-loop
anomalous dimensions of Cµe,eµDW,DB arising from CµeL,L3,R. Our task was greatly simplified by
using on-shell tools. In section 4 we provided a lightning review of the on-shell methods that
we used. Then, we explained in detail the calculation of the two-loop mixings, showing how
this simply reduces to a product of tree-level amplitudes integrated over some phase space.
We have also analyzed the operator mixing for the µ → eee and µN → eN observables,
although in these cases we have shown that a one-loop analysis was enough.

An interesting application of our analysis has been to obtain a bound on (CµeL − C
µe
L3)

and Cµe,eµy from µ→ eγ that is competitive with bounds coming from other observables. In
particular we have shown that the bound on Cµe,eµy constrains BR(h→ µe) to be too small
to be detected in future colliders. This interplay between the different bounds arising from
the different LFV precision measurements was discussed in section 7, and the actual bounds
were shown in table 2 where we indicated the loop order of the mixing of each operator
into the process of interest.

Finally, we have shown a few illustrative examples of how to use our EFT analysis
to understand the different BSM effects inducing µ→ eγ. In special, we have considered

12There are also operators of type ψ̄2ψ2 that enter at the two-loop level but their effects are suppressed
by small Yukawa couplings.
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models with heavy vector-like fermions and compared the different contributions coming
from EFT matching at Λ and mW with those from running.

Our main message here has been to show that the next generation of LFV precision
measurements will require the knowledge of renormalization effects at higher orders, where on-
shell methods have been shown to be extremely suitable not only for performing calculations,
but also for understanding the patterns behind them.
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A One-loop anomalous dimensions relevant for LFV

In this appendix we present the one-loop anomalous dimensions of the Wilson coefficients
that enter at tree level into the observables µ→ eγ, µ→ eee and µN → eN . These results
can be found, for example, at [43, 52]. We are not interested in self-renormalization but
only in mixing effects coming from other Wilson coefficients not present at that level. This
gives us the leading order at which the coefficients enter into the LFV processes.

A.1 µ → eγ

The Wilson coefficient entering at tree level into µ→ eγ is the combination (CDW − CDB).
This can only be renormalized at the one-loop level by operators with |h| = 2. In particular,
the orthogonal combination (CDW + CDB) can mix into (CDW − CDB). Using

d

d lnµCDW = 1
16π2

[(
g2
(
−11

12 + 1
4 t

2
θW

)
+Ncy

2
t

)
CDW −

1
2g

2tθWCDB

]
, (A.1)

d

d lnµCDB = 1
16π2

[
−3

2g
2tθWCDW +

(
g2
(
−9

4 + 151
12 t

2
θW

)
+Ncy

2
t

)
CDB

]
, (A.2)

we derive this mixing to be

d

d lnµ(CDW − CDB) = g2

16π2

[2
3 + 1

2 tθW −
37
6 t

2
θW

]
(CDW + CDB) . (A.3)

The other |h| = 2 operators are eq. (2.5). Among them, however, OLeQu leads to an
amplitude A ∼ 〈le〉〈qu〉 antisymmetric under l↔ e, so it cannot renormalize eq. (4.2) and
eq. (4.3) that are symmetric under this exchange [5]. Therefore only OLuQe gives a nonzero
contribution to the dipoles at the one-loop level (derived in detail in section 4.1):

d

d lnµ

(
CDB
CDW

)
= yuNc

16π2

(
5/12
−1/4

)
CLuQe . (A.4)
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There are several Wilson coefficients of eq. (2.5) however that can enter into the renormal-
ization of CLuQe. Knowing these effects allows us to understand which Wilson coefficients
can renormalize the dipoles at the two-loop level with a double log. We have

d

d lnµC
µeqq
LuQe = −g2

16π2

(
3 + 5t2θW

)
CµeqqLeQu

+ 4yu
16π2

(
CµeuuRR + ye

yµ
CµeqqLL − 3 ye

yµ
CµeqqLL3 + ye

yµ
CµeuuLR + CµeqqRL

)
, (A.5)

d

d lnµC
eµqq
LuQe = −g2

16π2

(
3 + 5t2θW

)
CeµqqLeQu

+ 4yu
16π2

(
ye
yµ
CeµuuRR + CeµqqLL − 3CeµqqLL3 + CeµuuLR + ye

yµ
CeµqqRL

)
. (A.6)

The first terms of both equations correspond to a |h| = 2 operator, while the other terms
correspond to h = 0 operators where the helicity selection rule ∆n > |∆h| is violated due
to the Higgs interchange that leads to a contribution ∝ yuye [10, 11].

A.2 µ → eee

The Wilson coefficients CµeL,L3 enter in eq. (5.2) but only in the combination CµeL +CµeL3. For
this reason it is convenient to define

CL± = CL ± CL3 , (A.7)

as we are only interested in the mixing from CL− into CL+. From

d

d lnµC
µe
L = g2

16π2
4
3 t

2
θW
Y 2
HC

µe
L ,

d

d lnµC
µe
L3 = − g2

16π2
17
3 C

µe
L3 , (A.8)

we obtain the mixing

d

d lnµCL+ = g2

16π2

[17
6 + 2

3 t
2
θW
Y 2
H

]
CL− , (A.9)

where we neglected self-renormalization.
For the four-fermion µeee Wilson coefficients entering into eq. (5.2), we have

d

d lnµC
µeee
LL = g2

16π2

{
4
3YLLt

2
θW

[
Nc

(
2YQLC

µeqq
LL + YuRC

µeuu
LR + YdRC

µedd
LR

)
+ YHC

µe
L

]

+ 2NcC
µeqq
LL3

3 + CµeL3
3

}
,

d

d lnµC
µeee
RR = g2

16π2
4
3YeRt

2
θW

[
Nc

(
2YQLC

µeqq
RL + YuRC

µeuu
RR + YdRC

µedd
RR

) ]
,

d

d lnµC
µeee
LR = g2

16π2
4
3YeRt

2
θW

[
Nc

(
2YQLC

µeqq
LL + YuRC

µeuu
LR + YdRC

µedd
LR

)
+ YHC

µe
L

]
,

d

d lnµC
µeee
RL = g2

16π2
4
3YLLt

2
θW

[
Nc

(
2YQLC

µeqq
RL + YuRC

µeuu
RR + YdRC

µedd
RR

) ]
, (A.10)

– 24 –



J
H
E
P
0
6
(
2
0
2
2
)
1
2
6

where we are interested in the case where q, u, d corresponds to the 2nd and 3rd family,
since for the 1st family these Wilsons are already highly constrained at tree level by
µN → eN . Also we are interested in the projection CL → CL−/2 and CL3 → −CL−/2. The
renormalization from CµeττLL,LL3,RR,LR,RL can be obtained from eq. (A.10) by the replacement
q, d→ τ , Nc → 1, YQL → YLL , YdR → YeR , and putting to zero the contribution from u.

A.3 µN → eN

The relevant anomalous dimensions of the Wilson coefficients CµeuuLL,RR,LR,RL of eq. (6.4) can
be obtained from those in eq. (A.10) by the replacements YLL → YQL and YeR → YuR .

B Conventions and minimal form factors

For the computations in section 4, we work with 2-component Weyl spinors, and take all
fermion fields to be right-handed. Then the SM dimension-four Lagrangian is

L4 = (DµH†)(DµH)− λ(|H|2 − v2/2)2

+
∑

ψ=Q,L,u,d,e
ψ†σµDµψ − yu δji H

†
j Q

i u− yd εij Hj Qi d− ye εij Hj Li e , (B.1)

where i, j = 1, 2 upper (lower) indices of the (anti-)fundamental representation of SU(2). All
other indices like Lorentz, families etc. are contracted properly but not shown. We define
σµ = (1, ~σ) and σ̄µ = (1,−~σ). The covariant derivatives are Dµ = ∂µ−ig(τα/2)Aαµ−ig′Y Bµ,
where τα are Pauli matrices and Y is the hypercharge.

Next we report the minimal form factors in both 4-component Dirac and 2-component
Weyl fermions. Remember that they are Fourier transforms of position-space form factors
evaluated at zero momentum, as defined in the text. Starting with the dipole operators:

FOeµDB
= 〈1−Lk2−e 3Hm4−B|L

(1)
L,iΣµνe

(2)
R HjδijBµν |0〉 = 〈1−k 2−3m4−|EiσµνµHjεijBµν |0〉

= 2
√

2〈14〉〈42〉εkm , (B.2)

FOeµDW
= 〈1−Lk2−e 3Hm4−Wβ

|L(1)
L,i (τα)ij Σµνe

(2)
R HjWα

µν |0〉

= 〈1−k 2−3m4−β |E
iεii′(τα)i′j σµνµHjWα

µν |0〉

= 2
√

2〈14〉〈42〉εkk′(τβ)k′m , (B.3)

where Σµν = i
2 [γµ, γν ] such that (ψLΣµνψR)† = ψRΣµνψL. Similarly in 2-component Weyl

basis we define σµν = i
2(σµσν − σνσµ). The relation between conjugated fermion doublets

in Dirac and Weyl is Li = C · εij · L∗L,j where C is acting on Lorentz indices and ε = iτ2
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acting on SU(2) indices. Next, the current-current operators:

FOeµL
= 〈1−Lk2+

Ll
3Hm4∗Hn |L

(1)
L γµL

(2)
L H†i

←→
∂µH|0〉= 〈2+

l 1−k 3m4∗n|−M †σµEH†i
←→
∂µH|0〉

= 2〈13〉[32](−δkl δnm) , (B.4)

FOeµL3
= 〈1−Lk2+

Ll
3Hm4∗Hn |L

(1)
L γµταL

(2)
L H†i

←→
∂aµH|0〉= 〈2+

l 1−k 3m4∗n|−M †σµ(−τα)EH†i
←→
∂aµH|0〉

= 2〈13〉[32](τα)kl (τα)nm , (B.5)

FOeµR
= 〈1+

e 2−e 3Hm4∗Hn |e
(1)
R γµe

(2)
R H†i

←→
∂µH|0〉= 〈1+2−3m4∗n|e†σµµH†i

←→
∂µH|0〉

= 2[13]〈32〉δnm , (B.6)

where to distinguish the lepton flavor, we used letters E and e for electron doublet and
singlet respectively, and M and µ for muon.

C Tensors

Here we give the SU(2) tensors used in the main text to compute the anomalous dimensions:

Cabkc ×Dcbla OL OL3

ODB g′ · 2δakδbc × (−δcbδl
′
l )εl′a g′ · 2δakδbc × (τβ)cb(τβ)l′l εl′a

ODW g · 2(τα/2)akδbc × (−δcbδl
′
l )εl′a g · 2(τα/2)akδbc × (τβ)cb(τβ)l′l εl′a

(C.1)

F bakc × Gcabl OL OL3

ODB 2(δbkεac + δbcεak)× g′(−δcbδal ) 2(δbkεac + δbcεak)× g′(τβ)cb(τβ)al
ODW 2(δbkεac + δbcεak)× g (−(τα/2)cbδal ) 2(δbkεac + δbcεak)× g(τα/2)b′b (τβ)cb′(τβ)al

(C.2)
while for the OR operator:

Cabkc ×Dcbla OR F blkc × Gcb OR

ODB g′ · 2δakδbc × δcbδl
′
l εl′a ODB 2(δbkεlc + δbcεlk)× g′δcb

ODW g · 2(τα/2)akδbc × δcbδl
′
l εl′a ODW 2(δbkεlc + δbcεlk)× g(τα/2)cb

(C.3)
We emphasize that for OL and OL3 these tensors should be used in (4.28), (4.29)

and (4.31), (4.32), while for OR they should be used in (4.28), (4.36) and (4.37), (4.38).
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