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1 Introduction

In this paper we study efficient computational methods for spinorial and tensorial fields
in pure de Sitter. The motivation for our work is based on two phenomenological facts:
electrons exist, and space expands. From these simple remarks, comes a compelling incentive
to study the behaviour of spin half fields in de Sitter spacetime, dSd+1. During inflation, and
our current era of dark-energy domination, the large scale structure of our universe seems
to be accurately described, to leading approximation, by a conformally flat manifold with
positive cosmological constant [1–3]. It was recognised to be computationally convenient
to treat field theory from the perspective of an ambient space with an embedded dS slice
since the earliest work on the subject by Dirac [4, 5]. Lifting fields to a higher dimensional
space, see figure 1, to linearise the action of the isometry group and manifest the maximal
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X+X−

Figure 1. EAdS2 (blue) and dS2 (red) realised as Lorentz-invariant subset of R1,2, here represented
with Lightcone axes X± = X0 ±X2.

symmetry, has been a technique developed thoroughly in the context of flat-space with
conformal symmetry, as well as in euclidean AdS [6–9]. This formulation fostered new
results in holography and greatly improved our conceptual understanding of QFT in curved
spacetime [10, 11]. Well-honed methods have appeared to deal with arbitrary tensor
representations [12, 13], as well as spinors in odd dimension [14]. Most importantly, it has
become a commonplace tool to evaluate Witten diagrams in AdSd+1.

The ambient space picture arises naturally, given the realisation that the isometry group
of dSd+1 is SO(1, d+ 1). Consider the space R1,d+1, and its Lorentz-invariant subspaces.
There are three classes of submanifold one can consider, defined by points PA ∈ R1,d+1

with PAPA = −1, 0,+1, corresponding respectively to EAdSd+1, the projective lightcone
(i.e. the embedding of CFTd), and dSd+1. Each class of submanifold inherits a group
action from the higher dimensional space, defined by the push forward of the isometry
generators of SO(1, d+ 1). This situation is visually appealing, as well as highly practical.
The benefits are numerous: for the most part one can avoid specific choices of a coordinate
chart and differential operations become easy to write down, manipulate, and compute. In
addition, the notion of the boundary limit appears naturally by identifying points at the
boundary of these spaces with points on the projective lightcone. One considers points on
the submanifold XAXA = 1, parameterised in terms of null vectors, XA = λPA + 1

λ . . .

with PAPA = 0. The limit λ→∞ gives insertions on the lightcone, which are identified
with operators in a CFTd. These operators are naturally classified by their representation
of SO(1, d + 1), and therefore specified by a complex weight ∆, and a representation of
SO(d). Examples of scalar operators of this type are discussed in [15, 16].

The embedding picture for dS has received less attention. However, it has surfaced in
calculations for bosonic quantities [17–20], for both integer and half integer spin in the specific
context of dS4 [21], and appeared as part of a wider effort to understand massless fields of
general spin in maximally symmetric spacetimes [22–25]. It has also been used to consider
the general properties of interacting two point functions in [26, 27]. The goal of this paper is
foremost to give a self-contained, dS oriented, entry point to these methods, with view toward
future applications. Secondly we fill a gap in the literature, by constructing the ambient
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space approach for massive spinors in general dimensions and deriving their Wightman
function. This approach easily generalises to the equivalent construction in (E)AdS, which
has only been performed in odd dimension in the embedding [14], or in a specific coordinate
system [28]. We thus provide a convenient calculational toolkit for any integer or half
integer spin, while also contributing to the literature on fermionic fields in de Sitter.

The topic of the propagator of a spin 1
2 field in dS has received some attention previously.

After an initial attempt within the ambient space formalism by Dirac [4], the calculation
of the propagator for Dirac fermions in de Sitter has mostly been attempted using mode
decomposition in the tetrad formalism. Work on the subject has been reported in [29–32],
with which our results might be compared. Relevant calculations for spinors on euclidean
maximally symmetric surfaces has been considered in [33, 34] and spin-half fields in dS
have also appeared in the context of supersymmetric theories in [35]. Overall, the difference
with (E)AdS [28, 36] and CFT [7, 37], is striking. We present a thorough treatment of this
subject as one of our goals. The main result of our work is a concise expression for the
Wightman function of Dirac spinors in dSd+1. We also give coordinate expressions for this
2-point function in planar and global coordinate systems.

The derivation of the Wightman function is required for further applications to interact-
ing field theory. Crucially, they are used in the context of in-in formalism for perturbation
theory [38–40]. Our computations are then of clear interest, given the recent inflation of
published work studying QFT in dS. Previous work [19, 41–52] focused on scalars, offers
interesting insight relating QFT in dS and EAdS at the perturbative level. Meanwhile,
numerous works have exploited the euclidean conformal symmetry of dS [53–62], these are
also mostly concerned with bosonic quantities. It is our hope that the computation we
present will help to extend this effort to fermionic fields, and deepen our understanding of
QFT in dS in general.

Outline. The plan of the paper is the following. We first review the construction of the
bosonic 2-point function using the ambient space formalism in section 2.3, analogously to
that of scalars [1] which is available in eq. (2.14). This allows us to discuss the different
charts one can use to cover the slice in eqs. (2.2) and (2.3), as well as the analytical
properties of the Wightman functions and their interpretation in perturbation theory in
section 2.4, and the late-time limit of operator insertions in section 2.5. In this construction
we transpose the work of [9] for spinning operators to the dS slice, with the extension to
the Wightman function for the symmetric traceless tensor presented in appendix C. We
then consider the uplift of Dirac fermions in section 2.3. We construct these using a method
inspired by [6, 63], matching the transformation law of spinors in the ambient space and
on the slice which are written explicitly in eqs. (3.21) to (3.24). We find how to constrain
ambient spinors to obtain irreducible dS spinors, and showcase a formalism unifying this
analysis in both even and odd dimensions with the final constraint given by eq. (3.25). We
then perform our main computation, the Wightman function of Dirac spinors, by uplifting
the Dirac equation and solving it in eqs. (3.52) and (3.53). Explicit expressions are given
in this section for planar coordinates, and in appendix D for global coordinates. We close
with a discussion of our results in section 4 and future directions. The appendices contain

– 3 –



J
H
E
P
0
6
(
2
0
2
2
)
1
2
3

the aforementioned elements as well as a summary of our conventions in appendix A and a
basic review of representation theoretic notions relevant to our work in appendix B.

2 Embedding methods for tensor fields

We start by reviewing the basic tools of the ambient space, developed thoroughly for
EAdSd+1 symmetric traceless tensors by [9], adapted to dSd+1. Our aim is to set the logic
and notation, and give a survey of the existing literature. The discussion of local coordinates
and the scalar propagator is a classic topic, see for example [1, 2]. The analytic structure of
the Wightman function and its link to the in-in formalism is explained in its full generality
and details in [38].

2.1 Local coordinates on the dS slice

Consider dSd+1 as a submanifold of R1,d+1.1 It corresponds to points XA satisfying

X2 = −X+X− +XaXa = X2
d+1 +XµXµ = −X2

0 +XiXi = 1 . (2.1)

All our conventions can be found in appendix A. In what follows X will generically denote
an ambient space vector field satisfying such a constraint. We obtain a dS-foliation of the
spacelike region of the ambient space by multiplying XA by a real number ` > 0, however
we work exclusively in the regime with fixed unit de Sitter length, equivalent to ` = 1. An
example of a parametrisation of the de Sitter slice is given by conformally flat (planar)
coordinates, the analogue of Poincaré coordinates in AdS

XA = (X+, X−, Xa) = 1
η

(1, x2 − η2, xa) . (2.2)

Note xa ∈ R and we choose η < 0, where η increases from −∞ towards 0+. This patch
covers the causal future of an observer sitting at the origin in the far past, and therefore
includes the late time slice. These coordinates are the simplest one can use, and usually
most convenient for explicit calculations. Another interesting choice are global coordinates

XA = (X0, X i) = (sinh t, ωi cosh t) . (2.3)

Where ωi parameterise a spacelike Sd and ωiωi = 1. These coordinates cover the entire slice.
The formalism of this paper avoids the necessity of choosing a coordinate patch.

However, we make use of the planar patch to make our construction explicit and prove some
coordinate independent results in section 3, while appendix D contains the specialisation of
our methods to global coordinates.

More generally, local coordinates xµ chart coordinate patches on the slice, providing a
map XA(xµ). From this map, we can unfold the machinery of differential geometry of a

1We use indices A,B, . . . = 0, 1, . . . d + 1 or A,B, . . . = +,−, 1, . . . d for light-cone coordinates. Lower
case letters specify the ranges a, b, . . . = 1, 2, . . . d for latin characters at the beginning of the alphabet,
i, j, . . . = 1, 2, . . . d+1 for those in the middle and, µ, ν, . . . = 0, 1, . . . d as usual for greek indices. Contractions
between indices will be performed with the Minkowski metric (ηµ,ν , ηAB) or the euclidean metric (δab,δij).
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submanifold, albeit greatly simplified since the ambient space is flat [64]. One can define
frame-fields eµA ≡ ∂XA

∂xµ , which defines the push-forward of ambient tensors to the slice. For
instance, we can recover the planar metric

ds2 = −dη
2 + dxadx

a

η2 = dxµdx
µ

x2
0

. (2.4)

Note that, to simplify notation, the lower case indices of the slice are all SO(1, d) tangent
space indices, and are therefore contracted with the Minkowski metric. To recover the
spacetime quantities these should be contracted with the ordinary tetrad (as opposed
to the “frame field” we have just defined). Though the use of specific coordinates is
practically necessary to perform computations intrinsically, the main advantage of the
embedding picture is that for almost all computations, we do not need to choose a specific
parameterisation. One can work only with embedding objects, which are in one-to-one
correspondence with local objects on the slice.

2.2 Tensor fields and differential operators

We illustrate the construction using tensor fields. First, notice that eµAXA = 0, hence all
longitudinal components of a tensor have zero projection on the dS slice. This redundancy
can be fixed by considering only transverse tensors, effectively, we choose a gauge-fixing.
From this, we define the uplift of tensorial operators on dS as transverse tensor fields in the
ambient space.

For example, a Symmetric Traceless Tensor (STT) operator TA1...Al(X) in the ambient
space is a dS tensor of same rank and symmetry properties, provided

XAiTA1...Al(X) = 0 .

The uplift of the induced metric is important, as

GAB = ηAB −
XAXB

X2 = ηAB −XAXB , (2.5)

defines a projector to the slice. dS objects are formed by contracting indices with GAB.
Note the change of sign in eq. (2.5) with respect to the result in EAdS [9]. Contracting
all indices with GAB ensures that we only evaluate fields on the slice on which they are
defined. For example the covariant derivative

∇A = GA
B ∂

∂XB
= ∂A −XAX

B∂B , (2.6)

transforms only between objects defined in dS. It acts on a generic tensor field TA... as

∇ATB... = GA
A′GB

B′ . . .
∂TB′...
∂XA′

. (2.7)

In practice, indices can and should be avoided when possible, and an index-free formalism
is favoured here. This is done by considering STT operators as scalar, homogeneous
polynomials in a dummy transverse and null vector variable WA. i.e. given TA1...Al(X), we

– 5 –



J
H
E
P
0
6
(
2
0
2
2
)
1
2
3

take T (X,W ) ≡WA1 . . .WAlTA1...Al(X), with polarisation vector WA such that W ·X =
W 2 = 0.2 The first condition ensures that WA is a dS vector, fixing the redundancy; the
second simplifies all traces. One can check that together the conditions on WA imply
that for any choice of parameterisation xµ, WA ≡ wµeµA, with wµwνgµν = 0. In a sense,
polarisation takes care of the projection, if tµ1...µl is the push forward of TA1...Al , then
T (X(x),W (x,w)) = t(x,w). Having contracted all indices, it can be necessary to free them
once again. This is done by using a vector differential operator of homogeneous degree −1 in
W , whose image only contains STT tensors, and preserves the constraint X ·W = W 2 = 0.
These choices uniquely fix it to be the uplift of the Todorov operator, KA defined by

KA ≡
(
d− 1

2 +W · ∂

∂W

)(
∂

∂WA
−XAX ·

∂

∂W

)
− WA

2

(
∂2

∂W · ∂W
−
(
X · ∂

∂W

)2)
.

(2.8)
The Todorov operator has been used in the CFT literature [7], and also appears in conformal
geometry as the Thomas operator [66].3 In the index-free notation, the covariant derivative
is slightly modified, as an explicit computation shows

∇AT (X,W ) =
(

∂

∂XA
−XAX ·

∂

∂X
−WAX ·

∂

∂W

)
T (X,W ) . (2.9)

2.3 Propagators

We now consider the 2-point function of free bulk scalar fields φ, Π(X,Y ) = 〈φ(X)φ(Y )〉
with respect to a de Sitter invariant vacuum state. We choose the Bunch-Davies vacuum
through appropriate boundary conditions. We derive the Wightman function, which obeys
the homogeneous equations of motion. Lorentz invariance of the ambient space forces this
function to depend only on the geodesic distance between points u = (X − Y )2. A slightly
more convenient choice of variable is the de Sitter invariant distance z = 1− u

4 = 1
2(1+X ·Y ).

Therefore z = 1, z > 1, z < 1 implies the points are seperated by null, timelike or spacelike
geodesics respectively, z = 0 implies X is null with respect to the antipodal point of Y [1, 2].
We rewrite the Casimir eigenvalue problem as an ODE for g(z) = Π(X,Y ), where C defines
the Casimir operator of the de Sitter group

(C − Λ)Π(X,Y ) = 0 . (2.10)

The action of C and the eigenvalue Λ is fixed by the representation of SO(1, d+ 1). The
uniqueness of the Laplacian as a second order differential operator commuting with the isome-
try of the de Sitter slice, implies the Klein-Gordon and Casimir equation are interchangeable.
This is true up to a slight change in the eigenvalue for spinning fields [17].

2One can extend the index-free formalism to mixed-symmetry tensor in a straightforward way following [65],
by using multiple polarisation vectors and imposing the symmetry of the Young tableau, by hand or using
grassmanian variables.

3One should note that subsequent freeing and contraction of indices returns the same object up to a
spin-dependent constant. This can be checked in an example

W ·K(W · V )J = J
(
d+ 1

2 + J − 2
)

(W · V )J .
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The de Sitter isometries are linearly expressed in the ambient space, where the Casimir
operator takes the form

C = −1
2LABL

AB . (2.11)

The operators LAB generate the Lorentz group in the ambient space, through some differ-
ential realisation LAB and possible spin parts. Throughout this paper we make use of the
appropriate realisation for the various representations. For the scalar case the eigenvalue is
fixed by the conformal weight and dimension of the space Λ = ∆(d−∆) and we only need

LAB = XA∂B −XB∂A . (2.12)

The Wightman function must solve the equation of motion given in eq. (2.10). The
hypergeometric differential equation [67] is found by changing variable to z,

(1− z)zg′′(z) + d+ 1
2 (1− 2z) g′(z)−∆(d−∆)g(z) = 0 ; (2.13)

Generic solutions are given by linear combinations

g(u) = κ 2F1

(
d−∆,∆; d+ 1

2 ; z
)

+ κ̃ 2F1

(
d−∆,∆; d+ 1

2 ; 1− z
)
.

We must consider the analytic structure of this function. First of all, note that both
functions diverge at the coincident limit, while the second one diverges also at antipodal
points X = −Y . This latter singularity is screened behind the dS horizon. We consider
Wightman functions with singularities only at coincident points, thus setting κ̃ = 0. This
choice of boundary condition selects the Bunch-Davies vacuum from the continuum of
possible vacua, often referred to as α vacua in the literature [68–70]. Finally, we must fix
the normalisation. Noting that in the coincident limit, the Wightman function is blind to
the curvature of space, we match the normalisation of the flat-space result [71]

g(u) = Γ(∆)Γ(d−∆)
(4π)d+1/2Γ

(
d+1

2

) 2F1

(
d−∆,∆; d+ 1

2 ; z
)
. (2.14)

We refer to the Wightman function obtained from this choice of boundary condition as the
Hadamard form of the 2-point function.

In euclidean signature, this would be the final answer. However, rotating to lorentzian
time, the hypergeometric function develops a branch-cut along time-like separations. We
must specify how to evaluate this, in a way that specifies the time-ordering of the different
points. This subtlety is slightly obscured in this formalism for which Π(X,Y ) = Π(Y,X).
The iε prescription must be brought back by hand when needed, usually at the coordinate
level. We describe this process in section 2.4, where we briefly recapitulate the in-in
formalism for perturbation theory in de Sitter [38, 39].

For the purposes of review we reserve the case of the STT propagator for appendix C,
the equivalent calculation in EAdS is performed in [9]. For tensorial correlation functions,
one must sum over all allowed structures, which involves a choice of basis. For example in
the case of the spin-1 Wightman function, we have equivalent possible bases

Π(X,W1;Y,W2) = (W1 ·W2)g0(u) + ((W1 · Y )(W2 ·X))g1(u)
= (W1 ·W2)f0(u) + ((W1 · ∇X)(W2 · ∇Y ))f1(u).

(2.15)
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Which can be generalised to higher spin. When we perform the computation for spinors,
we will similarly find a sum of allowed structures multiplied by scalar functions.

2.4 The perturbative prescription

The observables most regularly calculated in de Sitter are insertions of operators on a single
time slice with respect to the Bunch-Davies vacuum. We assume the theory approaches
the free theory far in the past, where the fields act on the Bunch-Davies vacuum as in
Minkowski spacetime. Splitting the Hamiltonian between the quadratic part, H0, and the
interacting Hamiltonian, Hint, we seek time evolution operators U(t, t0) which satisfy

Q(t) = U †(t, t0)QI(t)U(t, t0) . (2.16)

Where QI(t) is an operator including only the field insertions which evolve with respect to
H0 and therefore propagate as free fields. The operator U(t, t0) solves the same ODE as in
the Minkowski case, and performing the similar calculation for the inverse leaves us with

U(t, t0) = T

{
exp

[
−i
∫ t

−∞+
dtrHI(tr)

]}
(2.17)

U †(t, t0) = T̄

{
exp

[
i

∫ t

−∞−
dtlHI(tl)

]}
. (2.18)

HI is the evolution, with respect to H0 ofHint and the T̄ implies the expansion should be
anti-time ordered, with the insertions of operators placed in order of increasing t from left to
right. We have now taken the limit and prescription t0 → −∞(1± iε) = −∞±, for the time
evolution operator and inverse respectively. This implies the following iε prescription for t

tl → tl(1 + iε) , tr → tr(1− iε) . (2.19)

From the expressions above, Wick contraction will require three different propagators, all
of which may be derived from the Wightman function. In planar coordinates, we may
rewrite the prescription in terms of the invariant length z and α = sgn(ηl − ηr). Labelling
contractions of fields with l/r for inclusion in T and T̄ respectively, we require the propagators

Πll(z) = g(z + iε) (2.20)
Πrr(z) = g(z − iε) (2.21)
Πlr(z) = g(z − iαε) (2.22)

In general the prescription for z will be parameterisation dependent. A coordinate indepen-
dent formulation seems slightly out of reach, although we note that the same prescription
for z is true in global coordinates. This formalism is reviewed and used in many places,
among which notable examples include [19, 40, 45, 72].

2.5 Boundary limit

From the embedding picture, the discussion of the boundary limit of operator insertion is
greatly streamlined. The starting point is to choose a specific limiting geometry, by fixing a
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gauge choice for the projective null vector PA corresponding to boundary insertions. One
can parameterise a generic point on the dS slice X using a pair of null vectors, P and Q
such that P 2 = Q2 = 1− 2P ·Q = 0 and a single variable λ

XA = λPA + 1
λ
QA (2.23)

The boundary limit is achieved by taking λ→∞, which maps projectively the insertions of
fields in the dS slice to those at points PA on the lightcone. Given a specific coordinate
system, there is usually an obvious parameterisation of this type. For example, for planar
and global coordinates we can write

(
X+, X−, Xa

)
=
(

1
η
,
x2 − η2

η
,
xa

η

)
= 1
η

(
1, x2, xa

)
+ . . . , (2.24)

(
X0, X i

)
=
(
sinh(t), cosh(t)ωi

)
= et

2
(
1, wi

)
+ . . . . (2.25)

Order by order in the expansion of the correlator, one can identify the correlator of the bulk
field and some boundary insertions. At leading order, one obtains the bulk-to-boundary
correlator for the boundary primary operator. For example, consider the Wightman function
found previously,

lim
λ→∞

Π(X = λP + . . . , Y ) = λ−∆ 1
(−2P · Y )∆

4∆Γ(∆)Γ(d− 2∆)
(4π) d+1

2 Γ
(
d+1

2 −∆
)

+ λ−(d−∆) 1
(−2P · Y )d−∆

4d−∆Γ(d−∆)Γ(2∆− d)
(4π) d+1

2 Γ
(

1−d
2 + ∆

) (2.26)

The pair of leading terms can be identified with the bulk to boundary correlator of the scalar
field φ a conformal primary field O∆(λP ) = λ−∆O∆(P ) and its shadow dual, Od−∆(P ).

3 Spinors in dSd+1

We turn to a systematic treatment of spinors. We begin with ambient Spinor fields,
and constructively show, using the methods of [6, 63], how to constrain them to obtain
irreducible spinors of the dS slice in eq. (3.25). As a by-product of this analysis, we write
the commutation relations of symmetry generators with fields of generic spin in the bulk of
dS in eqs. (3.21) to (3.24). We introduce an index-free notation for spinors, and showcase
these tools by computing the propagator of Dirac spinors in dSd+1 given by eqs. (3.52)
and (3.53). We finally discuss the late-time limit of the propagator given in eq. (3.57). Odd
and even dimension are initially treated separately, though the final result for Dirac spinors
is shown to be equivalent. The case of spinors in odd EAdS was covered in [14], our added
value lies in giving an explicit construction which generalises both to other coordinates and
to even dimensions.
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3.1 Constraint and transformation law

Embedding the dS slice leads to a straightforward realisation of its isometries, mapping
them to Lorentz transformations. Defining ΣAB ≡ 1

4 [ΓA,ΓB] and LAB ≡ PA ∂
∂PB
− PB ∂

∂PA

the transformations act linearly on the ambient space spinor field Ψ via

[LAB,Ψ(P )] = −(LAB + ΣAB)Ψ(P ) , (3.1)
[LAB, LCD] = −ηACLBD + ηB

CLA
D + ηA

DLB
C − ηBDLAC , (3.2)

= −4η[A
[CLB]

D] , (3.3)

LAB,LAB and ΣAB obey the same commutation relations. In what follows we consider
Ψ, a Dirac spinor representation of SO(1, d+ 1); and Ψ, its conjugate. As we did previously
for tensors, we will define a dS spinor as a constrained object which lives in the ambient
space. The Lorentz invariant constraint will make this object irreducible, in the same way
that transversality did, and ensure that it contains degrees of freedom corresponding exactly
as those of a dS spinor. We perform our construction in a specific parameterisation of
the dS slicing X2 = 1, but the results and constraint are coordinate independent. The
transformation law (3.1) maps to a local realisation of the isometries acting on components of
Ψ on the slice; matching the local realisation to the intrinsic calculation implies a constraint
on Ψ which corresponds to an irreducible field ψ in dS. For the planar parameterisation
the algebra is most naturally written using

D = 2L+,− , (3.4)
Pa = 2L−,a , (3.5)
Ka = 2La,+ , (3.6)
Mab = Lab . (3.7)

When written explicitly in planar coordinates, these operators act on a scalar field φ as
Killing vectors specified by

Q̂Dφ = xµ
∂

∂xµ
φ , (3.8)

Q̂Paφ = ∂

∂xa
φ , (3.9)

Q̂Kaφ =
(

2xaxµ
∂

∂xµ
− xµxµ

∂

∂xa

)
φ , (3.10)

Q̂Mab
=
(
xb

∂

∂xa
− xa

∂

∂xb

)
φ . (3.11)

The intrinsic action on other dS representations is fixed by the addition of a spin part to
the action of the operators. For a field transforming in a given representation of SO(1, d),
we add a contribution from the spin matrix, for spinor that is Σ̃µν = 1

4 [γµ, γν ], to the action
of Mab. We then use the Jacobi identity to fix the spin-part of all the remaining generators
in terms of the spin matrix Σ̃µν . Note that the indices used here are the SO(1, d) tangent
space indices as described in appendix A, as such {γµ, γν} = 2ηµν . This analysis provides
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the general form of the isometry generators acting on spinning dS bulk fields ψ in planar
coordinates,

[D,ψ(xµ)] = xµ
∂

∂xµ
ψ , (3.12)

[Pa, ψ(xµ)] = ∂

∂xa
ψ , (3.13)

[Ka, ψ(xµ)] =
(

2xaxµ
∂

∂xµ
− xµxµ

∂

∂xa
+ 2Σ̃aµx

µ
)
ψ , (3.14)

[Mab, ψ(xµ)] = −
(
xa

∂

∂xb
− xb

∂

∂xa
+ Σ̃ab

)
ψ . (3.15)

Note that Σ̃ab needs not be the ab component of ΣAB , though it is often the case. We show
the analogous calculation for the related example of global coordinates in appendix D. To
our knowledge, these commutations relations, with spin contributions, are not present in
the literature. Though this appears superficially similar to the transformation law of a field
of weight 0 under the conformal group, one should be mindful of the index range. Only
in the late time limit limη→0+ ψ(η, x) = (−η)∆ψ(x), do we recover the usual form of the
Conformal algebra acting on primary fields of weight ∆.

We can now compare how the elements of Ψ transform in the ambient space, eq. (3.1)
with the transformation in the planar patch, eqs. (3.12) to (3.15), to isolate a quantity
transforming like a spinor of dS. Though an explicit choice is made, we stress that the
results are not unique to the planar parameterisation, precisely because of the homogeneity
of dS. As further proof of this, in the appendix D we perform the analogous analysis for
global coordinates.

3.1.1 Uplifting spinors of dS2n+1

The embedding space is now even dimensional, and we decompose the ambient space spinor
as a direct sum of two spinors in Spin(1, 2n),

Ψ =
(
χ

ρ

)
. (3.16)

Associated to the dS slice we have matrices γµ, from which we construct those of the
ambient space

Γ0 =
(

0 1
−1 0

)
⊗ 1 , (3.17)

Γa =
(

1 0
0 −1

)
⊗ γ0γa , (3.18)

Γd+1 =
(

0 1
1 0

)
⊗ 1 , (3.19)

Γ? =
(

1 0
0 −1

)
⊗−iγ0 . (3.20)

– 11 –



J
H
E
P
0
6
(
2
0
2
2
)
1
2
3

From these choices, one may compare [LAB, χ] in the ambient space, eq. (3.1), with that
defined by eqs. (3.12) to (3.15). Since the −+ terms give an inhomogeneous contribution to
the dilation, we consider a rescaled field √−ηχ, simplifying the action on the fields to

[D,
√
−ηχ(xµ)] = xµ

∂

∂xµ
(√
−ηχ

)
, (3.21)

[Pa,
√
−ηχ(xµ)] = ∂

∂xa
(√
−ηχ

)
, (3.22)

[Ka,
√
−ηχ(xµ)] =

(
2xaxρ

∂

∂xρ
− xρxρ

∂

∂xa

) (√
−ηχ

)
−
√
−η (xaχ− γaγ0ρ) , (3.23)

[Mab,
√
−ηχ(xµ)] = −

(
xa

∂

∂xb
− xb

∂

∂xa
+ 1

4[γa, γb]
) (√

−ηχ
)
. (3.24)

Clearly √−ηχ has the correct transformation law under translations, rotations, and the
dilation. The special conformal transformations are more problematic, with an inhomo-
geneous contribution from the second spinor ρ in eq. (3.23). We regain the coordinate
transformation given in eq. (3.14) by setting ρ = −γ0γµx

µχ. This can be rewritten as a
Lorentz-covariant constraint on the ambient spinor Ψ,

ΓAXAΨ = Ψ . (3.25)

At this point, we stress the analogy with the tensorial case. We showed that generic ambient
spinors do not define dS spinors. However, there is a specific class of (Lorentz-covariantly)
constrained spinors in the embedding which are in one-to-one correspondence with spinors
on the slice. Hence, we can define the uplift of dS spinors as precisely those constrained
spinors, in total correspondence with what we saw for tensors. One can also note that this
constraint is the only possibility, since (X · Γ)2 = 1, and the spinor with eigenvalue −1 is
related to the one we consider by multiplication with Γ?.

When this argument is reversed, we see that any spinor of the form
(
ΓAXA + 1

)
Ψ,

with Ψ unconstrained, has a top component which transforms like 1√
−η times a dS spinor.

In analogy to the tensorial case, we can work with unconstrained spinors like (3.16), and
contract them with a dummy constrained conjugate polarisation spinor S, which incorporates
the projection prefactor. This allows us to work with scalar fields Ψ(X,S) ≡ SΨ(X), instead
of spinors. On the slice, we also work with the scalar sψ(η, x), allowing us to avoid the use
of spinor indices. The constraint is then transferred to the polarisation, S, which also takes
care of the projection, as in the tensorial case. The dummy spinor in the ambient space
and in the slice are related directly,

SΨ = sψ . (3.26)

We can use the constraint to derive the ambient space S in terms of the intrisic s, taking the
complex conjugate we recover the projection to conjugate spinors. The spinor polarisations
are given by:

XAΓAS = −S =⇒ S =
(
γ0
−/x

)
s√
−η

, (3.27)

SXAΓA = S =⇒ S = s√
−η

(
−/xγ0 1

)
. (3.28)
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We define dS spinors, in analogy to the tensor case, as homogeneous scalar polynomials in
the (commuting) polarisation variables

Ψ(X,λS̄) = λΨ(X, S̄) , (3.29)

with obvious generalisation to multiple spinor indices. It is of course possible to work directly
with constrained spinors, with free indices. Then, one must write out spinor-structures
which manifestly obey the constraint. Switching to the index free notation only makes
manipulation simpler, one can simply write all non-vanishing scalar objects satisfying the
constraint on S and the homogeneity requirement.

The explicit expressions we gave for S are specific to the choice of parameterisation of
dS, one can translate these back into other choices, though this can be a lengthy endeavour.
We showcase the computation for global coordinates in appendix D. In this work we
preferentially compute results directly in the embedding, and only evaluate in a specific
parameterisation, if necessary, as a final step.

3.1.2 The case of dS2n

In even dimensions the spin group admits irreducible Weyl representations, this more
intricate case requires a slightly more subtle approach. We start by discussing the transfor-
mation induced by the Lorentz group of the ambient space, and derive the uplift of the dS
Weyl-spinors. We then use this result to reconstruct the full Dirac spinor in even dimensions.

The ambient space is odd dimensional. So naively, the Dirac spinor representations
are the same on the slice and in the embedding, and we could be tempted to try to use
unconstrained ambient objects. However, from the previous computation it is clear that
such an object does not transform as it should on the slice. One may expect from the case
of even ambient space that the constrained Dirac spinor maps to local irreducible spinors of
the slice, which are the Weyl spinors in even dS. Inspired by these remarks, we consider
the chiral representation of the gamma matrices on the slice

γµ =
(

0 σµ
σµ 0

)
, (3.30)

σµ = (1, σa) = σ†µ , (3.31)

σµ = (−1, σa) = σ†µ . (3.32)

Consider the basis of ambient gamma matrices in eqs. (3.17) to (3.20), with the lower slice
γ-matrices replaced by chiral σ-matrices

Γ0 =
(

0 1
−1 0

)
⊗ 1 , (3.33)

Γa =
(

1 0
0 −1

)
⊗ σa , (3.34)

Γd+1 =
(

0 1
1 0

)
⊗ 1 . (3.35)
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Many of the results of the previous section can be reused. For example, the adjustment
of the action of D and P are identical. Rotations indeed involve Σab = 1

4 [σa, σb] which is
identical for left and right handed Weyl spinors. For the boosts we encounter Σaµx

µ =
1
2

(
σa
(
−αη1a+ σbx

b
)
− xa

)
, with α = ±1 corresponding to LH-spinors and RH-spinors

respectively. It follows that an ambient spinor of the form

√
−η

(
χ

(αη1− xaσa)χ

)
, (3.36)

encodes a chiral spinor in its top component, with α = ±1 defining the handedness. Such a
spinor has an eigenvalue equation of the form XAΓAΨα = αΨα. The key difference is the
absence of Γ? to exchange α, implying the sign is now a meaningful distinction between
inequivalent representations. Since any such spinor can be written as

(
XAΓA + α

)
Ψ with

Ψ unconstrained, we can proceed as in the odd case to define a polarisation spinor S, with
eigenvalue equation SX · Γ = αS.4

To discuss the uplift of the Dirac spinor, it is convenient to adopt the terminology
of [73]. In even dimensions, we have two Weyl spinors which together form a Dirac spinor.
By analogy, in odd dimension, we call the irreducible representation, of Dirac type, a Pauli
spinor, and an SU(2) doublet of Pauli spinors a Cartan spinor. We have showed that in
even dimensional ambient space, a constrained Dirac spinor encodes a Pauli spinor on the
slice. On the other hand the constrained Pauli spinor encodes the Weyl spinors when the
ambient space has odd dimension. It follows naturally that we can build a constrained
Cartan spinor which uplifts a Dirac spinor. Effectively, we recompose the uplift of the
Dirac spinor as a sum of its Weyl parts Ψ′ = Ψ+ ⊕Ψ−. We pick Gamma matrices given by
Γ′A = ΓA ⊗

( 1 0
0 −1

)
, such that the constrained Cartan spinor obeys the eigenvalue equation

Γ′AXAΨ′ = Ψ′, as in odd dimension. The symplectic structure of the SU(2) doublet, implies
the existence of two special invariant matrices: the identity and the symplectic form J = εij ,
which exchanges the two Pauli spinors. One is free to perform a similarity transformation
U to a more convenient basis. To make contact with the odd dimensional case, we reorder
the components of Ψ using

U = 1√
2


1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

 . (3.37)

We then have ΓA = UΓ′AU †, as in eqs. (3.17) to (3.20). We also obtain a supplementary
matrix through UJU † ≡ −iΓ?. Hence, although we are in odd ambient dimension, we
have a coordinate independent construction of Γ?, the uplift of γ? in the even dimensional
slice. The output of this discussion is that the formalism defined for dS2n+1 can be reused
without modification for dS2n, as long as one considers Dirac fields, while chiral fields may
be considered using the more intricate chiral picture outlined at the start.

4This chiral picture will be useful to those interested in supersymmetry in de Sitter and chiral interactions,
but for many purposes it is easier to work with the reducible Dirac spinor.
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3.2 Propagator and boundary limit

From our kinematic discussion, we have a dimension independent formalism to uplift Dirac
spinors to the ambient space. The most general 2-point function, compatible with the
constraints on the polarisations and the homogeneity requirements, may only include the
following structures〈

Ψ(X,S1)Ψ(Y, S2)
〉

= S1S2g+(z) + S1Γ?S2g−(z) . (3.38)

We parameterise our functions as before in terms of the dS invariant variable, z = 1
2(1+X ·Y ).

We can also use the explicit expressions we found to project these structures down to a dS
slice expression if required. For example, in planar coordinates we find

S1S2 = s1γµ(x− y)µs2√
x0y0 , (3.39)

S1Γ?S2 = s1iγ0γµ(x̃− y)µs2√
x0y0 , (3.40)

where x̃µ = (−x0, xa) is the time-reversal of xµ. In order to uplift the Dirac equation,
in terms of a spin covariant derivative in the slice, we require a thorough mathematical
treatment of the spin connection, such as that found in [73, 74]. We present an intuitive
argument which reaches the same conclusion. The operator /∇ should be a first order
differential operator, longitudinal to the dS slice, whose image acting on a dS spinor is
again, a dS spinor. The first requirement tells us that ∇A includes only transverse objects,
for example GAB∂B and ΣABX

B. The second requirement tells us that { /∇, /X} = 0. A
minimal ansatz coming from the first constraint is easily fixed using the second one, to give
us the final form of the Dirac operator in the embedding

/∇ = ΓA
(
GAB∂

A − ΣABX
B 1
X ·X

)
(3.41)

= /∂ − /XX · ∂ − d+ 1
2

/X . (3.42)

This offers a convenient derivation of the result stated in [14, 73]. One can explicitly check
in the planar parameterisation that this operator reproduces the action of the covariant
derivative on spinor as can be computed from the tetrad formalism [28]

ΓA∇AΨ =
(
γ0
−/x

)
γµ∇µψ√
−η

, (3.43)

γµ∇µψ = ηγµ∂µψ + d

2γ0ψ . (3.44)

It follows that Ψ̄ /∇Ψ = −2ψ̄ /∇ψ. Similarly Ψ̄Ψ = 0, hence the mass term must be uplifted
with a factor of Γ?, transforming Ψ into a spinor with eigenvalue α = −1. Explicitly, we
find Ψ̄Γ?Ψ = 2iψ̄ψ. All together

ψ̄
(
/∇+m

)
ψ ≡ −1

2Ψ̄
(
/∇+ imΓ?

)
Ψ , (3.45)
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from which we can rewrite the Dirac equation in the ambient space as
(
iΓ? /∇−m

)
Ψ = 0 . (3.46)

This form is used so that S̄
(
iΓ? /∇−m

)
Ψ is of the same type as S̄Ψ, and we may write

S̄iΓ? /∇ ∂
∂S̄
−m. For the case m 6= 0, in odd ambient space, the explicit factor of Γ? prevents

us from writing the Dirac equation of a single constrained Pauli spinor, as is clear from the
representation-theoretic perspective.

One may also make use of the Casimir equation previously discussed. From the CFT
literature, for example [63], the Casimir of the d dimensional Conformal group associated
to fields transforming in a spin 1

2 representation, is known and given by

C∆, 1
2

= ∆(d−∆) + d(d− 1)
8 .5 (3.47)

The generators of rotations for the spinor are given by ΣAB = 1
4 [ΓA,ΓB], and the Casimir

is built starting from the differential realisation of LAB on fields,

XA
∂

∂XB
−XB

∂

∂XA
+ SΣAB

∂

∂S
.

We can now evaluate C = −1
2 (L+ Σ)AB (L+ Σ)AB,

C = −∂2 +XAXB∂
A∂B + (d+ 1)X · ∂︸ ︷︷ ︸
−�dS

+ (d+ 2)(d+ 1)
8︸ ︷︷ ︸

− 1
2 Σ2

+X · ∂ − S̄
(
ΓAXA

)(
ΓB∂B

) ∂

∂S̄︸ ︷︷ ︸
−Σ·L

.

(3.48)

Almost all of the pieces act trivially on the structures we defined in eq. (3.39). In fact, only
the last element of the third piece changes between the two structures appearing in the
propagator, by picking up a sign. More importantly, they are completely decoupled.

It is now a straightforward exercise to act with the Casimir equation on the propagator
ansatz and to collect terms. The differential equation we obtain is simple, owing largely to
the choice of variable(

z(z − 1)∂2
z −

(
d+ 2− α

2 − (d+ 2)z
)
∂z −

(
∆ + 1

2

)(
d+ 1

2 −∆
))

gα(z) = 0 . (3.49)

These hypergeometric differential equations are equivalent to the set of coupled, first order
equations one finds using the Dirac equation

(z − 1)∂zg+(z) + d+ 1
2 g+(z) + img−(z) = 0 , (3.50)

z∂zg−(z) + d+ 1
2 g−(z) + img+(z) = 0 , (3.51)

5This can be rederived by using the explicit form of the Casimir operator and considering the action of
the Casimir on primary states in a CFTd.
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provided we identify ∆ = d
2 + im. The Dirac operator squaring to the Klein-Gordon

equation tells us that Dirac spinors can only be in the principle series as we describe in
appendix B. These differential equations are solved by hypergeometric functions, just as in
the case of the scalar field in section 2.3. Solving the Dirac equation while requiring that
all singularities lie at coincident point, fixes both functions in terms of one constant κψ:

g+(z) = κψ 2F1

(
d−∆ + 1

2 ,∆ + 1
2; d+ 1

2 ; z
)
, (3.52)

g−(z) = κψ
(d− 2∆)
d+ 1 2F1

(
d−∆ + 1

2 ,∆ + 1
2; d+ 1

2 + 1; z
)
. (3.53)

As previously, the Hadamard condition fixes the leading singularity of the Wightman function
to the same normalisation as in flat-space, where it diverges as −1

4Γ
(
d+1

2

)
π−

d+1
2 u−

d+1
2 γµ∂

µu.
One can check that all singularities contained in g−(z) are subleading, hence only g+(z)
contributes, as we expect from the explicit coordinate form of the spinorial structures S1S2
and S1Γ?S2. Matching the overall constant, we find that the normalisation is given by

κψ = −1
4

Γ
(
∆ + 1

2

)
Γ
(
d−∆ + 1

2

)
(4π) d+1

2 Γ
(
d+1

2

) . (3.54)

Note that, in the massless limit ∆ → d
2 , g−(z) → 0, while g+(z) is finite. From this

expression for the Wightman function, one can reconstruct the different propagators to
be used in perturbation theory as previously explained for the scalar case and given in
eqs. (2.20) to (2.22).

For the boundary limit of the 2-point function we proceed as in the scalar case, by
parameterising the bulk in term of boundary vectors X = λP + . . .. We note that the spinor
polarisations have a nontrivial power-law divergence as one approaches the boundary

lim
λ→∞

1√
λ
S = S∂ , (3.55)

S∂ /P = 0 . (3.56)

This can be checked explicitly for the case of conformally flat coordinates, and by homogene-
ity this must be true for any other limiting procedure toward the boundary. The boundary
limit of the 2-point function at late time is given by

lim
λ→∞

Π(X = λP + . . . , Y, S1, S2) = λ−∆
(
K∆

S1,∂(1 + Γ?)S2

(−2P · Y )∆+ 1
2

+O(λ)
)

+ λ∆−d
(
Kd−∆

S1,∂(1− Γ?)S2

(−2P · Y )d−∆+ 1
2

+O(λ)
)
,

(3.57)

with K∆ ≡ − 1
8
√
π
d+2 Γ

(
∆ + 1

2

)
Γ
(
d+1

2 −∆
)
. These again match the form expected for the

bulk-to-boundary correlation function of spinors with weight ∆ and d−∆.
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4 Discussion

We conclude with a short description of the potential extensions and applications of the
above formalism and results.

• The most obvious extension of the techniques discussed above is the study of a greater
range of fields of mixed integer and half integer spin, including those with gauge
redundancy. In particular, it would be interesting to apply these techniques for fields
describing the massless and partially massless UIRs described in [54, 75–77], which are
particular to dS. Another potential extension of our work would be to generalise to dS
the study of weight shifting operators which simplify calculations in higher spin CFT
and AdS [12, 78]. In [55] they touch on this subject, and extending this discussion to
spinors and away from the late-time limit should prove worthwhile. Finally, while we
worked with pure dS above, our explicit results should be useful to consider spinors
in asymptotically dS spacetime, an important area for further analysis [79–82].

• We also have a significant interest in the use of the ambient formalism to study the
relation between QFT in fixed dSd+1 and Sd+1 [83–86]. The time-like coordinate
relates the respectively lorentzian and euclidean field theoretic properties of these
spaces for both global and static coordinates described in [87, 88]. In addition, there
is a relation which encodes the thermodynamics of the cosmological horizon in the
euclideanisation of the static patch [89–94]. The consequences of Wick rotation
for propagators on these spaces should be relevant to this effort, as would a better
understanding in general of the euclidean theory of Sd, perhaps building on [85].

• The findings of this paper complement and further an expanding body of research on
the development of a rigorous, analytic and group theoretic treatment of QFT in dS.
The work of [15, 16] on the unitarity, and existence of scalar operators with a range
of weights, and the comparison of their 2-point function to those of scalar fields and
their conjugate momenta; is a pertinent example of the type of analysis to which it
would be possible to apply our spinor construction. We have included statements on
the limiting behaviour of the Wightman function in the late time regime for spinors
in eq. (3.57), which may be directly compared with allegorical 2-point functions of
spin half primaries constructed using these methods.

• The structures found in planar coordinates for the spinor correlator are akin to the
ones encountered in BCFT [95]. Pushing this analogy further would be an interesting
pursuit. One could also, in the Euclidean picture, consider the construction of isometry
generators through topological surface operators, as in BCFT [96], with the hope of
new insights on Ward identities and asymptotic symmetries in dS [79–82]. Another
possible extension is to make contact between our formalism and the one developed
for massless fields [97], and the similar spinor helicities for CFT3 [98].

• We contextualised our work in the ongoing effort on the perturbative front, using the
in-in formalism [19, 40, 45, 46, 99]. The generalisation of these works to fermionic
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fields and tensors is a natural objective, for example, in the construction of the effective
AdS action studied in detail for scalar fields in [45]. Simplification of perturbative
calculations in dS is achieved there by constructing a non-unitary Lagrangian in an
AdS background which reproduces the dS results at each order in perturbation theory.
Additionally, the cosmological bootstrap effort offers hope for another application
of the ideas included in our work [15, 42, 43, 48, 53, 57], perhaps enlarging our
knowledge of CFT like structures in dS beyond the previous work on the dS/CFT
correspondence [52, 71, 100, 101]. In particular, the development of the Källén-Lehman
spectral representation and the expansion of the four-point function of boundary
operators in terms of conformal partial waves will have relevance for the study of
spinor theories in analogy to the scalar case.
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A Conventions

In all of this paper, the indices considered are flat, i.e. they are contracted using Minkowski
or euclidean metric, depending on the range. Indices are never contracted using the curved-
space metric gµν . We use the mostly-plus convention. Latin indices from the start of the
alphabet designate the (d)-spatial coordinate, a, b, c, . . . = 1, 2, . . . d. Latin indices from the
middle of the alphabet range from 1 to d+ 1, useful when considering global coordinates
where angular variables ωiωi = 1 appear. Greek indices are used in the usual fashion,
µ, ν, ρ = 0, 1, . . . d. We use upper-case latin indices for the embedding coordinates in R1,d,
i.e. A,B,C . . . = 0, 1, . . . d+ 1. Equivalently, we make use of light-cone variables and metric,
where A,B,C . . . = +,−, 1, . . . d. In our parametrisation, η+,− = −1

2 , i.e. X± = X0±Xd+1.
Antisymmetrisation and symmetrisation of indices are written using respectively square
and round bracket, and have weight 1, i.e. T(ab) = 1

2 (Tab + Tba).
The action of symmetry generators P̂ , K̂, . . . on fields Φ are realised through some

differential operators Q̂P , Q̂K , . . . defined as

[P̂ ,Φ] = Q̂P · Φ . (A.1)

It follows from the Jacobi-identity that the Q̂ have commutation relations given by
minus those of the operators they represent, i.e. Q̂[P,K] = −[Q̂P , Q̂K ]. These considerations
are important should one wish to reproduce the detail of the derivations of the spin part of
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generators acting on fields on the slice. The generators of rotations in the embedding space
are characterised by commutation relations and realisation

[LAB, LCD] = −ηACLBD + ηB
CLA

D + ηA
DLB

C − ηBDLAC (A.2)
= −4η[A

[CLB]
D] , (A.3)

[LAB,Ψ(P )] = −(LAB + ΣAB)Ψ(P ) , (A.4)

LAB = PA
∂

∂PB
− PB

∂

∂PA
. (A.5)

LAB,LAB and ΣAB all obey the same commutation relations. ΣAB are the usual spin-
matrices that give matrix representation of SO(1, d+ 1) or Spin(1, d+ 1). The operators
LAB are anti-hermitian. This algebra can be repackaged in multiple fashions, two of which
are useful for our purpose. The (euclidean) conformal algebra is identified through

D = 2L+,− , (A.6)
Pa = 2L−,a , (A.7)
Ka = 2La,+ , (A.8)
Mab = Lab , (A.9)

and its commutation relations follow straightforwardly,

[D,Pa] = Pa , (A.10)
[D,Ka] = −Ka , (A.11)
[Ka, Pb] = 2δabD − 2Mab , (A.12)

[Mab, P
c] = −2δc[aPb] , (A.13)

[Mab,K
c] = −2δ[a

cKb] , (A.14)
[Mab,M

cd] = −4δ[a
[cMb]

d] , (A.15)

with all other commutators vanishing. The quadratic Casimir is given by C = −1
2LABL

AB =
D2 + 1

2 (P ·K +K · P ) − 1
2MabM

ab. Its eigenvalue can be found by considering primary
fields of a CFTd. The scaling part gives the usual ∆(d−∆), while the spin part for tensors
of spin-j gives j(j − d+ 2), and for Dirac spinors d(d−1)

8 .
The de Sitter algebra is identified by separating rotations and boosts

Ki = L0i , (A.16)
Mij = Lij . (A.17)

The commutation relations of the algebra follow straightforwardly

[Mij ,M
kl] = −4δ[i

[kMj]
l] , (A.18)

[Mij ,K
k] = −2δ[i

kKj] , (A.19)
[Ki,Kj ] = Mij . (A.20)
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We find the language of [74] convenient to refer to the different spinor representations.
In even dimensions, the fundamental spinors are the left-handed (LH, +) and right-handed
(RH,−) Weyl spinors. A Dirac spinor is the direct sum of a left and right Weyl spinor. In
odd dimension, the irreducible representation (which is of Dirac type), is called a Pauli
spinor. An SU(2) doublet of Pauli spinors, one in each inequivalent representation of the
Clifford algebra, form a Cartan spinor. This is of course a reducible representation, and the
odd-dimensional analogue of the Dirac representation. We prove the following relations:
Dirac spinors in dS2n are uplifted to constrained Cartan spinors of Spin(1, 2n), while Pauli
spinors in dS2n+1 are uplifted to constrained Dirac spinors of Spin(1, 2n+ 1). In all cases,
we consider a set of gamma matrices obeying {γµ, γν} = 2ηµν . The spin-matrix is then given
by Σµν = 1

4 [γµ, γν ]. In the embedding space, we use ΓA instead. Conjugation properties
follow from γ†µ = γ0γµγ0. Conjugate spinors are defined through ψ = ψ†iγ0, and similarly
in the embedding. This choice matches that of Weinberg [99], such that (αβ)? = βα and
(αγµβ)? = −βγµα. In even dimensions, we write the chiral matrix with γ2

? = 1, and we use
chiral-γ matrices, or σ-matrices. This means we consider

γµ =
(

0 σµ
σµ 0

)
, (A.21)

σµ = (1, σa) = σ†µ , (A.22)
σµ = (−1, σa) = σ†µ , (A.23)

σ(µσν) = ηµν , (A.24)

γ? =
(
1 0
0 −1

)
, (A.25)

P± = 1± γ?
2 . (A.26)

The σ matrices also give rise to chiral-rotation matrix, σµν = 1
2σ[µσν] and σµν = 1

2σ[µσν],
which appear when considering Weyl spinors. Embedding spinors are generically named Ψ
and written in block form

Ψ =
(
χ

ρ

)
, (A.27)

Ψ =
(
ργ0 −χγ0

)
. (A.28)

When considering their transformation law, one has to take into account a sign and ordering
difference

[LAB,Ψ(P )] = −LABΨ(P )− ΣABΨ(P ) , (A.29)
[LAB,Ψ(P )] = −LABΨ(P ) + Ψ(P )ΣAB , (A.30)

and similarly for the commutation relations on the dS slice. dS spinors are usually named ψ,
and are related non-trivially to χ and ρ, as shown in the text. Chiral spinors are preferably
encoded using a whole Dirac spinor with eigenvalue equation γ?ψ± = ±ψ±.
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B Representation theory

In this appendix we collect some results regarding the representation theory of the de Sitter
group, SO(1, d + 1). For a more thorough treatment, one should refer to the canonical
work [102], or to the excellent recent review of the subject [103]. Spinorial representations
are only lightly touched in the literature, but we present some interesting elementary
statements regarding them [104, 105].

The representation theory of de Sitter has some similarities to the familiar examples of
conformal field theory and (E)AdS. The operators we are concerned with transform in finite
dimensional representations of the de Sitter group, noting that these cannot be unitary
representations due to their finite dimensionality. In this paper we consider Symmetric
Traceless Tensors of generic integer spin J , and spin J = 1

2 representations of the universal
cover of the ambient space Lorentz group, which acts as the de Sitter group once pulled to the
de Sitter slice. The action of this group is described in the ambient space formalism in [17].
The spectrum of single particle states of the fields should transform in unitary irreducible
representations of the de Sitter group. To induce the irreducible unitary representations we
consider the maximal subgroup SO(1, 1)× SO(d) ∈ SO(1, d+ 1), and label representation
using label (∆, ρ) with ρ a representation of so(d). Unitarity imposes a complex interplay
between the spin representation and the allowed values of ∆. These organise into two
continuous series and two discrete [15, 77, 106–109]. For clarity we treat the symmetric
traceless tensors and the Dirac spinor cases separately.

B.1 Symmetric traceless tensors

Irreducible representations of so(d) are specified by a weight-vector ~s = (s1, s2, . . . sr), of
dimension r = bd2c, with half integer entries si ∈ 1

2N [110]. For the bosonic case ~s defines
a young tableaux with rows of length s1 ≥ s2 ≥ . . . ≥ sr. Symmetric Traceless Tensor
(STT) representations correspond to young tableau with one row and J ∈ N boxes, i.e.
~s = (J, 0, . . . , 0). Let p be the number of non zero entries in ~s, so that only the spin 0 case is
distinguished. The induced unitary irreducible representations (UIRs) are entirely specified
given the spin representation and the value of ∆. We additionally identify representations
with weight ∆ to those with weight d − ∆. These are unitary in de Sitter as well as
equivalent to those of weight ∆, under the intertwining isomorphism given by the ‘shadow
transformation’, which is discussed in [15, 103, 111]. The allowed value of ∆ for a given
STT representation then decomposes into the following series:

• Principal series: ∆ = d
2 + iν, ν ∈ R+

• Complementary series: ∆ ∈ (d2 , d− p)

• Exceptional series: (∆ + J − 2)(d + J − 2 − ∆) = (J − 1 − t)(d + J + t − 3) for
t ∈ 0, 1, . . . , J − 1.

• Discrete series: for d+ 1 = 2n, ∆ = d
2 + 1

2N

The conformal dimension ∆ can be related to the mass of the fields and states in de Sitter.
The most natural choice of the mass parameter for various representations in de Sitter
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is the subject of [77], and leads to a description of unique representations in the case of
de Sitter for higher spin fields. In particular there exist ‘massless’ and ‘partially massless’
representations, associated with the exceptional series. These are discussed at length
in [39, 54, 75, 76, 110, 112]. The latter are unitary, in the above sense, and correspond
to discrete values of the mass between the lower bound of the complementary series and
m = 0. These partially massless representations have an intermediate amount of gauge
freedom, interpolating the massless and massive cases. For STT operators, the Laplacian is
equal to the Casimir up to a constant shift. For this reason in appendix C we solve for the
Wightman function using the equation of motion according to [9]

(�dS −∆(d−∆)− J)Π = 0 . (B.1)

B.2 Spinors

Local spinor fields transform in the familiar spin 1
2 representations of the local Lorentz group

pulled back from the ambient space [99, 113]. They may be constructed by demanding they
solve the Dirac equation with the appropriate spin covariant derivative [31, 32, 77, 114].
The Dirac equation imposes a specific form of the mass term in the Laplacian eigenprob-
lem [29, 63, 76]

( /∇−m)ψ = 0 =⇒
(
�dS −

(
m2 + R

2

))
ψ = 0 . (B.2)

From which it follows that, in terms of the UIRs, we can only find

• Principal series: ∆ = d
2 − im

• Exceptional series: ∆ = d
2 .

Complementary series single particle UIRs of the de Sitter group are excluded from the
spectra of half integer spin representations of the fields [104, 105]. This nontrivial point
relies on the observation that the fermionic UIRs, induced by those of the double cover of the
compact subgroup, Spin(d), are incompatible with the positivity of the intertwining operator,
while it is required to write a unitary inner product for the complementary series. This follows
from the general statement made in [105], that positivity requires the inducing representation
of Spin(d) to be equivalent to its Weyl conjugate. In the case d = 2p, this excludes the half
integer spin representations of Spin(d), which are necessarily chiral. In the case, d = 2p+ 1,
faithful (injective) representations of Spin(d) are also excluded from the complementary
series, by the requirement that the highest weight state must have a final entry with integer
values. The injective representations of Spin(d) are precisely those of half integer spin, as the
bosonic representations are double valued. This exclusion can also be seen more mundanely
as above. The shift in the mass term when squaring the Dirac equation, changes the relation
between ∆ and m encountered for bosons. The complementary series then requires an
imaginary value of m, which implies non-unitarity of the Hamiltonian. The works previously
cited include an analysis of higher rank spinor tensors and introduce the possibility of
partially massless tunings for m for these fields, we leave this topic for later analysis.
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C STT Wightman function

The STT propagator in AdS has been calculated in [9]. Here we present a calculation of the
Wightman function for symmetric traceless tensor fields in analogy. The case of symmetric
traceless tensors in (A)dS, as well as the link to the euclidean sphere SN and hyperbola
HN has been treated in [17, 41, 115–117] among others. Here we perform the calculation
explicitly in dS for reference and convenience, although the result follows in principle from the
analytic continuation of the AdS Harmonic function [53]. The Wightman function between
ambient space points X1 and X2 of a massive spin J field in dS with polarisation vectors
W1 and W2 respectively is dependent on the chordal distance z = 1

2(1 +X1 ·X2) = 1− u
4 .

We make use of two equivalent bases

ΠJ,∆(X1,W1;X2,W2) =
J∑
k=0

(W1 ·W2)J−k((W1 ·X2)(W2 ·X1))kgk(z)

=
J∑
k=0

(W1 ·W2)J−k((W1 · ∇1)(W2 · ∇2))kfk(z).

We can recover the first basis from the second via

gk(z) =
J∑
i=k

(1
2

)i+k ( i!
k!

)2 1
(i− k)!∂

(i+k)
z fi(z) . (C.1)

The equation of motion provides the necessary differential equation which we seek to solve,

(�− (∆(d−∆) + J))ΠJ,∆(X1, X2) = 0 . (C.2)

With the covariant derivative given as in eq. (2.6). This equation is equivalent to the
Casimir equation. To further simplify, we define hk(z) = ∂kz fk(z). The equation of motion
can be written recursively:(

(1− z)z∂2
z + (d+ 1 + 2k)

(1
2 − z

)
∂z−

∆(d−∆)− 2k(k − J + 1)
)
hk(z) = 4(J − k + 1)hk−1(z) ,

h−1(z) = 0 .

(C.3)

The k = 0 equation is simply the equation of motion for the scalar field and so is easily
solved and normalised as described in section 2.3. The following equations can be solved
recursively from the two previous ones as in EAdS,

hk(z) = cJ,k

(
(d+ 2J − 2k − 1)

(
(2− d− J)hk−1(z) +

(1
2 − z

)
h′k−1(z)

)
+2(J − k + 2)hk−2(z)

)
,

(C.4)

Where

cJ,k = −2(J − k + 1)
k(d+ 2J − k − 2)(∆ + J − k − 1)(d−∆ + J − k − 1) .

The recursion relations in AdS follow by changing variable z → −σ and the sign of the term
multiplying hh−1 in eq. (C.4).
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D Spinors in global coordinates

In the main text we showed that a generic Dirac-type spinor Ψ of R1,d+1 with eigenvalue
equation ΓAXAΨ = Ψ encodes a Dirac spinor of the dS slice. Our proof uses flat-slicing,
planar coordinates, but holds in general by the homogeneity of dSd+1. It is convenient to
have coordinate expression for some practical computations, and the one used previously
does not cover the whole space, nor do they make the analytic continuation to Sd+1 clear.
This is why we devote this appendix to the analogous construction for global coordinates

XA = (X0, X i) = (sinh(t), wi cosh(t)) , (D.1)

with angular variables wiwi = 1. These have the benefit of both covering the whole
space and making the analytic continuation t = iτ straightforward. These coordinates
treat the d + 1-th component indistinctly from the others, and so the previous splitting
of the SO(1, d+ 1) Lorentz algebra into the conformal algebra is ill-suited to analyse the
transformation law of fields induced on the slice. It is more natural to use a different
decomposition of the group by identifying the de Sitter algebra

Ki = L0i , (D.2)
Mij = Lij . (D.3)

Note that this Ki is unrelated to the special conformal transformation generator of the
conformal algebra. This splitting simply isolates the boosts and the rotations, and is
precisely the one used to study the representations of SO(1, 3) in [99]. The commutation
relations follow directly

[Mij ,M
kl] = −4δ[i

[kMj]
l] , (D.4)

[Mij ,K
k] = −2δ[i

kKj] , (D.5)
[Ki,Kj ] = Mij . (D.6)

From the explicit form of the coordinate slices, we can find that acting on a scalar field
φ(X(t, w)) in the embedding, they act as the Killing vectors

Q̂Mijφ(X(t, w)) = wj
∂

∂wi
φ− wi

∂

∂wj
φ , (D.7)

Q̂Kiφ(X(t, w)) = wi
∂

∂t
φ+ tanh(t) (δij − wiwj)

∂

∂wj︸ ︷︷ ︸
=hij∂j=∇i

φ . (D.8)

We see that the Mij implement rotations while the boosts, Ki, contain both a time
translation as well as a covariant derivative on the sphere. The covariant derivative is
unsurprising as it is necessary for the generators to preserve the constraint w2 = 1. Acting
on a field in the slice ψ(t, w) with definite spin representation specified by spin matrices
ΣAB, the orbital part of the generator for the scalar has to be supplemented by the spin
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part

[Mij , ψ(t, w)] = −
(
wi

∂

∂wj
− wj

∂

∂wi
+ Σij

)
ψ , (D.9)

[Ki, ψ(t, w)] = wi
∂

∂t
ψ + tanh(t)∇iψ + Si(t, w,Σ)ψ . (D.10)

The vector Si(t, w,Σ) is non-trivial to compute, although it is entirely fixed by the Jacobi
identity [[A,B], ψ] = [A, [B,ψ]] − [B, [A,ψ]]. We proceed in two steps. First, note that
the Jacobi identity for [M,K] is solved by the general ansatz Sa = Σijw

jg1(t) + Σi0g2(t).
Secondly, one can use this ansatz in the Jacobi identity for [K,K] and decompose the
resulting equation in terms of independent structures multiplied by equations involving g1(t)
and g2(t), which must all vanish. The output of this is that the action of the symmetry
generators on fields with spin do generate a representation of the de Sitter algebra provided
g1(t) = − 1

tanh(t) and g2(t) = − 1
sinh(t) . From this analysis, we gather that on the slice, a

generic spinning field transforms under the action of the generator according to

[Mij , ψ(t, w)] = −
(
wi

∂

∂wj
− wj

∂

∂wi
+ Σij

)
ψ , (D.11)

[Ki, ψ(t, w)] =
(
wi

∂

∂t
+ tanh(t)∇i −

cosh(t)Σijω
j + Σi0

sinh(t)

)
ψ . (D.12)

This can, as previously, be compared with the transformation induced from the em-
bedding on a generic spinor field Ψ as in eq. (3.16). As argued in the main text, one can
consider the case d+ 1 = 2k + 1, and use the resulting formalism in any dimension, both
odd and even. A parameterisation of the gamma matrices can be chosen similarly as before

Γ0 =
(

0 1
−1 0

)
⊗ 1 , (D.13)

Γi =
(

1 0
0 −1

)
⊗ γ0γi . (D.14)

Using this convention, one can check that rotations behave as expected, however boosts
require more care. Motivated by the planar case, we consider the commutation relation not
for χ itself but for f(t)χ, and leave f(t) to be determined:

[Ki, f(t)χ] =
(
wi∂t + tanh(t)∇i

)
(fχ)− wiḟ(t)χ+ 1

2γ0γifρ (D.15)

=
(
wi∂t + tanh(t)∇i

)
(fχ)− γi /w − wi

2 tanh(t)f(t)χ− γiγ0
2 sinh(t)fχ . (D.16)

Where the first line is derived from the explicit transformation law of the embedding space
spinor, the second line is required for f(t)χ to transform as a dSd+1 spinor. This equality is
solved provided

2 tanh(t)ḟ(t) + f(t) = 0⇒ f(t) = 1√
sinh(t)

, (D.17)

ρ = 1− cosh(t)γ0 /w

sinh(t) χ . (D.18)
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This, as expected, corresponds to an embedding spinor satisfying ΓAXAΨ = Ψ. Proceeding
as before, one can define a polarisation vector such that

SΨ = 1√
sinh(t)

(
s 0

) (
ΓAXA + 1

)
Ψ = sψ . (D.19)

The kinematics for global coordinates is then entirely fixed by using polarisations

XAΓAS = −S =⇒ S =
(
−γ0 sinh(t)
γ0 + cosh(t)/w

)
s√

sinh(t)
, (D.20)

SXAΓA = S =⇒ S = s√
sinh(t)

(
cosh(t)γ0 /w + 1 sinh(t)

)
. (D.21)

One can use these expressions to find the different spinorial structures appearing in the
correlation function. It is also straightforward to check that the boundary limit of these
polarisations is as stated previously, and once rescaled we obtain a smooth limit to the
polarisation spinor of a primary spinor on the lightcone.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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