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1 Introduction

Strings can propagate in backgrounds which are not geometric in the conventional sense.
Although each appropriate conformal field theory (CFT) on the world-sheet gives a string
vacuum, its target-space interpretation is not always obvious. It is also possible to think of
the backgrounds where the transition functions for the target space involve the symmetries
intrinsic to string theory, namely, the string dualities. In the case of T-duality, the corre-
sponding “(non-)geometry” is named the T-fold [1–4]. These non-geometric backgrounds
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are relevant in understanding the string vacua. Furthermore, those involving the string
dualities would provide clues in understanding the dualities and the new formulations of
string theory, such as Double Field Theory (DFT) [5], in which the dualities are manifest.

Among non-geometric backgrounds in string theory, we focus on the T-fold in this
paper. At low-energy, strings on T-folds can be analyzed by supergravity, or under certain
consistent truncation including the winding modes, by DFT. Moreover, in order to study
them in the regime where their quantum effects are further incorporated, their formula-
tion based on the world-sheet CFT would be necessary. Since the T-folding is realized
on the world-sheet by gauging a twist involving T-duality which acts asymmetrically on
the left- and the right-mover, T-folds are described by a particular class of asymmetric
orbifold CFTs.1

In such a formulation, it has been known that one encounters a seeming puzzle [9–
12]: to be concrete, let us consider the T-duality transformation which is realized by
a chiral reflection of the coordinate fields e.g. in the right-mover, and hence acts as a
Z2 transformation. The modular transformation of the world-sheet partition functions,
however, generally forms a Zn>2 representation due to the non-trivial phases in the twisted
sectors which remain as a consequence of the left-right asymmetry. A resolution to this
puzzle is to note that the Z2 action in the target space may be lifted to more general actions
on the world-sheet [9, 13–15]. In other words, T-duality may have a different representation
there, similarly to the spin representation for the orthogonal group.

Once the puzzle is cleared, it is conceptually straightforward to advance the studies
of strings on T-folds by the world-sheet theories, though it is still non-trivial in practice
since the construction and the analysis of the corresponding asymmetric orbifold theories
are rather involved. In this respect, a class of the asymmetric orbifold CFTs describing T-
folds, or their modular invariant partition functions, has been constructed in a systematic
manner by making use of Lie algebra lattices [13, 14]. Motivated by the cosmological
constant problem as in [13], related asymmetric orbifold models have been constructed [16–
18]. An application of these CFTs/models to that problem has been discussed [19].

The purpose of this paper is to make a step toward the studies of strings on T-folds in
depth which are exact in α′ beyond the regime of supergravity and DFT. In particular, we
take a supersymmetric model constructed in [13] as a concrete example, where the internal
torus at the SO(8) enhancement point is twisted by T-duality (T-folded), and study the
interactions of the strings. Our prime interest is to figure out what happens when the
strings twisted by T-duality, which might be rather exotic from the conventional point of
view, interact with the untwisted strings. As simple examples to this end, we consider
a class of ten-dimensional massless strings, which are excited by the internal momenta
above the four-dimensional massless strings in the untwisted sector or those in the ground
states in the twisted sector. We first construct their vertex operators. The T-duality twist,
or the chiral reflection in this case, is implemented by the twist fields of the type in the
Ashkin-Teller model [20–27] for the bosonic coordinate fields and by the spin fields for the
world-sheet fermions.

1For the world-sheet doubled formalism, see [4, 6, 7]. For a review on non-geometric backgrounds in
string theory in general, see e.g. [8].

– 2 –



J
H
E
P
0
6
(
2
0
2
2
)
1
2
1

We then compute their three- and four-point amplitudes, focusing on the NS-NS sector.
The four-point amplitudes involving two twisted and two untwisted strings are obtained in
a closed form in terms of the hypergeometric function. By their factorization, we find that
the three-point amplitudes among the twisted and untwisted strings are suppressed by the
momenta flowing along the T-folded internal torus. Its mechanism is essentially the same
as that for general symmetric orbifolds discussed in [28]. In our case of an asymmetric
orbifold based on a Lie algebra lattice, only the momenta in the right-mover contribute to
the suppression. In addition, the three-point coupling is quantized in integer powers of N−2

with N = 2, where N comes from ZN=2 of the T-duality twist (in the untwisted sector)
and the exponent 2 from the length of the roots of SO(8). This result of the suppression
includes stringy effects through the winding modes which are non-perturbative from the
sigma-model point of view.

We also consider high-energy limits of the amplitudes, which correspond to α′ → ∞
opposite to the particle limit α′ → 0. In a hard-scattering limit where (the absolute values
of) all the Mandelstam variables become large, the angle dependence for the momenta
along the twisted internal torus takes the same form as that for the external momenta in
the usual hard-scatting. The sign of its exponent given by the magnitude of the incident
momenta is, however, opposite. We find that both of the two saddle points of the integrand
of the amplitude are dominant, and each gives the correct result in the hard-scattering limit
up to a momentum dependent phase.

Although we work with a concrete model of strings on T-folds, our analyses rely only on
general properties of the asymmetric orbifold by the T-duality twist and of the Lie algebra
lattice associated with the twisted internal torus. Thus, our results may be extended
qualitatively to more general T-folds.

The rest of this paper is organized as follows. In section 2, we review a model con-
structed in [13], which is used in this paper, and summarize its properties. This section
sets up our notation. In section 3, we classify the spectrum of the model, and construct
the vertex operators of the strings mentioned above. In section 4, we compute their three-
and four-point amplitudes in the case of the vanishing right-moving momenta along the
T-duality twisted torus. This section serves as a preparation for the next section, and
provides a check of the results there as well. In section 5, we compute the amplitudes in
the general case with the non-vanishing right-moving momenta along the twisted torus.
We analyze their properties including the suppression of the coupling and the high-energy
behaviors. We conclude with a summary and discussion in section 6. In the appendix,
we summarize our conventions, some formulas and details of our computations, which are
used in the main text.

2 A model of strings on T-folds

2.1 T-fold from SO(8) torus
As a concrete example, we consider a model of strings on T-folds which is constructed
in [13]. This model is obtained by gauging a twist ofM = R1,3× S1×Rbase× T 4

fiber which
involves T-duality, where T 4

fiber is the torus at the SO(8) enhancement point of the moduli.
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We denote the coordinate fields by XM (M = 0, 1, . . . , 9). For later use, we introduce the
indices for each part of M; for example, µ̃ = M = 0, . . . , 3 for R1,3, p = M = 4, 5 for S1

and Rbase respectively, and a = M = 6, . . . , 9 for T 4
fiber. The part other than T 4

fiber is also
denoted, e.g. by µ = M = 0, . . . , 5. In the untwisted sector, the twist σ for our T-fold is
implemented by the T-duality twist or the chiral reflection on T 4

fiber,

(Xa
L, X

a
R) 7−→ (Xa

L,−Xa
R) (a = 6, 7, 8, 9) , (2.1)

together with the translation in Rbase,

X5 7−→ X5 + 2πR5 , (2.2)

where we have split Xa into the left- and the right-mover as Xa(z, z̄) = Xa
L(z) + Xa

R(z̄).
Thus, a string wrapped around the base circle along Rbase modded out by (2.2) undergoes
monodromy due to (2.1) in the fiber torus part T 4

fiber, which characterizes the T-fold. It
turns out, as in (2.11) below, that half-integer modes, in addition to integer ones, appear
in the spectrum of the momentum along the base circle.2

These Xa
L/R are expanded as

Xa
L = eajx

j
L − i

α′

2 p
a
L ln z + · · · , Xa

R = eajx
j
R − i

α′

2 p
a
R ln z̄ + · · · , (2.3)

with

paL =
√

2
α′
e∗ja

[
nj + (G−B)jk w

k
]
, paR =

√
2
α′
e∗ja

[
nj − (G+B)jk w

k
]
, (2.4)

and nj , wj ∈ Z. Here, eaj and e∗ja are the vielbein and its inverse, which satisfy

eaj e
a
k = 2Gjk , e∗ja e

∗k
a = 1

2G
jk , eaj e

∗j
b = δab . (2.5)

In the present case, the constant space-time metric Gij and the anti-symmetric tensor Bij
are given by the Cartan matrix Cij of SO(8) as Gij = 1

2Cij for any i, j and Bij = 1
2Cij for

i > j. Gij is the inverse of Gij . Thus, eaj and e∗ja form the root and the weight lattice of
SO(8), respectively. This also implies that the momenta

√
α′/2 paL/R take their value on

the SO(8) lattice. The left- and right-momenta belong to the same conjugacy class, since
their difference is given by the root lattice,

√
α′/2(paL−paR) = eajw

j . We follow the notation
in [14, 29] for the Lie algebra lattice. The periodicity of X̂j := e∗ja X

a ∼ X̂j+
√
α′/2×2πmj

with mj ∈ Z is translated into Xa ∼ Xa +
√
α′/2× 2πeaj mj . The chiral bosons XM

L/R have
the standard operator product expansions (OPEs), XM

L (z)XN
L (0) ∼ −(α′/2)ηMN ln z and

XM
R (z̄)XN

R (0) ∼ −(α′/2)ηMN ln z̄ with ηMN = diag(−1,+1, . . . ,+1).
For the world-sheet superconformal symmetry to be preserved, the T-duality twist acts

also as the chiral reflection on the world-sheet fermions in the untwisted Neveu-Schwarz
(NS) sector,

(ψaL, ψaR) 7−→ (ψaL,−ψaR) (a = 6, 7, 8, 9) . (2.6)
2One may start with a base circle with radius 2R5 as in [3, 11, 12] instead of Rbase, and then consider

the T-duality twist accompanied with the half-shift X5 7−→ X5 + 2πR5. This is equivalent to the present
formulation and leads to the same partition function as in (2.11).
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The fermions in the left- and the right-mover, ψML (z), ψMR (z̄), have the OPEs,
ψML (z)ψNL (0) ∼ ηMNz−1 and ψMR (z̄)ψNR (0) ∼ ηMN z̄−1. The action (2.6) determines the
T-duality twist in this sector. That in the untwisted Ramond sector is, however, not
unique and there are essentially two cases, as understood e.g. through bosonization. When
one adopts a bosonization of the right-moving transverse fermions ψMR ,3

ψ2
R ± iψ3

R =:
√

2e±iH1
R , ψ4

R ± iψ5
R =:

√
2e±iH2

R ,

ψ6
R ± iψ7

R =:
√

2e±iH3
R , ψ8

R ± iψ9
R =:

√
2e±iH4

R , (2.7)

by the free bosons Hk
R(z̄) with Hk

R(z̄)H l
R(0) ∼ −δkl ln z̄, the action (2.6) is translated into(

H1
R, H

2
R, H

3
R, H

4
R

)
7−→

(
H1
R, H

2
R, H

3
R + π,H4

R − π
)
. (2.8)

In terms of these Hk
R, the spin fields are given by

SR(ε) = ŠRŜR , ŠR := e
i
2
∑2

k=1 εkH
k
R , ŜR := e

i
2
∑4

k=3 εkH
k
R , (2.9)

with εk = ±1. We denote the spin fields also by using the spinor indices e.g. as SαR instead
of SR(ε). Then, the T-duality twist squares to the identity, and thus the twist becomes Z2
also in this sector.

Alternatively, one can bosonize ψMR so that two of ψaR (a = 6, . . . , 9) for T 4
fiber are mixed

with those for the other part ψMR (M = 2, . . . , 5). In this case, (2.6) results in a Z4 action
in the untwisted Ramond sector. In the following, we consider the first case in (2.7), (2.8).

2.2 Partition function and spectrum

The actions (2.1), (2.2), (2.6), (2.8) determine the twist σ for the T-fold in the untwisted
sector. Together with the Gliozzi-Scherk-Olive (GSO) projected untwisted partition func-
tion, they also determine the partition function twisted once by σ. Those in the twisted
sectors are obtained from them by modular transformations. Consequently, the partition
function for the transverse part becomes

Z(τ, τ̄) = Ztr
R1,3×S1(τ, τ̄)J (τ)Ztw(τ, τ̄) ,

Ztw(τ, τ̄) =
∑

w,m∈Z
Zbase

(w,m)(τ, τ̄)F T 4

(w,m)(τ, τ̄) f(w,m)(τ) . (2.10)

Here, τ is the modulus of the world-sheet torus. Ztr
R1,3×S1 , Zbase

(w,m), F
T 4

(w,m) are the partition
functions from Xµ (µ = 2, 3, 4) for the transverse part of R1,3 × S1, from X5 for Rbase,
and from Xa (a = 6, . . . , 9) for T 4

fiber, respectively. J comes from the left-moving fermions
ψML (M = 2, . . . , 9), whereas f(w,m) from the right-moving fermions ψMR (M = 2, . . . , 9).
The explicit form of Ztr

R1,3×S1 is the standard one, which we omit. Those for the other
components are listed in appendix 7.

We note that the action of the T-duality twist on the world-sheet is generally uplifted [9,
13–15]. In the present case, it becomes Z4 on the internal T 4

fiber part as in (7.3) and (7.4)
3We have omitted the cocycles to ensure the anti-commutativity among different fermions.
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due to the phases depending on w and m, though it remains Z2 in the untwisted sector,
i.e. the sector with w = 0. The action in the twisted sectors, i.e. the sectors with w 6= 0, is
found from the expression of the partition function.

This model preserves 24 space-time supercharges (3/4 supersymmetry), 16 of which
come from the left-mover and 8 of which from the right-mover. Its spectrum is read off by
the Poisson resummation with respect to the temporal winding m, which converts m to
the momentum n along X5 ∈ S1. After some algebra, one finds

Ztw (τ, τ̄) = 1
|η (τ) |2

∑
w,n∈Z

q
α′
4

(
n

2R5
+R5
α′ w

)2

q̄
α′
4

(
n

2R5
−R5
α′ w

)2 ∑
m∈Z2

(−1)nmF T 4

(w,m) (τ, τ̄)f(w,m)(τ) ,

(2.11)

where q = e2πiτ and η(τ) is the Dedekind η function. The spectrum is tachyon-free and
maintains the unitarity. Once the phases in F T 4

(w,m) and f(w,m) are combined and cancelled
with each other, the action of the T-duality twist on the product F T 4

(w,m) f(w,m) becomes Z2
in our case. In general, the T-duality twist on the internal part, however, remains to be Zk
with k > 2. In the target space, T-folds generally have non-geometric fluxes (Q-fluxes) [30].
Those in this model may be read off by following a general procedure given in [31] which
realizes non-geometric fluxes in terms of world-sheet variables.

3 Vertex operators

3.1 Classification of spectrum by conjugacy classes

The spectrum in the above partition function can be classified by the conjugacy classes of
the SO(2k) lattice. We denote by o, v, s, c the conjugacy class including the vacuum, the
vector, the spinor and the conjugate-spinor representation, respectively. The characters
of o+v, o−v, s+c, s−c are represented by the theta functions θk3 , θk4 , θk2 , ϑk1 := (−iθ1)k

divided by ηk.
In the left-mover, J (τ) contains v and s of SO(8). In the right-mover, the contents of

f(w,m) read

f(0,0) : (ov + vo)− (ss + cc) , f(0,1) : (−ov + vo)− (ss− cc) ,
f(1,0) : (os + vc)− (sv + co) , f(1,1) : (os− vc)− (−sv + co) . (3.1)

2 Here, we have decomposed the conjugacy classes of SO(8) to those of SO(4) for ψµR
(µ = 2, . . . , 5) and those of SO(4) for ψaR (a = 6, . . . , 9), and denoted them from the left to
the right. For example, ov means o for ψµR and v for ψaR.

As a consequence of the SO(8) symmetry in the untwisted sector, F T 4

(w,m) are also given
by the theta functions as in (7.3), and accordingly decomposed by the conjugacy classes as

F T
4

(0,0) : o (oo + vv) + v (ov + vo) + s (ss + cc) + c (sc + cs) ,

F T
4

(0,1) : o (oo− vv) + v (−ov + vo) + s (ss− cc) + c (−sc + cs) ,

F T
4

(1,0) : o (oc + vs) + v (os + vc) + s (sv + co) + c (so + cv) , (3.2)

F T
4

(1,1) : o (oc− vs) + v (−os + vc) + s (sv− co) + c (−so + cv) .
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Here, the left-moving part is represented by the conjugacy classes of SO(8), whereas the
right-moving part is represented by those of SO(4)⊕SO(4) and denoted with the overline
( ). While the action of the twist on the untwisted sector directly follows from its definition,
the one on the twisted sector is determined uniquely by the modular invariance of the total
partition function and the modular covariance of its building blocks. The actions of the
twist in the twisted and untwisted sectors are generally different as above.

3.2 Massless strings in the untwisted sector

In F T 4

(0,m) for the untwisted sector, the conjugacy classes are specified by the momenta pL
and pR along T 4

fiber. Under the twist σ for the T-fold, the states may have minus signs
from the excitations of the oscillators α̃a−k (k ∈ Z>0) of Xa

R, the odd combination of their
oscillator vacua |pR〉 − | − pR〉, and/or the momentum part for Rbase with n ∈ 2Z + 1
in (2.11). The states invariant under the twist are obtained in such a way that these signs
are cancelled with each other.

In the following, we consider the ten-dimensional massless strings which belong to the
untwisted sector (of the internal T 4

fiber part) with w, n ∈ 2Z in (2.11), as simple exam-
ples to probe the interactions on the T-fold. With the left-moving fermions included, the
relevant part of the partition function reads

(
F T

4

(0,0)f(0,0) + F T
4

(0,1)f(0,1)
)
J . We also concen-

trate on the NS-NS sector. Massless strings involving the Ramond sectors are related by
supersymmetry. The conjugacy class including the NS-NS massless states is then labeled as[

o (oo)
]
X
×
[

v (vo)
]
ψ
. (3.3)

The part inside [ ]X is from F T4
(w,m). For the fermion part [ ]ψ, we have denoted the

conjugacy classes in the order of [ψML (ψµR, ψaR)] (M = 2, . . . , 9; µ = 2, . . . , 5; a = 6, . . . , 9).
In the states of the massless strings, the excited non-zero modes are (ψL)M−1/2 and (ψR)µ−1/2
only. Before taking the invariant combination of the momenta, they are thus expressed as

(ψL)M−1/2|0;KL〉 ⊗ (ψR)µ−1/2|0;KR〉 , (3.4)

where |0;KL/R〉 are the oscillator vacua with the ten-dimensional momenta,

KM
L = (kµL, p

a
L) , KM

R = (kµR, p
a
R) , (3.5)

whose components are moreover split into

kµL =
(
kµ̃, kpL

)
, kµR =

(
kµ̃, kpR

)
, (3.6)

with µ̃ = 0, . . . , 3 and p = 4, 5. For the conjugacy classes in (3.3), the momenta paL/R for
Xa
L/R take the value on the root lattice,

paL/R =
√

2
α′
eaim

i
L/R

(
mi
L/R ∈ Z

)
. (3.7)

The momenta along Xp generally take the form,

kpL = np
Rp

+ wpRp
α′

, kpR = np
Rp
− wpRp

α′
, (3.8)
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where n5 ∈ Z/2 as in (2.11), n4, w
4, w5 ∈ Z, and R4 is the compactification radius for X4.

In this notation, n5 ∈ Z, w5 ∈ 2Z for the states in (3.4). Because of the on-shell condition,
these states are indeed massless from the ten-dimensional point of view. Together with the
level-matching condition, the momenta satisfy

KL ·KL := ηMNK
M
L K

N
L = 0 , KR ·KR := ηMNK

M
R KN

R = 0 . (3.9)

These strings are regarded as those obtained from the four-dimensional massless strings
by exciting the momenta along S1 × Rbase × T 4

fiber, which make them massive from the
four-dimensional point of view.

The corresponding vertex operators are constructed in a standard manner. In the
(−1,−1) picture, they are given by4

V
(−1,−1)

ut;pR = gce
−φL−φRζMψ

M
L ζ̄µψ

µ
R e

iKL·XL+iKR·XR , (3.10)

where gc is the coupling constant, ζM , ζ̄µ represent the polarizations satisfying KM
L ζM =

kµRζ̄µ = 0, and kR · XR := ηµνk
µ
RX

ν
R. φL,R are the bosonized superconformal ghosts with

the normalization, φL(z)φL(0) ∼ − ln z, φR(z̄)φR(0) ∼ − ln z̄. We have explicitly denoted
the dependence of V (−1,−1)

ut;pR on paR. Acting with the modes of the supercurrents, one also
obtains the vertex operators in the (0, 0) picture,

V
(0,0)

ut;pR (3.11)

= −2gc
α′
ζM

(
i∂XM

L + 1
2α
′ (KL · ψL)ψML

)
ζ̄µ
(
i∂Xµ

R + 1
2α
′ (KR · ψR)ψµR

)
eiKL·XL+iKR·XR .

To make the states invariant under the twist σ, we further take the even combination
of the states with pR and −pR. The corresponding vertex operator is denoted e.g. by

V
(0,0)

inv;pR := 1√
2

(
V

(0,0)
ut;pR + V

(0,0)
ut;−pR

)
. (3.12)

3.3 Massless strings in the twisted sector

For the twisted sector, the conjugacy classes in F T
4

(1,m) for the left-mover are specified by
the momentum pL as in the untwisted sector. However, pR in the right-mover vanishes.
On dimensional grounds, one finds that o/v stands for the states with an even/odd number
of excitations of α̃a−(1/2+k) (k ∈ Z>0), whereas s, c stand for those corresponding to their
excitations above the twist fields. As in the untwisted sector, the invariant states are
obtained in such a way that the signs due to the twist are cancelled with each other.

For the twisted sector (of the internal T 4
fiber part), we consider the ten-dimensional

massless strings which belong to the sector with w ∈ 2Z + 1 and n ∈ 2Z in (2.11). The
relevant part of the partition function reads

(
F T

4

(1,0)f(1,0) +F T 4

(1,1)f(1,1)
)
J . We concentrate on

the NS-NS sector with respect to the fermions ψML (M = 2, . . . , 9) and ψµR (µ = 2, . . . , 5)

4We have omitted the cocycles for the toroidal compactification. They give extra phases in the amplitudes
below, which are however irrelevant in our discussion.
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without the twist.5 The conjugacy class including the NS-NS massless states is then la-
beled as [

o (oc)
]
X
×
[

v (os)
]
ψ
. (3.13)

The left-moving part is the same as in (3.3). The conjugacy class c for Xa
R should include,

as mentioned above, the states which correspond to the twist field ΣR(z̄) =
∏9
a=6 Σa(z̄)

implementing the chiral reflection (2.1) and its dual Σ̄R(z̄), and the excited ones above
them. Here, Σa are the twist fields for Xa

R with dimension 1/16, and regarded as the
twist fields of the type in the Ashkin-Teller model [20–27]. In appendix 8, we summarize
the properties of those twist fields which are used below. For ψµR, the conjugacy class os
represents the states corresponding to the twist fields ŜαR with dimension 1/4, and the
excited ones above them.

The spectrum in the partition functions F T 4

(w,m) in (3.2) can be represented by free
fermions. In that case, the T-duality twist on Xa

R is represented similarly to (2.8) by the
corresponding free bosons through bosonization. Such a representation would simplify the
computations of scattering amplitudes. However, those free bosons are related non-locally
to the original bosons Xa

R, and thus the physical interpretation of the results is not clear
as they stand. We thus do not take this route in the following. The problem is essentially
equivalent to the “bosonization” of the twist fields Σa. For a recent discussion in this
respect, see [27].

In the (−1,−1) picture, the corresponding vertex operators are then,

V
(−1,−1)

tw = g′ce
−φL−φRζMψ

M
L ūαŜ

α
R ΣR e

iKL·XL+iKR·XR , (3.14)

or those with Σ̄R instead of ΣR, which we denote by V̄
(−1,−1)

tw . Here, g′c is the coupling
and ūα is the polarization of the spinor. We denote the momenta KL,R again by the same
form as in (3.5)–(3.8). From the physical state conditions, one finds that the corresponding
states are massless from the ten-dimensional point of view, and

KL ·KL = KR ·KR = 0 . (3.15)

In the notation (3.8), the momenta k5
L,R of these states have n5 ∈ Z, w5 ∈ 2Z+ 1, whereas

the momenta paL are on the root lattice and paR are vanishing due to the twist,

paL =
√

2
α′
eaim

i
L

(
mi
L ∈ Z

)
, paR = 0 . (3.16)

The strings which we are considering are regarded as those obtained from the ground states,
or the six-dimensional massless states outside T 4

fiber, in the twisted sector by exciting the
internal momenta. They are massive from the four-dimensional point of view.

As in the case of symmetric orbifolds, each twisted sector and hence each twist field may
be associated to a fixed point under the chiral reflection (2.1). Thus, the vertex operators

5Though the NS and Ramond sectors are mixed due to the twist, the periodicity of the matter su-
percurrent TmF ;R in the right-mover does not change since the boundary conditions of Xa

R and ψaR are
changed simultaneously. The NS/Ramond sector of the matter part with respect to ψµR thus couples to the
NS/Ramond sector of the superconformal ghosts, and thus the BRST symmetry is maintained.
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generally include the fields which implement the shifts among the fixed points [28]. In the
following, we work in a twisted sector with the same fixed point for simplicity, and assume
that the twist field ΣR is associated to it.6

4 Amplitudes with vanishing right-moving internal momenta

Now, we are ready to compute the amplitudes of the strings in the twisted and untwisted
sectors whose vertex operators are constructed in the previous section. We focus on those
of the NS-NS states as mentioned above. The amplitudes involving the Ramond states
are related by supersymmetry. In particular, let us first consider the case where the right-
moving internal momenta pR’s along T 4

fiber vanish also in the untwisted sector, while pL’s
are kept generic both in the twisted and untwisted sectors. This serves as a preparation
for the case with non-vanishing paR discussed in the next section, as well as a check of our
computations there.

4.1 Three-point amplitudes involving the twisted sector

The untwisted NS-NS states in section 3.2 are invariant under the twist σ for the T-fold
after taking the invariant combination of the momenta. The correlation functions and
amplitudes only among them at the tree level are the same as those in the original model
without the twist.

Once the twisted sector is involved, a non-vanishing three-point amplitude needs to
include two twisted states, as they change the Hilbert space of the untwisted sector to that
of the twisted sector, and vice versa. To saturate the ghost charge, the amplitude takes
the form,

A
(0)
3 =

〈
cc̄V

(0,0)
ut;pR=0(z1) cc̄V̄ (−1,−1)

tw (z2) cc̄V (−1,−1)
tw (z3)

〉
, (4.1)

with c(z), c̄(z̄) being the ghosts. We note that Vut;pR=0 = 1√
2Vinv;pR=0 for pR = 0. Using

the physical state conditions, one finds

A
(0)
3 = −(iCS2)gcg′2c aL3 aR3 (2π)10δ(10)(K1 +K2 +K3) ,

aL3 = −

√
α′

2 ζ1Mζ2Nζ3Kt
MNK , tMNK := ηMNKK

L2 + ηNKKM
L3 + ηKMKN

L1 , (4.2)

aR3 = −

√
α′

2 ū23ζ̄1µk
µ
R3 = 1

2

√
α′

2 ū23ζ̄1µ(kµR2 − k
µ
R3) ,

where ūij := ūiαCαβūjβ = ūiαū
α
j with Cαβ being (the chiral block of) the SO(4) charge

conjugation matrix, and a constant iCS2 comes from the determinant of the Laplacian.
KL/Rj is the left/right-moving momentum for the j-th vertex. Since paRj = 0 in the present

6The conjugacy class c of SO(4) has two states with dimension 1/4. A possible identification would be
that each corresponds to ΣR or Σ̄R. Another possibility would be that ΣR is self-dual as in the Ashkin-
Teller model, and one corresponds to ΣR and the other to another twist field for another fixed point. The
following discussion does not depend on details of the identification. See appendix 8. For the Z2-symmetric
orbifolds with Lie algebra lattices, the fixed points have been discussed in detail in [32].
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case, KM
Rj = (kµRj , 0). ζjM and ζ̄jµ are the vector polarizations for the j-th vertex and, sim-

ilarly, ūjα are the spinor polarizations. Regarding the factors representing the momentum
conservation, we normalize the states for the internal part without the volume factor as
for the partition function (2.10), and thus (2π)δ(Kp) for S1 or Rbase and (2π)4∏9

a=6 δ(Ka)
for T 4

fiber stand for δnp,0δwp,0 (p = 4, 5) and
∏
j δmjL,0

, respectively.

4.2 Four-point amplitudes

Let us move on to the computation of the four-point amplitudes. The number of the
twisted states therein should be even, as in the three-point amplitudes. We thus consider

A
(0)
4 =

〈
cc̄V

(0,0)
ut;0 (z1)

∫
d2z2 V

(0,0)
ut;0 (z2) cc̄V̄ (−1,−1)

tw (z3) cc̄V (−1,−1)
tw (z4)

〉
, (4.3)

where we have set paR = 0 for the untwisted states, and hence paRj = 0 (j = 1, . . . , 4). The
computation of A(0)

4 is straightforward though needs some algebra. For definiteness and
later use, we list the result in some detail. First, by setting z1 = 1, z2 = z, z3 → ∞ and
z4 = 0, one finds

A
(0)
4 = (iCS2)(gcg′c)2 × (2π)10δ(10)

(∑4
a=1Ka

)
× I(0)

4 , (4.4)

where

I
(0)
4 =

∫
d2z D4;L (z)D(0)

4;R (z̄) , (4.5)

D4;L = e
−πi
(

1+α′
2 KL3·KL4

)
z
α′
2 KL2·KL4 (1− z)

α′
2 KL1·KL2 · α

′

2

(
A

(1− z)2 + B

1− z + C

z

)
,

D
(0)
4;R = e

+πi
(

1+α′
2 kR3·kR4

)
z̄
α′
2 kR2·kR4 (1− z̄)

α′
2 kR1·kR2 · α

′

2

(
Ā(0)

(1− z̄)2 + B̄

1− z̄ + C̄

z̄

)
,

with

A = ζ12ζ34

( 2
α′
−KL1 ·KL2

)
,

B = (KL1 ·KL2) (ζ14ζ23 − ζ13ζ24) + ζ12 (κ32κ41 − κ31κ42) + ζ34 (κ12κ24 − κ14κ21)
− ζ13κ21κ43 + ζ14κ21κ34 + ζ23κ12κ43 − ζ24κ12κ34 ,

C = − (KL1 ·KL2) ζ13ζ24 + ζ13 (κ21κ42 − κ24κ41) + ζ24 (κ12κ31 − κ13κ32) (4.6)
− ζ12κ31κ42 + ζ14κ31κ24 + ζ23κ13κ42 − ζ34κ13κ24 ,

Ā(0) = ζ̄12ū34

( 2
α′
− kR1 · kR2

)
, B̄ = ū34 (κ̄12κ̄24 − κ̄21κ̄14) , C̄ = −ū34κ̄13κ̄24 .

The dot ( · ) stands for the contraction by ηMN in the left-mover, and that by ηµν in the
right-mover. To lighten the notation, we have introduced

ζij := ζi · ζj , ζ̄ij := ζ̄i · ζ̄j , κij := ζi ·KLj , κ̄ij := ζ̄i · kRj . (4.7)
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The above integral is evaluated by the formula (9.1) in appendix 9, which results in

I
(0)
4 = (−1)nsI(α, β;nt, ns) · a4;L a

(0)
4;R , (4.8)

where

I (α,β;nt,ns) = 2π (−1)1+nu
α′

4 sL ·
α′

4 tL ·
α′

4 sR ·
α′

4 tR(
1+ α′

4 uL
)(

1+ α′

4 uR
) Γ

(
−α′

4 sR
)

Γ
(
−α′

4 tR
)

Γ
(
−α′

4 uR
)

Γ
(
1+ α′

4 sL
)

Γ
(
1+ α′

4 tL
)

Γ
(
1+ α′

4 uL
) ,

a4;L = 2·
(

1+α′

4 uL
) uL

sL
(

4
α′+sL

)A− 1
sL
B− 1

tL
C

 , (4.9)

a
(0)
4;R = 2ū34 ·

(
1+α′

4 uR
) uR

sR
(

4
α′+sR

)Ā(0)− 1
sR
B̄− 1

tR
C̄

 ,
with

α = α′KL2 ·KL4 = −α
′

2 tL , β = α′KL1 ·KL2 = −α
′

2 sL . (4.10)

We have also defined

sL := − (KL1 +KL2)2 , tL := − (KL1 +KL3)2 , uL := − (KL1 +KL4)2 ,

sR := − (kR1 + kR2)2 , tR := − (kR1 + kR3)2 , uR := − (kR1 + kR4)2 , (4.11)

and

ns := α′

4 (sL − sR) , nt := α′

4 (tL − tR) , nu := α′

4 (uL − uR) . (4.12)

From (3.7), (3.8) and (3.16), these ns, nt, nu are integers. The Mandelstam variables satisfy

sL + tL + uL = 0 , sR + tR + uR = 0 , (4.13)

which also implies ns + nt + nu = 0. Substituting these into (4.4) gives A(0)
4 .

By rescaling, the polarization part is rewritten as

ã4;L :=
α′

4 sL ·
α′

4 tL(
1 + α′

4 uL
)a4;L

= α′2

8

[ 1
2uLsLζ13ζ24 − tL (ζ12κ32κ41 + ζ14κ21κ34 + ζ23κ12κ43 + ζ34κ14κ23) (4.14)

+ (terms with 2↔ 3) + (terms with 3↔ 4)
]
,

ã
(0)
4;R :=

α′

4 sR ·
α′

4 tR(
1 + α′

4 uR
)a(0)

4;R = α′2

8 ū34

(1
2 tRuRζ̄12 − tRκ̄14κ̄23 − uRκ̄13κ̄24

)
.
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The left-moving part ã4;L is symmetric with respect to sL, tL, uL, and agrees with the
standard expression for the massless scattering [33, 34]. The amplitude is also expressed
in a Kawai-Lewellen-Tye (KLT)-like form [35] through,

I
(0)
4 = ã4;L ã

(0)
4;R · 2(−1)ns sin

(πα′
4 sL

)Γ
(
− α′

4 sL
)
Γ
(
− α′

4 uL
)

Γ
(
1 + α′

4 tL
) Γ

(
− α′

4 sR
)
Γ
(
− α′

4 tR
)

Γ
(
1 + α′

4 uR
) .

(4.15)

For comparison with the result in the next section, let us note some properties of the
amplitude. First, A(0)

4 has the poles in the s-channel at

α′

4 sL − ns = α′

4 sR = k (k ∈ Z≥0) (4.16)

for ns ≥ 0, whereas at
α′

4 sR − |ns| =
α′

4 sL = k (k ∈ Z≥0) (4.17)

for ns < 0. The poles in the t- and u-channels are similar.
In the hard-scattering limit,

sL/R →∞ ,
tL/R
sL/R

: fixed, (4.18)

with ns, nt, nu also fixed for simplicity, one finds the asymptotic form,

logA(0)
4 ∼ logA(0)

4;L + logA(0)
4;R , (4.19)

where logA(0)
4;L/R comes from the left/right-mover and is given by

logA(0)
4;L/R ∼ −

α′

4
(
sL/R log sL/R + tL/R log tL/R + uL/R log uL/R

)
. (4.20)

This behavior is obtained by evaluating the saddle point value of the integrand of I(0)
4 [36].

Although the Lorentz symmetry is absent for the internal part KM
L/R (M = 4, . . . , 9), let

us further suppose for simplicity that e.g. the left-moving spatial momenta ~KL = (KM
L )

(M = 1, . . . , 9) satisfy
0 = ~KL1 + ~KL2 = −

(
~KL3 + ~KL4

)
, (4.21)

for the scattering process 1+2→ 3+4, as in the usual center-of-mass frame. In this case,7

sL = 4K2 , tL = −2K2(1 + cos θ) , uL = −2K2(1− cos θ) , (4.22)

with K := | ~KLj | (j = 1, . . . , 4). The left-moving part of (4.20) then becomes

logA(0)
4;L ∼ −α

′K2f(θ) , (4.23)

7We take all the spacial momenta to be positive when they are incoming.
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where θ is the angle between ~KL1 and ~KL3 defined via ~KL1 · ~KL3 = K2 cos θ, and

f(θ) = − cos2 θ

2 · log
(

cos2 θ

2

)
− sin2 θ

2 · log
(

sin2 θ

2

)
, (4.24)

as in the standard case. In the Regge limit,

sL/R →∞ , tL/R, ns, nt, nu : fixed, (4.25)

one also finds

logA(0)
4;L/R ∼

α′

4 tL/R log sL/R . (4.26)

In the limit |sL/R|, |uL/R| � |tL/R|, (4.20) reduces to (4.26).

5 Amplitudes with non-vanishing right-moving internal momenta

Based on the discussion in the previous section, we now consider the general amplitudes
where the right-moving internal momenta pRj along T 4

fiber are non-vanishing in the un-
twisted sector, while pLj are kept generic as before. The behavior of the amplitudes is
indeed changed due to the T-duality twist.

5.1 Three-point amplitudes

When pR 6= 0 in the untwisted sector, the three-point amplitude involving the twisted
sector becomes

A3 =
〈
cc̄V

(0,0)
inv;pR1 6=0(z1) cc̄V̄ (−1,−1)

tw (z2) cc̄V (−1,−1)
tw (z3)

〉
. (5.1)

This is evaluated by using the correlator (8.2) in appendix 8. As discussed shortly, the
coupling gc also comes to dependent on pR, which we denote as gc(pR). Up to the coupling
part, the result of A3 is then given by a combination of A(0)

3 in (4.2) weighted by the
phases e±ix̄0·pR1 ,

A3 = 1√
2

(eix̄0·pR1 + e−ix̄0·pR1)× gc(pR)
gc(0) A

(0)
3 , (5.2)

where x̄0 · pR1 := δabx̄
a
0 · pbR1, and x̄a0 is the zero-mode of the twisted sector which we

are working in. As explained in the appendix, the momentum conservation is not im-
posed on pR.

Supposed that the period of Xa
R is half that of Xa = Xa

L + Xa
R, which is given

below (2.5), the periodicity of Xa
R is represented as Xa

R ∼ Xa
R +

√
α′/2 · πeak for each

k = 6, . . . , 9. The fixed points under the twist Xa
R → −Xa

R are then at x̄a0 =
√
α′/2 ·

(π/2)
∑9
k=6 εke

a
k where εk = 0, 1. From (3.7), the phase e2ix̄0·pR1 becomes of the form

(−1)m with m ∈ Z in this case.
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5.2 Four-point amplitudes

We now consider the four-point amplitude,

A4 =
〈
cc̄V

(0,0)
inv;pR1

(z1)
∫
d2z2 V

(0,0)
inv;pR2

(z2) cc̄V̄ (−1,−1)
tw;0 (z3) cc̄V (−1,−1)

tw;0 (z4)
〉
, (5.3)

with pR1, pR2 6= 0. The computation of the left-moving part is the same as in the previous
section. For the right-moving part, by using the correlator in (8.3) we first compute the
amplitudes with V

(0,0)
ut;pRj instead of V (0,0)

inv;pRj (j = 1, 2), which we denote by ApR1,pR2
4 , and

then sum up them. The computation of ApR1,pR2
4 is similar to that in the previous case

with pR = 0, but with some differences: firstly,
〈∏

eikRj ·XR
〉〈

Σ̄RΣR

〉
is replaced with〈∏

eikRj ·XR
〉〈
eipR1·XReipR2·XRΣ̄RΣR

〉

= eix̄0·(pR1+pR2) × z̄−
1
2

34 (z̄12z̄34)−
α′
4 s
′
R(z̄13z̄24)−

α′
4 tR(z̄14z̄23)−

α′
4 uR

1−
√
ξ̄

1 +
√
ξ̄


α′
2 pR1·pR2

,

(5.4)

where pR1 ·XR := δabp
a
R1X

b
R, pRi · pRj := δabp

a
Rip

b
Rj and ξ̄ := z̄13z̄24/z̄23z̄14. The last factor

is understood as due to the twisted propagator in (8.5). We have also defined

s′R := sR + k2
R1 + k2

R2 = −2kR1 · kR2 = −2kR3 · kR4 − p2
R1 − p2

R2 . (5.5)

sR, tR and uR are defined in (4.11). We note that e.g. tR = −2kR1 · kR3 + p2
R1 due to

pR1 6= 0. The terms with i∂̄XR in the computation are changed similarly.
Secondly, the terms pRj · ψR from KRj · ψR (j = 1, 2) are not vanishing in the vertex

V
(0,0)

ut;pR in (3.11). Consequently, one has an extra term proportional to〈
ψaR(z̄1)ψbR(z̄2)ŜαR(z̄3)ŜβR(z̄4)

〉
= h+(z̄j)δabCαβ − h−(z̄j)

(
Cγab

)αβ
, (5.6)

where the index structure on the right side is fixed by the symmetry. We have defined
γab := 1

2(γaγ̄b − γbγ̄a) with γa, γ̄a being the chiral blocks of the SO(4) gamma matrices.
Our conventions of those matrices are summarized in appendix 10. By considering specific
cases of the indices, one finds the coordinate dependent factors h±(z̄j) to be [37]

h± (z̄j) = 1

2z̄12z̄
1
2
34

(
ξ̄

1
2 ± ξ̄−

1
2
)
. (5.7)

This results in a change of the polarization factor,

Ā(0) → Ā(ξ̄) := Ā(0) − q−ξ̄
1
2 − q+ξ̄

− 1
2 , (5.8)

with
q± := 1

2 ζ̄12
(
ū34 (pR1 · pR2)± paR1p

b
R2 (Cγab)αβ ū3αū4β

)
. (5.9)

After setting z̄1 = 1, z̄2 = z̄, z̄3 →∞ and z̄4 = 0, we find that I(0)
4 in (4.5) changes as

I
(0)
4 → I4 =

∫
d2z D4;L(z)D4;R(z̄) , (5.10)
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for ApR1,pR2
4 , where D4;L(z) is given in (4.5) and

D4;R = e
πi

(
1−α

′
4 s
′
R

)
z̄−

α′
4 tR (1− z̄)−

α′
4 s
′
R

(
1−
√
z̄

1 +
√
z̄

)α′
2 pR1·pR2

α′

2

(
Ā (z̄)

(1− z̄)2 + B̄

1− z̄ + C̄

z̄

)
.

(5.11)

In the present case, the Mandelstam variables satisfy

sL + tL + uL = 0 , s′R + tR + uR = 0 . (5.12)

ns, nt, nu defined in (4.12) remain to be integers. We also define

n′s := α′

4
(
sL − s′R

)
= ns + α′

4
(
p2
R1 + p2

R2

)
, (5.13)

which is also an integer satisfying n′s + nt + nu = 0.
The integral I4 is evaluated by using the results in appendix 9. We thus obtain

ApR1,pR2
4 = (iCS2)

(
g′c
)2
gc (pR1)gc (pR2)×(2π)10 δ(10)

(∑4
a=1Ka

)
×eix̄0·(pR1+pR2)I4 ,

I4 = 2π (−1)1+n′s ã4;L×
Γ
(
−α′

4 uL
)

Γ
(
1+ α′

4 sL
)

Γ
(
1+ α′

4 tL
)×b4;R , (5.14)

b4;R = α′

2

[
JR
(
ᾱ, β̄−2, γ̄

)
·Ā(0)−JR

(
ᾱ+ 1

2 , β̄−2, γ̄
)
·q−−JR

(
ᾱ− 1

2 , β̄−2, γ̄
)
·q+

+JR
(
ᾱ, β̄−1, γ̄

)
·B̄+JR

(
ᾱ−1, β̄, γ̄

)
·C̄
]
,

where JR(ᾱ, β̄, γ̄) is given in terms of the hypergeometric function as in (9.6), and

ᾱ = −α
′

4 tR , β̄ = −α
′

4 s
′
R , γ̄ = α′

2 pR1 · pR2 . (5.15)

We recall that ã4;L is given in (4.14), and Ā(0), B̄, C̄ are in (4.6). When γ̄ = 0, the
integral I4 reduces to I(0)

4 in (4.8) due to (9.10), and so does ApR1,pR2
4 to A(0)

4 . We note
that A−pR1,−pR2

4 = e−2ix̄0·(pR1+pR2)ApR1,pR2
4 .

By combining A±pR1,±pR2
4 , we obtain the four-point amplitude for the invariant un-

twisted states in (5.3),

A4 = 1
2
(
ApR1,pR2

4 +ApR1,−pR2
4 +A−pR1,pR2

4 +A−pR1,−pR2
4

)
. (5.16)

This is our final result of the computation of A4.

5.3 Poles of the amplitudes

From the analytic structure of JR(ᾱ, β̄, γ̄) explained in appendix 9, one finds that the
possible poles of the amplitude A4 are at

α′

4 uL = mu ,
α′

4 tR = 1
2(mt + lt) ,

α′

4
(
s′R − 2pR1 · pR2

)
= ms + ls , (5.17)
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Figure 1. Emission of untwisted strings from twisted sector or t-channel picture of A4 (left),
and s-channel picture (right). The solid/dashed lines represent the propagation of the un-
twisted/twisted strings.

where mu,mt,ms ∈ Z≥0, and lt = 0, 1, 2, 3 and ls = −1, 0, 1 are due to the shift of
the arguments ᾱ and β̄ in JR, respectively. Since s′R − 2pR1 · pR2 = −2KR1 · KR2 =
−(KR1 + KR2)2, the poles are specified by the “proper” Mandelstam variable also in the
s-channel. From the integral representation of I4 as z̄ → 1, or by using (9.17), one can
check that the residue of the apparent unwanted tachyonic pole at s′R−2pR1 ·pR2 = −4/α′

from ls = −1 vanishes. The series at α′

4 tR −
1
2 = m ∈ Z≥0 should be cancelled with

the zeros coming e.g. from the hypergeometric functions in I4 as in the case of γ̄ = 0;
the amplitude is symmetric with respect to tR and uR, or the t-channel poles arise from
the contributions around z̄ → 0 which are irrelevant of the value of γ̄. This agrees with
the allowed intermediate states in this channel read off from the partition function (2.10).
Thus, we are left with the possible poles at

α′

4 uL = m′u ,
α′

4 tR = m′t ,
α′

4 (s′R − 2pR1 · pR2) = m′s , (5.18)

with m′u,m′t,m′s ∈ Z≥0. Still, some may be cancelled with the zeros from other part of I4,
as in the case of γ̄ = 0 described in section 4.2.

5.4 Suppression of the three-point coupling

In the presence of the two twist fields ΣR, Σ̄R, the untwisted vertices are regarded as
describing the emission of the untwisted states from the twisted sector, as in figure 1
(left). The factorization of A4 shows that the coupling gc in Vut;pR comes to depend on the
momentum, as mentioned above, similarly to the case of symmetric orbifolds [28].

To see this, we note that the last factor in (5.4) from the twisted propagator is reduced

to
[
(1 −

√
z̄)/(1 +

√
z̄)
]α′

2 pR1·pR2 by setting (z̄1, z̄2, z̄3, z̄4) = (1, z̄,∞, 0) as above. Though
the denominator 1 +

√
z̄ does not change the short-distance singularity, it gives an extra

factor in [ (1 − z̄)/4 ]
α′
2 pR1·pR2 for z̄ → 1. We denote the coupling in the vertex for the

emission from the untwisted sector by g0. Then, evaluating the contribution to A4 from
the integrand around z̄ = 1, and relating it to the product of the three-point amplitudes
in the s-channel as in figure 1 (right), we find

A4 ∼ gc(pR1) gc(pR2) 2−α′pR1·pR2 ∼ g0 gc(pR1 + pR2) . (5.19)
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Here, we have used CS2 ∼ 1/g2
0 [38]. gc(pR) is thus regarded as the three-point cou-

pling among two twisted states and an untwisted state with internal momentum pR. In
the t-channel factorization, one indeed finds A4 ∼ gc(pR1) gc(pR2). The relation (5.19) is
solved by

gc(pR) ∼ 2−
α′
2 p

2
R g0 . (5.20)

In the present case of an asymmetric orbifold, the coupling depends only on the right-
moving momentum pR. Moreover, it follows from (3.7) that

α′

2 p
2
R = Cijm

i
Rm

j
R ∈ 2Z , (5.21)

where Cij is the Cartan matrix of SO(8), and hence the suppression factor of the coupling
is quantized in integer powers of 1/4. The momentum along a compactified direction with
radius Ri has the winding contribution wRi/α

′ as in (3.8), and Ri/
√
α′ corresponds to

the inverse coupling of the sigma model. Therefore, the factor 2−α′p2
R/2 in (5.20) includes

stringy effects of the form e−w
2R2

i /α
′ which are non-perturbative from the sigma-model

point of view. The compactification radii in (2.4) are of order
√
α′ and not explicit there.

This suppression of the coupling implies that an untwisted string with large momentum
pR hardly interacts with twisted strings confined around the fixed point.

The suppression factor in (5.20) is also understood as a consequence of the normal
ordering of the vertex operator eipX , and of the difference of the mode expansions for
different boundary conditions by n ∈ Z or n ∈ Z+ 1

2 [28]. The mechanism of the suppression
is hence robust even for asymmetric orbifolds. The argument of the normal ordering
is extended to the case of ZN orbifolds with N > 2. The suppression factor for ZN>2
symmetric orbifolds schematically takes the form N−(momenta)2× (factors depending on N
and momenta) [28, 39]. It is thus understood that the base 2 of 1/4 = 2−2 in our case
comes from ZN=2 of the T-duality twist in the untwisted sector of the T 4

fiber part, and the
exponent 2 is from the length of the roots of SO(8). The geometrical interpretation of the
suppression in the symmetric case [28], however, may not apply as it stands, since we are
considering a T-fold/asymmetric orbifold and in addition working in a twisted sector with
the same fixed point.

5.5 High energy behaviors

From the expression (5.14), (5.16), one can read off high energy behaviors of the amplitude
A4. The high energy limit corresponds to α′ → ∞, which is opposite to the particle limit
α′ → 0. To see those behaviors, let us first summarize the kinematics. We denote the
momenta as in (3.5)–(3.8), (3.16). Their conservation reads 0 =

∑4
j=1 k

µ̃
j =

∑4
j=1 k

p
L/Rj =∑4

j=1 p
a
Lj , whereas paRj with paR3 = paR4 = 0 do not have to be conserved. The momenta

also have to satisfy the on-shell and level-matching conditions (3.9), (3.15). We mainly
consider the scattering process 1 + 2 → 3 + 4. Other processes can be analyzed similarly,
which we comment on below. By the Lorentz symmetry for kµ̃, one can then take the
center-of-mass frame where

0 = ~k1 + ~k2 = −
(
~k3 + ~k4

)
, (5.22)
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with ~k = (k1, k2, k3). A variety of high energy limits is allowed because of the asymmetry
between the left- and the right-mover, the absence of the conservation of pR and that
of the Lorentz symmetry for kpL/R and paL/R along S1 × Rbase × T 4

fiber. In the following,
we concentrate on the case characteristic to the strings on the T-fold where pR1, pR2 are
large and the T-duality twist has significant influence through the factor from the twisted
propagator in (5.4).

Hard-scattering limit. As an example, we first consider a high-energy limit where
the momenta of the untwisted strings along T 4

fiber are large and those along other spatial
directions are kept fixed:

|pL/R1| , |pL/R2| � |~kj | , |k
p
L/Rj | (j = 1, 2) . (5.23)

We also fix the internal momenta of the twisted strings |kpL/Rj | (j = 3, 4) for simplicity.
From the on-shell and level-matching conditions, it follows that |pLj | (j = 3, 4) are fixed,
and that

|pRj | ∼ |pLj | ∼ p (j = 1, 2) , |k0
j | ∼ p (j = 1, . . . , 4) , |~kj | ∼ p (j = 3, 4) ,

(5.24)

with p := |pR1| being large. For this kinematic configuration, the Mandelstam variables are

sL ∼ 4p2 , tL ∼ −2p2 , uL ∼ −2p2 ,

s′R ∼ 2p2 , tR ∼ −p2 , uR ∼ −p2 . (5.25)

Thus, sending p→∞ is a hard-scattering limit.
In this limit, the asymptotic form of the amplitude consists of the terms from the left-

and the right-mover as in (4.19), and from the momentum-dependent couplings in this case,

logApR1,pR2
4 ∼ logA4;L + logApR1,pR2

4;R + log [gc(pR1)gc(pR2)] . (5.26)

The contribution from the left-mover comes from the factor B−1(−α/2,−β/2) in (5.14)
with (4.10), where B(x, y) is the beta function, and remains the same as to A(0)

4 ,

logA4;L ∼ −
α′

4 (sL log sL + tL log tL + uL log uL) ∼ −α′p2 log 2 . (5.27)

Due to (5.20), the contribution from the couplings also becomes

log
[
gc(pR1)gc(pR2)

]
∼ −α′p2 log 2 . (5.28)

On the other hand, the contribution from the right-mover comes from the factor
JR(ᾱ, β̄, γ̄) in (5.14) with (5.15) and

γ̄ ∼ α′

2 p
2 cosφ , (5.29)
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where φ is the angle between paR1 and paR2. The behavior of this factor for p → ∞ can
be found by using the formulas of the hypergeometric function listed in appendix 9. Us-
ing (9.14) and (9.15), one finds

JR
(
ᾱ, β̄, γ̄

)
∼ 2B

(
2− β̄, 1 + β̄ + γ

)
F
(
2− β̄, γ̄ − β̄; 3 + γ̄;−1

)
= 2β̄−1B

(
2− β̄, 1 + β̄ + γ

)
F
(
2− β̄, 3 + β̄; 3 + γ̄; 1/2

)
(5.30)

∼
(
β̄

2

)−β̄ (
β̄ + γ̄

) β̄+γ̄
2
(
β̄ − γ̄

) β̄−γ̄
2 .

Here, we have used
ᾱ ∼ −1

2 β̄ , γ̄ ∼ −β̄ cosφ , (5.31)

and the fact that F (a, b; c; z) is an entire function of a, b, c for |z| < 1 or Re z < 1/2 and
hence F (2 − β̄, 3 + β̄; 3 + γ̄; 1/2) ∼ F (−β̄, 1 + β̄; γ̄; 1/2) for large |β̄|. Thus, when (5.31)
holds,

logApR1,pR2
4;R ∼ −α

′

4
(
s′R log s′R + tR log tR + uR log uR

)
− α′

4 s
′
R [log 2− f (φ)]

∼ −α
′

2 p
2 [2 log 2− f (φ)] , (5.32)

where f(x) is the function defined in (4.24). This function is rewritten as f(φ) = f̃
(
cos2 φ

2
)

where f̃(y) := −y log y − (1 − y) log(1 − y). Since 0 ≤ f̃(y) ≤ log 2 for y ∈ [0, 1] with the
maximum f̃(1/2) = log 2 and the minima f̃(0) = f̃(1) = 0, one finds a bound,

4−
α′
2 p

2
. ApR1,pR2

4;R . 2−
α′
2 p

2
. (5.33)

When γ̄ = 0 or cosφ = 0, namely, when the factor from the twisted propagator in (5.4)
disappears, f(φ) has the maximum log 2 and the right-hand side of (5.32) reduces to the
standard form in terms of s′R, tR and uR as in (4.20). The angle dependence given by f(φ)
is also the same as in (4.23). The sign of its coefficient +α′s′R/4 is, however, opposite
to (4.23), so that the amplitude is more suppressed as |γ̄| becomes larger. The behaviors
ApR1,pR2

4;R ∼ 2−α′p2/2, 4−α′p2/2 for cosφ = 0 (γ̄ = 0), cosφ = ∓1 (γ̄ = ±β̄), respectively, are
also confirmed from (9.9), (9.16) and (9.17), respectively.

The high-energy behavior in (5.30) is obtained also by the saddle point v0 of the
integrand of JR in (9.6), which solves (ᾱ + β̄)v2 + γ̄v − ᾱ = 0. For the present kinematic
configuration, the solutions are v0 ∼ −y ± i

√
1− y2 with y := γ̄/β̄ ∼ − cosφ. One finds

that the two saddle points give the same value of the integrand up to a phase depending on
γ̄, and that it agrees with (5.30). This means that the saddle-point argument in [36] may
be developed also in our case of a T-fold. Our explicit computation shows in particular
that both of the two saddle points are dominant, and one can take either of them up to
the phase corresponding to the choice of the branch, but not their linear combinations.

We note that (5.32) in this limit is symmetric with respect to φ and π − φ or γ̄ and
−γ̄ before summing up ±pRj as in (3.12) and (5.16). Therefore, in the asymptotic form of
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the total amplitude A4 denoted as in (5.26), the contribution from the right-mover A4;R
corresponding to ApR1,pR2

4;R remains the same in this limit,

A4;R ∼ ApR1,pR2
4;R . (5.34)

With the help of the above saddle-point argument, this may be understood as follows: if
we formulate our orbifold theory on the Riemann surface with the branch cut representing
the twist, the summation of ±pRj is automatically taken care of (up to the zero-mode
factors eix̄0·pRj ), since moving to another sheet,

√
z̄ → −

√
z̄, flips the sign of γ̄ in (5.4). In

picking up a saddle point, global properties of the Riemann surface are not relevant, and
thus it may reproduces the invariant result under γ̄ → −γ̄ or φ → π − φ. In the usual
hard scattering, this type of invariance corresponds to the symmetry between the t- and
u-channels, which is represented e.g. by f(θ) in (4.20). This observation may partly explain
why the same angle dependence f(φ) appears also in the present case.

It is also possible to consider the high-energy limit where |~k1| = |~k2| becomes large
in addition. The asymptotic form of the amplitude in this case would be obtained once
the asymptotic form of the hypergeometric function in the general case is given, or it is
supposed that picking up one saddle point gives the correct result as above.

For other processes, one can consider, for example, the 1 + 3 → 2 + 4 process where
|pLj | ∼ |pRj | ∼ p (j = 1, 2) are large and other momenta are fixed or vanishing. The
contribution from the right-mover and that from the momentum-dependent couplings are
dominant in this case. From the asymptotic form of JR as above, it turns out that, as p
increases, so does the former as opposed to (5.32), while the latter still decreases. Adding
these together, one finds logA4 ∼ −α′

2 p
2f(φ), which takes a standard form for the hard

scattering. This shows that the momentum dependence of the coupling ensures the soft
behavior of the amplitudes in this case.

Regge-like limits. Next, we consider high-energy limits of the 1 + 2 → 3 + 4 process
where all the Mandelstam variables do not become large. For simplicity, we suppose that
~KLj with pLj 6= 0 also satisfy the same relations (4.21) and (4.22) as in the usual center-
of-mass frame. Then,

sL →∞ , tL : fixed (cos θ → −1) , (5.35)

is a Regge(-like) limit. The contribution to the asymptotic form of A4 from the left-mover
takes the same form as A(0)

L in (4.26). The Mandelstam variables in the right-mover are

s′R = 2K2 + 2k2 − 2kpR1k
p
R2 , tR = −2K2 + 2k2 − 2kpR1k

p
R3 + p2

R1 , (5.36)

where we have set K = | ~KLj | and k = |~kLj | (j = 1, . . . , 4). To be concrete, we take e.g.
pL := |pLj | (j = 1, . . . , 4) to be large, and (kpLj)2 (j = 1, . . . , 4) and (kpRj)2 (j = 1, 2) to
be fixed. In this case, K2 ∼ k2 + p2

L and, from the level-matching condition, p2
L ∼ p2

R1 ∼
p2
R2 ∼ (kpR3)2 ∼ (kpR4)2, which results in8

s′R ∼ 2
(
2k2 + p2

L

)
, tR ∼ −p2

L , pR1 · pR2 ∼ p2
L cosφ . (5.37)

8For generic radii Rp (p = 4, 5) in (3.8) where np and wp are separately conserved, (4.21) and (5.35)
imply kpL1 = kpL4 = −kpL2 = −kpL3 and a similar relation for kpRj . The latter relation for the right-mover,
however, do not necessarily hold at special radii.
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With these Mandelstam variables, the analysis of the contribution from the right-mover
reduces to that for the hard-scattering limit discussed above.

One may also consider the high-energy limit where tR instead of tL is fixed. Though
tR is a fundamental variable of the amplitude, it is not a standard Mandelstam variable
due to the existence of the internal momenta pRj . One finds that it is very restrictive to fix
tR for large pRj so as to be compatible with the momentum conservation, and the on-shell
and level-matching conditions. We refrain from going into further details in such rather
special cases.

6 Discussion

By taking a model of strings on T-folds as an example, we have discussed their interactions
from the world-sheet point of view which are exact in α′. We have computed the three-
and four-point amplitudes of a class of ten-dimensional massless strings both in the twisted
and untwisted sectors. The four-point amplitudes are obtained in a closed form in terms
of the hypergeometric function. From their factorization, it turns out that the three-point
coupling among the twisted and untwisted strings is suppressed by the chiral momenta
flowing along the T-folded internal torus, as in the case of general symmetric orbifolds.
Furthermore, the coupling is quantized in integer powers of 1/4 in our case of a T-fold,
since the T-duality twist is Z2 in the untwisted sector of the torus part and the chiral
momenta take the value on a Lie algebra lattice. The asymptotic forms of the four-point
amplitudes in high-energy limits have also been found. These results include stringy effects
which are non-perturbative from the sigma-model point of view, or those for α′ →∞ which
is opposite to the particle limit α′ → 0. They probe strings on a T-fold beyond the regime
of supergravity and DFT.

For the strings other than those discussed in this paper, their vertex operators may
be found by following the discussion in section 3, and their amplitudes may be obtained
similarly. The momenta pRj along the internal torus generally take the value on the
weight lattice, instead of the root lattice, of SO(8), and hence the suppression factor of the
coupling becomes integer powers of 1/2, instead of 1/4. By using the correlators involving
more twist fields than those listed in appendix 8, one can also compute the amplitudes with
more twisted strings. The simplest among these is the four-point amplitudes only of the
strings excited above the ground states in the twisted sector by the internal momenta. In
this case, however, the right-moving momenta pRj along the internal torus, a key ingredient
of our analysis, are all vanishing. The amplitudes involving different twisted sectors may
be computed by introducing the operators connecting them, as mentioned at the end of
section 3.3.

As understood from the discussions so far, our analysis relies only on general properties
of the T-duality twist and the symmetry enhancement of the internal torus, and hence
may be extended qualitatively to more general T-folds. Furthermore, our analysis can be
applied or extended to other asymmetric as well as symmetric orbifold models, including
those mentioned in section 1 [13, 14, 16], which are based on the (chiral) reflection of the
coordinate fields.
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Compared with toroidally compactified models, where the left- and right-movers are
not symmetric either, the appearance of the twisted propagator is characteristic to the
present case of a T-fold or an asymmetric orbifold. This changes the expression of the
amplitudes and results in the suppression of the coupling. The absence of the conservation
of the momentum pR along the twisted torus also affects the kinematics. Such properties are
common to the case of symmetric orbifolds. Details are, however, different. For example,
by extending the formula (9.7) as in (9.13), the four-point amplitudes may be obtained as a
combination of the hypergeometric functions from the left and right movers. The exponent
of the suppression factor in the symmetric case is given by the momenta in the untwisted
sector as p2

L+p2
R [28] instead of p2

R. Since pL and pR differ by the root lattice as mentioned
in section 2.1, these exponents can be largely different due to the windings wj . As the
left-mover is twisted in addition, the momentum pL in the twisted sector vanishes, and its
conservation in the untwisted sector does not need to hold. The left-moving part of the
amplitudes may be given also by the variables which are defined similarly to s′R, tR, uR in
the right-mover. These change the kinematics significantly and, together with the difference
of the spectrum, the amplitudes with large left-right asymmetry of the type discussed in
section 5.5 may not appear. The analysis of the high-energy behavior of the amplitudes
becomes different accordingly.

Our analysis in this paper demonstrates that strings on T-folds, which are very stringy
and might appear to be unconventional, can be analyzed in a quantitative manner, once
the world-sheet theory is properly given, even though its construction is rather involved.
This may be regarded as an advantage of the world-sheet analysis. A future problem
there would be to make “geometric” interpretations clearer regarding the fixed points, the
associated twisted sectors, and the mechanism of the suppression of the coupling even for
the non-geometric case of T-folds/asymmetric orbifolds.

Given the results which are valid for all α′, one may consider their applications to
further studies of strings on T-folds and related ones. For example, since T-folds may be
treated geometrically in DFT before it is reduced in the supergravity frame, it would be of
interest to figure out the implications of our results in the structure of DFT including the α′-
corrections [40] before the section condition is imposed. In addition, non-geometric fluxes
are associated with weakly constrained DFT [41]. Thus, our results, or their extensions,
would be used also to study its structure.9 Finally, the world-sheet for the four-point
amplitudes discussed in this paper has the branch cut which is created by the twist fields
and implements the T-duality twist. This branch cut may be regarded as a world-sheet
conformal interface/defect [42–44] inducing T-duality. Conformal interfaces have properties
which extend those of conformal boundaries or D-branes. Although there are related
works [45–50], the role of world-sheet conformal interfaces in string theory, if any, is yet to
be explored. It would be interesting if one could probe it by utilizing the results in this
paper. We would like to discuss these issues further elsewhere.

9We would like to thank the referee for raising a question on this issue.
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7 Components of partition function

The components of the partition function in (2.10) are given by

Zbase
(w,m)(τ, τ̄) := R5√

α′τ2|η(τ)|2
e
−
πR2

5
α′τ2
|wτ+m|2

, (7.1)

J (τ) := 1
2

[(
θ3
η

)4
−
(
θ4
η

)4
−
(
θ2
η

)4]
≡ 0 , (7.2)

F T
4

(w,m)(τ, τ̄) (7.3)

:= 1
2 ·



e
πi
2 w
{(

θ3
η

)4 (
θ3θ4
η2

)2
+
(
θ4
η

)4 (
θ4θ3
η2

)2
+
(
θ2
η

)4 (
θ2ϑ1
η2

)2
+
(
ϑ1
η

)4 (
ϑ1θ2
η2

)2
}
,

e−
πi
2 m

{(
θ3
η

)4 (
θ3θ2
η2

)2
+
(
θ2
η

)4 (
θ2θ3
η2

)2
−
(
θ4
η

)4 (
θ4ϑ1
η2

)2
−
(
ϑ1
η

)4 (
ϑ1θ4
η2

)2
}
,

e−
iπ
2 wm

{(
θ4
η

)4 (
θ4θ2
η2

)2
−
(
θ2
η

)4 (
θ2θ4
η2

)2
−
(
θ3
η

)4 (
θ3ϑ1
η2

)2
+
(
ϑ1
η

)4 (
ϑ1θ3
η2

)2
}
,∣∣∣ θ3η ∣∣∣8 +

∣∣∣ θ4η ∣∣∣8 +
∣∣∣ θ2η ∣∣∣8 +

∣∣∣ θ1η ∣∣∣8 ,
f(w,m)(τ) (7.4)

:= 1
2 ·
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θ2
η

)2
−
(
θ2
η

)2 (
θ3
η

)2
+
(
θ4
η

)2 (
ϑ1
η

)2
+
(
ϑ1
η

)2 (
θ4
η

)2
}
,

e−
πi
2 wm

{(
θ4
η

)2 (
θ2
η

)2
−
(
θ2
η

)2 (
θ4
η

)2
+
(
θ3
η

)2 (
ϑ1
η

)2
+
(
ϑ1
η

)2 (
θ3
η

)2
}
,(

θ3
η

)4
−
(
θ4
η

)4
−
(
θ2
η

)4
−
(
θ1
η

)4
.

The right-hand sides of (7.3) and (7.4) are listed in the order of the cases (w ∈ 2Z,m ∈
2Z + 1), (w ∈ 2Z + 1,m ∈ 2Z), (w ∈ 2Z + 1,m ∈ 2Z + 1) and (w ∈ 2Z,m ∈ 2Z) from
the top to the bottom. θα(τ) (α = 1, . . . , 4) and η(τ) are the theta functions and the
Dedekind η function, respectively. We have introduced ϑ1(τ) := (−i)θ1(τ), and omitted
the argument τ on the right-hand sides. For the theta functions, we follow the conventions
adopted in [13].

In the above, we have explicitly written the vanishing terms involving θ1 ≡ 0, to
keep track of the actual contribution from each state. We have also kept the order of the
theta functions in the products for later use to identify the corresponding vertex operators.
For instance, if r < r′, θα coming from the complex fermion ψ2r

R + iψ2r+1
R is on the left

side of θα′ from ψ2r′
R + iψ2r′+1

R . The order of θα’s in F T
4

(w,m) might not be obvious, but

– 24 –



J
H
E
P
0
6
(
2
0
2
2
)
1
2
1

can be understood from the fermionic formulation of the T 4
fiber part. Under the modular

transformations,
S : τ 7→ −1

τ
, T : τ 7→ τ + 1 , (7.5)

these partition functions transform covariantly as

Zbase
(w,m)(τ, τ̄)|S = Zbase

(m,−w)(τ, τ̄) , Zbase
(w,m)(τ, τ̄)|T = Zbase

(w,m)(τ, τ̄) ,

F T
4

(w,m)(τ, τ̄)|S = F T
4

(m,−w)(τ, τ̄) , F T
4

(w,m)(τ, τ̄)|T = F T
4

(w,w+m)(τ, τ̄) , (7.6)

f(w,m)(τ)|S = f(m,−w)(τ) , f(w,m)(τ)|T = −e−
πi
3 f(w,w+m)(τ) ,

where f(w,m)(τ)|T := f(w,m)(τ + 1), and so on.

8 Twist fields for a chiral boson

The chiral reflection X(z) 7−→ −X(z) of a chiral boson X is implemented by the twist field
Σ(z) and its dual Σ̄(z) of the type in the Ashkin-Teller model, which have dimension 1/16,
and create the branch cut on the world-sheet. These twist fields have been discussed e.g.
in [20–27]. The correlation functions involving these fields are, for example, given by

〈
∂X(z1)∂X(z2)Σ̄(z3)Σ(z4)

〉
= −α

′

2 ·
1
2

√
ξ +

√
ξ−1

z
1
8
34z

2
12

, (8.1)

〈
eikX(z1)Σ̄(z2)Σ(z3)

〉
= eikx0

z
α′
4 k

2

12 z
α′
4 k

2

13 z
1
8−

α′
4 k

2

23

, (8.2)

〈
eik1X(z1)eik2X(z2)Σ̄(z3)Σ(z4)

〉
= eix0(k1+k2)

(z13z14)
α′
4 k

2
1(z23z24)

α′
4 k

2
2z

1
8−

α′
4 k

2
1−

α′
4 k

2
2

34

(
1−
√
ξ

1 +
√
ξ

)α′
2 k1k2

,

(8.3)

where ξ = z13z24/z23z14, and x0 is the zero-mode of X (see e.g. [27]). For (z1, z2, z3, z4) =
(z, w,∞, 0), the correlator in (8.1) gives the two-point function in the twisted sector,

〈Σ|∂X(z)∂X(w)|Σ〉 = −α
′

2 ·
1
2

√
z
w +

√
w
z

(z − w)2 , (8.4)

where 〈Σ| := limz→∞ z
1/8〈0|Σ̄(z). For z → w, this takes the same form as that in the

untwisted sector
〈
∂X(z)∂X(w)

〉
= −α′

2 (z − w)−2.
The correlators involving eikX ’s are determined by the Knizhnik-Zamolodchikov(KZ)-

like equation based on the two-point function of ∂X for the twisted boundary condi-
tion (8.4), and the Sugawara-form of the energy momentum tensor, up to the zero-mode
factor eix0(···) [25]. The derivation relies only on general properties of the twist fields and not
on their details. The zero-mode factor can be fixed by a path-integral argument as in [26].

The factors such as zα
′k2/4

12 in (8.2) and (8.3) can be understood as coming from the
self-contraction of X in eikX by adopting the same regularization as for the untwisted

– 25 –



J
H
E
P
0
6
(
2
0
2
2
)
1
2
1

boundary condition [26]. These factors ensure the correct scaling dimension of the correla-
tors. With these remarks in mind, (8.3) with (z1, z2, z3, z4) = (z, w,∞, 0), as well as (8.4),
is also understood as being obtained from the two-point function of X in the twisted sector
(twisted propagator),

〈Σ|X(z)X(w)|Σ〉 = −α
′

2 log
(√

z −
√
w√

z +
√
w

)
. (8.5)

In the symmetric twist where both left- and right moving bosons are reflected as
X(z) + X̄(z̄)→ −[X(z) + X̄(z̄)], the zero-mode x0 + x̄0 corresponds to the location of the
fixed points, which specifies a sector among the twisted sectors. Each fixed point has the
corresponding twist operator [23].

We note that the momentum conservation does not need to hold in (8.2), (8.3). Since
the twisted sectors should be associated with the fixed points, this may be understood also
as a consequence of the break down of the translational invariance. The fixed points may
supply the momenta as in the case of D-branes.

9 Formulas of integrals

The amplitudes in section 4.2 are obtained by the following formula [34, 35, 38],

I(α, β;n,m) :=
∫
d2z |z|α|1− z|βzn(1− z)m

= 2π
Γ
(
1 + n+ α

2
)
Γ
(
1 +m+ β

2
)
Γ
(
−1− α+β

2

)
Γ
(
−α

2
)

Γ
(
−β

2

)
Γ
(
2 + n+m+ α+β

2

) , (9.1)

where Γ(x) is the Gamma function. This is rewritten in other forms by using Γ(z)Γ(1−z) =
π/ sin πz.

In section 5.2, we need to evaluate the integral,

J
(
α, β; ᾱ, β̄; γ̄

)
:=
∫
d2z zα(1− z)β z̄ᾱ (1− z̄)β̄

(
1−
√
z̄

1 +
√
z̄

)γ̄
. (9.2)

The integral is first defined in the parameter region, in which the integral is convergent, and
then continued to other regions as in (9.1). Because of the branch cuts, the phases/branches
need to be defined appropriately. Below, we follow the standard procedure (see e.g. [35, 51]).

We set z = u1 + iu2 (u1, u2 ∈ R). We also take | arg z | < π, and then
√
z = −1 is out

of the integration region. The branch points on the u2-plane are at u2 = ±iu1,±i(u1 − 1).
We deform the contour of u2 along the real axis to the one along the imaginary axis
by u2 → ie−2iεu2 ≈ i(1 − 2iε)u2 with small ε > 0. The original z and z̄ become z →
u− + iε(u+ − u−) , z̄ → u+ − iε(u+ − u−) , where u± := u1 ± u2 with u1, u2 ∈ R. The
integration measure is

∫
d2z = 2i

∫
du1du2 = i

∫
du+du− .

The small imaginary part in u− specifies the way that the contour avoids the branch
points. Explicitly, it is given as in figure 2 according to the value of u+, namely, u+ < 0,
0 < u+ < 1 or 1 < u+. As long as the integral is convergent, the contributions from
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Figure 2. Contours of u−-integral. C1, C2, C3 are for u+ < 0, 0 < u+ < 1 and 1 < u+, respectively.

u+ < 0 and 1 < u+ vanish, which is confirmed by closing the contour in the lower/upper
half plane. Thus, we are left with

J ∼ i
∫ 1

0
du+u

ᾱ
+(1− u+)β̄

(
1−√u+

1 +√u+

)γ̄
×
∫
C2
du−u

α
−(1− u−)β , (9.3)

where C2 is the second contour in figure 2. We define the phase of the integrand for
u− < 0 by 1 for u+ < 0, eπiᾱ for 0 < u+ < 1 and eπi(ᾱ+β̄) for 1 < u+. 1, eπiᾱ, eπi(ᾱ+β̄) are
understood as the relative phases coming from the integrand for u+. This choice/definition
corresponds to choosing the phase so that it becomes 1 when α = ᾱ, β = β̄ and u± are in
the same interval of (−∞, 0), (0, 1) or (1,∞). We also define √u+ without a phase/sign
for u+ > 0.

By deforming the contour C2 for u− to be wrapped around u− = 1, we arrive at

J = −2eπi(ᾱ−α) sin(πβ)× JL × JR , (9.4)

where

JL =
∫ ∞

1
du−|u−|α|u− − 1|β = B(1 + β,−α− β − 1) ,

JR =
∫ 1

0
du+|u+|ᾱ|1− u+|β̄

(
1−

√
|u+|

1 +
√
|u+|

)γ̄
, (9.5)

and B(a, b) is the beta function. JR is then evaluated by making a change of variables
√
u+ = v,

JR
(
ᾱ, β̄, γ̄

)
= 2

∫ 1

0
dv v1+2ᾱ (1− v)β̄+γ̄ (1 + v)β̄−γ̄

= 2B
(
2 + 2ᾱ, 1 + β̄ + γ̄

)
F
(
2 + 2ᾱ, γ̄ − β̄; 3 + 2ᾱ+ β̄ + γ̄;−1

)
, (9.6)

where F (a, b; c; z) is the hypergeometric function. The possible poles of JR come from the
factor Γ(2+2ᾱ)Γ(1+ β̄+ γ̄) in the beta function, since 1

Γ(c)F (a, b; c; z) is an entire function
of a, b, c for fixed z with |z| < 1 or Re z < 1/2 [52]. They can be cancelled with the zeros
from the other part. Combining (9.5) and (9.6), we obtain

J
(
α, β; ᾱ, β̄; γ̄

)
= 2πeπi(ᾱ−α) Γ (−1− α− β)

Γ (−α) Γ (−β) JR
(
ᾱ, β̄, γ̄

)
. (9.7)
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When γ̄ = 0, by using the formulas,

F (a, b; a− b+ 1;−1) = 2−a
√
π Γ (a− b+ 1)

Γ
(
a+1

2

)
Γ
(
a
2 − b+ 1

) , Γ (2z) = 22z−1
√
π

Γ (z) Γ
(
z + 1

2

)
,

(9.8)

one finds that

JR
(
ᾱ, β̄, 0

)
=

Γ (1 + ᾱ) Γ
(
1 + β̄

)
Γ
(
2 + ᾱ+ β̄

) , (9.9)

and thus

J
(
α, β; ᾱ, β̄; 0

)
= 2πeπi(ᾱ−α)

Γ (−1− α− β) Γ (1 + ᾱ) Γ
(
1 + β̄

)
Γ (−α) Γ (−β) Γ

(
2 + ᾱ+ β̄

) . (9.10)

By setting

γ̄ = 0 , α→ α

2 , β → β

2 , ᾱ→ α

2 + n , β̄ → β

2 +m, (9.11)

(9.10) is reduced to (9.1) up to a phase eπi(ᾱ−α) due to the difference of the conventions of
the phase. In the main text, we drop this phase to conform to (9.1) and the definition of
the phase of

√
z̄ in the computation of the correlators.

The integral with the factor from the twisted propagator also in the left-mover,

J :=
∫
d2z zα(1− z)β z̄ᾱ(1− z̄)β̄

(
1−
√
z

1 +
√
z

)γ (1−
√
z̄

1 +
√
z̄

)γ̄
, (9.12)

is evaluated similarly. In that case, the beta function for JL in (9.5) is replaced by a
hypergeometric function as

J
(
α, β; ᾱ, β̄; γ; γ̄

)
= −2eπi(ᾱ−α) sin (πβ)× JL (α, β, γ)× JR

(
ᾱ, β̄, γ̄

)
,

JL (α, β, γ) = JR (−α− β − 2, β, γ) . (9.13)

Compared with (9.6) for the right-mover, JL has the argument −α−β−2 instead of α (up
to the overline ( )), which implies that the roles of the t- and u-channels are exchanged.

We also list the formulas of the hypergeometric function used in the main text [52],

F (a, b; c; z) = (1− z)−a F
(
a, c− b; c; z

z − 1

)
, (9.14)

F

(
a, 1− a; c; 1

2

)
= 21−c√π Γ (c)

Γ
(
c+a

2
)

Γ
(
c−a+1

2

) , (9.15)

F (0, b; c; z) = 1 , (9.16)

F (a, b; a; z) = (1− z)−b . (9.17)

The forth formula is obtained by combining the first and the third.
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10 SO(4) gamma matrices

We summarize our conventions of the SO(4) gamma matrices used in section 5.2. We denote
by |ε1, ε2〉 with ε1, ε2 = ± the state corresponding to the bosonized spinor e

i
2 (ε1H1+ε2H2)

as in (2.9). We also set |1〉 = |+,+〉, |2〉 = |−,−〉, |1̇〉 = |+,−〉, |2̇〉 = |+,−〉. Then, we
represent the SO(4) gamma matrices satisfying {Γa,Γb} = 2δab by

Γ1 = σ1 ⊗ σ1 , Γ2 = σ1 ⊗ σ2 , Γ3 = σ1 ⊗ σ3 , Γ4 = σ2 ⊗ 1 , (10.1)

where σj are the Pauli matrices and 1 is the 2×2 identity matrix. Γj± := (Γ2j−1± iΓ2j)/2
(j = 1, 2) raise or lower εj . The basis of the states is ordered as |1〉, |2〉, |1̇〉, |2̇〉. The
chirality matrix is Γ5 = i2Γ1Γ2Γ3Γ4 = σ3 ⊗ 1, whereas the charge conjugation matrix is
C := Γ3Γ1 = 1 ⊗ iσ2, which satisfies C2 = −1 and CΓaC−1 = −(Γa)T . We also use the
chiral blocks of Γa, C and Γab := (ΓaΓb − ΓbΓa)/2 as in

Γa =
(

0 (γa) β̇
α

(γ̄a) β
α̇ 0

)
, C =

(
Cαβ 0
0 C̄α̇β̇

)
, Γab =

(
(γab) β

α 0
0 (γ̄ab) β̇

α̇

)
.

(10.2)
In particular, Cαβ = (iσ2)αβ . The indices are raised and lowered by C and C−1, respectively.
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